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Abstract—Automatic detection of transparent materials (e.g.,
glass, plastic, etc.) is essential in many computer vision tasks. For
example, a robot could use such a system to navigate around
transmissive materials or operate tasks with these materials
without causing damage. Nevertheless, it is challenging task
as such materials exhibit less texture or background scenes
dominate visual perception. Existing methods used either hand-
engineered or leaned features to detect and segment transparent
objects. We argue that pixel-wise detection and segmentation
of transmissive materials improve detection performance and
provide the fine-grained information compared to detecting
bounding boxes of objects (i.e., localisation task). In this paper,
we leverage a robust and state-of-the-art instance segmentation
method namely, Mask R-CNN, in order to detect transparent
materials. To be specific, we train the model on a new dataset with
an evaluation based on publicly available dataset. Experimental
results show that the adopted method significantly enhances the
performance of transparent material detection. In particular, the
resulting binary masks provides the pixel-level information for
an improved understanding and analysis of transparency.

Index Terms—Transparent Material, Instance Segmentation,
Material Detection, Mask R-CNN

I. INTRODUCTION

Transparent materials, such as glass and plastic, can be

found nearly everywhere in our surrounding environment. Due

to the substance that they are made of and the nature of

transmissiveness, these materials are sensitive to damage or

mishandling. Thus, extra caution is required when handling

and navigating around these materials immediately after they

are first perceived. Psychological studies show that the human

visual system perceives transparency (i.e., one surface is

seen through another) when the Michelson contrast (i.e., the

difference between the highest and lowest luminance) occurs

[1]. Though we exhibit varying visual capability, our visual

system can fail to recognise transparent surfaces as they have

limited recognisable features or they transmit the background

Fig. 1: Examples for training images: (top row) RGB images,

(middle row) ground-truth masks, and (bottom row) segmen-

tation class visualization.

scene. The same challenges make it difficult for a computer

system to recognise transparent materials.

With the growth of intelligent machines, such as self-

driving vehicles and cleaning robots, automatic detection of

transparent materials becomes important for the continued

development of these technologies. For example, in the chem-

istry and biology laboratories, with the successful detection or

understanding of transparency, an intelligent machine or robot

can manipulate these materials and move around freely without

causing any damage. Moreover, in the field of computer

vision, recognition of transparent materials is significant for

the understanding and analysis of multimedia data.

In the past years, studies have been conducted for recogni-

tion of transparent materials [2]–[7]. Although some progress

has been made, recognizing transparent materials is still open

problem. Most existing methods use hand-engineered features

or other traditional methods as in [2], [3], [8]–[11], and few

implemented learning methods to detect transparent objects

[5]–[7]. The traditional methods impose several constraints



and require prior information that make an inference of trans-

parency computationally expensive and challenging. On the

other hand, the learning-based methods do not detect objects

regions at the pixel-level and cannot separate overlapping

transparent materials though they may succeed in detecting

transparent regions. In this paper, we therefore aim to address

these problems by adapting an instance segmentation based on

a deep leaning method, namely, Mask R-CNN [12].

The major contributions of this paper are summarized

as follows. First, we present a framework for analysis and

understanding of transparent material detection at the pixel-

level using an instance segmentation method (i.e., Mask -

RCNN). Our results provide insights into solving the feature

descriptor problem with transparent object detection. Second,

we introduce a new annotated dataset for use in the detection

or segmentation of transparent objects.

II. RELATED WORK

Existing methods for detection of transparent materials can

be classified into two categories based on the algorithm that

they employ: traditional methods [2], [3], [8]–[11], [13]–

[15] and leaning methods [5]–[7](e.g., deep learning based

methods). In this section, we review the recent and most

popular works related to transparent material detection.

Transparent materials share dominant features, such as

highlight, blurring, overlay-consistency and texture distortion

[4]. Most of these materials refract light from the background,

which causes distortion. Although different materials result in

different distortions amounts, they present similar characteris-

tics of transparency. Compared to opaque materials, transpar-

ent materials are known for a few deterministic features. In

this context, Kompella and Sturm [2] defined transparency as

an inverse measure of the total number of discrete character-

istics of an object. Relying on this definition, they proposed

the collective-reward (CR) approach for the detection and

localisation of semi-transparent objects. The principle follows

that semi-transparent objects and surrounding pixels share

similar features that result from the refraction and reflection of

light through them. The algorithm classifies a semi-transparent

region by aggregating support fitness functions and a feature

reward function. Let Crfi denote the collective reward for

every feature-cue f= {transparent feature cues}, and for each

point pi of the background to the region R (an assumed region

randomly selected), the reward is

Crfi =
1

µ
′

1

(µ1Crfi,1 + µ2Crfi,2 + . . . + µnCrfi,n (1)

where { µ1, µ21, . . . ., µn} are the results from calculating

the fitness values of the connections. This method involves

hand-engineered parameters and prior assumptions. In general,

the algorithm fails when the region R is large and when a

comparison is performed far from the transparent region. In

addition, some false positive results dominate whenever the

image contains shadows of transparent objects.

