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Abstract  

One of aims of manufacturing quality control is to ensure that products are made free from defects 

according to specifications without unnecessarily increasing time and cost of production. Over-control 

of a process can be as detrimental to a manufacturer as under-control. It is common in industry that 

operators use their personal knowhow and intuition to decide where to implement process 

verification, and where to tighten it when processes are not meeting specifications. This is partially 

because there is little scientific guidance that can assist operators in making a decision on levels of 

quality control of a process at varying stages. To remedy this, a new method for manufacturing 

quality control, namely Error Chain Analysis (ECA), is introduced and its application is illustrated in 

this article. ECA is capable of statistically analysing the quality of a multi-stage manufacturing 

process based on existing control measures, and it enables to indicate where added or tighter control 

may need to be effectively implemented. For testing its applicability, ECA was built into a user-

friendly tool that was subsequently used to analyse data gathered from a large manufacturing 

company in the UK.  
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1 Introduction 

 

Process control has become an integral part of quality management in modern manufacturing 

industry. Shewhart (1926) pioneered “the formulation of a scientific basis for securing economic 

control” by developing statistical quality control, and Rissik (1943) developed this further. In the 

decades since, many new methods of controlling quality have been produced. The most common 

quality control (QC) methods were critically assessed to understand the potential benefits and 

drawbacks, pointing out the aspects that an alternative method would need to cover. The ultimate aim 

was to identify any areas of the present theory that lack an ‘engineering approach’ and answer the 

question: “How can the exact percentage of control of a manufacturing process be calculated?” 

Subsequently, a new quality control method was developed and implemented in a tool to assess the 

quality of the manufacturing processes used in the case study company. The information gained can 

then be used to highlight the points in the manufacturing process that most require additional control. 

The ‘engineering approach’ is the application of logic, mathematics, science and empirical evidence 

to solve a problem to an appropriate level of accuracy. In the case of quality control, the appropriate 

level of accuracy that is required is debated as it often depends on the specific application. 

 

The case study company is a global market and technology leader in Engineered Joining Technology 

solutions, with over 60 years of manufacturing and product-development experience. With almost 

9000 employees, it has a global network of manufacturing facilities and numerous sales and 

distribution sites across Europe, the Americas and Asia-Pacific. The company manufactures a very 

comprehensive range of joining-technology products in the clamp, connect and fluid categories. The 

UK branch is specifically responsible for the manufacture of two styles of clamp, the QRC (quick 

release clamp) and the VPP clamp both with a dozen sub types. The company is a high turnover 

business, producing approximately 100,000 clamps every week with a high focus on quality. Some of 

their clients are automotive retailers such as Volvo and Ford. As they have strict demands on quality, 

the company must therefore uphold the highest level of quality in order to maintain an advantage over 

their competitors. 

 

ECA was developed as a method of assessing the quality of a manufacturing process that removes the 

need for human decisions when tactically implementing control. Based on the review of literature and 

an analysis of industrial requirements, a new method may need to meet the following criteria: 

 

● It provides an accurate assessment of the level of control that exists in a process and the 

chance of failure of these controls, similar to Failure Modes and Effects Analysis (FMEA). 

● It is capable of identifying all potential sources of failure from known and unknown 

combinations of errors. 

● It can generate an exact answer to the question: “Where is it best to increase control and by 

how much?” 

● It does not require advanced software tools, high computing power or advanced mathematical 

analysis as these are all barriers to implementation. 

● It enables the analysis of an entire multi-stage manufacturing process as a whole instead of 

focussing on each stage separately. 

● It should also work based off of both estimated “predictive” data and collected “reactionary” 

data, similar to Failure Tree Analysis (FTA). 

 

 



2 Related work 

 

Quality control in manufacturing processes used to be human-centered and based on production 

engineers intuitively knowing where processes needed improving (Paul and Yan, 1984). In spite of 

modern technology, there is still an element of this in today’s quality control. A vast array of 

approaches and methods of controlling quality have been developed to aid manufactures both set and 

reach quality targets. The following review of the literature assesses the most popular QC methods 

and existing methods of measuring manufacturing performance.  

