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How simulation modelling can help reduce the impact of COVID-19 

Modelling has been used extensively by all national governments and the World 

Health Organization in deciding on the best strategies to pursue in mitigating the 

effects of COVID-19. Principally these have been epidemiological models aimed 

at understanding the spread of the disease and the impacts of different 

interventions. But a global pandemic generates a large number of problems and 

questions, not just those related to disease transmission, and each requires a 

different model to find the best solution. In this article we identify challenges 

resulting from the COVID-19 pandemic and discuss how simulation modelling 

could help to support decision-makers in making the most informed decisions. 

Modellers should see the article as a call to arms and decision-makers as a guide 

to what support is available from the simulation community. 
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Introduction 

COVID-19 looks set to be the worst infectious disease pandemic of a generation in 

terms of numbers infected, mortalities and the unprecedented demand for healthcare 

services. To date (27 March 2020) 463,000 people have tested positive for the disease 

and 20,800 have been recorded as having died (WHO, 2020). The economic 

consequences from organisational shutdowns and other measures taken, such as school 

closures, are just beginning to become real and estimates suggest that quarantine and 

social isolation measures could be needed for as long as 18 months, with these being 

turned on and off during the period based on the observed demand for intensive care 

unit (ICU) beds (Ferguson et al., 2020).  Likewise, the detrimental effect on other 

routine emergency and elective patients will be affected by the health service response 

to COVID-19, and its impact on these groups should not be ignored. 

As the enormity of the threat has become clear, governments appear to have 

relied heavily on computer simulations to determine how best to reduce its impact, with 

a particular emphasis on how to flatten the growth curve of the disease to reduce the 



pressure on the healthcare systems. While considerable efforts have been made on 

epidemiological modelling of the spread of COVID-19 via computer simulation (e.g. 

Ferguson et al. 2020) the pandemic raises many more challenges that computer 

simulation could be equally useful in addressing. The modelling and simulation 

community should now consider their role in contributing to both improving the 

understanding of the disease and planning to make better decisions and reduce its 

impact. The modelling environment provides the opportunity to play out different 

scenarios in silico rather than experimenting on the real population and, in developing 

the models, often helps to engender a much better understanding of the system as a 

whole. 

This article has two aims. First, to provide a guide to how simulation models and 

which types of simulation models can be used to support different decisions that arise 

during a public health emergency such as this one. Second, to act as a call to arms for 

simulation modellers by providing a research agenda.   

One of the key takeaways from this article should be that different decisions 

require different models and that the field of modelling and simulation is equipped with 

a range of approaches that can provide support to decisions at different levels of 

complexity. Modelling approaches can also be connected or combined - for example 

forecasts from epidemiological models can and should feed into operational models of 

hospitals.   

Epidemiological models are ideal for predicting the number of new cases or for 

identifying the best measures to reduce transmission, but they will not help to organise 

Intensive Care Unit (ICU) beds and medical staff, or consider the interplay of the 

impact of individuals’ behaviour on the capacity of every essential system, particularly 

the health care system. Furthermore simulation can also explore questions relating to the 



disruption of essential supply chains inundated by unprecedented demands (e.g. 

hoarding food, medicines and hygiene products); and support decisions about how best 

to move on from the initial isolation period in order to return to business-as-usual. It is 

clear that models will need to evolve over time as the research questions, the epidemic 

and the available data change.  

In what follows, we provide some initial background information about the 

current state of the COVID-19 pandemic and an introduction to the key simulation 

modelling techniques. We then go on to identify a set of problems raised by the 

COVID-19 pandemic and particularly suited to simulation modelling. For each, we 

describe the problem, how it might be modelled and any specific data requirements. The 

article concludes with a research agenda for the simulation modelling community.  

Background 

COVID-19: Current Knowledge 

COVID-19 was first reported to the World Health Organization (WHO) in December 

2019 and is a coronavirus disease caused by severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2). Typical symptoms include a fever, cough and shortness 

of breath and severe cases develop pneumonia, requiring respiratory support and 

specialist care in ICU. While there is still some uncertainty, COVID-19 appears to have 

a basic reproduction number (R0) of 2.4 -3.3 (Walker et al., 2020), while at the same 

time a large proportion of those infected, estimated to be between 6-10%, become 

critically ill requiring hospitalisation and access to ventilation support in an ICU (Pagel 

et al 2020). Based on recent research, the overall case fatality rate is estimated as 

0.25%–3.0% but this is dependent on the quality of care available (Wilson et al., 2020). 

The risk of developing symptomatic disease and the risk of death following symptoms 



increases with age (Wu et al., 2020). As the epidemic develops, more data are being 

collected, improving the understanding of the natural history and WHO has set up 

protocols for data collection to develop a better understanding of the epidemiology. 

Recent modelling papers on COVID-19 focus principally on the epidemiology, 

attempting to both estimate the basic reproductive number of the disease and to provide 

estimates of the effectiveness of different interventions in flattening the growth curve of 

the epidemic in order to reduce the burden on the healthcare system. The most popular 

model for describing the epidemiology is the well-known SEIR model (Susceptible - 

Exposed - Infectious- Recovered), frequently used at a population level to describe the 

proportion of the population in each state at any given time. Using data from China, Lin 

et al. (2020), Fang et al. (2020) and Tang et al. (2020) all use an SEIR model to both 

describe the epidemic and assess the impact of mass social isolation policies. Hellewell 

et al. (2020) use a stochastic transmission model to assess the effectiveness of contact 

tracing and isolation of cases. Both Wells et al. (2020) and Gostic et al. (2020) 

determine the impact of international travel, with Wells et al. (2020) focusing on how 

limiting international travel will impact the course of the epidemic, combining data on 

the probability of transmission with data on global connectivity, while Gostic et al. 

(2020) estimate the effectiveness of screening of travellers. 

Simulation Modelling Methods 

We consider four main modelling methods in what follows: discrete event simulation, 

agent-based modelling, system dynamics and hybrid simulation. It is suggested that the 

choice of modelling method is made based on decision makers’ requirements, type of 

problem and system complexity and its characteristics (Borshchev and Filippov, 2004, 

Brennan et al 2006, Chahal and Eldabi 2010, Tako and Robinson 2009; 2012; 

McHaney, Tako and Robinson 2018). 