Moving beyond the methods that focus on the deterministic

features for detecting transparent objects, Wang et al. [3]

instead proposed the use of depth information and multi-

mode sensors. These features jointly predict glass edges and

regions by building a Markov Random Field (MRF) model.

Depth information is also used in the work of Luo et al.

[10] and Hagg et al. [11]. The former used depth information

with transparent cues, such as colour similarity and intensity

consistency between the transparent region and surrounding

pixels, while the latter used reflectance.

Although the above methods utilize the features observed

in a transparent object, Maeno et al. [9] proposed a detec-

tion scheme, namely, the light field distortion (LFD) feature

that relies on the distortion of the background scene. They

claimed that a transparent object’s form largely depends on

the background scene instead of the object, which offers less

information about its presence.

While traditional methods show reasonable progress toward

detecting transparent materials, they significantly depend on

prior knowledge and constraints. Also, they are computation-

ally expensive and challenging to use in real time scenarios.

These challenges motivate the use of learning-based methods,

which are more robust, computationally inexpensive, and pro-

vide nonlinear solution. However, the implementation based

on deep learning for detection of transparent materials is rare.

One example is the work that Fuh and Lai [5] adapted in

which a region convolutional neural network(R-CNN) method

[16] was used to detect a transparent object. To improve the

region proposal algorithm, they used highlights and colour

similarity cues to remove identified regions which do not

contain highlights.

More recently, Khaing and Masayuki [6] reported successful

transparent object detection by leveraging a convolutional

neural network (CNN) method, i.e., the Single Shot MultiBox

Detector (SSD). This simple and effective method eliminates

the need for proposals and feature sampling stages by com-

puting everything in a single forward pass network [17]. The

approach follows the assumption that if an object is presented

in an image, there must be a window and label to which it

is well aligned. In the process of training, SSD minimizes a

joint regression and classification loss as

L (x, c, l, g) =
1

N
(Lconf (x, c) + αLloc(x,l,g)) (2)

where N is the total number of default boxes, l is the predicted

box, and g is the ground truth box parameters.; Lloc(x,l,g) in

the above formula is the localization loss denoted as

Lloc(x,l,g) =
N∑

i∈Pos m∈{cx

∑

,cy,w,h}

xk
ijsmoothL1(l

m
i − ĝmj )

ĝcxj = (gcxj − dcxi )/dwi ĝcyj = (gcyj − dcyi )/dhi

ĝcwj = log
gwj
dwi

ĝchj = log
ghj
dhi

where c is the class confidence. Although SSD performs

efficiently in the detection task, it does not handle well small

transparent materials due to its shallowness. In this paper,



we adapt the state-of-the-art object detection and instance

segmentation method called Mask R-CNN [12] in order to

better deal with a range of small to large transparent materials

and identify them at the pixel level. Moreover, Mask R-CNN

offers the advantage of identifying instances of the same

materials and overlapping materials in different orientations

within the image.

III. DETECTION OF TRANSPARENT MATERIALS

The objectives of this study are to detect and segment trans-

parent materials and examine the latency and transferability of

Mask R-CNN for learning transparent features. Furthermore,

we contribute an annotated dataset which is useful for the

understanding, analysis, and detection of transparent objects.

The framework for detection and segmentation of transparent

materials is shown in Fig. 2.

Fig. 2: The framework for detection and segmentation of

transparent materials

The first stage of the proposed framework is collecting

training data (e.g., images of transparent materials), and then

we manually annotate the transparent regions of each image

using an open source software tool. The next step applies

an augmentation technique to increase the training size and

variation of the data. Finally, we pass the data through the

Mask R-CNN module for model training. During prediction,

test data from [2] is feed into the inference module, which

detects and segments the transparent materials from the im-

ages. The obtained visual and quantitative result is graphically

displayed for interpretation.

