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Abstract—The approach of factor-graphs (FGs) is applied in
the context of power control and user pairing in Device-to-
Device (D2D) communications as an effective underlay concept in
wireless cellular networks. D2D communications can increase the
spectral efficiency of wireless cellular networks by establishing
a direct link between devices with limited help from the evolved
node base stations (eNBs). A well-designed user pairing and
power allocation scheme with low complexity can remarkably
improve the system’s performance. In this paper, a simple and
distributed FG based approach is utilized for power control and
user pairing implementation in an underlay cellular network
with D2D communications. A max-min criterion is proposed
to maximize the minimum rate of all active users in the
network, including the cellular and multiple D2D co-channel
links in the uplink direction. An associated message-passing
(MP) algorithm is presented to distributedly solve the resultant
NP-hard maximization problem, with a guaranteed convergence
compared to game theoretic and Q-learning based methods.
The complexity and convergence of the proposed method is
analyzed and numerical results confirm that the proposed scheme
outperforms alternative algorithms in terms of complexity, while
keeping the sum-rate of users nearly the same as centralized
counterpart methods.

Index Terms—Device-to-device (D2D) communications, factor-
graph (FG), Max-Min, message-passing.

I. INTRODUCTION

To meet the need for high data rate communications, new
technologies have been developed in the last decade. Among
them, device-to-device (D2D) communications is a short range
and low-power mechanism that enables two nearby devices
to connect with each other without the help of evolved
node base station (eNB). It plays an important role in the
realization of high data rate local services. D2D systems can be
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categorized into in-band (underlay and overlay) and out-band
(autonomous and controlled) [1]–[4]. Most of the research
is focused on the underlay in-band D2D communications,
which means that D2D devices and a cellular network use
the same frequency band. These systems do not need a new
infrastructure, separated security and control considerations
from the cellular network and have a high network resource
efficiency [1]. Therefore, in this paper we focus on a cellular
network empowered by underlay and in-band D2D communi-
cations with the main challenge of interference of D2D users
on cellular users as well as the interference on other D2D
pairs. There are two modes of resource allocation mechanisms
specified in the 3GPP standard [5]: (a) distributed resource
allocation from an allocated resource pool(s), and (b) eNB
related resource allocation mechanisms. Some of the solutions,
proposed in the literature to mitigate the interference issue,
impose a huge signaling overhead over the cellular network
[6]–[8]. Therefore, the recent research goes toward distributed
resource allocation of D2D communications to address the
problem whenever an associated Base Station (BS) is assumed
to have either a part of or no information about the network
[9], [10]. In these cases, the power allocation or joint resource
allocation and power control solutions are carried out at the
device level, like the studies recently performed in [9], [11]–
[19]. Alternatively, these allocations can be made in a hybrid
form, partly performed in the eNB in a centralized manner and
partly at device level [20]. Recent studies regarding D2D com-
munications are summarized in TABLE I. In some schemes of
this table, the entire network information has to be available
at the BS. This is impractical in dense networks because
in such cases the BSs should carry a huge signaling and
computational overhead while D2D communications occur. In
this paper, we focus on the distributed resource allocation
schemes which are at device level. Device discovery and
power allocation in two modes of “partial-in-network” and
“out-of-network” coverage are also recommended in LTE-
A standard [21], [22]. To apply this recommendation, some
distributed solutions have been established by using game-
theoretic and Q-learning based methods [9], [11]–[19], [23].
These studies usually benefit from the local information of
other users by utilizing an estimation or a cooperation among
them. Their assumptions lead to an imperfect knowledge of
network in realistic scenarios, which imposes a limitation on
the convergence to Nash equilibrium, a reduction in precision
of optimal solutions, and a delay in converging to equilibrium
points. Moreover, the mentioned approaches also maximize
the sum-rate of a cellular network and do not always result in
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TABLE I
EXISTING SCHEMES.

Ref. Achievement Model Algorithm Mechanism Drawback

[7] Power-channel allocation in D2D
network Markov Decision process Explorative Q-learning Centralized Huge overhead

[9], [18] Joint channel-power allocation Stackelberg game with pricing Stochastic learning algorithm Distributed Limitations to achieve Nash-equilibrium and the local
optimality of achieved NE

[11] Joint power control and mode
selection

A system throughput
maximization problem subject to

the QoS of users
A distributed partly iterative algorithm Distributed The potentially high interference caused to the surrounding

links is ignored.

[12] Power allocation – A non-cooperative power control game Distributed with the BS control Sharing channel information and prices among users proposed
a large signaling overhead

[13] Power and mode selection A Bayesian Network (BN) A probabilistic approach Distributed using local
information

Not seeking a global optimal solution for the limitation of
local information

[14] Resource allocation and power
control – A Q-learning based algorithm with a

exploitative cache content management policy Local distributed Different application

[15] Channel allocation –
a Distributed receiver-oriented channel

allocation algorithm followed by a sender-jump
blind channel rendezvous algorithm

Distributed Different application

[16] Power allocation A potential game Fully distributed iterative algorithm Distributed
Limitation of achieved NE and not applicable for dense
network for using broadcast sounding signal instead of

message passing or channel gain estimations.

[17] Power control
A mean-field game theoretic

framework with the
two-dimensional dynamics

A novel energy and interference aware power
control policy based on the Lax-Friedrichs

scheme and the Lagrange relaxation
Distributed There is a need to store historical measured information of

interference of dynamics as well as energy availability

[19] Channel and power allocation
A non-convex optimization

problem and a Stackelberg game
with pricing

A centralized convex solution and a
decentralized BS-coordinated solution

Centralized and a BS-supervised
distributed scheme

Unrealistic information availability in BS assumptions and
challenge of determining optimal pricing amount

[20]

Hybrid centralized-distributed
resource (power-channel)

allocation for D2D underlay
networks

Partly a weighted matching
problem and partly a potential

game

Hungarian algorithm for matching part and
Q-learning for the power control game Hybrid (centralized-distributed) Overhead in terms of signaling and computation at the BS

[23] Bandwidth allocation to D2D
users A non-cooperative game A repeated bandwidth allocation algorithm with

incomplete channel state information Centralized Ignorance of inter-cell interference and subchannel allocation

a fair rate allocation to all devices.
Among distributed schemes, message-passing (MP) algo-

rithms are recognized as powerful tools that can efficiently
adapt to many problems in communications theory such as
coding, e.g., Sparse Code Multiple Access (SCMA), resource
allocation, localization [24]–[30] and recently, channel esti-
mation of massive MIMO networks to infer the posterior
probabilities of model parameter statistics in the context of
optimal Bayesian Kalman filter and Bayesian Learning [31],
[32]. In most of the mentioned works, the MP algorithm is
used to overcome the computational challenges of the high-
dimensional integrals in computing the marginal distributions
in order to calculate the posterior joint PDF of unknown
parameters. Thus, the factor-graph (FG) based sum-product
algorithm, known as Belief Propagation, is used to infer the
posteriors of the target parameters.

