Detecting foraminiferal photosymbiosis in the fossil record:
a combined micropalaeontological and geochemical approach
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Figure 6: Stable isotope data for middle Eocene
Figure 5: Organic membrane position seen on SEM images does not match position of Mg bands seen in element maps of thermocline  hantkeninids from Sites 1051 and 1052 [A, C] and late
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4. Summary and conclusions

* We present multispecies stable isotope and trace element analyses to resolve palaeoecology of various species of Miocene and Eocene
planktonic foraminifera. For the first time it is shown that P. inaequispira is asymbiotic and P. wilcoxensis is a surface dweller.

* Element maps show that Mg bands are present in surface dwelling foraminifera and absent in deep dwelling foraminifera for both
Miocene and Eocene species. 613C data show that surface dwellers are photosymbiotic and thermocline dwellers are asymbiotic.

* Preliminary Mg and stable isotope data from middle and late Eocene hantkeninids shows a shift from an asymbiotic to

SRS & g Dentoglobigerina tripartita Turborotalia ampliapertura Subbotina crociapertura symbiotic ecology.
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