• System dynamics (SD): differential equation based models that represent real 

world systems in terms of stocks (e.g. of material resources, knowledge, people, 

money), flows between these stocks, and information that determines the values 

of the flows (Borshchev and Filippov, 2004). Feedback effects and delays are 

key SD elements used to explain system behaviour. SD was first developed by 

Jay Forrester in the late 1950’s to help managers better understand industrial 

problems (Forrester, 1961). The best-known within infectious disease 

epidemiology is the SIR model (Kermack & McKendrick, 1927). These models 

are typically used for strategic decisions or decisions affecting a whole 

population.  

• Agent based modelling (ABM): can be used to model the interactions of 

individuals within a population, allowing a decision-maker to determine how 

small changes in behaviour and interaction may influence population level 

outputs. In models of disease spread, the modelling of social networks and 

spatial movements are also vital for accurately describing transmission and these 

can be incorporated into ABMs. ABMs are stochastic models, enabling the 

variability of human behaviour to be incorporated into the model to help 

understand the variability in the likely effectiveness of proposed interventions. 

In an opinion piece, Epstein (2009) suggests that ABM is appropriate for 

modelling pandemics. 

• Discrete event simulation (DES):  stochastic models that take account of 

variability in the time taken to carry out activities and the times between arrivals 

into the system. Goldsman et al. (2010) point out that while the roots of DES go 

back to 1777, DES as we know it today was mainly developed in the years 

1945-1970.  DES models are typically used to model the operation of systems 



over time, where entities (people, parts, tasks, messages) flow through a number 

of queues and activities. They are generally suitable for determining the impact 

of resource availability (doctors; nurses), on waiting times and the number of 

entities waiting in the queues or going through the system. 

• Hybrid simulation (HS): models that combine two or more of the above 

modelling techniques (Mustafee et al. 2017, Brailsford et al 2019). HS is 

typically used to represent a complex system behaviour where different parts of 

the system can be better captured by two or more simulation methods. 

For all of the modelling methods described above, when simulation models 

become very complex, they can take a long while to run. Distributed simulation (DS) 

can be used to either speed up the simulation of a discrete model or link together many 

simulations to form a single, large-scale simulation.  More recently DS has focussed on 

speeding up simulation experimentation (Taylor 2019). Essentially, this involves the use 

of multiple computers to run the experiments in parallel. DS tends to play a “supporting 

role” with other simulation modelling methods (e.g. a potential hybrid large-scale 

simulation of a citywide Emergency Medical Service (Anagnostou and Taylor, 2017), 

agent-based simulations of epidemics, social interaction and people movement 

(Suleimenova, et al. 2017; Bisset, et al. 2014)).  

Decisions Supported by Modelling and Simulation 

In what follows, we identify a set of crucial decisions that need to be made as the 

epidemic progresses. These are split into three sections: (1) decisions affecting disease 

transmission and interventions; (2) decisions regarding resource management; and (3) 

decisions about care. Obviously, no classification is perfect and several of the decisions 

we identify here could fit into two or more of these sections. This is not an exhaustive 



list of decisions that modelling and simulation can support but we hope covers the 

majority of different decision types. 

For each of the identified decisions, we provide a brief description, discuss 

potential modelling techniques that could be used, and the data that would be needed to 

address these challenges effectively. We also indicate the geographic and time scales 

over which the decision is being made. Our geographic scale ranges from global to 

national to organisational to individual. When defining the time scale, we couch it in 

terms of the phase of the response that the challenge falls into. Here, we have used the 

well-known disaster operations management (DOM) framework (Altay & Green, 2006) 

that splits into four phases: mitigation - activities to prevent the onset of disaster or 

reduce its impact; preparedness - plans to handle an emergency; response - 

implementation of plans, policies and strategies from the preparedness phase; recovery - 

long-term planning actions to bring the community back to normality. Note that these 

definitions differ from those used by the UK government 

(https://www.gov.uk/government/publications/coronavirus-action-plan/coronavirus-

action-plan-a-guide-to-what-you-can-expect-across-the-uk). We also note that with a 

pandemic, the phases are not as distinct as in other disaster types because of its evolving 

nature.  Figure 1 summarises the information, showing the identified decisions and how 

they fit into the geographic and time-based scales. In Table 1, we list the key modelling 

methodologies suggested for each decision. 



 

Figure 1: Summary of the key decisions and how they fit into the geographic and time-

based scales. As the key below the diagram shows, different colours describe the 

potential modelling techniques to be used. 

 

Decision Suggested Modelling Methods 

1. Quarantine strategies 

and case isolation 

SD for population-level models; ABM for models that 

capture individual behaviour. 



2. Social distancing 

measures 

SD for population-level models; ABM for models that 

capture individual behaviour, DES and HS for 

operational models 

3. How to manage the end 

of lock down 

SD for population-level models; ABM for models that 

capture individual behaviour. 

4. Delivery of testing Targeting of testing: SD for population-level models; 

ABM for models that capture individual behaviour. 

Delivery of testing: DES. 

5. Targeting of vaccination Targeting of vaccination: SD for population-level 

models; ABM for models that capture individual 

behaviour. Delivery of vaccination: DES. 

6. Capacity of inpatient 

hospital beds and critical 

care 

DES or SD for models of resource requirements. 

HS, combining  DES models of hospital operations and 

SD model describing the progression of the epidemic. 

7. Staffing DES models of hospital operations. SD models to 

represent workforce availability at a national level. 

8. Management of 

resources within a region 

SD or DES models of logistics and supply chains, ABM 

for behavioural models of individuals 

9. Investigation of the 

thresholds for admission 

and discharge of patients 

DES for operational models and SD for a more strategic 

view. 

10. Minimising the impact 

on other patients 

DES models of operations, SD for feedback on rationing 

care 

11. Health & well being SD models for population-wide impacts or HS 

combining SD and ABM. 



 

Table 1: Summary of the main modelling methodologies suggested for each of the 

decisions identified below. 