Statistical Process Control (SPC) is a method of monitoring and improving a process that requires 

data to be gathered over time. Control charts are generated in order to check for process stability and 

can swiftly identify when a process is no longer in control and quality has dropped. This information 

can be used to react and find the source of the instability, be it a change to the process or and external 

factor. As pointed out by Oakland (2008), the key advantage of SPC over other control methods is 

that it minimises the interruption to production. This is because an appropriate sampling frequency 

can be identified and implemented as part of the method resulting in less interruption. Although it is 

very useful to have a method that can quickly indicate when there is a drop in quality, as noted by 

Woodall (2000) and Gordon (2019), SPC cannot identify the source of the issue nor can it identify 

where to add additional controls in order to combat it. Ong et al. (2004) found that when using 

statistical control charts, the human performance of using these tools is a critical factor that needs to 

be taken into account when creating graphical interfaces. Most process quality assurance methods 

focus on measuring the outcomes of a certain process, and compare the results with the specification. 

Hamrol (2000) suggested a method to help the operator determine the most useful sampling 

frequency.  

Taguchi Methods, which have been developed since the 1950s, are statistical methods that increase 

the quality in manufacturing processes (Roy, 2010), using robust parameter / tolerance design and the 

use of Gauss’ loss function to quantify quality in terms of divergence from the target. To minimize 

production costs, it is more important to reduce deviation from customer-defined targets rather than 

just aiming to meet specifications. Taguchi methods can complement SPC.  

Failure Mode and Effects Analysis (FMEA) is used for risk assessment of potential failure modes 

of a system, design or process. The method involves assessing known failure modes and all potential 

effects of these, with each gaining a Risk Priority Number (RPN). When carrying out a risk 

assessment, there are far reaching benefits to using FMEA’s structured approach of splitting a multi-

stage process down into separate stages with each failure mode and their causes identified 

(Pantazopoulos and Tsinopoulos, 2005). However, there are limitations to the method (Joshi and 

Joshi, 2014; Johnson and Khan, 2003): FMEA can fail to identify previously unknown potential errors 

with a system. Also, the generated RPN is an arbitrary value that merely indicates points of high risk 

and does not provide any assessment of the cost to quality of these risks. Last but not least, the 

assigning of Occurrence and Detection levels can require lengthy debate as the definitions can be 

vague. A real world quality control process in manufacturing industry requires decisions to be made 

on what extra controls to add and where to add them. These tactical decisions are often the sticking 

point of quality control. Although FMEA is one of the commonly used methods for determining the 

existing flaws of a manufacturing process or the design of a product, FMEA is not a substitute for 

quality engineering - it is a supplement. Also, FMEA can magnify the efficacy of the knowledge and 

experience of cross functional team when reviewing a process or design by assessing its risk of 

failure. 



Weaknesses of FMEA: 

● FMEA may not be able to identify the risk of a complex failure that consists of multiple 

failures. This is because FMEA focuses on failure modes rather than effectively review a 

process including input and output features that also need to be considered. 

● RPN are not a precise statistical evaluation of risk. It can only be used to compare different 

scenarios and not effectively assess them on an individual basis. 

● The assignment of detection and occurrence levels can take significant time to allocate and it 

is often inconsistent. This can be mitigated by creating and enforcing standard definitions for 

detection and occurrence levels, as suggested by the Ford Design Institute (2011) in their 

FMEA Handbook.  

● FMEA documents can contain a lot of repeated information. 

 

Some studies proposed approaches to improve FMEA for certain specific applications. Examples 

include: Knowledge-enriched Process FMEA (Zheng et al., 2002), FMEA with pairwise comparison 

to establish the relative importance of the input factors through the risk priority number calculation, 

Markov chains to estimate risk distributions in the long term (Brun and Savino, 2018) and a version 

where the concept of failure was replaced with the concept of defect (Paciarotti et al., 2014).  