In contrast, applying MP algorithms in power allocation
problems provides a reduced-complexity solution for an NP-
hard optimization problem without the need for a central
decision maker. Actually, calculation of the marignal prob-
abilities is not the aim of utilizing MP algorithms in a power
allocation problem. Specifically, by utilizing an FG model for
MP algorithms, the network-wide optimization problems are
decomposed into multiple optimization problems performed
at each device. Furthermore, the passing messages among
devices satisfies the optimization constraints via introducing
additional checks in the factor nodes. The MP methods were
applied for the D2D resource allocation, under different cir-
cumstances like multi-carrier multi-format systems [28], relay-
aided cellular networks [29], and joint user-association and
resource allocation [30].

In [28] two novel distributed resource allocation schemes
are proposed based on MP methods for the uplink of a cellular
system. Cooperation between users and eNB leads to a better
network performance than that of the centralized schemes.
Also, a low complexity distributed resource allocation is
proposed in [29] for relay-assisted D2D communications via

maximizing the network sum-rate by converting the problem
to a max-sum MP problem over a graphical model.

With the aim of maximizing the network sum-rate, a novel
belief propagation algorithm is proposed in [30] to jointly
optimize user association, sub-channel assignment, and power
allocation to address the inter-cell interference coordination
problem in a heterogeneous cellular network. In general, there
is no guarantee for the convergence of the MP algorithms in
FGs with cycles (e.g., [28]), and even those with the converged
solutions do not guarantee to achieve the global optimality of
the joint user association and sub-channel selection problem
(e.g., [30]).

To address the shortcomings of centralized and other dis-
tributed schemes, we devise a distributed joint power alloca-
tion and pairing selection scheme by employing a max-min
MP algorithm. Hence, by limiting the role of eNB in power
control and pairing of D2D pairs, the NP-hard problem of
pairing the D2D users is broken to a novel distributed method
with a tractable complexity. Additionally, the max-min MP
algorithm preserves the advantages of centralized methods as
well as the fairness in power allocation. In principle, there is
a compromise between the maximization of sum-rate and the
fairness. It means that the system’s fairness will be degraded
by optimizing the sum-rate. In contrast, it will reach the
maximum value if the sum-rate diminishes. In general, a fair
resource allocation can be considered with optimizing the
sum-rate by allocation of adequate resources to those users
with better channel conditions or on the other hand, such
an allocation that does not cause to starve users with weak
channel conditions. In this paper, we propose a solution to
maximize the minimum rate of all active D2D pairs and the
cellular links1. Applying the proposed MP algorithm leads to a
relatively fair allocation of resources among the users which is
confirmed by some numerical results. By approximating the

1Although we follow the LTE-A standard in this paper, the proposed
approach can be applied to 5G networks with next generation NodeBs (gNBs)
in general.
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Fig. 1. System model.

constraints of the main problem and the log transformation
of variables [33], we convert the problem into a convex
optimization one. Thus, a distributed low complexity solution
is proposed to solve the problem. Furthermore, we analyze
the convergence and complexity of the proposed method in
the presumed system model.

The organization of this paper is as follows. In Section
II, system model and problem formulation are described in
details. In Section III, an FG based distributed MP solution for
power control and the best pair selection of D2D are presented.
Variable nodes, factor nodes and structured messages are
described in this part as well. Complexity and convergence
analysis of the proposed method are also discussed in this
section. Section IV is dedicated to the simulation results, and
finally Section V concludes the paper.

Throughout the paper, max-min and minimum rate maxi-
mization, as well as max-sum and sum-rate maximization, are
used interchangeably. D, B, and C are the abbreviations stand-
ing for the D2D, Base-station, and Cellular, respectively, and
R and T are the abbreviations for Receiver and Transmitter in
the superscripts and subscripts of the variables. Some variables
and functions have one of these abbreviations to discriminate
their types. Scalar random variables and vectors are illustrated
by upper-case italic letters, e.g., X and bold-faced italic letters,
e.g., x, respectively. Furthermore, the realization of random
variables and function definitions are indicated by lower-case
italic letters, e.g., x. The i-th element of vector x is described
as xi. In almost all equations, a small letter subscript is used
as the distinguishing index, e.g., Xk and xk(.). Arrows in the
subscript of some variables present the direction of exchanged
messages xi→j and |X| stands for the number of possible
values of variable X . Furthermore, max

x1,...,xN∼xj
f(x1, ..., xN )

denotes maximization of a function over all xj’s, 1 ≤ j ≤ N ,
except the variable(s) after ∼, i.e., xj . Also, if the argument
variables are known from the context, they are omitted.

II. PRELIMINARIES

A. System Model

We consider a D2D communication network, working un-
derlay of a cellular wireless network where multiple cellular

users can be active in multiple orthogonal channels with the
multiple interferer D2D pairs in the same channel. However,
in order to avoid the complexity of a big network, we only
investigate a single cell of a wireless network including a
cellular link as well as multiple D2D co-channel links in uplink
direction. However, each of these cellular users forms its own
cycle-free FG and works in a parallel form along with other
cellular users. Therefore, we have a forest2 of FGs in which
they work independently from each other. Thus, we have only
selected and solved one of these allocation problems that might
be repeated for all other cellular users and other cells as well.
This could be verified with orthogonality of cellular users in
adjacent cells or imposing a maximum transmitting power in
each cellular channel of the adjacent cells. Each D2D link
comprises a receiver and multiple potential transmitters that
contain the desired content of that receiver. The proposed
model is depicted in Fig. 1 in which transmitters are assumed
to be uniformly distributed in a circle with the center of the
aforementioned receiver. We also suppose that the transmitters
of each D2D link and their contents are different from each
other. Therefore, the devices across different D2D links do
not need to communicate. A distance-based power allocation
is considered in this model which means that a minimum
predefined distance is presumed between the receivers of all
co-channel D2D links and the cellular one. Therefore, the
assumption of no communication between co-channel D2D
links is reasonable. In this paper, our goal is to find the best
transmitter for each receiver in every D2D link, which we
call “pairing”. In addition, the optimal power levels of active
transmitters are calculated by applying a fairness criterion. The
list of mathematical notations used in this paper is given in
Table II.

B. Problem Formulation

The proposed optimization problem, with the given Quality
of Service (QoS) and the power constraints of D2D and
cellular links, is formulated in (1). The SINR of D2D links
and the cellular link are indicated by γDjk and γC , respectively.
The minimum data rate of all active cellular and D2D links in
the network is defined by R0 which depends on the power
levels of cellular and D2D transmitters. The rate of each
active link is constrained to be greater than R0 through (1b)
and (1c). Moreover, the QoS of active links are considered
through (1d) and (1e) inequalities. Additionally, the limitations
of scheduling options for power levels are determined through

2Cycle-free connected graph is called “tree” and multiple “trees” is called
“forest” in the graph theory.
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TABLE II
NOTATION SUMMARY.