Decisions Affecting Disease Transmission 

This section covers decisions that must be made about interventions to manage the 

spread of disease throughout the course of the epidemic. The main focus is on 

quarantine strategies and case isolation, moving from the initial decisions about how 

these should be imposed to decisions about managing the end of the social isolation 

measures and the return to normality.  

Decision 1: Quarantine Strategies and Case Isolation 

Quarantine strategies and case isolation are important at every level (global, national, 

organisational and individual) and fall into the preparedness and response phases of the 

disaster response model. The questions vary with different phases and at different levels 

but the modelling is similar. 

When index cases are discovered, contact tracing allows known contacts of 

these individuals to be traced, quarantined, and isolated from others so that they do not 

cascade the infection to more people than necessary.  A variety of techniques can be 

used, such as social network analysis, cellphone tracking of movements, etc.  On a 

larger scale, transportation networks globally are being disrupted by national 

governments in an attempt to reduce transmission between countries, and it seems likely 

that this will continue in some form in the future. As the epidemic progresses, questions 

will arise as to which geographical areas should be isolated, and for how long, including 

questions on the size of the populations to isolate.  



WHO included research into “Comparative analysis of different quarantine 

strategies and contexts for their effectiveness and social acceptability” as one of their 

key research questions in a recent commentary paper (Bedford et al., 2020) and there 

has been some modelling on this already (Hellewell et al., 2020; Wells et al., 2020; 

Gostic et al., 2020). While Hellewell et al. (2020) have demonstrated that a Monte Carlo 

Simulation provides useful results, another method that is commonly used to model the 

dynamics of a complex system at the global level is System Dynamics. System 

dynamics can capture the number of people in various states (or stocks in System 

Dynamics’ terminology) such as incubation and in isolation, as well as the rates that 

control the flow of people transitioning between states.  

Quarantine strategies are used to control one of the flows (i.e. move people to 

state “in isolation”). For example, Sharareh et al. (2016) demonstrate that quarantine has 

a significant impact on the spread of Ebola. The simulation models that are used to 

estimate the impact of quarantine strategies at the global level require many simplifying 

assumptions such as perfect mixing (i.e. each individual has the same probability to be 

infected by anyone in the population). While some of these assumptions are accepted to 

model the impact of quarantine strategies at the global (and large regional) level, they 

may be unrealistic for the organisational/individual level. For example, the spread of the 

virus at the local level is affected by networks (e.g. social, public transport). Hence, 

ABM is more suitable as we can model the interaction between individuals through the 

networks. Furthermore, ABM can model the heterogeneity of individuals in terms of 

their characteristics (e.g. age and underlying condition) and behaviour (e.g. compliance 

to quarantine measure and self-isolation practice). For example, Yang et al. (2011) use 

an ABM to represent the contact networks and different levels of compliance to 

quarantine and isolation measures. The experiments show that household quarantine is 



the most effective measure to control the epidemic in a city. Interestingly, although set 

for two different spatial levels, the two examples, Hellewell et al. (2020) and Yang et al. 

(2011) conclude that the effectiveness of quarantine and self-isolation for an epidemic 

with high reproduction factor is limited. 

Healthcare staff, especially those in the front-line, are exposed to the risk of 

contracting the disease from patients even allowing for protective measures. Quarantine 

strategies can therefore affect staffing of hospitals and a hybrid model that links an 

operational DES model of a hospital with an SD or ABM of quarantine strategies may 

be useful (see Decision 7).  

Decision 2: Social Distancing Measures 

Social distancing measures of some form are in force in the majority of countries 

around the world at this time (March 2020) and recent modelling suggests that this may 

continue in some form for 18 months. Social distancing is reducing the space between 

people in order to reduce the spread of the disease and measures include: 1) keeping a 

distance of two metres (six feet) between people; 2) working from home; 3) cancelling 

large gatherings of people; 4) closing schools or going to online classes; and 5) visiting 

relatives and friends electronically rather than physically. In addition to attempting to 

reduce the overall number of cases of the disease, the goal of social distancing is to 

flatten the growth curve of the disease in order to not overload the healthcare system. 

Flattening the curve provides additional time to add resources (e.g., respirators, medical 

staff, etc.) to handle the increased burden on the healthcare system. 

Modelling of social distancing and quarantining (see Decision 1) can be treated 

as a spatial transmission problem (Robertson 2019) with a variety of modelling 

techniques available.  This can be done at a local level using a SD model or by 

modelling individual agents in the population using ABM, including behavioural rules 



on their movement and hence spread of the disease. Incorporating behavioural 

responses is important as all countries have seen unwanted reactions to the social 

distancing measures, e.g. full beaches, large numbers of people in parks. Each 

individual may believe that they are following the government advice but as a whole, 

the societal effect may not actually have reduced transmission and may have spread the 

infection more widely. An interesting question for these behavioural models is to 

determine how behaviour varies between different global regions. For example, 

population flow between provinces in China is likely to follow different patterns from 

movement between states in the USA or countries in Europe. Also, different 

populations may have different social connectivity within local areas. Incorporating data 

on social contact patterns into transmission models (e.g. Mossong et al., 2008 who 

carried out a large-scale, prospectively collected, population-based survey of 

epidemiologically relevant social contact patterns in eight different European countries) 

may help to explain variations in rates of disease transmission and suggest how different 

control measures will perform more or less effectively in different countries. 

One of the key social distancing strategies is educational closures. In the UK, 

school closures are mainly at the national level at present but as the epidemic progresses 

may become more focused at the organisational level. In the US, school closure 

decisions are more often made at the local (or state) level. These, and identifying the 

most effective social isolation strategies, are important in the preparedness and response 

phases. Data from countries implementing these strategies as to how they affect public 

behaviour will be vital in managing later stages of the epidemic and in learning for 

potential future epidemics. 

Universities have student and staff populations with significant social contact 

within institutional boundaries. Universities have the ability and responsibility to 



administer policies to foster social distancing while providing medical and housing 

services to students. A university health services office typically provides the primary 

healthcare services on a campus and collaborates with other external healthcare 

organizations and emergency personnel. University administrators are responsible for 

critical decisions during a pandemic, including cancellation of classes, closure of 

research facilities and communication with university populations. Owing to the 

frequency of international travel and the high density of students and faculty on campus, 

university populations can have a large impact on the spread of infectious diseases 

within a community. 

