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Abstract 

Introduction: The Paralympic classification system for visual impairment only assesses static visual 

acuity and static visual field despite many Paralympic sports being dynamic in nature. As a first step 

towards determining whether motion perception tests should be used in Paralympic classification, we 

assessed whether motion coherence thresholds could be measured when visual acuity or visual fields 

were impaired at levels consistent with the current Paralympic classification criteria. Methods: Visual 

acuity and visual field impairments corresponding to Paralympic classification criteria were simulated 

in normally sighted individuals and motion coherence thresholds were measured. Results: Mild-to- 

moderate visual acuity impairments had no effect on motion coherence thresholds. The most severe 

Paralympic class of acuity impairment (≥2.6 logMAR) significantly elevated thresholds. A trend 

towards superior motion coherence thresholds in the peripheral visual field compared to the central 

visual field was also present. Conclusion: Global motion perception appears to be measurable under 

simulated visual impairments that are consistent with the Paralympic classification. Poorer global 

motion perception was found for visual acuities >2.6 logMAR and visual fields <10° in diameter. 

Further research is needed to investigate the relationship between global motion perception and sports 

performance in athletes with visual impairment. 

 

Keywords: Global motion perception, visual impairment, low vision, Paralympic classification  
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Introduction 

The current classification of vision impairments for all Paralympic sports (except Shooting 

Para Sport, which has recently established a new classification system)1 is based on static visual 

acuity and visual field loss in the better eye only. However, the most recent International Paralympic 

Committee Classification Code (2007, 2015), mandated that classification rules for Para sports should 

be sport-specific and evidence based, which means the classification systems for athletes with vision 

impairment need to be reviewed.2-4 Expert consensus recently identified “establishing the most 

appropriate measures of vision impairment to be used for classification (e.g., contrast sensitivity, 

motion perception, or other classification assessments sport-specific tests developed for 

classification.” as a top priority.5 Therefore, may need to be expanded to measure a wider range of 

visual functions relevant to sport performance. Motion perception is involved in all dynamic sports 

and was identified as one of the vision impairment assessments that should be considered for use in 

classification. Currently, there is little known about how vision impairments affect motion perception. 

Global motion perception relies on area MT/V5 (dorsal visual pathway) and involves the 

integration of local motion signals from V1 into a coherent motion percept.6-12 Motion coherence 

thresholds are common measure of global motion perception and involve the presentation of random 

dot kinematograms (RDKs) that are constructed from two sets of moving dots. One set moves in a 

single coherent direction (signal dots), while the other set moves in a random direction (noise dots). 

Participants judge the direction of the signal dots, as the percentage of signal dots (signal to noise 

ratio) is varied. The signal to noise ratio required for threshold task performance is known as the 

motion coherence threshold. 

Motion coherence thresholds measured using RDKs are relatively robust to changes in RDK 

element spatial frequency,13 moderate reduction in acuity (≤0.7 logMAR) induced by optical blur,14 

and reduced supratheshold contrast.15,16 In addition, motion coherence thresholds and other types of 

complex motion perception can be measured in the peripheral visual field.14,17 This suggests that 

motion coherence thresholds could be measured in individuals with low vision due to visual acuity 

and/or visual field loss. 
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Preliminary pilot data collected from national level para sport athletes with vision 

impairments also suggests that motion coherence thresholds can be measured in individuals with low 

vision (see Appendix A, Supplementary Material). While these pilot data appear promising, the 

sample size was small (n=5), and the vision impairments of the athletes did not span the entire range 

of acceptable vision impairments for Paralympic competition (visual acuities of 1.0 to >2.6 logMAR; 

visual field radius < 20 degrees). 

The aim of this study was to assess whether motion coherence thresholds could be measured 

when visual acuity or visual fields were impaired to the levels required for Paralympic classification 

(Table 2), a much broader range of visual impairment than used in previous studies, to determine the 

feasibility of including motion coherence thresholds in future visual impairment classification 

research. To achieve this aim, we simulated visual acuity and visual field impairments in participants 

with normal vision. We then measured coherence thresholds for translational and radial motion using 

wide-field RDKs with large dots. It was hypothesized that motion coherence thresholds would be 

measureable with simulated low vision at the levels of impairment currently required for Paralympic 

classification. 

 

Results 

Simulated Acuity 

Table 1 presents the visual acuity thresholds obtained as a result of the simulated visual acuity 

losses. Initial evaluation of the single dot detection task with the ≥2.6 logMAR simulation revealed 

100% accuracy (out of a total 8 responses) in all the participants tested. For coherence thresholds, 

ANOVA (2 motion x 5 acuity levels) revealed a significant main effect of motion type, F(1, 14) = 

5.38, p < .05, partial ƞ2 = .28, indicating a lower threshold with translational motion (M = 22.49%, SD 

= 11.44) compared to radial motion (M = 26.88%, SD = 6.94). There was also a significant main 

effect of simulated acuity, F(4, 56) = 63.91, p < .01, partial ƞ2 = .82 (Figure 1A and B), but there was 

no significant motion x acuity interaction, F(4, 56) = 1.29, p = .29, partial ƞ2 = .08. Post hoc analysis 

revealed a significant threshold increase in the ≥2.6 logMAR condition (M = 60.48%, SD = 21.00) 

compared to all other acuity conditions (combined M = 15.74, SD = 7.30). There were 7 participants 



 

4 
 

(2 translational; 5 radial) who were unable to complete at least one global motion trial at 100% 

coherence during the ≥2.6 logMAR condition. 

