Arc-disjoint strong spanning subdigraphs in compositions and products of digraphs

Yuefang Sun ${ }^{1, *}$ Gregory Gutin ${ }^{2, \dagger}$ Jiangdong Ai 2
${ }^{1}$ Department of Mathematics, Shaoxing University
Zhejiang 312000, P. R. China, yuefangsun2013@163.com
${ }^{2}$ Department of Computer Science
Royal Holloway, University of London
Egham, Surrey, TW20 0EX, UK
g.gutin@rhul.ac.uk, ai18810910153@163.com

Abstract

A digraph $D=(V, A)$ has a good decomposition if A has two disjoint sets A_{1} and A_{2} such that both $\left(V, A_{1}\right)$ and $\left(V, A_{2}\right)$ are strong. Let T be a digraph with vertices $u_{1}, \ldots, u_{t}(t \geq 2)$ and let $H_{1}, \ldots H_{t}$ be digraphs such that H_{i} has vertices $u_{i, j_{i}}, 1 \leq j_{i} \leq n_{i}$. Then the composition $Q=T\left[H_{1}, \ldots, H_{t}\right]$ is a digraph with vertex set $\left\{u_{i, j_{i}}: 1 \leq i \leq t, 1 \leq\right.$ $\left.j_{i} \leq n_{i}\right\}$ and arc set $A(Q)=\cup_{i=1}^{t} A\left(H_{i}\right) \cup\left\{u_{i j_{i}} u_{p q_{p}}: u_{i} u_{p} \in A(T), 1 \leq j_{i} \leq n_{i}, 1 \leq q_{p} \leq n_{p}\right\}$.

For digraph compositions $Q=T\left[H_{1}, \ldots H_{t}\right]$, we obtain sufficient conditions for Q to have a good decomposition and a characterization of Q with a good decomposition when T is a strong semicomplete digraph and each H_{i} is an arbitrary digraph with at least two vertices.

For digraph products, we prove the following: (a) if $k \geq 2$ is an integer and G is a strong digraph which has a collection of arc-disjoint cycles covering all vertices, then the Cartesian product digraph $G^{\square k}$ (the k th power of G with respect to Cartesian product) has a good decomposition; (b) for any strong digraphs G, H, the strong product $G \boxtimes H$ has a good decomposition.

Keywords: strong spanning subdigraph; decomposition into strong spanning subdigraphs; semicomplete digraph; digraph composition; Cartesian product; strong product.

AMS subject classification (2010): $05 \mathrm{C} 20,05 \mathrm{C} 70,05 \mathrm{C} 76,05 \mathrm{C} 85$.

1 Introduction

We refer the readers to $[1,2,6]$ for graph-theoretical notation and terminology not given here. A digraph $D=(V, A)$ is strongly connected (or

[^0]strong) if there exists a path from x to y and a path from y to x in D for every pair of distinct vertices x, y of D. A digraph D is k-arc-strong if $D-X$ is strong for every subset $X \subseteq A$ of size at most $k-1$.

A digraph D is semicomplete if for every pair x, y of distinct vertices of D, there is at least one arc between x and y. In particular, a tournament is a semicomplete digraph, where there is exactly one arc between x, y for every pair x, y of distinct vertices. A digraph D is locally semicomplete if the out-neighborhood and in-neighborhood of every vertex of D induce semicomplete digraphs.

An out-branching B_{s}^{+}(respectively, in-branching B_{s}^{-}) in a digraph $D=$ (V, A) is a connected spanning subdigraph of D in which each vertex $x \neq s$ has precisely one arc entering (leaving) it and s has no arcs entering (leaving) it. The vertex s is the root of B_{s}^{+}(respectively, B_{s}^{-}).

Edmonds [9] characterized digraphs having k arc-disjoint out-branchings rooted at a specified root s. Furthermore, there exists a polynomial algorithm for finding k arc-disjoint out-branchings from a given root s if they exist (see p. 346 of [1]). However, if we ask for the existence of a pair of arc-disjoint branchings B_{s}^{+}, B_{s}^{-}such that the first is an out-branching rooted at s and the latter is an in-branching rooted at s, then the problem becomes NP-complete (see Section 9.6 of [1]). In connection with this problem, Thomassen [12] posed the following conjecture: There exists an integer N so that every N-arc-strong digraph D contains a pair of arc-disjoint inand out-branchings.

Bang-Jensen and Yeo generalized the above conjecture as follows. ${ }^{1}$ A digraph $D=(V, A)$ has a good decomposition if A has two disjoint sets A_{1} and A_{2} such that both $\left(V, A_{1}\right)$ and $\left(V, A_{2}\right)$ are strong [4].

Conjecture 1.1 [5] There exists an integer N so that every N-arc-strong digraph D has a good decomposition.

For a general digraph D, it is a hard problem to decide whether D has a decomposition into two strong spanning subdigraphs.

Theorem 1.1 [5] It is NP-complete to decide whether a digraph has a good decomposition.

Clearly, every digraph with a good decomposition is 2-arc-strong. BangJensen and Yeo characterized semicomplete digraphs with a good decomposition.

Theorem 1.2 [5] A 2-arc-strong semicomplete digraph D has a good decomposition if and only if D is not isomorphic to S_{4}, where S_{4} is obtained from the complete digraph with four vertices by deleting a cycle of length 4 (see Figure 1). Furthermore, a good decomposition of D can be obtained in polynomial time when it exists.

The following result extends Theorem 1.2 to locally semicomplete digraphs.

[^1]

Figure 1: Digraph S_{4}

Theorem 1.3 [4] A 2-arc-strong locally semicomplete digraph D has a good decomposition if and only if D is not the second power of an even cycle.

Let T be a digraph vertices $u_{1}, \ldots, u_{t}(t \geq 2)$ and let $H_{1}, \ldots H_{t}$ be digraphs such that H_{i} has vertices $u_{i, j_{i}}, 1 \leq j_{i} \leq n_{i}$. Then the composition $Q=T\left[H_{1}, \ldots, H_{t}\right]$ is a digraph with vertex set $\left\{u_{i, j_{i}}: 1 \leq i \leq t, 1 \leq j_{i} \leq n_{i}\right\}$ and arc set

$$
A(Q)=\cup_{i=1}^{t} A\left(H_{i}\right) \cup\left\{u_{i j_{i}} u_{p q_{p}}: u_{i} u_{p} \in A(T), 1 \leq j_{i} \leq n_{i}, 1 \leq q_{p} \leq n_{p}\right\} .
$$

In this paper, we continue research on good decompositions in classes of digraphs and consider digraph compositions and products.

In Section 2, for a digraph composition $Q=T\left[H_{1}, \ldots H_{t}\right]$, we obtain sufficient conditions for Q to have a good decomposition (Theorem 2.2) and a characterization of Q with a good decomposition when T is a strong semicomplete digraph and each H_{i} is an arbitrary digraph with at least two vertices (Theorem 2.3). Remarkably, in Theorem 2.3 as in Theorem 1.2, there are only a finite number of exceptional digraphs, which for Theorem 2.3 is three. Thus, as Theorems 1.2 and 1.3, Theorem 2.3 confirms Conjecture 1.1 for a special class of digraphs.

In Section 3, for digraph products, we prove the following: (a) if $k \geq 2$ is an integer and G is a strong digraph which arcs can be partitioned into cycles, then the Cartesian product digraph $G^{\square k}$ (the k th power of G with respect to Cartesian product) has a good decomposition (Theorem 3.4); (b) for any strong digraphs G, H, the strong product $G \boxtimes H$ has a good decomposition (Theorem 3.7). Necessary definitions of the digraph products are given in Section 3.