N Number of all potential D2D receivers that are co-channel with the specific cellular user
j Index of a potential D2D receiver
Lj Number of all potential D2D transmitters around the specific D2D receiver j
kj Index of a potential D2D transmitter k around the receiver j

DR = {j|j = 1, 2, ..., N} Set of all potential D2D receivers that are co-channel with the specific cellular user
DTj = {kj |kj = 1, 2, ..., Lj} Set of all potential D2D transmitters around the specific D2D receiver j

γC SINR of cellular link
γDjk SINR of a D2D link between D2D transmitter kj to the D2D receiver j
R0 Minimum data rate of all active cellular and D2D links in the network

PC , PDjk Power of cellular link (uplink) and D2D transmitter kj
hB,C , dB,C Small scale fading coef. and distance between eNB and cellular user
hjk,j , djk,j Small scale fading coef. and distance between D2D transmitter kj and D2D receiver j

α Path loss exponent
ρ Binary power allocation vector
ρ′j Binary pairing vector at D2D receiver j

γCmin, γDmin Minimum acceptable SINR of cellular and D2D links
PCmax, PDmax Maximum power constraints of cellular and D2D users

N0 Noise power
`max Maximum number of iterations

µ
(`)

gjk→PDjk
Output messages of FG’s Layer4 toward Layer3 (Fig. 2) at `-th iteration sent by D2D TDUs

µ
(`)

fj→PC Output messages of FG’s Layer2 toward Layer1 (Fig. 2) at `-th iteration sent by D2D RDUs

µ
(`)

fj→PDjk
Output messages of FG’s Layer2 toward Layer3 (Fig. 2) at `-th iteration sent by D2D RDUs

(1f) and (1g).

maximize
PC ,PDjk

R0, (1a)

subject to log2(1 + γC) ≥ R0, (1b)

log2(1 + γDjk) ≥ R0, ∀j ∈ DR, ∀k ∈ DT ,
(1c)

R0 ≥ log2(1 + γCmin), (1d)

R0 ≥ log2(1 + γDmin), (1e)

0 ≤ PC ≤ PCmax, (1f)

0 ≤ PDjk ≤ PDmax, ∀j ∈ DR, ∀k ∈ DT ,
(1g)

where γC and γDjk are formulated in (2) and (3), respectively
[29].

γC(PC , PDjk) =
PCh2B,Cd

−α
B,C

N∑
j=1

ρj
Lj∑
k=1

ρ′jkP
D
jkh

2
jk,Cd

−α
jk,C +N0

, (2)

γDjk(P
D
jk, P

C) =
PDjkh

2
jk,jd

−α
jk,j

PCh2
B,jd

−α
B,j+

N∑
j′=1
j′ 6=j

ρj′

Lj∑
k′=1
k′ 6=k

ρ′j′k′P
D
j′k′h

2
j′k′,jd

−α
j′k′,j+N0

, (3)

where γDjk and γC depend on the power of incoming desired
signal, interference power of interfering faded signals, and
some noise term. The active D2D links and pairing status
of D2D transmitters and receivers are indicated by the binary

vectors ρ and ρ
′

j . There are two main groups of variables in the
max-min problem (1); one of them is pointed out clearly in (1f)
and (1g) as cellular and D2D transmitter powers, respectively.
The other group of variables is composed of binary power
allocation vector –denoted by ρ– and also binary pairing
vector –denoted by ρ′j– at D2D receiver j which are implicitly
mentioned in (1). The presence of these binary vectors as
objective parameters, set the problem in the category of NP-
hard problems. However, if the binary power allocation and
pairing vectors (ρ and ρ

′

j , respectively) are assigned with
predefined values, then (1) turns into a non-binary optimization
problem. Thus, in this paper a pre-evaluation is performed
on the binary vectors and their effect is implicitly expressed
in the power variables as PDjk = 0 if ρ′jk = 0 and for all
kj ∈ DTj , PDjk = 0 if ρj = 0.

The other challenge of (1) would be the challenge of non-
convex constraints (1b) and (1c). However, if the two most
likely conditions of γC � 1 and γDjk � 1 are considered,
the non-convex constraints can be changed to (4a) and (4b),
respectively:

log2(γ
C) ≥ R0, (4a)

log2(γ
D
jk) ≥ R0. (4b)

The reason is that the inequalities (1b) and (1c) are changed to
the convex functions with an exponential power transformation
by using (4a) and (4b) as proposed in [33]. We use the barrier
method to solve the problem (1) as performed in [34]. In each
step of this algorithm, the Newton’s method is used as well.

The above mentioned solution has three disadvantages:
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(i) the constraints (1b) and (1c) are non-convex, (ii) the
complexity is high, and (iii) it is central (not distributed). In the
next section, a low complexity distributed solution is proposed
for (1) based on FGs and message passing algorithms without
the need for a central decision making mechanism.

III. FACTOR-GRAPH BASED SOLUTION
To develop a distributed algorithm, it is necessary to dis-

criminate among a set of operations. These operations might
be network agents, like D2D receivers and transmitters, and
the action of cellular users. In order to reduce the complexity,
one way is to break down the objective function and the
constraints into a set of independent functions to solve the
partial problems associated with these functions. Then, the
partial solutions are exchanged to achieve the global solution.
For this purpose, a graphical representation of functions and
exchanged messages helps to visualize the general model of
the network and to implement the MP algorithm [35]. Among
graphical models, FGs work efficiently for decomposition of
complex problems [24], [36]. An FG is basically a bipartite
graph composed of variable nodes and factor nodes. The
variable nodes represent the variables to be determined and the
factor nodes represent the local functions serving as constraints
and local decomposition of the main objective function. The
connecting edges between these nodes represent a relationship
between the variable nodes and their associated constraints of
the optimization problem. An FG model is developed here to
represent the proposed MP algorithm which contains relations
between D2D receivers, transmitters and cellular users. In this
model, QoS constraints on both cellular user and D2D pairs
and the power allocation of each active user are considered.

Variable Nodes: Variable nodes are defined as {PDjk, PC}
in which PDjk indicates the power level of the k-th D2D
transmitter linked to the receiver j. PDjk should be determined
with aiming to maximize the rate of each D2D pair, regarding
(1c) and not to violate (1b) constraints as well. Furthermore,
PC is the power level of co-channel cellular user to the eNB
link that should be tracked by D2D receivers, for being able
to adjust their transmit power level, see Layer-1 and Layer-3
in Fig. 2.