A. The Dataset

Mask R-CNN requires a considerable amount of labeled

data in order to train without overfitting. However, obtaining

images containing transparent materials with the mask infor-

mation is tedious. In this study, we collected 1050 images with

transparent materials (glass and plastic) from the Internet and

annotated them manually (see Fig. 1). Then, we used the Mask

R-CNN with the pre-trained weights trained on ImageNet for

training.

We chose glass and plastic images because of high-volume

availability. While gathering the images, we assumed a trans-

parent material is one that clearly shows all or a part of its

background scene. The size of the collected images varies

from 127x127 to 259x259 pixels. During the annotation,

we labeled all pixels belonging to the transparent material

in each image using an open source annotator software.

Since our collection for the training data is small, the

model could easily overfit. Thus, in addition to using pre-

trained weights, we incorporated an augmentation technique

Fig. 3: A simplified graphical representation of the adapted

Mask R-CNN architecture [12].

to increase the data variation. Upon publication and recom-

mendation, we will make our dataset publicly available on

https://github.com/AmanuelHirpa/TMD2.

B. Experimental Setup

We employed the open-source package of Mask R-CNN

for training and prediction. The experiment was conducted

on a single GPU (Tesla K40, 2880 cores, 12GB RAM) until

it converge. For the backbone network, we used ResNet-

101(with ResNet-101 and ImageNet pre-trained weights the

model registered better results) with a minibatch size of two

images. We retained the default parameters except for the RPN

anchor scale size, image dimension and mean pixel values.

We set the length of the square anchor side to 16, 32, 64, 128

and 256 pixels because we observed there are many small

transparent materials in our dataset. Since our images are

collected from the Internet whose quality may be low, we

set the maximum dimension to 512 pixels and the mean pixel

values to (43.53, 39.56, 48.22).

C. Mask R-CNN Method

The Mask R-CNN method [12] is an object instance seg-

mentation technique [18] that extends Faster R-CNN [19] by

adding a module to predict the mask of instances from a

detected bounding box [12]. As can be seen from Fig. 3, the

Mask R-CNN architecture includes five main modules [12]:

(1) a backbone network (ResNet [20]) serving as a feature

extractor, (2) a Feature Pyramid Network (FPN) [21] enabling

the accessibility of lower and higher level features from every

level used to handle objects at multiple scales, (3) a Region

Proposal Network (RPN) to generate the region of interest

(ROI), (4) an ROI classifier and Bounding Box Regressor to

predict classes of each ROI and the refine ROI assisted by

ROIAlign and (5) a Mask Network to predict the mask at the

pixel level.

Mask R-CNN implements a multi-task loss function that

combines classification, bounding box, and segmentation mask

losses [12] denoted as:

L = Lcls + Lbox + Lmask (3)



(a) (b) (c)

(d) (e) (f)

Fig. 4: Graph visualization of losses for Mask R-CNN optimization. (a) Training and validation L1-Loss; (b) training and

validation of Mask R-CNN mask loss; (c) training and validation of Mask R-CNN class loss; (d) training and validation of

Mask R-CNN bounding box loss; (d) training and validation of RPN bounding box loss; (e) training and validation of RPN

class loss.

where, Lcls and Lbox are the classification and bounding box

losses used in [19] respectively. The Lmask loss is a mask loss

function defined as the average binary cross-entropy loss.

IV. EVALUATION AND RESULTS

In this study, we aim to investigate the effectiveness of Mask

R-CNN model for detecting transparent materials. Table I

shows the quantitative comparison between the results of our

experiment and those derived using two different transparent

object detection models [2], [6].

TABLE I: Quantitative comparison of transparent object de-

tection on test images taken from [2].

Metrics Mask-RCNN SSD [6] CR [2]

AP@50 0.73 0.48 -

AP@75 0.53 0.31 -

AP@95 0.09 0.001 -

Preciison 0.82 0.78 0.75
Recall 0.77 0.43 0.66

Using the parameters and experimental setup described in

Section III our adapted method generated superior perfor-

mance to the work of Khaing and Masayuki [6] by a margin

of 25%, 22%, and 8.9% on the average precision (averaged

over the IoU thresholds) at thresholds 0.5, 0.75, and 0.95,

respectively. Compared with the traditional method employed

by Kompella and Sturm [2], our adapted method outperforms

by a margin of 7% in precision and 11% in recall. This result

demonstrates that Mask R-CNN better addressed the challenge

of identifying transparent materials.