Simple examinations of our constructive proofs show that all our decompositions can be found in polynomial time.

We conclude the paper in Section 4, where we pose a number of open problems.

2 Compositions of digraphs

The composition of digraphs is a useful concept in digraph theory, see e.g., [1]. In particular, they are used in the Bang-Jensen-Huang characterization of quasi-transitive digraphs and its structural and algorithmic applications for quasi-transitive digraphs and their extensions; see e.g., $[1,2,8]$.

Let us start from a simple observation, which will be useful in the proofs of the theorems of this section.

Lemma 2.1 Let D be a digraph on t vertices $(t \geq 2)$ and let $H_{1}^{\prime}, \ldots, H_{t}^{\prime}$ be digraphs with no arcs. If an induced subdigraph Q^{*} of $Q^{\prime}=D\left[H_{1}^{\prime}, \ldots, H_{t}^{\prime}\right]$ with at least one vertex in each $H_{i}^{\prime}, i \in[t]$ has a good decomposition, then so have Q^{\prime}.

Proof: Let $\left\{u_{i, 1}, \ldots, u_{i, n_{i}}\right\}$ be the set of vertices of H_{i}^{\prime} for every $i \in[t]$. For every $i \in[t]$, let $H_{i}^{\left(m_{i}\right)}$ be the subdigraph of H_{i}^{\prime} induced by $\left\{u_{i, 1}, \ldots, u_{i, m_{i}}\right\}$, where $1 \leq m_{i} \leq n_{i}$. Without loss of generality, let $Q^{*}=D\left[H_{1}^{\left(m_{1}\right)}, \ldots, H_{t}^{\left(m_{t}\right)}\right]$ and let Q^{*} have a decomposition into arc-disjoint strong spanning subdigraphs Q_{1}^{*}, Q_{2}^{*}. To extend this decomposition to Q^{\prime}, for every i, j, where $i \in[t]$ and $j \in\{1,2\}$, add to Q_{j}^{*} the vertices $u_{i, m_{i}+1}, \ldots, u_{i, n_{i}}$ and let them have the same in- and out-neighbors as $u_{i, 1}$. (This way the inserted vertices will keep Q_{1}^{*} and Q_{2}^{*} strongly connected.)

The following theorem gives sufficient conditions for a digraph composition to have a good decomposition. As in Theorem $1.2, S_{4}$ will denote the digraph obtained from the complete digraph with four vertices by deleting a cycle of length 4.

Theorem 2.2 Let T be a digraph with vertices $u_{1}, \ldots, u_{t}(t \geq 2)$ and let H_{1}, \ldots, H_{t} be digraphs. Let the vertex set of H_{i} be $\left\{u_{i, j_{i}}: 1 \leq i \leq t, 1 \leq\right.$ $\left.j_{i} \leq n_{i}\right\}$ for every $i \in[t]$. Then $Q=T\left[H_{1}, \ldots, H_{t}\right]$ has a good decomposition if at least one of the following conditions holds:
(a) T is a 2-arc-strong semicomplete digraph and H_{1}, \ldots, H_{t} are arbitrary digraphs, but Q is not isomorphic to S_{4};
(b) T has a Hamiltonian cycle and one of the following conditions holds:

- t is even and $n_{i} \geq 2$ for every $i=1, \ldots, t ;$
- t is odd, $n_{i} \geq 2$ for every $i=1, \ldots, t$ and at least two distinct subdigraphs H_{i} have arcs;
- t is odd and $n_{i} \geq 3$ for every $i=1, \ldots, t$ apart from one i for which $n_{i} \geq 2$.
(c) T and all H_{i} are strong digraphs with at least two vertices.

Proof: For every $i \in[t]$, let H_{i}^{\prime} be the digraph obtained from H_{i} by deleting all arcs. Let $Q^{\prime}=T\left[H_{1}^{\prime}, \ldots, H_{t}^{\prime}\right]$. We will prove parts of the theorem one by one.

Part (a) If T is not isomorphic to S_{4} then we are done by Theorem 1.2 and Lemma 2.1. Now assume that T is isomorphic to S_{4}, but Q is not isomorphic to S_{4}. Let the vertices of T be $u_{1}, u_{2}, u_{3}, u_{4}$ and its arcs

$$
u_{1} u_{2}, u_{2} u_{1}, u_{3} u_{4}, u_{4} u_{3}, u_{1} u_{4}, u_{2} u_{3}, u_{4} u_{2}, u_{3} u_{1}
$$

Since Q is not isomorphic to S_{4}, at least one of $H_{1}, H_{2}, H_{3}, H_{4}$ has at least two vertices. Without loss of generality, let H_{1} have at least two vertices.

Consider the subdigraph Q^{*} of Q^{\prime} induced by $\left\{u_{1,1}, u_{1,2}, u_{2,1}, u_{3,1}, u_{4,1}\right\}$. Then Q^{*} has two arc-disjoint strong spanning subdigraphs: Q_{1}^{*} with arcs

$$
\left\{u_{1,1} u_{2,1}, u_{2,1} u_{1,2}, u_{1,2} u_{4,1}, u_{4,1} u_{3,1}, u_{3,1} u_{1,1}\right\}
$$

and Q_{2}^{*} with arcs

$$
\left\{u_{2,1} u_{1,1}, u_{1,1} u_{4,1}, u_{4,1} u_{2,1}, u_{2,1} u_{3,1}, u_{3,1} u_{1,2}, u_{1,2} u_{2,1}\right\} .
$$

It remains to apply Lemma 2.1 to obtain a good decomposition of Q^{\prime} and thus of Q.

Part (b) Without loss of generality, assume that $u_{1} u_{2} \ldots u_{t} u_{1}$ is a Hamiltonian cycle of T. Let $U=\bigcup_{i=1}^{t}\left\{u_{i, 1}, u_{i, 2}\right\}$.

Case 1: t is even and $n_{i} \geq 2$ for every $i=1, \ldots, t$. The following arc sets induce arc-disjoint strong spanning subdigraphs Q_{1}^{*}, Q_{2}^{*} of $Q^{\prime}[U]$:

$$
\begin{align*}
& \left\{u_{i, j} u_{i+1, j}: 1 \leq i \leq t-1,1 \leq j \leq 2\right\} \cup\left\{u_{t, 1} u_{1,2}, u_{t, 2} u_{1,1}\right\} ; \tag{1}\\
& \left\{u_{i, j} u_{\left.i+1, j^{\prime}\right)}: 1 \leq i \leq t-1,1 \leq j \leq 2\right\} \cup\left\{u_{t, 1} u_{1,1}, u_{t, 2} u_{1,2}\right\}, \tag{2}
\end{align*}
$$

where $j^{\prime}=j+1(\bmod 2)$.
It remains to apply Lemma 2.1 to obtain a good decomposition of Q^{\prime} and thus of Q.

