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Abstract

We perform a reconstruction of the coupling function between vacuum energy and geodesic cold dark matter using
the latest observational data. We bin the interaction in seventeen redshift bins but use a correlation prior to prevent
rapid, unphysical oscillations in the coupling function. This prior also serves to eliminate any dependence of the
reconstruction on the binning method. We use two different forms of the correlation prior, finding that both give similar
results for the reconstruction of the dark matter – dark energy interaction. Calculating the Bayes factor for each case,
we find no meaningful evidence for deviation from the null interacting case, i.e. ΛCDM, in our reconstruction.
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1. Introduction

One of the most pressing questions in modern cosmol-
ogy concerns the true nature of dark energy: what is the
physical driver of the accelerated expansion of the Uni-
verse? This phenomenon of accelerating expansion was
first established by [1] and [2] and is generally attributed
to the existence of a positive cosmological constant, Λ,
in our Universe. While the cosmological constant is the
simplest proposed source of the accelerated expansion, it
is widely agreed that it has long suffered from theoretical
problems: namely, why its observed value and theoreti-
cally predicted value differ so greatly [3, 4, 5], and why
it has only come to dominate over the other components
in the Universe relatively recently [6]. However, some
advocate that these are not problems of cosmology but
of particle physics or quantum field theory – or perhaps
not real problems at all [7].

In addition to these theoretical and philosophical is-
sues, the ever-increasing improvements in observational
cosmology have begun to reveal tensions in the values
of cosmological parameters within the wider ΛCDM
model, particularly between high and low redshift mea-
surements of these quantities. The most striking of these
tensions is in the value of H0, the Hubble parameter at
redshift zero, which essentially informs us of the rate at
which the Universe is expanding.

∗Corresponding author: natalie.hogg@port.ac.uk

A value of H0 can be measured without assuming a
cosmological model, using low redshift probes such as
Type Ia supernovae which rely on the distance ladder to
fix the distance–redshift relation. A recent example of
such a measurement is H0 = 73.45 ± 1.66 kms−1Mpc−1

[8]. The value of H0 can also be calculated using infor-
mation coming from the cosmic microwave background
(CMB) – the caveat being that a cosmological model
must be adopted. In doing so, the Planck collaboration
reports H0 = 67.4 ± 0.5 kms−1Mpc−1, when ΛCDM is
assumed [9]. This signals a tension of more than 4σ
between the two measurements [10].

Some other measurements of H0 that are indepen-
dent of the distance ladder do not seem to relax the
tension. For example, the H0LiCOW doubly imaged
quasar measurement found H0 = 72.5+2.1

−2.3 kms−1Mpc−1

[11], the LIGO gravitational wave measurement found
H0 = 70+12.0

−8.0 kms−1Mpc−1 [12] and the very recent
Megamaser Cosmology Project constraint was found
to be H0 = 73.9 ± 3.0 kms−1Mpc−1 [13].

The inverse distance ladder approach used in [14]
found H0 = 67.77 ± 1.30 kms−1Mpc−1. This method
entails anchoring the distance ladder using the baryon
acoustic oscillation (BAO) signal combined with the size
of the sound horizon at the drag epoch rs(zd), which is in
turn obtained either through CMB measurements or Big
Bang nucleosynthesis constraints on the baryon density
Ωbh2. Anchoring the distance ladder in this way rather
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than to Cepheid variable stars results in a value of H0 in
agreement with the Planck 2018 result quoted above.

Furthermore, another tension is becoming apparent
in the value of σ8. This parameter is a measure of the
growth of cosmological perturbations and hence of the
large scale structure formation. The tension in its mea-
sured values is also between high and low redshift probes
[15, 16].

While it is entirely possible that these tensions are
present simply due to systematic errors or noise in the
data, we must also consider the possibility – following
the well-known aphorism in statistics that “all models are
wrong” [17] – that the ΛCDM model is simply incorrect.