During optimization, we observed that the validation loss

of the pixel-to-pixel segmentation mask was as smooth as

bounding box loss even though bounding boxes are not an

exact fit of the objects. This can be observed from appar-

ent from the optimized loss curves depicted in Fig. 4. The

finding demonstrates the effectiveness of the pixel-to-pixel

segmentation branch of Mask R-CNN for locating transparent

materials. We attribute the effective segmentation to the fact

that the fully convolutional network is able to preserve the

spatial dimension during mask prediction as well as the

accurate alignment between the extracted features and their

RoI using the RoIAlign function [12]. It is more evident on

the qualitative comparison as shown in Fig. 5.

As can be seen in Fig. 5, the predicted results on the test

set show that the adapted method detected small materials

better than the existing methods. The segmentation ability of

the adopted method is an additional function useful for the

manipulation or interpretation of a selected block of pixels

for further tasks. We also observed that Mask R-CNN is

better at avoiding the non-transparent regions that have similar

features to the transparent regions, such as shape and colour.

As can be seen from the results above, the existing methods

failed to differentiate between the shapes and colours in non-



(a)
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  Test Image 1   Test Image 2   Test Image 3   Test Image 4   Test Image 5   Test Image 6   Test Image 7   Test Image 8

Fig. 5: Qualitative results of the transmissive object detection task on a test set from [2]. Top row (a) test images; second row

(b) ground truth masks; third row (c) result from [2], fourth row (d) results of [6], bottom row (e) our result.

transparent regions that are similar to a transparent region.

Also, some clear (i.e., a high degree of textureless) transparent

materials were detected by the adapted method while Khaing

and Masayuki [6] failed to detect the same features. All

the experimental results show that Mask R-CNN is able to

detect and segment transparent material effectively. We believe

that the depth of the network and the pixel-wise learning

capabilities of the Mask R-CNN are the key factors that

enabled it to detect small and clear transparent materials.

Fig. 6: Test result in indoor challenging lab video. For a better

view, please zoom in the electronic version.

To visually inspect the quality of our trained model on

videos, we conducted a test on a video obtained from the

Internet. We further challenged the detection algorithm by

selecting a video filmed indoor with several overlapping trans-

parent materials as well as a moving person. As can be seen

from Fig. 6, despite the challenging nature of the task and the

test data, the model detected transparent materials successfully.

However, in some frames, the person’s face was also detected

as a transparent material due to the pre-trained weight was

trained on ImageNet, which contains faces. This issue might

be avoided in future work if a large, ad-hoc dataset is available

for detection of transparent materials to train the model from

scratch.

To understand how well and what the model had learned,

we inspected the weight and bias distributions along with the

backbone network feature map (see Fig. 7). We observed that

weights and bias were properly distributed. The feature map

extracted from the backbone layer shows that some features,

such as reflections and shininess, lead to false negative re-

sults. Although these features were mostly used as cues for

transparent detection in previous studies [2], [5], they inclined

to generate incorrect results when non-transparent and shiny

objects presented in the image. This finding primarily affects

the classification task between the transmittance properties,

such as transparent and translucent, because these features are

common to both properties. In such cases, avoiding these fea-

tures may be an option to build a better recognition algorithm.

We also observed a few misalignments of segmentations

produced by Mask R-CNN especially when the transparent

material was entirely clear. We believe that the failures were

due to insufficient training images. To be exact, the training



(a) Sample Images (b) Backbone Feature map (c) Weight and Bias Distribution

Fig. 7: Visualizing result; (a) sample Image; (b) backbone network feature map (resnet101); (c) shows how well the weight

and bias distributed.

data is not enough for detecting very clear transparent materi-

als when the non-transparent regions’ visual features dominate

the transparent regions in the image.

V. CONCLUSION AND FUTURE WORK

In this paper, we applied the instance segmentation method,

namely, Mask R-CNN, to localization of the precise area

of an image containing transparent behaviours or features

from materials, such as glass and plastic. To this end, we

performed extensive experiments on both the new dataset that

we collected and a public test set. The comparison between

the adapted method and two existing approaches suggested that

our approach performed better than the two counterparts. By

analyzing the results, we conclude that promising detection of

transparent materials can be achieved using pixel-wise instance

segmentation method. Despite Mask R-CNN was initially built

for detection and segmentation of opaque objects, it can also

be used to more difficult tasks, such as detecting transparent

materials and locating pixels belong to these features with the

minimal adjustment.

Further work is required in order to improve the perfor-

mance of the detection of transparent materials by integrating

the removal of negative artefacts through an end-to-end deep

learning instance segmentation method. Also, a dataset with

an adequate number of high resolution images should be

considered for obtaining better results.
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