 

Process Failure Mode and Effect Analysis (PFMEA) is a subtype of FMEA that provides a structured 

approach to identifying the deficiencies and failures of a process that affect its reliability, the output 

product’s quality and subsequently the customer’s satisfaction. This is achieved by assessing the 

materials used, human factors involved, as well as the set up and condition of the machines used. 

These are assessed for their chance of producing an error (occurrence) and the chance of errors being 

found (detection). Recently, PFMEA has been integrated with LEAN tools and principles (Banduka et 

al., 2016).  

■ Fault Tree Analysis (FTA) provides a probabilistic evaluation of faults, often in safety and 

economically critical systems (Ruijters and Stoelinga, 2015). It is a quantitative method that involves 

translating a physical system into an organised logic diagram (fault tree), where identified causes 

(branches) lead to one selected fault (top event/trunk). FTA shares many similarities with FMEA and 

as such they have overlapping uses. FMEA can be easier and cheaper to implement when reviewing 

smaller systems, however FTA may be better for more complex systems where all the causes of 

potential failure modes are not immediately obvious. The biggest issues with FTA are the time it takes 

to implement and the inability in FTA to cater for a combination of events without advanced software 

packages (Akgün et al., 2015). 

■ Total Quality Management (TQM) is an approach to quality that advocates the continuous 

detection of errors and subsequently their elimination, optimizing supply chains, ensuring employee 

training that is effective and improving customer satisfaction (Ross, 2017). TQM requires full, 

company-wide commitment to the program in order to meet with success (Karuppusami and 

Gandhinathan, 2006). This level of commitment is not necessarily required by other quality control 

strategies and limits the usefulness of TQM as any lack of effort or resources can undermine the 

whole TQM program. 

■ Six sigma uses five core principles; Define, Measure, Analyse, Improve and Control 

(DMAIC) to ensure that products have zero defects and meet customers’ needs. Achieving a Six 

Sigma level means that a mistake is only made 3.4 times in a million. Most companies achieve 

positive returns once they have implemented a Six Sigma program (Anthony et al., 2012), but it 



requires an even higher level of company-wide commitment than TQM. Tsou and Chen (2005) built a 

method for achieving quality that takes into account the cost of producing poor quality products as 

well as the cost for implementing quality improvements.  Six Sigma may benefit from the 

development of more realistic project payback models that highlight which controls are most useful in 

which situations (Brady and Allen, 2006).  
Table 1 provides an overview of the uses and weaknesses of popular QC methods.  

 

Table 1: Applications and weaknesses of the key QC methods 

Methods Applications Summary of weaknesses 

SPC Identifying when errors arise 

with a system 

Unable to identify the source of the issue; unable to 

pinpoint where to add additional controls to combat the 

issue 

Taguchi 

Methods 

Quantifying quality and 

optimizing parameter design 

Hard to implement and the process can be slow and time 

consuming 

FMEA Risk assessment of potential 

failures 

Can miss sources of error and the calculated risk values 

are arbitrary 

FTA Risk assessment of potential 

failures 

Time-consuming to implement and cannot cater for a 

combination of events without advanced software 

packages 

TQM Creating a strategy to manage 

quality 

Requires full commitment to successfully achieve quality 

goals 

Six Sigma Method of providing 

continuous improvement of 

quality  

Requires company-wide full commitment and the 

potential improvements of the implemented controls 

cannot be assessed before implementation 
 

 

Other methods: Davrajh and Bright (2013) developed a quality management system for product 

families in mass customization and reconfigurable manufacturing, where processes and product 

requirements are variable. Mhada et al. (2011) proposed a fluid model with mixed good and defective 

parts, combining the descriptive capacities of continuous / discrete event simulation models with 

analytical models, experimental design, and regression analysis. It is suitable for cases with constant 

demand rates and exponential failure and repair time distributions of the machines.  