In an attempt to extricate cosmology from this rather
alarming predicament, many alternatives to the ΛCDM
model have been proposed. Some are as simple as al-
lowing vacuum energy to interact with cold dark matter
(CDM) (see e.g. [18, 19, 20, 21, 22, 23, 24]), others in-
troduce an additional scalar field to drive the accelerated
expansion (see [25] for a comprehensive review) and
still others eliminate general relativity entirely, explor-
ing modified gravity theories in which self-acceleration
can be achieved (see e.g. [26, 27, 28, 29] for details of
various modified gravity models past and present).

It is worth noting that some modified gravity models
are motivated by the need to explain various features of
large scale structure formation and thus do not necessar-
ily alter the background cosmology. Since H0 is a probe
of the background expansion, models that do have some
effect on the background cosmology are naturally more
attractive when the motivation is to relax the H0 tension.

In this work we choose the first option, introducing
an interaction between the vacuum and cold dark mat-
ter, constructed in such a way that the cold dark matter
remains geodesic, thus limiting any potentially patho-
logical effects on structure growth. In a previous work
[22], we investigated whether a simple form of this in-
teraction could relieve the tensions present in ΛCDM,
testing the interaction acting in a single redshift bin and
reconstructing the interaction using four redshift bins.
We found that, while the interacting scenario does not
manage to relieve cosmological tensions, it is not ruled
out by current observational data.

In this work, we continue that investigation by increas-
ing the number of redshift bins used in our reconstruction,
thereby increasing the redshift range that the interaction
acts over and ensuring a model-independent reconstruc-
tion. We also use the up-to-date Planck 2018 likelihood
[9], instead of the 2015 likelihood used in our previous
work. We study the constraining power of a theoretical
prior acting across the bins and reconstruct the final inter-
action function. We then perform a Principal Component

Analysis and calculate the Bayesian evidence for each
case studied.

This paper is organised as follows: in Section 2 we
recapitulate the theory behind the interacting vacuum
scenario that we test in this work. In Section 3 we de-
scribe the implementation and numerical analysis done,
explaining the role of the theoretical priors and the re-
construction. We present our results and discussion in
Section 4 and then conclude with Section 5.

2. The interacting vacuum

In this section, we limit ourselves to a basic discussion
of the interaction in a spatially flat Friedmann-Lemaı̂tre-
Robertson-Walker (FLRW) background. We note that
the interaction is constructed so that CDM remains
geodesic; in brief, this is because the energy-momentum
flow 4-vector between the vacuum and cold dark mat-
ter, Qµ, can be projected in two parts, one parallel and
one orthogonal to the CDM 4-velocity, Qµ = Quµ + f µ,
where f µ is the momentum exchange, f µ = aµρc.

We set this momentum exchange to be equal to zero,
implying that the 4-acceleration aµ must be zero and
thus ensuring that CDM is always geodesic, as no ad-
ditional acceleration due to the interaction acts on the
CDM particles. With this choice, in the synchronous
comoving gauge that we use to describe perturbations,
the interaction is unperturbed and fully encoded in the
background Q.

We refer the reader to [18] and [22] for a detailed
treatment of the covariant theory of the interaction, as
well as the behaviour of linear perturbations in this theory
and the effect of the interaction on structure growth.

In a spatially flat FLRW background, the interaction
is introduced between CDM and the vacuum in the fol-
lowing way:

ρ̇c + 3Hρc = −Q, (1)
V̇ = Q, (2)

where ρc and V are the energy densities of CDM and
the vacuum respectively, H = ȧ/a is the Hubble expan-
sion, with a the cosmic scale factor, and Q is the energy
exchange between the components. For Q = 0, V is
constant and we recover a cosmological constant, i.e.
ΛCDM.

In order to reconstruct the behaviour of this interaction,
we must choose a model for Q. We make the following
choice,

Q = −qHV, (3)
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Parameter Prior
Ωbh2 [0.005, 0.1]
Ωch2 [0.001, 0.99]
H0 [50, 100]

log 1010As [2.0, 4.0]
ns [0.8, 1.2]
qi [−6.0, 3.0]

Table 1: Prior ranges of the parameters sampled in our analysis.

so that the coupled energy conservation equations (1),
(2) become

ρ̇c + 3Hρc = qHV, (4)
V̇ = −qHV, (5)

where q = q(a) is a dimensionless function that encodes
the strength of the coupling between CDM and the vac-
uum. A positive value of q indicates that the vacuum is
decaying and dark matter is growing, whereas a negative
value of q indicates that dark matter is decaying and the
vacuum is growing. We aim to reconstruct the coupling
as a function of redshift z, i.e. q(z), using a cubic spline
interpolation and a Gaussian process.