Factor Nodes: Considering (1), it is clear that (1a) implies a
comparison between the rates of each active user to maximize
the minimum level of each active user’s rate. Therefore, factor
nodes of the proposed FG are defined to coordinate the
constraints of (1) and also to determine the rate of each user
in the network. There are two types of factor nodes in this FG:
(i) D2D transmitter factor nodes and (ii) D2D receiver factor
nodes, denoted by gjk and fj , respectively. D2D transmitter
factor nodes gjk are responsible for QoS of D2D pairs and
they coordinate (1e) in a D2D transmitter’s terminal. However,
factor nodes fj of D2D receivers are responsible for pairing
constraints and QoS of cellular users (1d) in a D2D receiver’s
terminal. To meet (1c), gjk nodes are defined as follows:

gjk(P
D
jk) =


log2(1 + γ′Djk ) if γ′Djk ≥ γDmin, PDjk 6= 0,

−∞ if γ′Djk < γDmin, P
D
jk 6= 0,

0 if PDjk = 0,
(5)

where γ′Djk is a simplified copy of SINR in D2D links (3), as
follows:

γ′Djk (P
D
jk) =

PDjkh
2
jk,jd

−α
jk,j

PCmaxh
2
B,jd

−α
B,j+

N∑
j′=1
j′ 6=j

ρj′

Lj∑
k′=1

ρ′j′k′P
D
maxh

2
j′k′,jd

−α
j′k′,j+N0

. (6)

In which PC and PDj′k′ are replaced with PCmax and PDmax,
respectively. Similarly, to meet (1b), fj nodes are defined by:

fj(P
C , PDjk) =

 log2(1 + γ′C) if
Lj∑
k′=1

ρ′jk′ ≤ 1, γ′C ≥ γCmin,

−∞ otherwise,
(7)

where γ′C is the SINR of cellular link approximated by the
j-th D2D receiver as:

γ′C(PC , PDjk) =
PCh2

B,Cd
−α
B,C

ρj

Lj∑
k=1

ρ′jkPDjkh
2
jk,Cd

−α
jk,C+

N∑
j′=1
j′ 6=j

ρj′

Lj∑
k=1

ρ′j′kPDmaxh
2
j′k,Cd

−α
j′k,C+N0

.

(8)
By comparing (8) and (2), it is obvious that each D2D
receiver assumes the worst case of network in which all
other interfering users transmit the maximum allowed power.
Moreover, the other assumptions could be derived from (5)–
(8). First, each D2D receiver adjusts its transmitter’s pairing
power level through the sent massages according to Fig. 2.
Next, each D2D receiver would be paired with only one
transmitter in an instance, where it does not have access to the
other power allocation status of D2D links. Finally, we have
to clarify the relations between the proposed FG and problem
(1). In our problem, two consequent operations are minimum
and maximum that operate on the rates of all active links in the
network. Therefore, there is a comparison between D2D rates
and the rates of cellular users to choose the minimum one,
and accordingly this value should be maximized. Hence, we
need to compare the calculated rates from the gjk nodes with
the cellular rate calculated by the fj nodes. In Fig. 2, these
two types of factor nodes are shown in Layer-2 and Layer-4,
respectively.

The Proposed MP Algorithm: A serial MP procedure
exchanges the messages among the factor nodes and the
variable nodes. It starts sending the messages from lower
layer nodes towards upper layer ones and then returns the
messages in backward direction. These messages are depicted
by arrows in Fig. 2. Two types of messages are sent from
factor nodes to variable nodes, depicted by solid arrows,
and from variable nodes to factor nodes, depicted by dashed
arrows. First, exchanging messages are initialized from Layer-
3 variable nodes towards Layer-4 and Layer-2 factor nodes.
Next, the messages are sent out from Layer-4 factor nodes
towards Layer-1 variable node. In the next step, the messages
return in the opposite direction. The exchange of messages
in the FG is not only a mathematical concept, but also there
is a physical representation of message exchanging between
D2D receivers and transmitters as well as among cellular user
and receivers as a power assignment mechanism. The power
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Fig. 2. In the proposed FG model, an RDU (a TDU) refers to Receiving (Transmitting) D2D User equipment. Two types of messages called factor-to-variable
and variable-to-factor messages are shown with solid and dashed lines, respectively.

allocation usually affects each of network protocol stacks,
including physical, MAC and network layer. However, we
consider power assignment in the context of its effect on
the interference of co-channel cellular and D2D users and
this affects the MAC layer’s functionality. Clearly, the MP
is an iterative algorithm and the passing messages would
converge to the final optimal solution after either termination
of a predefined number `max of iterations or an insignificant
change in the achieved answers in successive iterations. Let
K be the number of quantized power levels associated to the
power of cellular link and D2D links. Initial values of all the
messages are zero. The factor-to-variable node messages are
updated as follows:

µ
(`)

gjk→PDjk
= max
PDj1,...,P

D
jL∼PDjk

(
gDjk(P

D
jk) +

N∑
j′=1
j′ 6=j

Lj∑
k′=1
k′ 6=k

µ
(`−1)
PD
j′k′→gjk

)
,

(9)

µ
(`)

fj→PC = max
PDj1,...,P

D
jL∼Pc

(
min

(
fj(P

C , PDj1 , ..., P
D
jL),

Lj∑
k=1

µ
(`−1)
gjk→PDjk

))
. (10)

Then, the calculated messages sent from Layer-1 variable node
towards Layer-2 factor nodes are as follows:

µ
(`)

PC→fj = max
j′∈{1,...,N}∼j

(
µ

(`−1)
fj′→PC

)
, (11)

and we finally have:

µ
(`)

fj→PDjk
= max
PDj1,...,P

D
jL,P

C∼PDjk

(
min

(
fj(P

C , PDj1 , ..., P
D
jL),

µ
(`)

PC→fj +

Lj∑
k′=1
k′ 6=k

µ
(`−1)
gjk′→PDjk′

))
.

(12)

By repeating (9)–(12), the value of R0, which is equal to R0j ,
will be calculated as:

R0 = max
0,...,PDmax

(
µ

(`max)

fj→PDjk

)
. (13)

By consideration of (9)–(13), it is understood that the MP
algorithm breaks down the feasible solution area into smaller
parts to achieve R0. In each step, it compares the result of
each part with the others to achieve the optimal point of
(1a) in terms of all discrete values of variables (PDjk and
PC). Two consequent operations in Eq. (10) lead the result to
maximize the minimum rates of active users. The second term

of (10), i.e, the relation
Lj∑
k=1

µ
(`−1)
gjk→PDjk

, refers to the pairing

constraint which forces the receivers for being paired with one
single transmitter in each receiver. In addition, a comparison is
made among N messages in Eq. (11) to choose the maximum
value of the single rate of the cellular user. These messages
are calculated by N D2D receivers and the messages out
from Layer-2 factor nodes towards Layer-3 variable nodes
generated by Eq. (12). A simple pseudo-code of the proposed
MP algorithm is presented in Algorithm 1.

A. Sub-Optimality Analysis of the Approximated Solution

In this part, the sub-optimal solution of the proposed MP
algorithm is analyzed with simplified assumptions.