Many universities have developed pandemic influenza emergency response 

plans in an attempt to control a potential outbreak and balance the financial, operational 

and public health consequences of a pandemic, but most are quite simple. Some 

universities, including Arizona State University, have developed more sophisticated 

plans based on the use of modelling and simulation (as described in Araz et al. (2011)).  

The objective of these plans is to control the pandemic through proper actions and 

appropriate policies to reduce the spread of the disease while still maintaining essential 

university services. Simulation models that address the population dynamics with the 

disease characteristics are useful for identification of preferred policies, improving 

understanding of consequences of policy decisions, and covering gaps in emergency 

response plans and public health policies. It is possible to simulate the disease spread 

for a university along with the policies that the university developed for their response 

to pandemic influenza (Araz et al., 2011). Since the university population is formed by 

several groups of people (faculty, staff, students living on campus, students living off 

campus, etc.), the model should include the whole university population in terms of 

several subpopulations based on their different roles, responsibilities and behaviours. 



Because the social distancing and isolation policies will force all individuals on campus 

to have different mixing rates with different individuals at various locations on and off 

campus, new subpopulations after social distancing policies are activated including 

evacuated students, students on campus after evacuation, evacuated faculty and staff, 

students in infirmary, overflow infirmary (if infirmary capacity is exceeded). The model 

divides the population into several compartments (susceptible, exposed, infected and 

removed), and based on the defined rates it moves individuals from one compartment to 

another.  

The disease dynamics start with a number of infectious individuals introduced 

into community and the rest of the population is assumed to be susceptible. Susceptible 

individuals have random mixing with infectious individuals and they become exposed 

to disease. Exposed individuals are typically assumed to be infectious and 

asymptomatic. After a certain time period (incubation period) these individuals start 

showing symptoms and continue being infectious. Finally, after the completion of the 

infection period, individuals either recover or die. The simulation is used to compare the 

spread of the disease with and without school closure. The difficult part of the exercise 

is to accurately predict the parameters of the model including the contact rate, infection 

rate, incubation period, mortality rates, etc. 

School closures for primary and secondary schools have the same goals, but 

generally do not have to be concerned about having students on campus after classes are 

suspended or moved to an online format, with the possible exception of boarding 

schools. On the other hand, there are some different challenges, including the impacts of 

alternative education delivery services and the impacts on both students and their 

parents (Araz et al., 2012 and Araz et al., 2013). In the US, children from low income 

families are eligible to receive free lunches and when schools are closed they may miss 



meals. Parents that must work outside the home are also forced to choose between going 

to work and staying at home to supervise their children. This can impact on the staff 

available in key roles such as the health service and transportation. Balancing the need 

for vital staff with the detrimental effect of social mixing within school communities is 

a key decision for governments. Modelling to address this challenge may begin with a 

strategic overview using an SD model but there is a real need to link models of disease 

spread with operational models describing the numbers of staff needed to maintain the 

necessary health and other services. These are typically DES models, or potentially 

hybrid models that link SD models of disease spread with the DES operational models. 

Decision 3: How to Manage the End of Lock Down 

As the impact of social distancing or lock down measures takes hold and the number of 

new cases falls, governments will need to make a decision about when and how to 

reduce restrictions in order to avoid the number of cases occurring during secondary 

epidemics again exceeding the capacity of ICU departments. Initial modelling suggests 

waiting until ICU admissions from COVID-19 dip below a threshold value to relax the 

restrictions, bringing them back into force when cases exceed a given value (Ferguson 

et al. 2020), and continuing until a vaccination has been developed. This has 

implications at country, regional and organisational levels and falls into the recovery 

phase. 

Decisions to be made include the threshold values for when to relax restrictions 

and when to re-impose them; which social distancing measures to maintain and which 

to relax during the interim periods; and how resources might be managed across 

countries and even worldwide as different regions employ these strategies at different 

times. Inputs to the model will include results of other modelling studies indicating the 

supply of resources (principally ICU beds with the trained staff needed to monitor 



critically ill patients and respiratory equipment) and the likely usage (discussed in the 

following section) as well as the impact of social distancing measures on the general 

health and well-being of the population. There could also be a link with the testing 

strategy (Decision 4), which may impact on how social isolation measures are relaxed.  

Different models could work well here to help answer subtly different questions. 

An SD model would provide a strategic view of the system, allowing competing 

demands to be taken into account, while an ABM would allow individual behaviour to 

be accounted for. Determining how best to manage the end of the social distancing 

measures is well-suited to so-called optimisation via simulation techniques (Fu, 2015); 

and, if data are sufficiently accurate and timely, using some of the more novel methods 

in real-time optimisation and digital twins to finely control the isolation measures could 

work well (Xu et al., 2016). Colbourn (2020) discusses the potential impacts of the 

timing of relaxing social distancing measures in Hubei, China. 

Decision 4: Delivery of Testing 

The delivery of testing could also fall into the following section where we discuss the 

management of resources. We put it here as testing, with accompanying isolation, is a 

valuable intervention against the spread of the virus. These decisions fall into the 

preparedness and responses phases and tend to be made at the national level, partly due 

to the connectivity between the population within a country. 

Testing is important to identify how widespread the infection is. For this 

purpose, the delivery of widespread testing and isolation strategies seems to have 

worked well in South Korea and Iceland, although to date little scientific literature 

exists to justify these claims. There are two clear roles for modelling here. 



• Demonstrate the effectiveness of mass testing and isolation strategies to 

determine how they compare with other prevention interventions such as those 

observed in other countries. For large-scale models, SD would work well but 

ABM is likely to prove most effective at generating a nuanced answer. 

• Determine demand and efficient procedures for rolling out such a large-scale 

programme nationwide, including supply chain questions. DES is typically used 

for modelling operations of this nature. 