 

Human operators often play an important role in achieving high quality levels in manufacturing 

processes. For instance, Michalakoudis et al. (2018) suggested to get operators to understand the 

functions of the parts they were making in an attempt to improve manufacturing quality. However, 

rather than relying on fuzzy human factors, a more practical approach, which leads to consistent 

results, needs to be created.  

 



Engineering approaches to quality control: Reactionary engineering is the traditional approach. It 

is the use of gathered data to react to an issue after it has occurred by correcting the source moving 

forward. Predictive engineering relies on methods like FTA attempting to identify the roots of failures 

before they occur. However, the use of computational power to predict the exact occurrence of errors 

is an emerging field. Rossiter (2017) presented the methods of model-based predictive engineering 

and provided an overview of these new predictive quality control methods. Ordieres-Meré et al. 

(2012) also carried out an assessment of predictive quality control, pointing out that their complexity 

can be a barrier to implementation without developing effective strategies and advanced algorithms. 

 

In summary, there are many methods of appraising and monitoring the quality of a process and 

suggesting when to improve it and by how much. However, there is no method that can suggest 

exactly where in a complex, multi-stage process to add controls in order to achieve a desired 

improvement to quality. This is usually left to the assessment of engineers based on their experience 

and essentially new controls and sensors are added based on educated guesses. The engineering 

approach to this should be to understand exactly what impact a new control will have before 

implementing it. 

 

3 Error Chain Analysis 

 

Error Chain Analysis (ECA) takes into account the inputs and outputs of each process step, and it can 

indicate where exactly added quality monitoring would be most effective. To test its applicability, 

ECA was applied to an industrial case study as illustrated in Section 5.  

3.1 Single Stage Process Modelling 

 

ECA consists of five steps as described subsequently.  

 

Step 1: Identifying input and output features of a process 

The manufacturing process must be surveyed in detail to identify all the key input and output features. 

The example uses a blanking process, where the programmed feed length of material to be cut (feed 

length) is an input, and the length of metal cut (blank length) is an output.  

 

Step 2: Categorising features 

Each feature should be categorised as either Product, Process Set Up or Process Condition. This will 

help break down the process into sections that can be more easily assessed and all features that affect 

the end product can be more easily identified. As illustrated in Fig. 1, the input feed length of a 

blanking machine is a machine set up feature, the output blank length is a product feature, and the 

strip guides’ wear is a machine condition feature.  

 



 
Figure 1: Diagram of a process’ inputs and outputs with feature categories 

 

Step 3: Linking inputs to their dependent outputs 

Once a list of input and output features has been generated, their ‘associations’ can be identified. This 

can be achieved by picking an output and checking every input feature with the question: “Could this 

affect the selected output?” Example: The blank length is affected by both the set feed length and by 

the grip strength because if the grip fails, the blank will not be fed the correct length.  

 

Step 4: Assigning detection levels 

After all features have been identified, the control of these features must be assessed. Both the input 

and the output features of a process must have a detection level assigned. This is a more accurate way 

of modelling a process, unlike in FMEA, where only the failure mode will be given a detection level. 

It is highly beneficial to use standard definitions for each detection level when surveying a process as 

this will regulate the approach taken by any surveyor and it will speed up the survey. The philosophy 

of this method is that there is one correct answer and any engineer should be able to approach the 

same problem and reach the same answer. Therefore, this method has adopted the Ford Design 

Institute FMEA standard definitions for detection levels and occurrence levels (Ford Design Institute, 

2011).  

Shown in Fig. 2 as an example for the FFD with detection levels, the output blank length is measured 

on every piece by a light gate. According to the Ford standard definitions, the continuous thorough 

checking of a feature by use of a sensor is a level 3 control.  