3. Method

In this section, we describe the numerical codes used
and the modifications made to those codes, as well as the
theoretical priors and data considered in our analysis.

3.1. Modifying CAMB and CosmoMC

The first step in our analysis is to constrain the cou-
pling strength q(a) with cosmological data. To this end
we make use of modified versions of the CAMB [30, 31]
and CosmoMC codes [32, 33]. We bin the interaction
function q(a) in terms of the cosmic scale factor, with qi

being the constant parameter value within the ith bin.
We choose to extend our previous four bin analysis

presented in [22] to seventeen bins, with i = 1, ..., 17;
sixteen that are uniform in scale factor from a = 1.0
to a = 0.14, plus a single large bin that extends to
a ≈ 0.0001. We use CosmoMC to produce MCMC sam-
ples from the posterior distribution of the interaction
parameter in each bin, plus the baryon and cold dark
matter densities Ωbh2 and Ωch2, the amplitude of the
primordial power spectrum and the spectral index As

and ns, and the value of the Hubble parameter today, H0.
We use flat priors on these parameters, with the ranges
specified in Table 1.

3.2. Correlation prior
Although we have no theoretically motivated model

for the behaviour of the coupling as a function of scale
factor (or, equivalently, time) we do have one theoretical
prejudice: we do not expect the coupling function to os-
cillate rapidly, as we consider very fast changes of sign
in the coupling function to be unphysical. We therefore
take the step of including a theoretical prior on the cou-
pling parameter that actively suppresses high frequency
oscillations, thereby allowing the low frequency modes
that are potentially present in the data to dominate.

The theoretical prior takes the form of a scale-factor-
dependent correlation between the values of the coupling
function in each bin. Values of the function in neigh-
bouring bins are correlated, with the correlation growing
weaker for bins of greater separation. This correlation
prior was first proposed in [34] and the method has been
subsequently used in the reconstruction of the dark en-
ergy equation of state function w(z) by [35, 36, 37]. The
correlation prior method was also used by [38] to re-
construct the vacuum energy – CDM interaction at low
redshifts only, up to z = 1.5.

The correlation prior has further benefits in addition
to suppressing high frequency oscillations. It tends to
improve the convergence speed of MCMC chains, as the
correlation can help to constrain the coupling parameter
in bins where the data is sparse. Reconstruction bias, i.e.
the dependence of results on the binning strategy chosen
is also controlled by the prior, provided that the number
of bins is sufficiently large, as we will describe below.

Following [34], we assume a correlation function that
describes fluctuations around some fiducial model,

ξ(|a − a′|) ≡ 〈[q(a) − q̄(a)][q(a′) − q̄(a′)]〉, (6)

and given a functional form for ξ, the corresponding
covariance matrix can be found:

Ci j =
1
∆2

∫ ai+∆

ai

da
∫ a j+∆

a j

da′ξ(|a − a′|), (7)

where ∆ is the bin width, q̄ is the fiducial model and a
is the cosmic scale factor. The fiducial model can be
set to ΛCDM (i.e. q̄(ai) = 0), but this may introduce an
unwanted bias in favour of this model into our results, so
for comparison we consider a case in which the fiducial
model for each bin is calculated as the mean of that bin
with its two neighbouring bins. We refer to these cases
as fixed fiducial and mean fiducial respectively.