Case 2: t is odd, $n_{i} \geq 2$ for every $i=1, \ldots, t$ and at least two distinct subdigraphs H_{i} have arcs. Let e_{p}, e_{q} be arcs in two distinct subdigraphs H_{p} and H_{q}. We may assume that both end-vertices of e_{p} and e_{q} are in U. Observe that while Q_{1}^{*} (with arcs listed in (1)) is strong, Q_{2}^{*} (with arcs listed in (2)) forms two arc-disjoint cycles C and Z. We may assume that the tail (head) of $e_{p}\left(e_{q}\right)$ is in C and the head (tail) of $e_{p}\left(e_{q}\right)$ is in Z (otherwise, relabel vertices in $\left\{u_{p, 1}, u_{p, 2}\right\}$ and/or $\left\{u_{q, 1} u_{q_{2}}\right\}$). Thus, adding e_{p} and e_{q} to Q_{2}^{*} makes it strong. To obtain two arc-disjoint strong spanning subdigraphs of Q from Q_{1}^{*}, Q_{2}^{*}, let every vertex $u_{i, j}$ for $j \geq 3$ and $1 \leq i \leq t$ have the same out- and in-neighbors as $u_{i, 1}$ in Q^{\prime}.

Case 3: t is odd and $n_{i} \geq 3$ for every $i \in[t]$ apart from one i for which $n_{i} \geq 2$. Without loss of generality, assume that $n_{1} \geq 2$ and $n_{i} \geq 3$ for all $i \in\{2,3, \ldots, t\}$.

First we consider the subcase in which $t=3, n_{1}=2$, and $n_{2}=n_{3}=3$. Then Q^{\prime} has two arc-disjoint spanning subdigraphs Q_{1}^{*} and Q_{2}^{*} with arc sets

$$
\begin{aligned}
& \left\{u_{1,1} u_{2,1}, u_{3,1} u_{1,1}, u_{1,2} u_{2,2}, u_{1,2} u_{2,3}, u_{3,2} u_{1,2}, u_{3,3} u_{1,2}, u_{2,1} u_{3,2}, u_{2,2} u_{3,1}, u_{2,3} u_{3,3}\right\}, \\
& \left\{u_{1,1} u_{2,2}, u_{1,1} u_{2,3}, u_{3,2} u_{1,1}, u_{3,3} u_{1,1}, u_{1,2} u_{2,1}, u_{3,1} u_{1,2}, u_{2,1} u_{3,3}, u_{2,2} u_{3,2}, u_{2,3} u_{3,1}\right\},
\end{aligned}
$$

respectively. Observe that Q_{1}^{*} and Q_{2}^{*} are strong since they contain the closed walks through all vertices, respectively:

```
u1,2}\mp@subsup{u}{2,2}{}\mp@subsup{u}{3,1}{}\mp@subsup{u}{1,1}{}\mp@subsup{u}{2,1}{}\mp@subsup{u}{3,2}{}\mp@subsup{u}{1,2}{}\mp@subsup{u}{2,3}{}\mp@subsup{u}{3,3}{}\mp@subsup{u}{1,2}{};\mp@subsup{u}{1,1}{}\mp@subsup{u}{2,2}{}\mp@subsup{u}{3,2}{}\mp@subsup{u}{1,1}{}\mp@subsup{u}{2,3}{}\mp@subsup{u}{3,1}{}\mp@subsup{u}{1,2}{}\mp@subsup{u}{2,1}{}\mp@subsup{u}{3,3}{}\mp@subsup{u}{1,1}{}
```

Now we extend the previous subcase to that in which $n_{1}=2$ and $n_{i}=3$ for all $i \in\{2,3, \ldots, t\}$. First replace index 3 in every vertex of the form $u_{3, i}$ by t in the two arc sets of the previous subcase. Then replace every arc of the form $u_{2, i} u_{t, j}$ in Q_{1}^{*} by the path $u_{2, i} u_{3, i} \ldots u_{t-1, i} u_{t, j}$. In Q_{2}^{*}, we replace $u_{2,1} u_{t, 3}$ by the path $u_{2,1} u_{3,2} u_{4,1} u_{5,2} \ldots u_{t-1,1} u_{t, 3}$, replace $u_{2,2} u_{t, 2}$ by the path $u_{2,2} u_{3,1} u_{4,2} u_{5,1} \ldots u_{t-1,2} u_{t, 2}$, replace $u_{2,3} u_{t, 1}$ by the path $u_{2,3} u_{3,2} u_{4,3} u_{5,2} \ldots u_{t-1,3} u_{t, 1}$, and finally add the path $u_{2,2} u_{3,3} u_{4,2} u_{5,3} \ldots u_{t-1,2}$.

Finally, we extend the previous subcase to the general one using Lemma 2.1.

Part (c) For $j \in\{1,2\}$, let T_{j} be the subdigraph of Q induced by vertex set $\left\{u_{i, j}: 1 \leq i \leq t\right\}$. Clearly, $T_{1} \cong T_{2} \cong T$ and T_{1} and T_{2} are strong.

Let Q_{1} be the spanning subdigraph of Q with arc set $A\left(Q_{1}\right)=A\left(T_{1}\right) \cup$ $\left(\bigcup_{i=1}^{t} A\left(H_{i}\right)\right)$. Observe that Q_{1} is strong since T_{1} and each H_{i} are strong, and T_{1} has a common vertex with each H_{i}, where $1 \leq i \leq t$.

Let Q_{2} be the spanning subdigraph of Q with arc set $A\left(Q_{2}\right)=A(Q) \backslash$ $A\left(Q_{1}\right)$. To see that Q_{2} is strong, we only need to find a strong subdigraph in Q_{2} which contains x and y for each pair of distinct vertices x and y in Q_{2}. We will consider two cases.

Case 1: $x \in V\left(T_{1}\right)$. Without loss of generality, we assume that $x=u_{1,1}$ and $y \in\left\{u_{1,2}, u_{2,1}, u_{2,2}\right\}$. We first consider the subcase that $y=u_{2,1}$. Observe that there is at least one arc entering and one arc leaving $u_{1,2}\left(u_{2,2}\right)$ in T_{2}, and so there are two arcs, say a and $b(c$ and d), with opposite directions between $x(y)$ and T_{2} in Q_{2}. Then by adding the $\operatorname{arcs} a, b, c, d$, and the vertices x, y to T_{2}, we obtain a strong subdigraph T_{2}^{\prime} of Q_{2} which contains both x and y, as desired. For the case that $y \in\left\{u_{1,2}, u_{2,2}\right\}$, we just add the arcs a, b, and the vertex x to T_{2}, and then obtain a strong subdigraph $T_{2}^{\prime \prime}$ of Q_{2} which contains both x and y.

Case 2: $x \notin V\left(T_{1}\right)$. Without loss of generality, we assume that $x=u_{1,2}$ and $y \in\left\{u_{1,1}, u_{2,1}, u_{1,3}, u_{2,2}, u_{2,3}\right\}$ (if $u_{1,3}$ and $u_{2,3}$ exist). By Case 1 and the fact that $T_{2} \cong T$ is strong, we are done if $y \in\left\{u_{1,1}, u_{2,2}\right\}$. For the case that $y=u_{2,1}$, by adding the $\operatorname{arcs} c, d$ and the vertex y to T_{2}, we can obtain a strong subdigraph $T_{2}^{\prime \prime \prime}$ of Q_{2} which contains both x and y. With a similar argument, we can get the desired strong subdigraph for the case that $y \in\left\{u_{1,3}, u_{2,3}\right\}$.

Hence, we complete the argument and conclude that Q has a good decomposition.

We will use Theorem 2.2 to prove the following characterization for certain compositions $T\left[H_{1}, \ldots, H_{t}\right]$, where T is a strong semicomplete digraph. In the characterization, $\overline{K_{p}}$ will stand for the digraph of order p with no arcs. Also, \vec{C}_{k} and \vec{P}_{k} will denote the cycle and path with k vertices, respectively.