Proposition 1: The difference between an exact rate value
RC for a cellular user and its approximated value R′C solution
with the connection reduction, in order to avoid cycles in its
graphical model, is as follows:

RC −R′C ≤ log2

(
1 +

(N − 1)(K − 1)

N +K − 1

)
. (14)

proof : See Appendix A.
The upper bound of the difference between R′C and RC

depends on the number of D2D pairs N and the number of
levels K by which the users’ power is quantized, instead of a
continuous power selection. Obviously, by increasing N and
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Algorithm 1 Proposed MP-Algorithm
Input : N , Lj , γCmin, γDmin, PCmax, PDmax, `max

Output : R0

B Initialization :
µ

(0)

PDjk→fj
= 0, µ(0)

PDjk→gjk
= 0, µ(0)

PC→gjk = 0, ` = 1

1: while (` < `max) do
2: for (j = 1 : N ) do
3: for (k = 1 : Lj)

/* MP from Layer 4 to Layer 3 */ do
4: Calculate Eq. (9)

/* TDU factor nodes gjk check D2D pairs’ QoS
Coordinate (1e) in TDUs’ terminal as Eq. (5),
MP from Layer 3 to Layer 2 */

5: µ
(`)

PD
jk
→fj

= µ
(`)

gjk→PD
jk

/* MP from Layer 2 to Layer 1 */
6: Calculate Eq. (10)

/* RDU factor nodes fj check pairing constraints,
Coordinate (1d) in RDU’s terminal as Eq. (7) */

7: end for
8: end for
9: for (j = 1 : N )

/* MP from Layer 1 to Layer 2 */ do
10: µ

(`)

PC→fj
= max

j′∈{1,...,N}∼j

(
µ

(`−1)

fj′→PC

)
11: for (k = 1 : Lj)

/* MP from Layer 2 to Layer 3,
Coordinate (1c) */ do

12: Calculate Eq. (12)
13: end for

/* MP from Layer 2 to Layer 1,
Coordinate (1b) */

14: Calculate Eq. (10)
15: end for
16: `← `+ 1
17: end while
18: for (j = 1 : N ) do
19: µ

(`max)

PD
jk
→gjk

= µ
(`max)

fj→PD
jk

/* Coordinate (1a) */
20: R0j = max

0,...,PDmax

(
µ

(`max)

fj→PD
jk

)
21: R0 = R0j

22: end for

K, the approximation of RC degrades. However, we work
around the limited values of N and K (N = 4 and K = 8
at most), which forces a limited error to the calculations.
Furthermore, the approximation rate converges to the true
value of RC for N = 1 due to vanishing the interference
of other D2D pairs and the existence of only one cellular
user and one D2D receiver in the FG model. Besides, for a
small number of power levels, e.g., a binary power level, the
approximation converges to a closer answer to the true value.

The difference between true and the MP approximated
values of D2D rates, denoted respectively by RDjk and R

′D
jk , is

similarly given by:

RDjk −R′Djk ≤ log2

(
1 +

(N − 1)(K − 1)

N +K − 1

)
. (15)

The inequality (15) presents that the difference between RDjk
and R′Djk also depends on the number of power levels (schedul-
ing options) K and N . From (15) it can be easily seen that this
difference increases monotonically, and converges to a limited
value (log2(1 + (4−1)(8−1)

4+8−1 ) ≈ 1.54 bits/s/Hz) for K = 8
and N = 4.

The approximation of each user’s rate in the max-min
problem leads to a sub-optimal answer for R0 and hence
there is a difference from the optimal point. In this case, the
discrepancy in R0 is resulted from each user’s approximation
error of the rate. However, the approximation error in the max-
sum problem would be accumulated and this is the main reason
for the difference between analytical and simulation results,
which will be seen in Section IV in more details.

B. Analysis of the Converged Sum-Rate

According to a large number of simulation results, we found
that the converged point of the proposed MP algorithm can
achieve better fairness results compared to the other objective
functions like max-sum. A heuristic reason for that is the fact
that the rate of each active user should be at least R0 in the
proposed MP algorithm. However, the sum-rate of the achieved
point is less than the maximum of sum-rate among the possible
solutions. To compare these cases, we have developed the
maximization of sum-rate by using the max-sum MP algorithm
[37], [38]. Thus, an FG model is applied to develop the max-
sum MP algorithm similar to the one applied for the max-min
MP algorithm in Fig. 2. For the max-sum case, the former
Eqs. (10) and (12) become:

µ
(`)

fj→PC = max
PDj1,...,P

D
jL

( N∑
j=1

fj(P
C , PDj1 , ..., P

D
jL),

Lj∑
k=1

µ
(`−1)
gjk→PDjk

)
,

(16)

µ
(`)

fj→PDjk
= max
PDj1,...,P

D
jL,P

C∼PDjk

(
fj(P

C , PDj1 , ..., P
D
jL)+

µ
(`)

PC→fj +

Lj∑
k′=1
k′ 6=k

µ
(`−1)
gjk′→PDjk′

)
.

(17)

Finally, the network sum-rate, denoted by Rt, is calculated by
max

0,...,PDmax

(
µ

(`max)

fj→PDjk

)
.

C. Complexity

In order to assess the complexity of the proposed method,
assume that the number of neighboring factor nodes of Layer-
3 variable nodes is two (see Fig. 2) and denote the average
number of neighboring variable nodes of Layer-2 factor nodes
by L + 1. Moreover, the average number of the scheduling
options of each variable node is denoted by K. By applying
Eqs. (9)–(12), the complexity Layer-4 and Layer-2 factor
nodes can be calculated as O(NLK) and O(N2L2K2), re-
spectively. Therefore, the total complexity of the proposed MP
algorithm is in the order of O(N2L2K2). On the contrary, the
complexity of the exhaustive search for solving the suggested
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problem is O(N4LN log(NL)), which is much more than that
of the proposed method. The cost that is paid for this huge
complexity reduction, is that the proposed method converges to
a near optimal solution. The difference between the optimal
solution with the achieved point arises from the simplified
assumptions assumed in an FG to avoid cycles and extra
exchanging messages among the users.
D. Convergence

Definition 1 (Coercive function) [39]: A function g : Rn →
R is termed coercive if, for every sequence of input variables
{xk} ⊂ Rn with ‖xk‖ → ∞, then g(xk) → ∞. If g(.) is a
coercive and continuous function, then a global minimum of
g(.) must exist [39].

Definition 2 (Pairwise separable convex program) [39]: An
optimization problem is called pairwise separable convex
program if its form is as follows:

min F (x) =
∑
i∈V

fi(xi) +
∑
i,j∈E

fij(xi, xj),

subject to x ∈ Rn,

where fi(.) factors are strictly convex, coercive, continuous,
and fij(., .) factors are convex and twice continuously differ-
entiable. The objective function F (.) is also strictly convex
and coercive. Moreover, variables and edges of the associated
FG of the problem are denoted by V and E, respectively.

In order to use the results of [39] in the analysis of the
convergence of the proposed MP algorithm, we modify our
optimization problem to an unconstrained convex problem
wherein the objective function is shown to be pairwise sepa-
rable and the component functions are individually convex.

Proposition 2: There exists a modified unconstrained convex
optimization problem associated to the optimization problem
(1) through the Karush-Kuhn-Tucker (KKT) conditions.

Proof : See Appendix B.
Proposition 3: There exists a pairwise separable convex

program for the proposed max-min optimization problem by
which the updated equations of the max-min MP algorithm
correspond to a convex problem converges to a unique optimal
solution.
Proof : See Appendix C.

E. Communication overhead

In order to calculate the communication overhead, we
calculate the vector size of messages passing from the lower
layers of factor nodes to the upper layers of factor nodes,
which is a physical message passing from D2D transmitter
terminals to D2D receiver terminals. The vector size of each
message passing from a TDU to an associated RDU linearly
depends on K (the number of possible power levels) in each
link. To calculate the total size of messages received by each
RDU, we have L D2D transmitters for each of the N D2D
receivers. Thus, the vector size of passing messages in floating
numbers (to store a floating-point number, 4-bytes (32 bits)
memory will be allocated) would be |L × K| in the most
dense case of our problem. It means that the overhead will be
(4∗8∗32 bits = 0.1KBs) in forward and backward directions
when all the rates are optimized.