 

Step 5: Assign occurrence levels 

Finally, the occurrence of errors with the input features must be assessed. This can either be done 

based on predicted data, measured data or a mixture of the two. However, the accuracy of data must 

be considered when assessing the results of the method. 

After a survey it was found that the operators incorrectly set the blank length for 1 in every 100 parts 

produced which equates to a level 7 occurrence. Also new strip guides that are wear resistant were 

installed and it was estimated that they would only be responsible for an error 1 in 10000 parts – a 

level 2 occurrence. Fig. 2 represents the FFD with occurrence levels.  

 



 

Figure 2: FFD with input occurrence levels 

3.2 Multi-Stage Process Modelling 

Unlike FMEA, which will approach each stage of a multi-stage process separately, ECA assesses the 

entire process as a whole. This is because stages in a process are not independent of each other and an 

error in one stage can carry through to the next. 

The first stage of a process is assessed the same way as a single stage process. However, the output 

features of this stage then feed into the next stage as inputs. Therefore, subsequent stages will not 

require occurrence levels on every input feature, avoiding the double entry of data that is common 

when creating FMEA documents. 

 

As an example, for a certain production process of a simple semi-circular metal strip, there are two 

stages: blanking and forming. The output arc length of the metal strip depends on the setup and 

condition of the forming press but it also depends on the length of the blank that was cut in the 

blanking stage. The blank length essentially has two detection levels, as it is measured post blanking 

and measured by the automated forming press. Fig. 3 shows the illustration of the multi-stage process 

FFD. 

 

 



Figure 3: A multi-stage process FFD 

 

3.3 Error Chain Analysis 

Once a process has been modelled as shown in Fig 3, the percentage values associated with the 

occurrence and detection can be used to calculate the number of potential undetected errors in the 

final product. The ECA method assumes that if there is any error with an input feature, there will be 

an error with the output feature, i.e. the sum of the input errors equals the total errors with the output. 

For example, if either the feed length is wrong or the feed grip strength is too weak then it is assumed 

the blank length will be incorrect. A mechanism accounting for cases where an incorrect input leads to 

a correct output will need to be added in the future. For this demonstration, the output profile arc 

length from the multi-stage process. Fig, 4 shows part of the percentages for occurrence and detection  

added to the FFD.  

 

 

 

Figure 4: Occurrence and detection percentages added to FFD 

 

To calculate the frequency of undetected errors in an output feature the following equation is used:  

𝑓𝑜𝑢𝑡 = (𝐷𝑜𝑢𝑡 − 1) ∑

𝑛

𝑥=1

(𝑓𝑖𝑛 𝑥 ⋅ (𝐷𝑖𝑛 𝑥 − 1)) 

where: 

           𝑛:number of input features  

 𝑓𝑖𝑛:frequency of error occurrence with input feature (as percentage) 

 𝐷𝑖𝑛:percentage of errors that are detected by input control 

 𝑓𝑜𝑢𝑡:frequency of error occurrence with the output feature (as percentage) 

 𝐷𝑜𝑢𝑡 : percentage of errors that are detected by output control 

 

Example: 

Calculating the frequency of undetected errors with the blank length that are output from the blanking 

process: 𝑓𝑜𝑢𝑡 = (0.9 − 1)(0.01(0.6 − 1) + 0.0005(0.2 − 1)) = 0.044% 

 

By using ECA, the exact value for undetected errors in each feature of a product can be calculated as 

shown in Fig.5. 



 

 
Figure 5: Complete FDD 

 

Table 2 shows the ECA results in terms of percentage of products with an undetected error and the 

total number of undetected errors that are expected per million parts in the final product in response to 

each input or output feature at different stages of blanking and forming process.  