Theorem 2.3 Let T be a strong semicomplete digraph on $t \geq 2$ vertices and let H_{1}, \ldots, H_{t} be arbitrary digraphs, each with at least two vertices. Then
$Q=T\left[H_{1}, \ldots, H_{t}\right]$ has a good decomposition if and only if Q is not isomorphic to one of the following three digraphs: $\vec{C}_{3}\left[\overline{K_{2}}, \overline{K_{2}}, \overline{K_{2}}\right], \vec{C}_{3}\left[\overrightarrow{P_{2}}, \overline{K_{2}}, \overline{K_{2}}\right]$. $\vec{C}_{3}\left[\overline{K_{2}}, \overline{K_{2}}, \overline{K_{3}}\right]$.

Proof: Let us first prove the 'only if' part of the theorem, i.e. $\vec{C}_{3}\left[\overline{K_{2}}, \overline{K_{2}}, \overline{K_{2}}\right]$, $\vec{C}_{3}\left[\vec{P}_{2}, \overline{K_{2}}, \overline{K_{2}}\right]$ and $\vec{C}_{3}\left[\overline{K_{2}}, \overline{K_{2}}, \overline{K_{3}}\right]$ do not have good decompositions. By Lemma 2.1, it suffices to show that neither $\vec{C}_{3}\left[\vec{P}_{2}, \overline{K_{2}}, \overline{K_{2}}\right]$ nor $\vec{C}_{3}\left[\overline{K_{2}}, \overline{K_{2}}, \overline{K_{3}}\right]$ has a good decomposition. The proof is by reductio ad absurdum.

Suppose that $Q=\vec{C}_{3}\left[\overrightarrow{P_{2}}, \overline{K_{2}}, \overline{K_{2}}\right]$ has a decomposition into two strong spanning subdigraphs D_{1}, D_{2}. Since Q has 13 arcs, without loss of generality, we may assume that D_{1} is a Hamiltonian cycle of Q. Since the arc of H_{1} cannot be in a Hamiltonian cycle of Q, without loss of generality, let $D_{1}=$ $u_{1,1} u_{2,1} u_{3,1} u_{1,2} u_{2,2} u_{3,2} u_{1,1}$. Then the remaining arcs of Q form two disjoint cycles $u_{1,1} u_{2,2} u_{3,1} u_{1,1}$ and $u_{1,2} u_{2,1} u_{3,2} u_{1,2}$ and a single arc between them, a contradiction to the assumption that D_{2} is strong.

Suppose that $Q=\vec{C}_{3}\left[\overline{K_{2}}, \overline{K_{2}}, \overline{K_{3}}\right]$ has a decomposition into two strong spanning subdigraphs D_{1}, D_{2}. Since Q has 16 arcs and has no Hamiltonian cycle, each of D_{1}, D_{2} has 8 arcs. Since Q has only cycles of lengths 3 and 6 and D_{1} is strong, without loss of generality, we may assume that D_{1} consists of a cycle $u_{1,1} u_{2,1} u_{3,1} u_{1,2} u_{2,2} u_{3,2} u_{1,1}$ and a path $u_{2,1} u_{3,3} u_{1,1}$. Then D_{2} consists of two cycles $u_{1,1} u_{2,2} u_{3,1} u_{1,1}$ and $u_{1,2} u_{2,1} u_{3,2} u_{1,2}$ and a path $u_{2,2} u_{3,3} u_{1,2}$. Observe that D_{2} is not strong, a contradiction.

Now we will show the 'if' part of the theorem by reductio ad absurdum as well. Assume that Q is not isomorphic to either of the three digraphs, but has no good decomposition.

By Camion's Theorem [7], T has a Hamiltonian cycle $C=u_{1} u_{2} \ldots u_{t} u_{1}$. Thus, Conditions (b) of Theorem 2.2 are applicable. By the conditions, t must be odd and for at least two distinct indexes $p, q \in\{1,2, \ldots, t\}$, we have $n_{p}=n_{q}=2$.

Suppose $t \geq 5$. Then there will be arcs between H_{i} and H_{i+2} in Q for every $i=1,2, \ldots, t-2$. Recall Case 2 of Part (b) of the proof of Theorem 2.2. The arcs between H_{i} and H_{i+2} arcs can be used to make D_{2} strong instead of arcs e_{p} and e_{q} used in Case 2 of Part (b) of the proof of Theorem 2.2. Thus, Q has a good decomposition, a contradiction. Hence, $t=3$ and, without loss of generality, $n_{1}=n_{2}=2$ and $n_{3} \geq 2$.

Suppose that T has opposite arcs. One of these arcs will not be on the Hamiltonian cycle C of T and will correspond to four or more arcs in Q. Now recall Case 2 of Part (b) of the proof of Theorem 2.2. Two of the above-mentioned arcs can be used to make D_{2} strong instead of arcs e_{p} and e_{q} used in Case 2 of Part (b) of the proof of Theorem 2.2. Thus, Q has a good decomposition, a contradiction. Hence, $T=\vec{C}_{3}$.

Suppose that $n_{3} \geq 4$. To get a contradiction, by Lemma 2.1 it suffices to show that $Q=\vec{C}_{3}\left[\overline{K_{2}}, \overline{K_{2}}, \overline{K_{4}}\right]$ has a decomposition into two strong spanning subdigraphs D_{1}, D_{2}, where D_{1} consists of a cycle $u_{1,1} u_{2,1} u_{3,1} u_{1,2} u_{2,2} u_{3,2} u_{1,1}$ and two paths $u_{2,1} u_{3,4} u_{1,1}$ and $u_{2,2} u_{3,3} u_{1,2}$ and D_{2} consists of two cycles $u_{1,1} u_{2,2} u_{3,1} u_{1,1}$ and $u_{1,2} u_{2,1} u_{3,2} u_{1,2}$ and two paths $u_{2,1} u_{3,3} u_{1,1}$ and $u_{2,2} u_{3,4} u_{1,2}$. Thus, $n_{3} \leq 3$.

Now consider the case of $n_{1}=n_{2}=2$ and $n_{3}=3$. Since Q is not isomorphic to $\vec{C}_{3}\left[\overline{K_{2}}, \overline{K_{2}}, \overline{K_{3}}\right]$, it has an arc in either H_{1} or H_{2} or H_{3}, and by Conditions (b) of Theorem 2.2, only one of H_{1}, H_{2}, H_{3} has an arc a. Without loss of generality, assume that if H_{1} has an arc then $a=u_{1,2} u_{1,1}$, if H_{2} has an arc then $a=u_{2,1} u_{2,2}$ and if H_{3} has an arc then $a=u_{3,2} u_{3,1}$. Then Q has a decomposition into two spanning subdigraphs D_{1}, D_{2}, where D_{1} consists of a cycle $u_{1,1} u_{2,1} u_{3,1} u_{1,2} u_{2,2} u_{3,2} u_{1,1}$ and a path $u_{2,1} u_{3,3} u_{1,1}$ and D_{2} consists of two cycles $u_{1,1} u_{2,2} u_{3,1} u_{1,1}$ and $u_{1,2} u_{2,1} u_{3,2} u_{1,2}$, a path $u_{2,2} u_{3,3} u_{1,2}$ and arc a. Observe that both D_{1} and D_{2} are strong, a contradiction.