We use the Crittenden-Pogosian-Zhao (CPZ) form for
the correlation function, as proposed in [34],

ξ(|a − a′|) = ξ(0)/[1 + (|a − a′|/ac)2], (8)
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where ac is the correlation length. As previously stated,
we want to ensure that our results are independent of the
number of bins used. To ensure that we eliminate this
potential reconstruction bias, we require that

N > Neff , (9)

where N is the number of bins, and

Neff = (amax − amin)/ac. (10)

The parameters amax and amin are the limits of the scale
factor range used in our analysis, a = 1.0 and a = 0.0001.
Following the previous results of [39, 40], we choose
ac = 0.06. This means that Neff = 16.7. Therefore, to
ensure that N > Neff , we choose N = 17.

The strength of the prior is determined by ξ(0), but
following [39], we use the variance of the mean instead,
defined as σ2

q ≈ πξ(0)ac/(amax − amin). We set σq = 0.6.
We found that this choice is sufficient for the prior to
provide some constraining power, but not so much that it
completely dominates over the constraints from data in
each bin. We discuss this point further in subsection 4.3.

3.3. Observational data
The data used in this work is a combination of the

Planck 2018 measurements of the CMB temperature and
polarisation [9], the BAO measurements from the 6dF
Galaxy Survey [41] and the combined BAO and redshift
space distortion (RSD) data from the SDSS DR12 con-
sensus release [42], together with the Pantheon Type Ia
supernovae sample [43].

We note that some works in the literature that find a
resolution to the H0 tension in an interacting dark energy
scenario do so by omitting the BAO data from their
analyses (see e.g. [44]). This is because, without using
BAO, the high redshift constraint on H0 becomes weaker,
and a late time solution to the tension is possible. If BAO
are used in combination with supernovae catalogues then
late time solutions become disfavoured, and interacting
dark energy models will therefore struggle to resolve the
tension (see e.g. [45, 46]). However, this reasoning does
not justify the exclusion of these datasets from model
constraining analysis and we therefore make a point of
including multiple BAO measurements in this work.

We also note that, due to the coupling between the
vacuum and cold dark matter in this scenario, RSD do
not directly constrain the growth factor f as they do in
ΛCDM [46, 47]. Instead, the RSD constrain what we
denote as the interaction growth factor, fi,

fi = f −
Q

Hρc
, (11)

where f is the usual growth factor for CDM,

f =
d ln D
d ln a

, (12)

with D being the amplitude of the linear growing mode.

4. Results and discussion

In this section, we describe and discuss the main re-
sults of our investigation, beginning with the results of
the MCMC analysis, then moving to the reconstruction
of the coupling function, the Principal Component Anal-
ysis performed and finally the findings of our Bayesian
evidence calculation.

4.1. MCMC parameter inference

In Figure 1 we plot the 1D marginalised posteriors
for the interaction parameter qi in each of the seventeen
bins, where i = 1 denotes the bin starting at z = 0, up to
i = 17 for the wide bin at high redshift. The posterior
distributions for qi are generally broader in the mean
fiducial case compared to the fixed fiducial case. This is
to be expected, as the mean fiducial case essentially has
one additional free parameter with respect to the fixed
fiducial, this being q̄, the fiducial value for the correlation
prior.

We find that the null interacting case (q = 0), coincid-
ing with the ΛCDM limit of the model, is always within
1σ of the achieved constraints. However, the bounds
found on the interaction parameter in every bin means
the interacting scenario is still viable. It is clear from
an Ockham’s razor standpoint that the ΛCDM scenario
should be favoured over both the interacting cases. We
quantify this statement using the Bayes factor in subsec-
tion 4.4.

Table 2 shows the marginalised values of the standard
cosmological parameters sampled in our MCMC anal-
ysis, while in Figure 2 we show the 2D marginalised
joint distributions for the cosmological parameters H0,
Ωm (the total matter density parameter) and σ8. To pre-
serve the readability of the plot, we choose to only show
the results of the mean fiducial case in this figure. As
can be inferred from Figure 1, the constraints on the
cosmological parameters in the fixed fiducial case are al-
most identical to those in the mean fiducial case. In both
cases we found the value of H0 to be completely consis-
tent with the Planck 2018 ΛCDM value of 67.4 ± 0.5
kms−1Mpc−1[9]. The value of σ8 given by Planck is
0.81 ± 0.006, which is comfortably within 1σ of the
values for σ8 we find in both interacting cases.