 

Table 2: ECA results 

 

Stage Type Category Name Percentage of 

products with an 

undetected error 

Undetected 

errors per million 

parts 

Blanking Input Set Up Feed length 0.4% 400000 

Blanking Input Set Up Feed grip strength 0.04% 40000 

Blanking Output Product Blank length 0.044% 44000 

Forming Input Product Blank length 0.018% 18000 

Forming Input Set Up Press ram height 0.01% 10000 

Forming Input Condition Press die wear 0.006% 6000 

Forming Output Product Profile arc length 0.034% 34000 

 

 

3.4 Control Implementation 

By breaking down the problem into steps, ECA can be used to assess quality control throughout and 

even complex, multi-stage process, presenting results in relatable and intuitive terms. 

Basic Tactical Control Implementation: 

Once ECA has been performed on the whole of a process, a large table of results will be available for 

assessment. The simplest approach to improving the quality of a process would be to improve the 

control on the features that produce the most undetected errors. However, this approach is not much 

different to FMEA, highlighting the worst areas and targeting them for improvement.  

Intelligent Tactical Control Implementation: 



Using ECA to find the exact area of a manufacturing process where an improvement to quality control 

would have the greatest impact, the value of every detection level should be changed one at a time, 

having a computer recalculate the entire error chain after each change. Therefore, to find the single 

most important area to improve control, computational analysis is required. 

 

1.     The chain of equations should be programmed to automatically recalculate when any of the 

detection or occurrence levels are altered. 

2.     Analysis can be performed to find the most important control to improve by changing the 

detection level separately for every feature in the entire process. The feature that decreases the 

value of the total errors in the final product by the greatest amount is therefore the most important 

feature to improve control on. 

 

Crucially, unlike other methods that attempt this, the calculations required are simple enough that they 

do not require advanced software or high computational power. This method can in fact be performed 

in spreadsheet on a standard specification computer as explained in the results section. 

Tactically Implementing Control Strategy: 

After a process has been surveyed, it will be split up into stages, every key feature has been reviewed, 

and data input and actual errors have been calculated – tactical implementation of new controls no 

longer requires human decisions. For instance, if a quality strategy has been developed for a business 

and they need to improve the quality from 98% to 99.9%, the ECA method can inform exactly how to 

achieve this in the most efficient manner. 

 

 

4 Implementation of ECA 

 

A computational solver tool1 was developed using only standard Excel features. The tool is capable of 

carrying out computational means-ends analysis to generate heuristics to mathematically optimise the 

data. It is also capable of finding a solution subject to constraints, which provides the tool greater 

utility. Example constraints in the context of the case study are: 

● Only improve detection levels on a certain number of features 

● Only improve detection by a certain amount of levels 

● Only improve detection levels that are currently at a certain level  

When run, the solver will attempt to reduce the value for ‘total errors in final product’ by changing 

only the detection levels of the input and output features while complying with the defined 

constraints. 

 

4.1 Excel Solver Constraint Testing 

The abilities of the developed tool were tested by using existing constrained optimisation problems to 

verify that it could find the correct solutions. The constrained Rosenbrook function used by 

Simionescu and Beale (2004) is as follows: 𝑓(𝑥, 𝑦) = (1 − 𝑥)2 + 100(𝑦 − 𝑥2)2 

  

Subject to: (𝑥 − 1)3 − 𝑦 + 1 ≤ 0 and 𝑥 + 𝑦 − 2 ≤ 0 

The solver was targeted to find a solution within the search domain, as illustrated in Figure 6:  

                                                        
1 

 Available upon request. 



−1.5 ≤ 𝑥 ≤ 1.5 and −0.5 ≤ 𝑦 ≤ 2.5 

 

 
Figure 6:  The Rosenbrock function used to test constrained optimization.  

 

The solver found the solution to this problem with very promising speed, always staying under a 

minute as listed in Table 3.  

 

Table 3: Solver constraint test results 

 



 
 

 

5 Case study: Modelling VPP 096 clamps manufacture 

 

ECA was applied to a multi-stage manufacturing process used in the case study company. The results 

were discussed with the manufacturing director and the head of the quality department, and their 

feedback was very encouraging. They both confirmed that ECA will be used from now on to direct 

where to step up control. They are implementing it in the company because it gives them the 

confidence that their implemented changes are having the greatest effect for the least cost / hassle.  