If large-scale testing is considered infeasible, using ABM to determine how best to 

allocate a limited number of tests would be beneficial. Optimisation via simulation 

techniques can be used to find the optimal strategy. Modelling should also account for 

the imperfect sensitivity and specificity of tests. Initial reports from Wuhan suggest that 

the standard RT-PCR test only detected 59% of patients with COVID-19 after one test, 

with this rising following subsequent tests (Ai et al., 2020). More recent articles suggest 

that newly developed rapid tests (IgM-IgG combined antibody test) have better 

sensitivity and specificity (88.7% and 90.6% respectively) and a faster turnaround of 

results. Accounting for these potential inaccuracies in the simulation model is 

straightforward and examining how an inaccurate test affects disease transmission is a 

useful question.  

Testing has another role to play in terms of ensuring that key staff are able to 

return to work quickly and we discuss this further in Decision 7. Home or mobile 

testing kits can be used to reduce the burden of ambulance use and to avoid unnecessary 

hospital visits. This is particularly useful to avoid such incidents as taking ambulances 

out of service for decontamination after carrying potential cases to hospital for testing, 

where the decontamination can take up to eight hours. DES can be used to estimate the 

impact of home testing and testing staff on capacity for care. 



As the epidemic progresses, determining the percentage of the population who 

have been exposed to the virus will help considerably in determining future 

interventions. In this case, a different form of testing is needed - to determine who has 

been exposed to the virus rather than who is currently suffering from it. This benefit 

needs to be factored in when deciding the optimal strategy for testing delivery. 

Decision 5: Targeting Vaccination 

Like testing, the delivery of vaccinations raises many operational decisions and 

modelling studies exist for how vaccination programmes can be run efficiently (e.g. 

Özaltin et al. 2014, Lee et al. 2010). ABM seems most likely to work well at modelling 

these decisions (e.g. Özaltin et al. 2014, Lee et al. 2010), although SD could also be 

beneficial (e.g. Araz 2013, Pruyt & Hamarat 2010). In a new epidemic scenario, where 

vaccinations will become available during the epidemic and it will take some time to 

ramp up production, there is also a need to target the initial vaccinations at sectors of 

society where they will have the most impact. For COVID-19 this will form part of the 

recovery phase with decisions likely being made on a national (and possibly global) 

scale. The strategy for vaccination delivery affects the decision to manage the end of 

lock down (Decision 3). 

Decisions Regarding Resource Management 

Management of resources is vital in dealing with the implications of the COVID-19 

epidemic. Principally, we consider medical resources: hospital beds, respiratory 

equipment and staffing, but we also discuss the supply of wider resources such as food, 

pharmaceutical products, protective equipment, testing kits and vaccinations. 



Decision 6: Capacity of Inpatient Hospital Beds and Critical Care 

Decisions over the capacity of hospital beds both in critical care and on standard wards 

form part of the preparedness and response phases of the epidemic and are likely to be 

made on a large scale nationally and at an organisational level as the epidemic 

continues. 

High COVID-19 disease transmission rates and a relatively high percentage of 

patients requiring medical care together pose an unprecedented pressure on health 

service providers, as it presents a large demand for critical care resources that exceeds 

their capacity. Critical care resources including critical care beds and ventilators,  are 

limited within most hospitals in the UK, USA and Europe. Italy for example has been 

experiencing extreme stress on its intensive care system (Graseli et al 2020, Remuzzi & 

Remuzzi 2020), with patients being unable to access critical care beds and dying in 

hospital corridors while waiting for beds to be released. The same is starting to be 

experienced in the UK at the time of writing this article (March 2020), with critical care 

services expected to be overwhelmed, due to an upsurge of admissions in London 

hospitals.  In normal operating conditions, Intensive Care Units (ICU) are most efficient 

if operated at around 70-75% capacity (Tierney & Conroy, 2014) but this does not leave 

sufficient spare capacity to cater for the increased demands of COVID-19 patients 

requiring intensive care support. Hence, national healthcare services and individual 

hospitals are required to optimise the use of these resources and to create additional 

capacity in order to respond effectively to the unprecedented demand they are faced 

with. For this, Public Health England has established a COVID-19 Hospitalisation in 

England Surveillance System (CHESS) to record daily data on COVID-19 patients and 

critical care utilisation, which can be used to forecast and estimate the utilisation of 

health services (PHO, 2020). 



Simulation models can effectively support decisions taken at national 

(governments), inter organisational (local governments or municipalities) and 

organisational level (individual hospitals) to create capacity and manage scarce 

resources for the effective care of critically ill patients. What-if scenarios can be 

implemented to evaluate two types of decision policies on the ability of the healthcare 

system capacity to cope with expected demand. 

(1) Creating extra bed capacity, such as decisions to repurpose wards from other 

hospital units or private hospitals; conversions of non-hospital facilities such as 

hotels; cancellation of scheduled operations; earlier discharge of patients in the 

community.  

(2) Managing demand for services, through interventions such as reducing the 

height of the peak cases and pushing it further into the future; rationing care, 

triage protocols that aim to optimise the availability of intensive care beds 

(Pagel et al 2020). 

These models can play a crucial role in the preparedness phase to inform plans to 

respond to the pandemic and later in the response phase they can be further updated and 

calibrated to support the implementation of plans at shorter timescales.  

At hospital level, DES models can represent the stochastic arrival and flow of 

patients in ICU departments, based on expected infection rates and length of stay. 

Model outputs could provide estimates of the number of resources required and their 

utilisation levels, including ICU beds, ventilators, and personal protective equipment 

(PPE), the number of patients expected to die waiting for care, and the number of 

patients that can be treated. DES has been widely used to model ICU in hospitals (e.g. 

Bai, Fügener, Schoenfelder, Brunner, 2018) to consider primarily issues regarding ICU 

capacity problems (Ridge et al., 1998; Litvacket al., 2008; Griffiths et al. 2010; Zhu et 



al. 2012). SD has also been used to model acute patient flows, in workshops with 

healthcare stakeholders, to improve patients’ experience within the system (Lane and 

Husemann, 2008). 

Similarly, DES models can model the overall ICU resource requirements at 

national level, aggregating data from individual hospitals. In this area, the use of hybrid 

simulation that combine SD models for describing the progression of the epidemic and 

DES models for describing the workings of the hospital system can be invaluable. Such 

hybrid models have been used previously to model the management of chlamydia 

infections (Viana et al 2014). 