It remains to consider the case of $n_{1}=n_{2}=n_{3}=2$. Since Q is not isomorphic to $\vec{C}_{3}\left[\overline{K_{2}}, \overline{K_{2}}, \overline{K_{2}}\right]$, at least one of H_{1}, H_{2} and H_{3} has an arc. By Conditions (b) of Theorem 2.2, only one of H_{1}, H_{2} and H_{3} has an arc. Without loss of generality, assume that H_{1} has an arc. Suppose that H_{1} has two arcs. Then $H_{1}=\vec{C}_{2}$. Then we can use the arcs of H_{1} to make D_{2} strong instead of arcs e_{p} and e_{q} used in Case 2 of Part (b) of the proof of Theorem 2.2. Thus, Q has a good decomposition, a contradiction. Hence, if H_{1} has an arc, it must have just one arc. This concludes our proof.

3 Products of digraphs

The Cartesian product $G \square H$ of two digraphs G and H is a digraph with vertex set $V(G \square H)=V(G) \times V(H)=\left\{\left(x, x^{\prime}\right): x \in V(G), x^{\prime} \in V(H)\right\}$ and arc set $A(G \square H)=\left\{\left(x, x^{\prime}\right)\left(y, y^{\prime}\right): x y \in A(G), x^{\prime}=y^{\prime}\right.$, or $x=y, x^{\prime} y^{\prime} \in$ $A(H)\}$. By definition, the Cartesian product is associative and commutative (up to isomorphism), and $G \square H$ is strongly connected if and only if both G and H are strongly connected [10]. We define the k th powers with respect to Cartesian product as $D^{\square k}=\underbrace{D \square D \square \ldots \square D}_{k \text { times }}$.

Figure 2: Two digraphs G, H and their Cartesian product.
In the arguments of this section, we will use the following terminology and notation. Let G and H be two digraphs with $V(G)=\left\{u_{i}: 1 \leq i \leq n\right\}$ and $V(H)=\left\{v_{j}: 1 \leq j \leq m\right\}$. For simplicity, we let $u_{i, j}=\left(u_{i}, v_{j}\right)$ for $1 \leq i \leq n, 1 \leq j \leq m$. We use $G\left(v_{j}\right)$ to denote the subdigraph of $G \square H$ induced by vertex set $\left\{u_{i, j}: 1 \leq i \leq n\right\}$, where $1 \leq j \leq m$, and use $H\left(u_{i}\right)$ to denote the subdigraph of $G \square H$ induced by vertex set $\left\{u_{i, j}: 1 \leq j \leq m\right\}$,
where $1 \leq i \leq n$. Clearly, we have $G\left(v_{j}\right) \cong G$ and $H\left(u_{i}\right) \cong H$. (For example, as shown in Figure 2, $G\left(v_{j}\right) \cong G$ for $1 \leq j \leq 4$ and $H\left(u_{i}\right) \cong H$ for $1 \leq i \leq 3$.) For $1 \leq j_{1} \neq j_{2} \leq m, u_{i, j_{1}}$ and $u_{i, j_{2}}$ belong to the same digraph $H\left(u_{i}\right)$, where $u_{i} \in V(G)$; we call $u_{i, j_{2}}$ the vertex corresponding to $u_{i, j_{1}}$ in $G\left(v_{j_{2}}\right)$; for $1 \leq i_{1} \neq i_{2} \leq n$, we call $u_{i_{2}, j}$ the vertex corresponding to $u_{i_{1}, j}$ in $H\left(u_{i_{2}}\right)$. Similarly, we can define the subdigraph corresponding to some other subdigraph. For example, in Fig. 2(c), let $P_{1}\left(P_{2}\right)$ be the path labelled $1(2)$ in $H\left(u_{1}\right)\left(H\left(u_{2}\right)\right)$, then P_{2} is called the path corresponding to P_{1} in $H\left(u_{2}\right)$.

Lemma 3.1 For any integer $n \geq 2$, the product digraph $D=\vec{C}_{n} \square \vec{C}_{n}$ can be decomposed into two arc-disjoint Hamiltonian cycles.

Proof: Let $G=H \cong \vec{C}_{n}$; moreover $G=u_{1} u_{2} \ldots u_{n} u_{1}$ and $H=v_{1} v_{2} \ldots v_{n} v_{1}$. Let $P_{i}=G\left(v_{i}\right)-u_{n-i, i} u_{n+1-i, i}$ for $1 \leq i \leq n-1$ and $P_{n}=G\left(v_{n}\right)-u_{n, n} u_{1, n}$. Let $Q_{i}=H\left(u_{i}\right)-u_{i, n-i} u_{i, n+1-i}$ for $1 \leq i \leq n-1$ and $Q_{n}=H\left(u_{n}\right)-u_{n, n} u_{n, 1}$. Furthermore, let

$$
D^{\prime}=\left(\bigcup_{i=1}^{n-1}\left(P_{i} \cup\left\{u_{n-i, i} u_{n-i, i+1}\right\}\right)\right) \cup\left(P_{n} \cup\left\{u_{n, n} u_{n, 1}\right\}\right)
$$

and

$$
D^{\prime \prime}=\left(\bigcup_{i=1}^{n-1}\left(Q_{i} \cup\left\{u_{i, n-i} u_{i+1, n-i}\right\}\right)\right) \cup\left(Q_{n} \cup\left\{u_{n, n} u_{1, n}\right\}\right)
$$

By the construction, the subdigraphs D^{\prime} and $D^{\prime \prime}$ are Hamiltonian cycles of D. For example, see Figure 3 for the case that $n=5$ (the Hamiltonian cycle D^{\prime} consists of five "vertical" paths P_{i} of order five and five "horizontal" arcs, $D^{\prime \prime}$ consists of five "horizontal" paths Q_{i} of order five and five "vertical" arcs, furthermore, these two cycles are symmetric about the diagonal.)

Figure 3: Two arc-disjoint Hamiltonian cycles for the case $n=5$.

Note that deciding whether a digraph D has a collection of arc-disjoint cycles covering all vertices of D can be done in polynomial time using network flows. Indeed, assign lower bound 1 and upper bound $\min \left\{d^{-}(x), d^{+}(x)\right\}$ to
every vertex x in D and lower bound 0 and upper bound 1 to every arc of D. Observe that the resulting network has a feasible flow if and only if D has a collection of arc-disjoint cycles covering all vertices of D. Observe that the existence of a flow in a network with lower and upper bounds on vertices and arcs can be decided in polynomial time, see e.g., Chapter 4 in [1]. Moreover, we can compute such a flow in polynomial time (if it exists) and obtain the corresponding collection of cycles in D. The following lemma may be of independent interest.

Lemma 3.2 Let G be a strong digraph with at least two vertices which has a collection of arc-disjoint cycles covering all its vertices. Then the product digraph $D=G \square G$ has a good decomposition. Moreover, such a good decomposition can be found in polynomial time.

Proof: By the arguments in the paragraph before this lemma, we may assume that we are given a collection $\left(P_{0}, P_{1}, P_{2}, \cdots, P_{p}\right)$ of arc-disjoint cycles covering all vertices of G. For each $h \in\{0,1,2, \cdots, p\}$, let G_{h} denote the digraph with vertices $\bigcup_{i=0}^{h} V\left(P_{i}\right)$ and $\operatorname{arcs} \bigcup_{i=0}^{h} A\left(P_{i}\right)$. Now we will prove the lemma by induction on the number of cycles in the collection.