 

The manufacturing process for making VPP 096 clamps can be broken down into the following 

stages, as shown in Figure 7: 

● Profile Blanking: Blanking press cuts strips of steel to length and crops the ends 

● Clip Blanking: Blanking press cuts clip shape from steel 

● Profile Forming: Forming press shapes blanks into clamp halves 

● Deburring: Rumbling machine removes sharp edges 

● Profile Crimping: Crimping tool bends profile edges 

● Clip Welding: Auto spot welder joins clamp halves and clip 

● Assembly & Packing: Screw and washer fitted and then clamps are boxed 



 
Figure 7: The VPP 096 Clamps processing flow diagram 

 

A survey was carried out for each process stage and every input and output was identified, 

approximately 40 features of input and output for each stage2.  

 

5.1 Survey of Detection Levels 

A survey of the detection levels was carried out on every identified feature, in compliance with Ford 

Design Institute FMEA standards. The results of this survey can be found in Dockree (2019); 

occurrence levels were not re-surveyed in this study. The values for occurrence were extracted from 

existing PFMEA documents of the case study company. 

 

                                                        
2 Dockree (2019) provides a full breakdown in Tables 7.1 to 7.7. 



5.2 Error Chain Analysis 

Once the data had been collected, it was imported into the developed solver tool and ECA could be 

carried out. This was a lengthy process as every input and output feature needed to be linked to all 

dependent features. The relevant data can be found in Dockree (2019: Table 7.8). Once completed, the 

results of the ECA can provide the total undetected errors that are produced at each process along with 

the cumulative undetected errors, as shown in Table 4 where nut crimping, bridge welding, clip 

welding and assembly and packaging are distinct processes which are performed at the same station. 

The cumulative undetected errors at each stage include the errors produced at that stage plus any 

errors produced at a previous stage that have evaded detection up to this point. 

 

Table 4: VPP clamp ECA results  

Process Cumulative undetected 

errors after each process 

[per million parts made 

(pmpm)] 

Undetected errors 

produced by each 

process [pmpm] 

Total undetected 

errors + detected 

errors after each 

process [pmpm] 

Profile Blanking 6573 6573 11998 

Profile Forming 8556 8036 41868 

Profile Deburring 13068 5268 49397 

Bridge Blanking 13657 589 50607 

Nut Crimping 14024 2437 61841 

Bridge Welding 15149 4134 75593 

Clip Welding 14538 1136 79352 

Assembly & Packing 12805 1393 83071 

 

Figure 8 shows the errors that take place at each stage of the process. It includes the undetected errors 

in blue and the cumulative undetected errors in red and sum of undetected errors and detected errors 

in grey. To help visualise the impact of the detection controls currently in place. 

 

As is the case in this VPP production process, the total number of undetected errors in a product can 

decrease as additional manufacturing stages are carried out. At first this can seem counterintuitive. 

However, this is because although more errors are added, existing ones can be detected and eliminated 

at subsequent stages. For example, there may be 10000 undetected errors per million parts made 

(pmpm) present in the formed profiles which remain undetected until the last stage when the profiles 

are fitted into a jig for assembly. At this point many of the existing errors with the profile form are 

detected and eliminated. In fact, more errors are eliminated at this stage than added. 

 



 
Figure 8: Errors present at each stage of production of a VPP clamp with an overhead clip. In blue: 

Undetected errors produced by each process. In red: Cumulative undetected errors after each process. 

In grey: Total undetected errors + detected errors after each process.  

 

5.3 Suggested Control Improvements based on the ECA 

After the ECA had been completed, the solver was able to run and find features that would reduce the 

total undetected errors in the process based on the following constraints applied: 

● Only improve the detection levels of the feature by 1 level 

● Examine the entire process i.e. no constraint on the process stages reviewed 

● Find the top five best features 

The suggested improvements are shown in Table 5, together with an indication of the control level 

before and after. This then translates into suggested improvements for tighter quality control.  