Decision 7: Staffing 

Staffing decisions tend to be made at the organisational level with only generic policy 

being made at the national level (e.g. the initiative in the UK to bring back retired health 

workers). These decisions are made in the preparedness and response phases of the 

epidemic but it could be argued that such modelling should have taken place during the 

mitigation phase to ensure that sufficient trained staff were available to cope with an 

emergency such as that we are experiencing now. In the UK, this capacity decision is 

made at the national level. 

Looking at a hospital level, DES modelling is particularly beneficial for 

identifying the best mix of staff to have within a workforce, taking account of staff 

sickness and differing resource needs of patients. DES has already been used to 

investigate staff planning in ICU (Giffiths et al 2005). More strategic models may be 

better described using SD to represent workforce availability at a national level, 

accounting for aspects such as stress in medical staff due to work overload, staff 

infection rates and time off work. 



A particular question that needs to be answered during an infectious disease 

epidemic is how to ensure that key staff such as frontline healthcare staff can return to 

work quickly following an illness. A testing strategy that can allow key staff to return to 

work sooner after an illness or a suspected case within their household, has the potential 

to increase the number of staff working significantly (see Decision 1). Similarly, when a 

vaccination becomes available, careful planning of vaccinations among staff could 

ensure a greater number remain healthy and able to work (see Decision 5). School 

closure (see Decision 2) may also affect the staff availability if they have to stay at 

home with their children. One way to mitigate this, as shown in the UK, is to provide 

special treatment for the children of key workers to allow them to go to school. 

Modelling could help in two ways here. First, to show the benefits of rapid testing or 

vaccination of staff and second to determine the most effective way of doing this. 

Operational models, using DES, would work well in both cases. 

Of potentially equal importance is maintaining the mental health of front line 

staff. While difficult to model explicitly, it can be accounted for when setting up 

potential operating strategies, e.g., ensuring that schedules allow for adequate breaks, 

provision of occupational health support. 

The epidemic has necessitated changes in working practices among the whole 

population and in particular in healthcare settings there has been an increase in the use 

of telemedicine, where patients are either triaged or consulted with over the phone 

and/or via video conferencing software. This will have an impact in the healthcare 

system and resource needs of providers in the aftermath of the pandemic, in the 

recovery phase and beyond. It may also change the way that demand arrives into the 

healthcare system. Operational modelling, typically DES, will help with a transition to a 

system in which more primary care is delivered remotely. 



Decision 8: Management of Resources within a Region 

As the COVID-19 pandemic spreads in different geographical regions, a coordination of 

sharing mobile medical resources such as staff and PPE may be required within 

countries.  Resources may be repurposed from areas that are past the peak to areas that 

are at an earlier phase in the epidemiological spread to support the response to changing 

demand in areas most affected by the virus. Operational planners need to know the best 

mechanism to adjust to jumps in both supply and demand of resources, and need 

techniques to optimise the distribution networks to take account of changes in demand. 

Such decisions will be made during the response and recovery phases of the epidemic, 

most likely at a national or regional level. There is also a need during a severe epidemic 

to manufacture more medical equipment. In the case of COVID-19 there is increased 

demand for PPE for health service workers; respiratory equipment; testing kits and hand 

gel. When a vaccination has successfully passed clinical trials there will also be a need 

for its rapid rollout globally. 

The food sector has seen changes in demand for different food items such as 

pasta, rice, etc. in the supply chain. Responding to this demand quickly and forecasting 

how it will vary as the epidemic progresses is a key modelling question. The famous 

beer game is a typical example of a SD model that shows how small variations in 

customer demand can increase exponentially upstream the supply chain (Sterman 1992). 

SD would be a suitable method to model the supply chain at global or national level to 

support decisions regarding order and production quantities at supplier and 

manufacturer level, as well as restrictions imposed to ensure customer demand for these 

basic supplies is effectively matched during the epidemic. 

Logistics modelling using DES or SD is also needed to satisfy the demand for 

deliveries among members of the public who are self-isolating. For example, Ivanov 



(2020) builds a DES model to predict the impact of epidemic outbreaks on global 

supply chains. Behavioural modelling (typically using an ABM framework) could also 

be beneficial in determining how best to limit buying within the community. The latter 

is particularly important in helping to reduce transmission by reducing the queues 

within shops and the need to visit several shops to obtain essentials. 

Decisions about Care 

There are many decisions that must be made about the care of individuals as a result of 

the COVID-19 epidemic. Here, we consider decisions that affect the care of a group of 

individuals or individual patients, using modelling to determine their impact on the 

system as a whole. For example, medical decisions on admissions and discharges of 

patients may change when health services are overwhelmed and determining the wider 

impact is important. We must also consider the impact on non-COVID-19 patients and 

how the epidemic may have implications on other health indicators such as mental 

health and wellbeing. 

Decision 9: Investigation of the Thresholds for Admission and Discharge of 

Patients 

We consider here admission and discharge of all patients, not just those with COVID-

19. Admission and discharge from hospital is usually calibrated against health service 

capacity taking account of patient needs and, under normal operations, the flow of 

admissions into a hospital is of the same order as the flow of discharges. The majority 

of hospitals will have plans in place to adapt to changes in demand and staff availability 

such as those observed during a pandemic, e.g. the Operational Pressures Escalation  

Levels (OPEL) Framework in the UK (NHS England, 2018). When under the most 

extreme pressures, hospitals will aim to discharge as many patients as possible (“clear 



the decks” strategies) and to cancel routine procedures. Changing thresholds for 

admission and discharge will likely have a negative impact on other patients and this 

must be balanced against the benefit of additional beds for COVID-19 patients. DES 

and SD are both beneficial here to provide operational and strategic viewpoints 

respectively.  

Principally when deciding on admission to ICU, but also relevant in other areas of the 

hospital is the idea of triaging. Pagel et al. (2020) discuss the difficulties of triaging for 

an ICU, showing that thought needs to be given both to length-of-stay and patient need 

when making decisions over who to admit in a situation where there are insufficient 

beds to meet demand. 