4



Figure 1: The 1D marginalised posteriors of the interaction parameter in each bin. In each panel we report the best fit value of the interaction
parameters and their 68% confidence level bounds for the fixed fiducial (red) and mean fiducial (blue) case.
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As discussed in the introduction, the tensions in the
values of H0 and σ8 are commonly used as motivations
for alternative models of dark energy. However, as we
also found in our previous work [22], the interacting
vacuum fails to resolve the tensions when using the par-
ticular datasets chosen here. This can clearly be seen in
the left panel of Figure 2, where the constraint on H0
in the interacting scenario is shown in conjunction with
both the Planck and local measurements. As we men-
tioned in subsection 3.3, for the case of the H0 tension in
particular, this is attributable to the fact that by including
BAO and Type Ia supernovae in the same analysis the
tension is shifted to a discrepancy in the sound horizon
scale that cannot be resolved with a late time solution
[48, 49, 50].

The situation is slightly less clear with respect to the
σ8 tension. In ΛCDM, the tension appears between
CMB measurements coming from Planck and large scale
structure constraints on growth such as those from the
Dark Energy Survey (DES) [51]. This mild tension can
be seen in the right panel of Figure 2, with the ΛCDM
constraints plotted in black, the filled contour correspond-
ing to Planck and the open contour to DES. The DES
constraint in the interacting scenario is plotted in the
open blue contour – again, in the interests of legibility
we only show the mean fiducial case.

From this plot, we can see that the tension is relaxed
in the interacting case, but only due to the increased size
of the contours, which in turn is due to the additional
free parameters in the interacting model with respect
to ΛCDM. This should not be regarded as a true relax-
ation of the tension. Note that for the DES constraints
presented here we implemented an aggressive cut of
the non-linear scales in the data. Since we have no un-
derstanding of the non-linear regime in the interacting
scenario we should not use this part of the data to obtain
our constraints.

4.2. Reconstructing the coupling function
With the results of our MCMC analysis, we can recon-

struct the coupling as a function of redshift. We show the
results of using two different methods for the reconstruc-
tion: a simple cubic spline interpolation and a Gaussian
process.

A Gaussian process is defined as a collection of ran-
dom variables, any finite number of which have a joint
Gaussian distribution [52]. It is completely specified
by its mean and its covariance. In practice, the random
variables represent the value of a given function f (x) at
a location x. There are a wide range of choices for the
covariance function, or kernel, that is used to relate the
function values at each point. In this work, we choose to

use one of the simplest, the squared exponential kernel,
given by

k(x, x̃) = σ2 exp
(
−

(x − x̃)
2`2

)
. (13)

The hyperparameters ` and σ that appear in this kernel
correspond to the approximate length scale over which
the function varies, and the variance of the function at
each point respectively. We optimise these by maximis-
ing the log-likelihood of the functions they produce.

In summary, the Gaussian process takes some given
training data and constructs the best possible function
that describes that data, given the kernel imposed. The
training data passed to the Gaussian process in our case
are the mean posterior values of the coupling parame-
ter in each bin along with the corresponding 1σ errors
given by our MCMC analysis, thereby allowing us to
reconstruct the coupling function q(z).

There are many packages and codes available to per-
form Gaussian process regression. In this work, we use
the Gaussian process regressor available in the Python
library george1 [53].

The results of our reconstructions for the cubic spline
and the Gaussian process are shown in Figures 3 and 4
respectively. It is clear to see that the Gaussian process
results in a smoother q(z) function, but that the high
redshift part of the reconstruction is biased towards the
ΛCDM value of q = 0, due to the baseline that the
Gaussian process is fixed to return to in the absence of
information.

This is particularly obvious in the mean fiducial case,
where the values of q themselves are very negative but
the combination of the Gaussian process baseline and the
large 1σ errors on q result in the reconstruction returning
to zero. This is a problem that the cubic spline does not
suffer from, hence the indication of a trend away from
ΛCDM at high redshift in the mean fiducial case.