 

 

 

 

Table 5: Results from solver analysis (suggested control improvements) 

  



Features Improved From 

Input product feature: Uniformity of crimped profiles batch (no mixed parts) 5 

Output product feature: Bottom gap (above spec) 6 

Output product feature: Blank length (too short) 6 

Input set up feature: Nut loading 5 

Output product feature: Number of clamps count (too many or too few) 5 

 

Example breakdown of a recommendation: 

Recommendation: Change the existing level 5 control on the input setup feature of “Nut loading” to 

a level 4 control.  

Existing Control: A level 5 control is “Continuous gauging of feature (gauge built into jig/adjustable 

strip guides).” The actual control in place is a jig - every nut is loaded into a jig for assembly.  

Improved Control: The suggested improvement is to a level 4 control which is “Continuous gauging 

of feature and routine thorough checks.” In other words, the suggestion is to also have a routine 

thorough check of the completed parts as well as the currently used loading jig. By routinely checking 

the completed parts at this stage if the jig has become misaligned it will be recognised and the error 

will be eliminated. 

 

The Excel tool then automatically recalculates the ECA using these suggested improvements to 

control. On this basis, if these highlighted improvements are made, it is calculated that there would be 

a 22.3% increase in production quality (as shown Table 6). 

 

Table 6: Case study results – calculated improvement in quality 

 

Total Undetected Errors (per million parts)  

Before improvement After Improvement 

12805 9945 

 

 

6 Discussion and Conclusion 

 

The results of this study demonstrate that the control of a complex manufacturing process can be 

analysed providing a quick solution in levels of controls that can subsequently be generated using a 

simple ECA approach, which is presented and illustrated in this paper. This is a very useful tool for 

achieving the tactical implementation of controls for manufacturing companies facing a similar issue. 

The solver tool, which was built only using Excel, was able to identify the top 5 points in a 

manufacturing process that most require tighter control. With this, a quality target can be met in the 

most efficient way possible and without any prior knowledge or experience of the process. 

 

However, this tool does not consider the cost of implementation / improvement of controls, which can 

result in the suggested improvements being impractical or too costly. Fortunately, by merely changing 

the constraints applied to the tool, impractical improvements can be ignored. This means that if a 

suggestion cannot be implemented, a constraint can be added to exclude that feature from the 

calculation. For example, if it is too expensive to consider implementing level 1 or 2 controls at any 

stage of a process then the solver can be told to only improve a control to a maximum of level 3. 

Therefore, with the simple addition of constraints, this analysis method and solver tool can suggest the 

best improvements for any manufacturing process. 



 

Testing was successfully run on data gathered from a process with 7 stages each with approximately 

40 input and output features that were all intricately interlinked. The solver managed to correctly 

identify the top 5 features that would benefit from greater control. It is hoped that this method could 

be a better option than FMEA which is commonly used to assess the reliability of a system. Instead of 

producing an arbitrary Risk Priority Number, ECA produces exact values for the number of defects 

that are expected to be produced per number of parts made. However, to fully supersede FMEA, this 

computational method will also need to incorporate the severity of failure as well as occurrence and 

detection. 

 

ECA was created with a set of criteria as outlined in the introduction. Reviewing these criteria, we can 

conclude the following: ECA provides an accurate assessment of the level of control that exists in a 

process and the chance of failure of these controls. It is capable of identifying potential sources of 

failure from known and unknown combinations of errors, and it can provide an exact answer to the 

question: “Where is it best to increase control and by how much?” ECA does not require advanced 

software tools, or complex mathematical analysis, which are all barriers to implementation for 

operators in the manufacturing industry. It is capable of analysing an entire multi-stage manufacturing 

process as a whole instead of focussing on each stage separately, and it works based on both estimated 

“predictive” data and collected “reactionary” data. 
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