Decision 10: Minimising the Impact on Other Patients 

During the pandemic there will be a large number of services that care for vulnerable 

and unwell members of society that will come under considerable pressure.  Indeed a 

major concern within a pandemic is that overloaded health systems result in high 

mortality in patient cohorts both with and without the infectious disease. The latter is 

caused by difficulties accessing health services. Patients needing transport to clinics for 

regular life-critical treatment are likely to be amongst this vulnerable group. Patient 

transport providers and suppliers of regular medical services, e.g., dialysis, need to 

reorganise their services to protect patients from potential infection.  

DES has a long history of success in improving the efficiency of routine health 

service delivery in areas such as whole hospital flow (Günal and Pidd, 2010; Ben-

Tovim et al, 2016); blood and transplant supply chains (Osorio et al, 2017; Katsiliaki 

and Brailsford, 2007); and discharges from acute to the community (Penn et al, 2019).  



DES must now go further and support analyses of health system reconfiguration under 

pandemic conditions. 

An example of a group at risk are people suffering from acute kidney injury or 

chronic kidney disease. These patients require regular dialysis (a medical process to 

replace the function of the kidney in filtering toxins from the blood) and are at high risk 

of developing further complications from COVID-19. Renal services need to determine 

both how to manage COVID-19 negative, suspected, positive, and recovered patients 

and, as the pandemic progresses, to understand the consequences of rationing care. 

Modelling could investigate how best to separate patients to avoid transmission (either 

by time or by using different facilities) using DES, and how changing the frequency of 

dialysis will affect outcomes. 

Decision 11: Health & Well Being 

Health and well-being decisions can arise at national, regional and individual levels 

during the response and recovery phases; it would however be useful to put policies in 

place in the mitigation phase as communities prepare for the onset of the pandemic. 

Due to the lock-down measures taken in different geographical regions and 

countries and the psychological impact caused due to the health risks associated with 

COVID-19,  an imminent issue to be considered is the impact this could have on the 

mental health and well-being of members of the public and the repercussions on mental 

health at individual level. Lack of (or limited) physical exercise and lack of social 

contact can impact people’s mental health. In addition, high levels of anxiety and 

concerns about health, loss of income and jobs can in turn result in mental health 

problems and other societal problems leading to use of drugs and criminality. Other 

health and social care services, such as counselling and occupational therapy, 

psychology and psychiatry could play a crucial role in supporting individuals during the 



pandemic and the recovery phase. Such decisions can be overlooked during the 

pandemic as they are considered of a lower priority compared to saving the lives of 

those critically ill. However, if plans and measures to reduce these adverse effects are 

made during the mitigation phase, these could support public health quality and the take 

up of social distancing measures discussed above (Decision 2).  

SD can be used to model the public's mental health and to understand the impact 

that support measures and care resources can have at a community level. A small 

number of SD models have been used to evaluate public health policies for the 

management of mental health (Rutter, et al 2017; Langellier et al 2019), however there 

are opportunities to extend modelling efforts in this area, especially in community-

based SD.  HS models that combine SD with ABM to represent behavioural aspects 

related to social distancing would be also useful. 

The Call to Arms 

The challenges we face as a result of COVID-19 will evolve over the next months and 

possibly years, as will the modelling that is needed. The paper has outlined some 

preliminary ideas for decisions that can be supported by the simulation community. The 

quantitative approaches that we suggest have the potential to inform policy leaders 

needing to make scarce resources go further, identify weaknesses in the system and 

potentially save more lives.  The aim of this paper is to bring the community together 

and to create momentum, as well as capacity, to better deal with disasters such as 

COVID-19 by shaping, sharing and supporting good practice, good models and research 

findings. This is our call to arms. 

A number of opportunities will emerge for the modelling community to support 

the efforts made globally and locally to deal with the phases of the unfolding disaster 



brought on by the COVID-19. Optimising our approach and engagement at this critical 

time could mean that we are able to support more decisions and make the most of this 

specialist community. The following paragraphs outline some general issues that we 

need to address as a modelling community so that we can rise to the challenge of 

COVID-19 and other future disasters. 

Bringing the Community Together 

Bletchley Park in the UK was the home of the WW2 codebreakers made famous 

through the work of Alan Turing. It offered a physical setting for teams from diverse 

backgrounds to collaborate on wicked coding problems emerging from the war, such as 

cracking the Enigma. Whilst the majority of codebreakers were British, other allied 

forces were also present at Bletchley. What this shows is that good teams help to solve 

difficult problems. In this pandemic, the teams are, by necessity, virtual and, due to the 

global reach of COVID-19, international. This presents challenges and opportunities, 

with the principal challenge being the need for a lead within the community to bring it 

together to solve the right problems.    

Opportunities exist for learning from regions with more advanced epidemics. 

Data has been shared effectively during the COVID-19 pandemic but developing clear 

methodologies for fast updating of models within the community would be beneficial 

for any future crises. This could be helped significantly by ensuring that all of the 

modelling that gets carried out for government departments or for individual hospitals is 

made public and reproducible using standardised guidelines (e.g. STRESS guidelines 

for simulation; Monks et al. 2019) and Open Science practices (Taylor et al., 2017). 

Standardisation allows other experts to comment and refine the model assumptions or 

update them as new data become available. It will also enable models to easily be 

reused and avoid reinventing the wheel. Openness and transparency of the modelling is 



important and ideally one might hope that a model repository is created alongside a data 

repository. 

Managing Uncertainty in Models 

One related issue to transparency is providing an effective description of the uncertainty 

inherent in the results of simulation models, which is often not understood by those 

using them in their decision-making. Simulation models are often based on input data 

that are still very uncertain or missing and in the case of a fast-moving pandemic, inputs 

may be based only on confirmed cases (Roda et al., 2020). Similarly, uncertainties in 

how the disease spreads could mean that the logic used is not completely verified. To 

mitigate this for COVID-19 or responding to other time-critical situations, we would 

advise keeping prediction horizons short, updating parameters and model logic as more 

data comes in and rerunning models frequently. 