IV. SIMULATION RESULTS AND DISCUSSION

For numerical analysis, we simulate a single cell with radius
500 m, one cellular user and N = 1, 2, 3, 4 D2D pairs which
are allowed to share the resources of the cellular user, simulta-
neously. We also consider L = 2, 3, 4 transmitters of D2D user
(TDUs) for each receiver of D2D user (RDU) which could be
paired by RDU. The maximum distance between the paired
users is assumed to be 200 m, the power of cellular (uplink)
and D2D transmitters are assumed to be 0 < PC < Pmax,
0 < PDjk < Pmax, respectively. In the following simulations,
Pmax is assumed 23 dBm and the number of power levels
K associated to PDjk is set to 8. Moreover, the power of
inactive D2D transmitters PDjk is set to 0. Small scale fading
components of cellular–eNB link and D2D links is assumed to
be Rayleigh faded with the path loss exponent α = 3 for all the
links. At the beginning of each signal block or few blocks that
corresponds to the qausi-static fading channel, the proposed
MP algorithm runs on every node and it remains resistant to
the link state changes. The MP convergence iteration limit
is set to `max = 10, while the convergence depends on the
message initialization form. Since the flood initialization starts
from all variables in Layer-4 simultaneously, the convergence
would occur after one complete set of messages passed from
Layer-4 to Layer-1 and returned to Layer-4. Each point in
the numerical experiments was randomly repeated over 100
times by our own simulator developed in MATLAB software.
In this section, the simulation results are presented in terms
of maximized minimum rate for all active users, cellular and
D2D sum-rate, network mean-rate and fairness level.

Moreover, the results of the proposed MP algorithm are
compared with other works (e.g. [18], [19], [29], [38], [40],
[41]) and centralized bench-marks such as exhaustive search
results.

Proposed MP algorithm compared to other methods:
In Fig. 3(a), the maximized minimum rate of all active users
(D2D and cellular) applying the proposed MP algorithm is
presented in terms of the number of TDUs for each RDU.
It is shown that the achievable minimum rate of all active
users decreases by increasing the number of RDUs due to the
interference of D2D co-channel links. It also slightly increases
by increasing the number of TDUs with a higher gradient
for small number of users. In addition, the achieved sum-
rate of D2D pairs with the rate of a single cellular user is
depicted in Figs. 3(b) and 3(c) in comparison with two other
existing game-theoretic approaches [18], [19]. The scheme
proposed in [18] is a Stackelberg game designed for D2D
sum-rate maximization. Although the sum-rate of D2D pairs
is maximized in [18], the share of the corresponding cellular
user is low. Moreover, a hybrid-distributed scheme with the
BS-supervision, proposed in [19], is depicted for two values
of the maximum interference price denoted by θmax. It is clear
from Figs. 3(b) and 3(c) that the D2D pairs get much less
share of the rate than the cellular user with a higher price and
hence their QoS requirements might be violated. However,
the performance of the scheme in [19] is quite close to our
proposed scheme and the one in [18] with less pricing cost.
It is also worthy to note that there is a trade-off between
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signaling overhead of MP algorithm on the one hand and on
the other hand the learning delay and less precision of the
achieved responses caused by establishing local information in
the game-theoretic approaches, see e.g., [18], [19]. However,
in the proposed scheme, we have simplified FG to reduce
the signaling overhead and also increase the precision of the
achieved response, by sharing the local information among
users to meet the advantages of both MP algorithm and
noncooperative game-based approaches.

Max-Min vs. Max-Sum in mean-rate approach: The
mean-rate of the network is studied in this example for the pro-
posed MP algorithm. The results are compared with the ones
of other studies like max-sum MP algorithm [29], [38], max-
min binary power control (BPC) exhaustive search, max-sum
BPC exhaustive search [40], a suboptimal heuristic algorithm
proposed in [41], two existing game-theoretic approaches [18],
[19] and the extended dynamic target-SINR tracking power
control (EDTPC) algorithm proposed in [11]. In the heuristic
sub-optimal algorithm, for each active cellular user, a random
feasible point is chosen for the binary vectors ρ and ρ

′

j and the
initial sum-rate is computed by taking into account the binary
vectors and the new values of PC , PD extracted by using
the max-min criterion in (1). Next, a neighbor point of binary
vectors ρ and ρ

′

j is chosen and the optimization problem (1)
is solved for each point and compared with the initial value
of the sum-rate. The procedure is repeated to find the local
maximum sum-rate of the network among the neighbor points.
The results are depicted in Fig. 4 in terms of the number of
co-channel D2D pairs with cellular user and 2 and 4 TDUs
for each RDU. Clearly, the system mean-rate decreases by
increasing the number of co-channel D2D pairs. Since the
interference of D2D users imposed on the performance of
cellular users is limited and QoS requirements provided by
the cellular users are met, increasing the number of D2D
pairs maximizes the spectral efficiency and consequently the
network sum-rate. Moreover, increasing the number of TDUs
for each RDU in order to make more choices, increases the
network mean-rate as well. As a general rule, the achieved
mean-rate of the proposed max-min MP algorithm is less than
that of the max-sum MP algorithm and the max-sum BPC
exhaustive search. However, it converges to the result of the
max-sum algorithm by increasing the number of co-channel
D2D pairs with a smaller slope compared to the max-sum
algorithm. The reason is that the purpose of the max-sum prob-
lem is to maximize the sum-rate of the whole network and it
does not concern individual users, while the max-min problem
searches the best answer for the case all users’ rates satisfy a
minimum value constraint and that value would be maximized.
Consequently, the performance of both algorithms leads to
the same result by increasing the number of active users. On
the other hand, the proposed MP algorithm achieves 90% of
the max-min BPC exhaustive search performance in the worst
case and about 97% in the best case by reducing the order
of complexity from O(N4LN log(NL)) to O(N2L2K2)). It
almost achieved 100% of the max-min heuristics algorithm
[41] in the best case and 92% in the worst case by reducing
the order of complexity from O(N3L3) to O(N2L2K2). Both
of these compared algorithms are binary while the proposed
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Fig. 3. Sum rates of D2D active links and a single cellular user for RDU
values 2, 3, 4, and TDU = 4 and its comparisons with other studies.

algorithm works on K-ary values. Therefore, in the average
6.5% loss is negligible compared to the above mentioned
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Fig. 4. Mean-rate in terms of the number of co-channel D2D pairs for TDU=2,
4 per RDU.

complexity reduction that the proposed algorithm attains in
comparison with the centralized schemes. In comparison with
the two other distributed game-theoretic schemes, it is clear
that the performance of our proposed scheme is close to
both works in [18] and [19]. However, the convergence of
our proposed scheme is guaranteed and the power allocation
is fair, compared to the two other schemes; these schemes
try to keep the performance of some users near to the QoS
level and this leads to achieving a Nash-equilibrium point
which is far from the optimality. The other challenge of these
schemes is the determination of the optimal pricing factor.
The EDTPC algorithm proposed in [11] also has almost the
same performance compared to the proposed max-min MP
algorithm, while it is more sensitive to the number of co-
channel users and minimum SINR threshold.