For the base step, by Lemma 3.1, we have that $G_{0} \square G_{0}=P_{0} \square P_{0}$ can be decomposed into two arc-disjoint strong spanning subdigraphs.

For the inductive step, we assume that $G_{h} \square G_{h}(0 \leq h \leq p-1)$ can be decomposed into two arc-disjoint strong spanning subdigraphs D_{h}^{\prime} and $D_{h}^{\prime \prime}$. We will construct two arc-disjoint strong spanning subdigraphs in $G_{h+1} \square G_{h+1}$.

If $V\left(G_{h}\right) \subseteq V\left(P_{h+1}\right)$, then P_{h+1} is a Hamiltonian cycle of G_{h+1}, and we are done by Lemma 3.1. If $V\left(P_{h+1}\right) \subseteq V\left(G_{h}\right)$, then G_{h} is a strong spanning subdigraph of G_{h+1}, and we are also done by the induction hypothesis.

In the following argument, we assume that $V\left(G_{h}\right) \backslash V\left(P_{h+1}\right) \neq \emptyset$ and $V\left(P_{h+1}\right) \backslash V\left(G_{h}\right) \neq \emptyset$. Without loss of generality, for the first copies of G_{h} and P_{h+1} in $G_{h} \square G_{h}$ and $P_{h+1} \square P_{h+1}$, let $V\left(G_{h}\right)=\left\{u_{i}: 1 \leq i \leq t\right\}$, $V\left(P_{h+1}\right)=\left\{u_{i}: s \leq i \leq \ell\right\}$. We have $1<s \leq t<\ell$. For the second copies of G_{h} and P_{h+1} in $G_{h} \square G_{h}$ and $P_{h+1} \square P_{h+1}$, we will use v_{i} 's rather than u_{i} 's.

By Lemma 3.1, in $G_{h+1} \square G_{h+1}$, the subdigraph $P_{h+1} \square P_{h+1}$ can be decomposed into two arc-disjoint strong spanning subdigraphs \bar{D}_{h}^{\prime} and $\bar{D}_{h}^{\prime \prime}$. Observe that
$V\left(G_{h} \square G_{h}\right) \cap V\left(P_{h+1} \square P_{h+1}\right) \supseteq\left\{u_{t, t}\right\}$ and $A\left(G_{h} \square G_{h}\right) \cap A\left(P_{h+1} \square P_{h+1}\right)=\emptyset$.
For $1 \leq j \leq s-1$, let $G_{h, j}$ be the subdigraph of $G\left(v_{j}\right)$ corresponding to P_{h+1}. For $t+1 \leq j \leq \ell$, let $G_{h, j}$ be the subdigraph of $G\left(v_{j}\right)$ corresponding to G_{h}. For $1 \leq i \leq s-1$, let $H_{h, i}$ be the subdigraph of $H\left(u_{i}\right)$ corresponding to P_{h+1}. For $t+1 \leq i \leq \ell$, let $H_{h, i}$ be the subdigraph of $H\left(u_{i}\right)$ corresponding to G_{h}.

Now let D_{h+1}^{\prime} be a union of the following strong digraphs: $D_{h}^{\prime}, \bar{D}_{h}^{\prime}, H_{h, i}$ and $G_{h, j}$ for all $t+1 \leq i, j \leq \ell$. Observe that D_{h+1}^{\prime} is a strong spanning subdigraph of $G_{h+1} \square G_{h+1}$ since \bar{D}_{h}^{\prime} has at least one common vertex with each of $D_{h}^{\prime}, H_{h, i}$ and $G_{h, j}$ for all $t+1 \leq i, j \leq \ell$. Let $D_{h+1}^{\prime \prime}$ be a spanning subdigraph of $G_{h+1} \square G_{h+1}$ with $A\left(D_{h+1}^{\prime \prime}\right)=A\left(G_{h+1} \square G_{h+1}\right) \backslash A\left(D_{h+1}^{\prime}\right)$. Observe that $D_{h+1}^{\prime \prime}$ is the union of $D_{h}^{\prime \prime}, \bar{D}_{h}^{\prime \prime}, H_{h, i}$ and $G_{h, j}$ for all $1 \leq i, j \leq s-1$.

And $D_{h}^{\prime \prime}$ has at least one common vertex with each of $\bar{D}_{h}^{\prime \prime}, H_{h, i}$ and $G_{h, j}$ for all $1 \leq i, j \leq s-1$, thus $D_{h+1}^{\prime \prime}$ is strong.

Hence, we complete the inductive step and conclude that $D=G \square G$ can be decomposed into two arc-disjoint strong spanning subdigraphs. Moreover, by the above argument, these subdigraphs can be found in polynomial time.

Lemma 3.3 For any two strong digraphs G and H, if G has a good decomposition, then the product digraph $D=G \square H$ has a good decomposition.

Proof: Let $V(G)=\left\{u_{i}: 1 \leq i \leq n\right\}, V(H)=\left\{v_{j}: 1 \leq j \leq m\right\}$, and G contain two arc-disjoint strong spanning subdigraphs G_{1} and G_{2}. For $1 \leq i \leq 2$ and $1 \leq j \leq m$, let $G_{i, j}$ be the subdigraph of $G\left(v_{j}\right)$ corresponding to G_{i}. As shown in Figure 4, let D^{\prime} be the union of $H\left(u_{1}\right)$ and $G_{1, j}$ for all $1 \leq j \leq m$, and let $D^{\prime \prime}$ be a subdigraph of D with $V\left(D^{\prime \prime}\right)=V(D)$ and $A\left(D^{\prime \prime}\right)=A(D) \backslash A\left(D^{\prime}\right)$. Note that $D^{\prime \prime}$ is the union of $H\left(u_{i}\right)$ and $G_{2, j}$ for all $2 \leq i \leq n, 1 \leq j \leq m$. Since $H\left(u_{i}\right), G_{1, j}$ and $G_{2, j}(1 \leq i \leq n, 1 \leq j \leq m)$ are strong, both D^{\prime} and $D^{\prime \prime}$ are strong spanning subdigraphs of D. This completes the proof.

D^{\prime}

$D^{\prime \prime}$

Figure 4: Two arc-disjoint strong spanning subdigraphs in Lemma 3.3.
By the definition of $D^{\square k}$, associativity of the Cartesian product (up to isomorphism), and Lemmas 3.2 and 3.3, we can obtain the following result on $G^{\square k}$ for any integer $k \geq 2$.
Theorem 3.4 Let G be a strong digraph of order at least two which has a collection of arc-disjoint cycles covering all its vertices and let $k \geq 2$ be an integer. Then the product digraph $D=G^{\square k}$ has a good decomposition. Moreover, for any fixed integer k, such a good decomposition can be found in polynomial time.

The strong product $G \boxtimes H$ of two digraphs G and H is a digraph with vertex set $V(G \boxtimes H)=V(G) \times V(H)=\left\{\left(x, x^{\prime}\right): x \in V(G), x^{\prime} \in V(H)\right\}$ and arc set $A(G \boxtimes H)=\left\{\left(x, x^{\prime}\right)\left(y, y^{\prime}\right): x y \in A(G), x^{\prime}=y^{\prime}\right.$, or $x=y, x^{\prime} y^{\prime} \in$ $A(H)$, or $\left.x y \in A(G), x^{\prime} y^{\prime} \in A(H)\right\}$. By definition, $G \square H$ is a spanning subdigraph of $G \boxtimes H$, and $G \boxtimes H$ is strongly connected if and only if both G and H are strongly connected [10]. In the following argument, we will still use the terminology and notation introduced earlier in this section, since $G \square H$ is a spanning subdigraph of $G \boxtimes H$.