The most interesting features of the reconstruction
are the points where q(z) appears to peak or trough, for
example, the peak at around z = 1, which is clear in
both the spline and Gaussian process, or the trough at
around z = 3, more obvious in the Gaussian process
reconstruction. A promising line of enquiry would be
to focus on the behaviour of the interaction at these
points by using additional datasets in the analysis, but
as z = 3 is beyond the upper limit of the commonly
used low-redshift probes, such as Type Ia supernovae,
exploring the interaction in detail at this epoch may be
more difficult.

1https://github.com/dfm/george
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Parameter Fixed fiducial Mean fiducial
Ωbh2 0.022 ± 0.00015 0.022 ± 0.00013
Ωch2 0.11 ± 0.025 0.11 ± 0.030

log 1010A 3.05 ± 0.0058 3.05 ± 0.0064
ns 0.97 ± 0.0040 0.97 ± 0.0048
H0 68.22 ± 0.74 68.15 ± 0.80
σ8 0.91 ± 0.18 0.91 ± 0.22

Table 2: Marginalised values of the cosmological parameters and their 68% confidence level bounds.

Figure 2: 68% and 95% confidence levels in the H0 – Ωm plane (left panel) and Ωm – σ8 plane (right panel) for the mean fiducial case. The grey
bands in the left panel denote the 68% and 95% confidence levels of the Riess et al. local measurement of H0 = 73.45 ± 1.66 kms−1Mpc−1 [8].
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A potential future constraint may come from the weak
lensing of the Lyman-α forest in the spectra of high-
redshift quasars, which probes the matter distribution
at redshifts of 2 to 3.5 [54]. Furthermore, the Square
Kilometre Array is predicted to be able to probe red-
shifts of between 3 and 25 using 21cm intensity mapping
[55, 56]. Both of these new techniques could therefore
be used to constrain any interacting dark energy model
which affects large scale structure growth or has other
high redshift effects.

4.3. Principal Component Analysis

In this work, we have aimed to be agnostic when it
comes to the reconstruction of the interaction function
and so used a larger number of bins than in [22], i.e.
the minimum number to satisfy the criterion given by
equation (9). However, it is also possible to investigate
how many modes in the result are informed by the obser-
vational data used and whether any are informed by the
prior alone, and thus understand how many effective ad-
ditional degrees of freedom our reconstruction has [57].
To do this, we perform a principal component analysis.

Principal component analysis, or PCA, can be thought
of as finding the directions in the data that carry the
most information. It also acts to decorrelate the errors
on the interaction parameter in each bin. In practice, this
involves computing the eigenvalues and eigenvectors of
the inverse covariance matrix (i.e. the Fisher matrix)
of the data. In our case, the covariance matrix is one
of the products obtained after running GetDist2[58] on
our MCMC chains. We perform the PCA on the Fisher
matrix for the qi alone, after marginalising over the other
cosmological and nuisance parameters.

The Fisher matrix is given by

F = WT ΛW, (14)

where W is the decorrelation matrix and its rows define
the eigenvectors; Λ is a diagonal matrix whose elements
are the eigenvalues λi. The eigenvalues correspond to the
amount of variance carried in each principal component
and therefore determine how well qi can be measured,
i.e. σ(qi) = λ−1/2

i .
After finding the eigenvalues and eigenvectors of the

covariance matrix, the eigenvectors are sorted according
to decreasing value of their corresponding eigenvalues.
The first eigenvector after this sort is performed corre-
sponds to the first principal component, the second eigen-
vector corresponds to the second principal component

2https://github.com/cmbant/getdist

and so on, until the N th eigenvector for the N th princi-
pal component is found (where the covariance matrix is
N × N).

We show the results of our PCA in Figures 5 and 6.
From these plots we can see that in the fixed fiducial case
around 15% of the total variance is in the first principal
component, we reach around 50% with four principal
components and 90% with 10. These results indicate that
it would be unwise to reduce the effective degrees of free-
dom by discarding some of the principal components, as
even the higher components contain a significant amount
of information (above PC10 the remaining seven com-
ponents together still contain approximately 11% of the
variance). This is less true in the case of the mean fidu-
cial, in which around 25% of the total variance is con-
tained in the first principal component, rising to nearly
50% with just two principal components and reaching
90% with seven. The final four principal components
together contain just 1% of the variance.