Max-Min vs. Max-Sum in fairness approach: Here, the
fairness achieved by the proposed MP algorithm and the max-
sum non-binary power control exhaustive search (K options)
is investigated and the results are depicted in Fig. 5. In this
experiment, the Jain’s criterion is considered as the fairness

metric, which converges to 1 in the most fair solution and to
0 in the worst fair point. The results are depicted in terms
of mean-rate and different number of TDUs for each RDU
in Figs. 5(a) and 5(b), respectively. It is clear that the higher
fairness is obtained by the proposed MP algorithm compared
to the one achieved by the non-binary exhaustive search in
the max-sum problem. In Fig. 5(a), a monotonic relation is
seen between fairness and mean-rate of the system. However,
by increasing the number of active users, the system’s mean-
rate decreases which adversely affects the system’s sum-rate.
Thus, the trade-off between the system’s sum-rate and fairness
is obvious in Fig. 5(a). On the other hand, the results confirm
the fair performance of the proposed MP algorithm which
varies in the range of 0.89 to 0.96, specially for the higher
number of RDUs. The fairness performance is better compared
to the max-sum non-binary exhaustive search algorithm which
is about 40% in the most different point and 28% in the
least one. In Fig. 5(b), the difference between fairness of the
max-min MP algorithm and the max-sum exhaustive search
increases with increasing the number of potential TDUs. This
result shows the effect of MP max-min algorithm in the context
of fairly share of network resources between demanding D2D
users. The individual rates of users are depicted in Fig. 6 for
L = 4 and N = 1, 2, 3, 4. The rates of active link achieved by
the max-min MP algorithm are approximately equal, compared
to the max-sum approach where the differences among rates
of users are fairly high.

V. CONCLUSION

We have addressed joint D2D pairing and power allocation
via a partially distributed scheme which does not need the
full availability of the network information in the eNB. In
the proposed method, a flexible and fair power allocation
is formulated by utilizing the max-min criterion. A factor-
graph model was developed to decompose the proposed max-
min optimization problem into multiple local functions. In the
graphical representation of the problem, QoS constraints are
included in the form of factor nodes and the power levels of
transmitters are considered in form of variable nodes. Then,
the distributed MP algorithm was proposed to solve the max-
imization of minimum rate for all active users, by exchanging
messages between D2D receivers and transmitters and among
receivers and cellular users, as well. The convergence of the
proposed method to the optimal point was also proved in this
paper. It was shown that the distributed MP algorithm can
be employed for the optimization of joint power allocation
and power control with considerably less complexity than
the centralized methods. The proposed method is also much
more precise in achieving the optimal point than partially
distributed game-theoretic allocation methods. Moreover, the
distributed MP algorithm presents an excellent performance
in sum-rate maximization in underlay D2D networks without
need for eNB signaling for power control with a negligible
degradation in sum-rate. This degradation is only 6.5% in av-
erage compared with the sum-rate of benchmark schemes, e.g.,
max-min binary power control (BPC) exhaustive search. The
proposed method can be applied in the recent release of the
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Fig. 6. Rates of D2D active links and a single cellular user for RDU values
1, 2, 3, 4, TDU = 4 for max-min and max-sum approaches.

3GPP standard in which the controlling task of eNB might be
diminished for power allocation of D2D users in highly dense
networks. Besides, one of the most important applications
of our proposed algorithm will be on Ultra-Reliable-Low-
Latency Communication (URLLC) networks. Since the power
allocation and pairing of D2D communications on URLLC

networks are challenging issues due to the explosive amount of
devices in these networks, the future study can be applying the
proposed MP algorithm on URLLC networks with applications
in 5G wireless communication and beyond networks.

APPENDIX A
PROOF OF PROPOSITION 1

In order to find the difference between the exact solution
and the approximated one with simplified assumptions, we cal-
culate the range of error occurred in terms of different power
scheduling. We know that γC � 1, therefore, the difference
is calculated as shown in the equation set (18).

In (18), if we assume the worst case that our guess has been
completely wrong for all other D2D users where they were
still active (PDj′k 6= 0), we will have PDj′k =

PDmax
K which is the

minimum power level that can be assumed for an active user.
Therefore, it would maximize the numerator and minimize the
second summation of the denominator. Moreover, we know
the exact value of the first term of the denominator, since
it is the power of the under investigation D2D user. If we
set PDj′k = PDmax, the difference would be in the form of
(19). Similarly, the difference is calculated for D2D rates as
demonstrated in the equation set (19).

The achieved approximation of the equation set (19) with the
assumption of PDj′k =

PDmax

K and PC = PCmax would be as the
last line of (19) where all other D2D pairs are active with the
minimum power level.

APPENDIX B
PROOF OF PROPOSITION 2

In order to transform the problem (1) to an equivalent
unconstrained problem, the following steps are required. Gen-
erally, if we have the optimization problem in the form of
(20) {

minimize F (x),
sub. to gi(x) ≤ 0, i ∈ C, (20)

where C denotes the index set of constraints, the Lagrange
setup for this problem is written as L(x, λ) , F (x) +∑
i∈C

λigi(x), where x and λi denote the optimization variable

and the KKT multipliers, respectively. By considering inequal-
ity constraints, the KKT approach generalizes the method of
Lagrange multipliers to the nonlinear programming, which
allows only equality constraints. If x∗ is a local optimum for
the mentioned optimization problem, then there exist constants
like λ∗i , i ∈ C, called KKT multipliers, such that

∇F (x∗) =
∑
i∈C

λ∗i∇gi(x∗), (21a)

gi(x
∗) ≤ 0, i ∈ C, (21b)

λ∗i ≥ 0, (21c)
λ∗i gi(x

∗) = 0, i ∈ C. (21d)
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where (21a)–(21d) denotes respectively the stationarity, primal
feasibility, dual feasibility, and complementary slackness con-
ditions. These first-order conditions known as the KKT con-
ditions are satisfied at the stationary points of the Lagrangian
setup. They are necessary conditions for the optimum of a
constrained problem. However, the first-order conditions are
not sufficient to guarantee a local minimum. To provide this,
we remark the second-order sufficient conditions. The optimal
point which satisfies the KKT necessary conditions of the op-
timality at x∗, will be a global optimal point for the nonlinear
optimization problem, as long as the given Hessian matrix
of Lagrangian, is positive definite, i.e., zT∇2

Ri
L(R∗, λ∗)z.