Lemma 3.5 For any two integers $n, m \geq 2$, the product digraph $D=\vec{C}_{n} \boxtimes$ \vec{C}_{m} has a good decomposition.

Proof: Let $\vec{C}_{n}=u_{1} u_{2} \ldots u_{n} u_{1}$ and $\vec{C}_{m}=v_{1} v_{2} \ldots v_{m}$. Let D^{\prime} be the spanning subdigraph of D which is the union of $G\left(v_{j}\right)$ for $1 \leq j \leq m$ and the following additional m arcs: $\left\{u_{n, j} u_{1, j+1}: 1 \leq j \leq m-1\right\} \cup\left\{u_{1, m} u_{2,1}\right\}$. Observe that D^{\prime} is strong. Let $D^{\prime \prime}$ be a spanning subdigraph of D with $A\left(D^{\prime \prime}\right)=A(D) \backslash A\left(D^{\prime}\right)$. To see that $D^{\prime \prime}$ is strong, observe that it contains $H\left(u_{i}\right)$ for $1 \leq i \leq n$ and $\operatorname{arcs}\left\{u_{i, 1} u_{i+1,2}: 1 \leq i \leq n-1\right\} \cup\left\{u_{n, m} u_{1,1}\right\}$.

We will use the following decomposition of strong digraphs.
An ear decomposition of a digraph D is a sequence $\mathcal{P}=\left(P_{0}, P_{1}, P_{2}, \cdots, P_{t}\right)$, where P_{0} is a cycle or a vertex and each P_{i} is a path, or a cycle with the following properties:
(a) P_{i} and P_{j} are arc-disjoint when $i \neq j$.
(b) For each $i=0,1,2, \cdots, t$: let D_{i} denote the digraph with vertices $\bigcup_{j=0}^{i} V\left(P_{j}\right)$ and $\operatorname{arcs} \bigcup_{j=0}^{i} A\left(P_{j}\right)$. If P_{i} is a cycle, then it has precisely one vertex in common with $V\left(D_{i-1}\right)$. Otherwise the end vertices of P_{i} are distinct vertices of $V\left(D_{i-1}\right)$ and no other vertex of P_{i} belongs to $V\left(D_{i-1}\right)$. (c) $\bigcup_{j=0}^{t} A\left(P_{j}\right)=A(D)$.

The following result is well-known, see e.g., [1].
Theorem 3.6 Let D be a digraph with at least two vertices. Then D is strong if and only if it has an ear decomposition. Furthermore, if D is strong, every cycle can be used as a starting cycle P_{0} for an ear decomposition of D, and there is a linear-time algorithm to find such an ear decomposition.

Theorem 3.7 For any strong digraphs G and H with at least two vertices, the product digraph $D=G \boxtimes H$ has a good decomposition. Moreover, such a decomposition can be found in polynomial time.

Proof: By Theorem 3.6, G has an ear decomposition $\mathcal{P}=\left(P_{0}, P_{1}, P_{2}, \cdots, P_{p}\right)$ and H has an ear decomposition $\mathcal{Q}=\left(Q_{0}, Q_{1}, Q_{2}, \cdots, Q_{q}\right)$, such that P_{0} is a cycle of G and Q_{0} is a cycle of H. Let G_{i} denote the subdigraph of G with vertices $\bigcup_{j=0}^{i} V\left(P_{j}\right)$ and arcs $\bigcup_{j=0}^{i} A\left(P_{j}\right)$ and let H_{i} denote the subdigraph of H with vertices $\bigcup_{j=0}^{i} V\left(Q_{j}\right)$ and arcs $\bigcup_{j=0}^{i} A\left(Q_{j}\right)$.

We will prove the theorem by induction on $r \in\{0,1, \ldots, p+q\}$. For the base step, by Lemma 3.5 , we have that $P_{0} \boxtimes Q_{0}$ can be decomposed into two arc-disjoint strong spanning subdigraphs. For the inductive step, we assume that $r=h+g<p+q(h \leq p, g \leq q)$ and $G_{h} \boxtimes H_{g}$ can be decomposed into two arc-disjoint strong spanning subdigraphs D^{\prime} and $D^{\prime \prime}$.

Since strong product is a commutative operation, without loss of generality it suffices to prove that $G_{h+1} \boxtimes H_{g}(h<p)$ can be decomposed into two arc-disjoint strong spanning subdigraphs. Let $V\left(G_{h}\right)=\left\{u_{1}, u_{2}, \ldots, u_{\ell}\right\}$, $V\left(H_{g}\right)=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ and $v_{1} v_{s} \in A\left(H_{g}\right)$. Let $P_{h+1, j}$ be the subdigraph of $G\left(v_{j}\right)$ corresponding to P_{h+1} for $1 \leq j \leq m$. We will consider two cases.

Case 1: P_{h+1} is a cycle. Let $P_{h+1}=u_{\ell} u_{\ell+1} \ldots u_{n} u_{\ell}$. Observe that every $P_{h+1, j}$ for $1 \leq j \leq m$ shares vertex $u_{\ell, j}$ with D^{\prime}. Thus, the union U_{1} of D^{\prime} and $P_{h+1, j}$ for $1 \leq j \leq m$ is a strong spanning subdigraph of $G_{h+1} \boxtimes H_{g}$. Let $V\left(U_{2}\right)=V\left(G_{h+1} \boxtimes H_{g}\right)$ and $A\left(U_{2}\right)=A\left(G_{h+1} \boxtimes H_{g}\right) \backslash A\left(U_{1}\right)$.

Observe that $A\left(U_{2}\right)$ contains $A\left(D^{\prime \prime}\right), A\left(H\left(u_{i}\right)\right)$ for $\ell+1 \leq i \leq n$ and $\left\{u_{i, 1} u_{i+1, s}: \ell \leq i \leq n-1\right\} \cup\left\{u_{n, 1} u_{\ell, s}\right\}$. Thus, U_{2} is strong.

Case 2: P_{h+1} is a path. Let $P_{h+1}=u_{\ell} u_{\ell+1} \ldots u_{n-1} u_{t}$, where $t<\ell$. Let U_{1} be the union of D^{\prime} and $P_{h+1, j}$ for $1 \leq j \leq m$. Observe that U_{1} is a spanning subdigraph of $G_{h+1} \boxtimes H_{g}$ and strong since every $P_{h+1, j}$ for $1 \leq j \leq m$ shares its end-vertices with D^{\prime}. Let $V\left(U_{2}\right)=V\left(G_{h+1} \boxtimes H_{g}\right)$ and $A\left(U_{2}\right)=A\left(G_{h+1} \boxtimes H_{g}\right) \backslash A\left(U_{1}\right)$. Observe that $A\left(U_{2}\right)$ contains $A\left(D^{\prime \prime}\right)$, $A\left(H\left(u_{i}\right)\right)$ for $\ell+1 \leq i \leq n-1$ and $\left\{u_{i, 1} u_{i+1, s}: \ell \leq i \leq n-2\right\} \cup\left\{u_{n-1,1} u_{t, s}\right\}$. Thus, U_{2} is strong.