To investigate whether the correlation prior dominates
over the data, we also ran an MCMC chain without any
data, using the prior alone to constrain the interaction.
This prior alone case used q̄ = 0, as in the case of the
fixed fiducial. We plot the eigenvalues of the fixed fidu-
cial case and the prior alone case as a function of princi-
pal component number in Figure 7. This plot shows that
the data permeates all the modes, meaning that the prior
does not completely dominate over the data at any point
and thus the selected prior strength was indeed sufficient
to help constrain the interaction without washing out the
information coming from the data. Note that we only
show the result for the case of the fixed fiducial prior
alone and the fixed fiducial prior plus data, as the result
for the mean fiducial is extremely similar.

If we had found that the data dominated for say, the
first three principal components and then the prior domi-
nated over the rest, we would be able to conclude that our
analysis effectively only had an additional three degrees
of freedom compared to the ΛCDM case. However, this
does not equate to doing an analysis using only three
bins, as the principal components do not correspond to
the bins themselves, but to the eigenvectors of the covari-
ance matrix of the interaction parameter in each bin. We
therefore conclude that the best strategy for an analysis
such as this is to use as many bins as is computationally
feasible, with the correlation prior being used to help
constrain bins where data is scarce. The alternative is
to increase the strength of the correlation prior, but this
comes with its own pitfalls, as if the prior is too strong,
it will completely wash out any contribution from the
data. A balance can be achieved, but to ensure that the
reconstruction remains independent of the number of
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Figure 3: The results of the cubic spline reconstruction of the coupling function q(z). Red and blue lines and areas refer to the fixed fiducial and
mean fiducial cases respectively, and the shaded areas denote the 1σ confidence interval.

Figure 4: The results of the Gaussian process reconstruction of the coupling function q(z). Red and blue lines and areas refer to the fixed fiducial and
mean fiducial cases respectively, and the shaded areas denote the 1σ confidence interval.
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Figure 5: Percentage variance explained by each principal component
in the fixed fiducial case.
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Figure 6: Percentage variance explained by each principal component
in the mean fiducial case.

bins used, the correlation length and therefore the prior
strength should be determined by following equations
(9) and (10).

4.4. Bayesian evidence and χ2

Finally, we want to compare the results for each case
in a Bayesian way, which means making use of Bayes’
theorem [59]:

P(θ|D,M) =
P(D|θ,M)P(θ|M)

P(D|M)
, (15)

where θ is the parameter vector, D is the data vector and
M is the model. The numerator contains the likelihood
and the prior, and the denominator is the evidence (some-
times known as the marginal likelihood). These combine
to form the posterior probability distribution P(θ|D,M),
which is the distribution sampled in our MCMC analysis.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Principal component

100

101

1/
2

Prior and data
Prior alone

Figure 7: Showing that the data permeates all the modes.

As noted by [60], the use of model selection crite-
ria such as the Bayesian Information Criterion (BIC),
Akaike Information Criterion (AIC) and Deviance In-
formation Criterion (DIC) are not strictly Bayesian as
they do not take into account the prior information. We
therefore use the Bayes factor as our model comparison
tool, defined in the following way:

log B12 = log
[

P(D|M1)
P(D|M2)

]
, (16)

= log[P(D|M1)] − log[P(D|M2)], (17)

where D is the data vector, M1 and M2 are the models to
be compared, and P(D|M) is the Bayesian evidence, the
normalising factor in Bayes’ theorem.

We calculate the Bayesian evidence from our MCMC
chains for both of the two correlation prior cases studied
to determine the support for each case over ΛCDM. This
analysis was performed using the MCEvidence code as
presented in [61]. In each case, we use ΛCDM as model
1. We summarise our findings in Table 3.