Modellers also have a responsibility to highlight the uncertainty in the outputs 

from simulations. This uncertainty is not always obvious, particularly in sophisticated 

models and can lead to misplaced confidence. Two kinds of uncertainty exist in 

simulation models: input uncertainty, which describes our lack of knowledge of the true 

parameters of models (Xiao et al. (2020); and intrinsic variation in processes, e.g. travel 

times and durations of treatment (Barton et al., 2013). In addition, as soon as the 

situation moves outside the tested domain of the model, the model outputs will become 

much less reliable.  Uncertainty should be recognised and discussed with all 

stakeholders, including clinicians, decision-makers and the public and, when there is a 

high level of uncertainty, focusing on conservative or robust solutions seems the best 

policy. Identifying important sources of input uncertainty of models will also help to 

prioritise data collection. 



Engaging effectively with policy makers and experts in other disciplines 

Research in health simulation has advocated stakeholder involvement in simulation 

studies (Eldabi et al., 2007; Fone et al., 2003). Dealing with COVID-19 will require 

several decision makers, with a different understanding of the situation and/or expertise 

and/or power to actively engage with the modelling process to have an input into the 

design of the model or just to engage with the model for the purpose of exploring 

scenarios. Involving stakeholders in the modelling process will also help to avoid the 

potential problem of having several competing models for a decision-maker to choose 

between. 

Two issues arise from this need to engage others. The first issue is that whilst 

facilitated simulation modelling in healthcare has received some attention (Kotiadis et 

al.  (2014); Robinson et al 2014; Tako and Kotiadis 2015; Richardson and Andersen, 

1995) this has not been addressed when using ABM or HS and we have less of an 

understanding of how to engage multiple people in their design. Furthermore, the 

engagement has been in face-to-face workshop environments and COVID-19 will 

require remote meetings that may not be suited to the current tools; for example 

developed for Participatory Simulation (PartiSim) (Tako and Kotiadis 2015).  New 

collaborative simulation practices that can support virtual meetings will need to be 

developed.  

Appropriate engagement will require a good communication of the problem 

situation and that could be done with the support of a problem structuring method 

(Mingers 2001) but there is still a need to translate them for a virtual environment and a 

need for training modellers in soft skills. The modelling and simulation community has 

generally approached modelling in the expert mode (favouring observation and data 

driven models) rather than the facilitated mode of interaction (favouring expert views in 



addition to data), which would necessitate some collaboration with facilitators and 

problem structurers or upskilling the modelling and simulation community. 

Rapid development of conceptual models 

The rapid onset of the COVID-19 pandemic has meant that models are needed quickly. 

This could be achieved through rapid modelling or by repurposing existing models, e.g., 

adjusting existing epidemiological models for other diseases to COVID-19. Conceptual 

modelling has been described in one of the key stages in the modelling process and 

should be the initial stage of any simulation study (Robinson 2008). This precoding 

stage, undertaken by a modeller, involves finding out about the problem situation, 

determining the objectives, inputs, outputs and model content. It is essentially the 

design stage of a simulation study.  

Currently this is the stage potentially leading to delays for COVID-19 as it involves the 

modeller liaising with busy stakeholders and accessing data and other relevant 

information that may be hard to obtain. Hence it might be more efficient if templates are 

created that can be used by stakeholders to detail essential information to speed up the 

commissioning of models and the potential to source more than one model for a 

particular problem situation. Doing this in advance could also help to highlight which 

data are crucial to the development of a particular model, enabling data collection 

protocols to be developed. This could also mean quicker repurposing of existing 

models. Kotiadis et al.  (2014) propose the use of facilitated modelling to support 

stakeholder involvement but this approach still requires modellers to lead the process. 

Considering the limited timelines required to support decisions during the 

response phase of the pandemic, modellers should consider designing the simplest 

possible models. Careful model abstraction during conceptual modelling can reduce 



model complexity to develop simple models that are suitable for the purpose they are 

built for (Robinson 2014). We appreciate that not all the decisions presented in this 

paper can be represented by simple models; however, where possible we call for 

modellers to consider simplifying their requirements and assumptions in their models, 

to enable rapid model development.  

Developing research and tools to support the Mitigation phase 

We considered the decisions that could be explored for COVID-19 by the modelling 

and simulation community in its four phases of mitigation; preparedness; response and 

recovery (Altay & Green, 2006; Amideo et al. 2019) but given the time at which we are 

writing the article, none of our decisions appear in the mitigation phase: this time has 

already passed. In places, we have identified decision areas where modelling could 

support the mitigation phase by considering developing models for stress testing of 

operational readiness. This is envisaged as model-based game playing by decision-

makers - war games (see Araz et al., 2012). It is also important for the models to be 

created during the mitigation phase because managers would not have much time to 

engage in model building activities when they are busy dealing with a crisis.  Ideally 

during the crisis, they can use these ready-made models to support their decision 

making. Even though managers would be busy, remote model building practices could 

be developed to enable their effective engagement with the models and the modelling 

team as discussed earlier. 

Immediate Priorities 

For the current pandemic, models will be needed for managing the exit from the lock-

downs globally without overloading hospitals with a second (hopefully much reduced) 

peak of infections. There is also a need to update models of ICUs and hospitals in 



general to take account of the new threat of corona viruses based on what we have seen 

here. Our health facilities may need to be resourced differently if this virus is likely to 

persist in the next few years. If the positive talk of a vaccine is true then determining 

who to vaccinate first and how to roll out a population-wide vaccination programme 

will also be vital; these decisions can definitely be supported by modelling and 

simulation. 

Concluding Remarks 

There are clearly a host of research questions raised by the COVID-19 pandemic and 

we do not assume that we have identified all of them. Funding is needed for modelling 

studies to help with improving and focusing the response to this deadly virus and those 

that will occur in the future. The number and scale of the decisions identified here 

suggests that there may not be sufficient modellers to answer all of them effectively and 

thoroughly, and it is important that we choose what we work on carefully and share 

findings and models quickly via our international networks in order to maximise the 

benefits of simulation modelling to reducing the impact of COVID-19 globally. 
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Figure 1: Summary of the key decisions and how they fit into the geographic and time-

based scales. As the key below the diagram shows, different colours describe the 

potential modelling techniques to be used. 

 

Table 1: Summary of the main modelling methodologies suggested for each of the 

decisions identified below. 
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