Furthermore, z should span the null-space of the matrix of
the gradient of active constraints at the optimal points [34].
Following the problem (1), an approximation of minimizing
operator is introduced at first as follows:

R0 , −1

ξ
log(

1

N

N∑
i=1

e−ξRi),

where ξ is a constant which is ξ � 1, and N denotes the
number of active users and Ri, for 1 ≤ i ≤ N , is the rate
of the i-th active user. Thus, (1b) and (1c) constraints will be
respectively as follows:

log(1 + γC) ≥ − 1

ξ
log(

1

N

N∑
i=1

e−ξRi), ∀j ∈ Dr,∀k ∈ Dt,

log(1 + γDjk) ≥ −
1

ξ
log(

1

N

N∑
i=1

e−ξRi), ∀j ∈ Dr,∀k ∈ Dt.

Accordingly, (1b) and (1c) clearly could be omitted from the
problem since for ξ → ∞, the approximation function con-
verges to the minimum amount, and hence it would be satisfied

for each Ri, 1 ≤ i ≤ N , as Ri ≥ − 1
ξ log(

1
N

N∑
i=1

e−ξRi). In

this case, (1d) and (1e) would be as following:

1

ξ
log(

1

N

N∑
i=1

e−ξRi) + log(1 + γCmin) ≤ 0,

1

ξ
log(

1

N

N∑
i=1

e−ξRi) + log(1 + γDmin) ≤ 0.

Next, the necessary optimality conditions are specified through
the use of Lagrangian function which is given by:

L(R, λ) ,
1

ξ
log(

1

N

N∑
i=1

e−ξRi)

+λ1

( 1

ξ
log(

1

N

N∑
i=1

e−ξRi)+log
(
1 + max(γminC , γminD )

))
.

Hence, we have:

L(R, λ) =
1

ξ
log(

1

N

N∑
i=1

e−ξRi)

+ λ1

(1
ξ
log(

1

N

N∑
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e−ξRi) + max(RCmin, R
D
min)

)
.

To achieve the KKT multipliers from the first KKT condition,
the gradient of our objective Lagrangian is calculated as
follows:

∇L(R, λ) =



−( e−ξR1

N∑
i=1

e−ξRi
) + λ1(

e−ξR1

N∑
i=1

e−ξRi
) = 0,

...
−( e−ξRN

N∑
i=1

e−ξRi
) + λ1(

e−ξRN
N∑
i=1

e−ξRi
) = 0,

Hence, we have λ1 = λ∗1. The complementary slackness
condition is also satisfied as follows:

λ∗1

(
1

ξ
log(

1

N

N∑
i=1

e−ξRi) + log
(
1 + max(γCmin, γ

D
min)

))
= 0,

which results in R∗ = (Rc
∗

1 , R
d∗

1 , R
d∗

2 , ...., R
d∗

N )T.
In general, the KKT conditions can be satisfied at a local
optimum, a global optimum (solution of the problem) as well
as at a saddle point. Here, we used the KKT conditions
to characterize all the stationary points of the problem, and
then we should perform some additional testing (second-order
conditions) to determine the optimal solutions of the problem
(global optimum of the constrained problem). Hence, we have:

∇2
RiL(R, λ) =

(
1

1Tr
diag(r)− 1

(1Tr)
2 rr

T

)
(1 + λ1),

where 1 is a column-wise all-one vector, r =(
e−ξR1 , . . . , e−ξRN

)T
and

diag(r) =

e
−ξR1 0 . . . 0

... . . .
. . .

...
0 . . . 0 e−ξRN

 .

To find the null-space of the gradient of active constraints, the
gradient of active constraints are as follows:

A∗ =



−e−ξR
d∗
1

N∑
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e−ξR
d∗
i
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,

where the echelon form of A∗ is as follows:

EA∗ =

(
e−ξR

d∗
1 − e−ξRc

∗
1 . . . e−ξR

d∗
N − e−ξRc

∗
N

0 . . . 0

)
.

Hence, the null-space equation EA∗z = 0 results in
N∑
i=1

(e−ξR
d∗

i − e−ξR
c∗

i )Ri = 0. Let bi , e−ξR
d∗

i − e−ξR
c∗

i ,

then we have:

z ∈ N (A∗) =


b2
b1

b2
b1

. . . bN
b1

1 0 . . . 0
...

. . . . . .
...

0 0 . . . 1

 ,

where N (A∗) indicates the null-space of A∗. Now, we must
verify that for all z ∈ N (A∗), zT∇2

Ri
L(R∗, λ∗)z is positive.
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By some manipulations, we have:

z∇2
RiL(R, λ)z

T =(∑N
i=1 z

2
iRi

∑N
i=1Ri(∑N

i=1Ri

)2 −
(∑N

i=1 ziRi
)2(∑N

i=1Ri

)2 )λ∗1 (a)
> 0,

where (a) is obtained from the Cauchy-Schwarz inequality,
and hence the proof is complete.

APPENDIX C
PROOF OF PROPOSITION 3

In the proposed max-min algorithm, the problem could be
modified to the form of:

max F (R) = min
(
RC1 , R

D
1 , . . . , R

D
N

)
(1 + λ∗)

− log
(
1 + max(γCmin, γ

D
min)

)
.

We need to show that this form of the proposed problem
corresponds to a separable convex program. Thus, we need
to prove that −F (R) is convex as well as separable to the
convex, coercive, and twice differentiable factors. First, we
need to prove the convexity of function −F (R) by calculating
the Hessian matrix H−F (R). From Appendix B, we know
that the Hessian of log-sum-exp function, i.e., −F (R) =

1
ξ log(

1
N

N∑
i=1

e−ξRi), would be in the form of

∇2
Ri(−F (R)) =

( 1

1Tr
diag(r)− 1

(1T r)
2 rr

T
)
.

To show that ∇2
Ri
(−F (R)) is positive definite, we must

verify that vT∇2
Ri
(−F (R))v ≥ 0 for all vectors v. This

is clearly approved by using Cauchy-Schwartz inequality
(see Appendix B). Next, we should check the separability of
F (R) to the convex factors. By referring to the proposed FG
model (see Fig. 2) we have a cycle-free FG and the minimum
operator has the associative property. Therefore, the F (R)
function could be separated to the functions of the lower
layer (Layer-4) and the upper layer (Layer-2) factor nodes.
At the next step, we have to verify the convexity of
fj(P

d
j1, . . . , P

D
jL) and gDjk(P

D
jk) functions as the factor

nodes of each layer. By the same way mentioned in (4a)
and (4b), the rate of D2D users and cellular ones would
be, respectively, approximated as following, for γ′Djk , γ

′C � 1,
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By using a log transformation of the power variables PC →
2P

C

and PDjk → 2P
D
jk [33], Eq. (22) is achieved.

By mathematical manipulation of (22), fj(PC , PDjk) equals

PC log2(h
2
B,Cd

−α
B,C)− log2(

∑
j

ζj2
PDjk +N0),

where ζj refers to the small scale fading coefficient of ac-
tive interferer users for cellular links. Simply, the function
fj(P

D
j1 , . . . , P

D
jL) is in the form of a log-sum-exp function and

hence is concave. Similarly, the function gjk(PDjk) is equal to

log2
( 2

PDjkh2
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)
,

where gjk is an affine and also a concave function. Thus,
both the functions fj(PDj1 , . . . , P

D
jL) and gjk(P

D
jk) fit in the

definition of the pairwise separable convex program.
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