To interpret these values, we make use of the Jeffreys
scale, as shown in Table 4. As pointed out in [62], the
qualitative interpretations originally given by Jeffreys
[63] are quite strong in the context of cosmology, where
choosing suitable priors can often be an uncertain pro-
cess. We therefore adopt the interpretations given in
[62].

We find that the Bayes factor for the fixed fiducial
case is 1.64. According to the Jeffreys scale, this reflects
a weak preference for ΛCDM over the interacting case.
The Bayes factor for the mean fiducial case is -0.52. In
our evidence calculation, negative values indicate that
model 2 is preferred over model 1, where model 1 is
always ΛCDM. This result is therefore a slight indication
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Case Bayes factor (log B12) ∆χ2

Fixed fiducial 1.64 -2.5
Mean fiducial -0.52 -2.2

Table 3: The Bayes factor and ∆χ2 for each case.

Bayes factor Interpretation∣∣∣log B12
∣∣∣ < 1 Not worth more than a bare mention

1 <
∣∣∣log B12

∣∣∣ < 2.5 Weak
2.5 <

∣∣∣log B12
∣∣∣ < 5 Significant

5 <
∣∣∣log B12

∣∣∣ Strong

Table 4: The Jeffreys scale, originally given in [63] and modified in [62].

for the mean fiducial case being favoured over ΛCDM.
However, according to the Jeffreys scale, the very small
absolute value of the Bayes factor means this is not worth
more than a bare mention.

The fact that we find stronger evidence in favour of
ΛCDM in the case where the fiducial is fixed as q =

0 could point to a slight bias in the results caused by
the choice of fiducial model. However, the evidence in
favour of the interaction when the fiducial is calculated
as the mean of neighbouring bins is sufficiently small for
us to confidently say that the choice of fiducial model
does not drastically alter the result of a reconstruction.

However, it has been argued that the Bayesian evi-
dence is not a good model comparison tool when there
is uncertainty in the choice of priors [64]. We therefore
also compute the ∆χ2 for each case, removing the con-
tribution of the priors to the χ2 so that the values we
compare come from the data only. We find ∆χ2 = −2.5
in the fixed fiducial case and ∆χ2 = −2.2 in the mean
fiducial case, neither of which represents a significant
improvement in fit over ΛCDM.

In summary, it is clear that we cannot conclusively
state that ΛCDM is preferred over the interacting case,
but the hints given by the evidence indicate that an in-
teresting future direction would be to repeat this type of
analysis with the newest datasets as they are released, to
see if there is any strengthening in the evidence for or
against ΛCDM. It is also worthwhile studying what pos-
sible improvements on current constraints can be made
by future surveys.

5. Conclusions

In this work we have reconstructed a dark matter –
vacuum energy interaction, using a correlation prior to
control the reconstruction bias. We implemented two
different versions of the prior: a fiducial value for the

prior that is fixed in each bin and a fiducial value that is
computed as the mean of the neighbouring bins.

In our model comparison, we found evidence in favour
of ΛCDM over the fixed fiducial model, but the Bayes
factor in that case was small enough to classify the ev-
idence on the Jeffreys scale as weak. In contrast, we
found evidence for an interaction when comparing the
ΛCDM case to the mean fiducial case, but the Jeffreys
scale in that case classified the evidence as not worth
more than a bare mention.

From our work, it is clear that a correlation prior, when
effectively tuned so as not to drown out the constraining
power of the data, can improve the convergence speed
of high-dimensionality MCMC sampling. The prior also
eliminates any potential reconstruction bias, making it a
good choice for any form of reconstructive analysis.

Finally, we note that many recent works have found
evidence for an interaction in the dark sector or for dy-
namical dark energy (see e.g. [65, 36, 66, 67, 68]), and
the attractive properties of such models combined with
the deficiencies of ΛCDM that we discussed in the intro-
duction are sufficient to merit their continued study. It is
clear that the large amounts of new data which upcoming
surveys are expected to yield will be a vital clue in the
hunt for the true nature of dark energy, and robust fore-
casting for the constraints these surveys are expected to
provide on alternative dark energy models will become
ever-more important.
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