Hence, we complete the inductive step and conclude that $D=G \boxtimes H$ can be decomposed into two arc-disjoint strong spanning subdigraphs. Furthermore, by Theorem 3.6, the proof of Lemma 3.5, and the argument of this theorem, we can conclude that these two strong spanning subdigraphs can be found in polynomial time.

The lexicographic product $G \circ H$ of two digraphs G and H is a digraph with vertex set $V(G \circ H)=V(G) \times V(H)=\left\{\left(x, x^{\prime}\right): x \in V(G), x^{\prime} \in V(H)\right\}$ and $\operatorname{arc} \operatorname{set} A(G \circ H)=\left\{\left(x, x^{\prime}\right)\left(y, y^{\prime}\right): x y \in A(G)\right.$, or $x=y$ and $\left.x^{\prime} y^{\prime} \in A(H)\right\}$ [10]. By definition, $G \boxtimes H$ is a spanning subdigraph of $G \circ H$, so the following result holds by Theorem 3.7: For any strong connected digraphs G and H with orders at least 2 , the product digraph $D=G \circ H$ can be decomposed into two arc-disjoint strong spanning subdigraphs. Moreover, these two arcdisjoint strong spanning subdigraphs can be found in polynomial time. In fact, we can get a more general result.

A digraph is Hamiltonian decomposable if it has a family of Hamiltonian dicycles such that every arc of the digraph belongs to exactly one of the dicycles. Ng [11] gives the most complete result among digraph products.

Theorem 3.8 [11] If G and H are Hamiltonian decomposable digraphs, and $|V(G)|$ is odd, then $G \circ H$ is Hamiltonian decomposable.

Theorem 3.8 implies that if G and H are Hamiltonian decomposable digraphs, and $|V(G)|$ is odd, then $G \circ H$ can be decomposed into two arcdisjoint strong spanning subdigraphs. It is not hard to extend this result as follows: for any strong digraphs G and H of orders at least 2, if H contains $\ell \geq 1$ arc-disjoint strong spanning subdigraphs, then the product digraph $D=G \circ H$ can be decomposed into $\ell+1$ arc-disjoint strong spanning subdigraphs.

4 Open Problems

We have characterized digraphs $T\left[H_{1}, \ldots, H_{t}\right]$, where T is strong semicomplete and every H_{i} is arbitrary with at least two vertices, which have a
good decomposition. It is a natural open problem to extend the characterization to all such digraphs, where some H_{i} 's can have just one vertex. Of course, the extended characterization would generalize also Theorem 1.2.

A digraph Q is quasi-transitive, if for any triple x, y, z of distinct vertices of Q, if $x y$ and $y z$ are arcs of Q then either $x z$ or $z x$ or both are arcs of Q. For a recent survey on quasi-transitive digraphs and their generalizations, see a chapter [8] by Galeana-Sánchez and Hernández-Cruz. Bang-Jensen and Huang [3] proved that a quasi-transitive digraph is strong if and only if $Q=T\left[H_{1}, \ldots, H_{t}\right]$, where T is a strong semicomplete digraph and each H_{i} is a non-strong quasi-transitive digraph or has just one vertex. Thus, a special case of the above problem is to characterize strong quasi-transitive digraphs with a good decomposition. This would generalize Theorem 1.2 as well.

We believe that these characterizations will confirm Conjecture 1.1 for the classes of quasi-transitive digraphs and digraphs $T\left[H_{1}, \ldots, H_{t}\right]$, where T is strong semicomplete. In the absence of the characterizations, it would still be interesting to confirm the conjecture at least for quasi-transitive digraphs.

In Lemma 3.2, we show that $G \square H$ contains a pair of arc-disjoint strong spanning subdigraphs when $G \cong H$. However, the following result implies Lemma 3.2 cannot be extended to the case that $G \not \neq H$, since it is not hard to show that the Cartesian product digraph of any two cycles has a pair of arc-disjoint strong spanning subdigraphs if and only if it has a pair of arc-disjoint Hamiltonian cycles.

Theorem 4.1 [13] The Cartesian product $\overrightarrow{C_{p}} \square \overrightarrow{C_{q}}$ is Hamiltonian if and only if there are non-negative integers d_{1}, d_{2} for which $d_{1}+d_{2}=\operatorname{gcd}(p, q) \geq 2$ and $\operatorname{gcd}\left(p, d_{1}\right)=\operatorname{gcd}\left(q, d_{2}\right)=1$.

However, Lemma 3.2 could hold for the case that $G \not \approx H$ if we add other conditions. As shown in Lemma 3.3, we know $G \square H$ contains a pair of arcdisjoint strong spanning subdigraphs when one of G and H contains a pair of arc-disjoint strong spanning subdigraphs. So the following open question is interesting: for any two strong digraphs G and H, neither of which contain a pair of arc-disjoint strong spanning subdigraphs, under what condition the product digraph $G \square H$ contains a pair of arc-disjoint strong spanning subdigraphs?

Furthermore, we may also consider the following more challenging question: under what conditions the product digraph $G \square H(G \boxtimes H)$ has more (than two) arc-disjoint strong spanning subdigraphs?

References

[1] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications, 2nd Edition, Springer, London, 2009.
[2] J. Bang-Jensen and G. Gutin, Basic Terminology, Notation and Results, in Classes of Directed Graphs (J. Bang-Jensen and G. Gutin, eds.), Springer, 2018.
[3] J. Bang-Jensen and J. Huang, Quasi-transitive digraphs, J. Graph Theory, $20(2), 1995,141-161$.
[4] J. Bang-Jensen and J. Huang, Decomposing locally semicomplete digraphs into strong spanning subdigraphs, J. Combin. Theory Ser. B, 102, 2012, 701-714.
[5] J. Bang-Jensen and A. Yeo, Decomposing k-arc-strong tournaments into strong spanning subdigraphs, Combinatorica 24(3), 2004, 331-349.
[6] J.A. Bondy and U.S.R. Murty, Graph Theory, Springer, Berlin, 2008.
[7] P. Camion, Chemins et circuits hamiltoniens des graphes complets, Comptes Rendus de l'Académie des Sciences de Paris, 249, 1959, 21512152.
[8] H. Galeana-Sánchez and C. Hernández-Cruz, Quasi-transitive digraphs and their extensions, in Classes of Directed Graphs (J. Bang-Jensen and G. Gutin, eds.), Springer, 2018.
[9] J. Edmonds, Edge-disjoint branchings, in Combinatorial Algorithms (B. Rustin ed.), Academic Press, 1973, 91-96.
[10] R.H. Hammack, Digraph Products, in Classes of Directed Graphs (J. Bang-Jensen and G. Gutin, eds.), Springer, 2018.
[11] L.L. Ng. Hamiltonian decomposition of lexicographic products of digraphs. J. Combin. Theory Ser. B, 73(2), 1998, 119-129.
[12] C. Thomassen, Configurations in graphs of large minimum degree, connectivity, or chromatic number, Annals of the New York Academy of Sciences, 555, 1989, 402-412.
[13] W.T. Trotter, Jr. and P. Erdős. When the Cartesian product of directed cycles is Hamiltonian, J. Graph Theory, 2(2), 1978, 137-142.

[^0]: ${ }^{*}$ Yuefang Sun was supported by National Natural Science Foundation of China (No. 11401389).
 ${ }^{\dagger}$ Corresponding author. Gregory Gutin was partially supported by Royal Society Wolfson Research Merit Award.

[^1]: ${ }^{1}$ Every strong digraph D has an out- and in-branching rooted at any vertex of D.