For response time, ANOVA showed a significant main effect of motion type, F(1, 14) = 8.11, 

p < .05, partial ƞ2 = .37, indicating a shorter time to respond to the translational (M = 2.44 s, SD = 

1.00) compared to radial motion (M = 2.93 s, SD = 1.23). There was a significant main effect of 

simulated acuity, F(4, 56) = 4.95, p < .05, partial ƞ2 = .26, but no significant motion x acuity 

interaction, F(4, 56) = .67, p > .62, partial ƞ2 = .05. Post hoc analysis did not reveal any significant 

differences in response time between acuity conditions (all ps > .05). 

 

Insert Table 1 approximately here 

 

Simulated Field 

Two additional participants had to be removed from the simulated visual field impairments 

analysis due to a lost eye tracker signal in at least one condition (final n = 13) (Figure 2 shows 

fixation patterns). ANOVA (2 motion x 3 field) for coherence threshold showed a significant main 

effect of motion type, F(1, 12) = 20.49, p < .001, partial ƞ2 = .63, which indicated a lower threshold 

for translational motion (M = 14.62%, SD = 4.86) compared to radial motion (M = 21.88%, SD = 

6.76). The main effect of field approached significance, F(2, 24) = 3.16, p = .061, partial ƞ2 = .21, 

whereby full fields (M = 16.95%, SD = 6.58) and fields >10° (M = 15.55%, SD = 5.22) had 

numerically lower thresholds than the 0-10° field condition (M = 22.24%, SD = 10.54) (Figure 1C and 

D). There was no significant motion x field interaction, F(2, 24) = 1.32, p = .29, partial ƞ2 = .10. For 

response time, there was no significant main effect of motion type, F(1, 12) = .29, p = .60, partial ƞ2 = 

.02, or simulated field, F(2, 24) = .64, p = .54, partial ƞ2 = .05 and there was no significant motion x 

field interaction, F(2, 24) = 2.62, p = .09, partial ƞ2 = .18 (M = 2.41 s, SD = 1.11). 

 

Insert Figure 1 and 2 approximately here 

 

Discussion 
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We examined the impact of simulated visual acuity and visual field impairments on global 

motion perception across a much broader range of visual impairment than previous studies. Simulated 

impairments were chosen based on the current Paralympic classification criteria for visual 

impairment, which utilise assessments of static visual acuity and visual field. In addition, we 

simulated visual field restrictions in the presence of free eye movements, and thus closely replicated 

real-life field losses. We found that motion coherence thresholds could be measured when visual 

acuity or visual fields were impaired to the levels required for Paralympic classification. We also 

observed some differences across the categories of visual impairment (B1-B3) whereby simulated 

visual acuity deficits >2.6 logMAR (B1) and/or central visual field deficits <10° (B2) elevated motion 

coherence thresholds. When considered in conjunction with the pilot data on national Para sport 

athletes (Appendix A, Supplementary Material) our results suggest that motion coherence thresholds 

could be considered for incorporation into Paralympic classification research. 

Our findings are consistent with previous evidence demonstrating partial18 or complete14 

ability to perceive global motion in the presence of a severe simulated visual impairment. Burton et al. 

(2015) identified some losses in global motion perception following simulated low visual acuity, 

although not to the same extent as global form perception.18 On the other hand, Zwicker et al. (2006) 

revealed no systematic differences in motion coherence thresholds following the application of 

positive blurring lenses,14 but these may not have decreased visual acuity to the same degree as the 

current study. Together, these results support previous observations that low spatial frequency 

information, that is less affected by blur than high spatial frequency information, is sufficient to 

support global motion perception.13,19 

That being said, motion coherence thresholds greatly increased following the most severe 

simulated acuity impairment of >2.6 logMAR (20/7962), in which the simulated acuity exceeded the 

resolution (but not the detection) acuity of the dots (which subtended a single limb width of 1.7 

logMAR). These findings suggest that global motion processing was limited by difficulty in 

differentiating individual dots within the RDK. This reasoning is consistent with the two-stage 

process of global motion perception,20 whereby local motion is processed prior to motion integration. 

However, global motion perception was still measurable at the most severe visual acuity impairment 



 

6 
 

with a mean motion coherence threshold of approximately 60%. This further supports the potential for 

global motion measurements as a useful measure for Paralympic athletes with low vision. 

In regard to the influence of visual field, there was a trend towards increasing motion 

coherence thresholds during the central (10°) field condition compared to the full and peripheral 

(>10°) field conditions. This finding corroborates previous evidence of alterations to motion 

perception following field-related impairments.21 What’s more, global motion perception has been 

shown to withstand effects of stimulus eccentricity providing local dot details are perceptible within 

the periphery.13 It is precisely this feature of the visual field that may explain the gaze activity as the 

eyes appeared to scan more during peripheral field loss (see Figure 2). Presumably, there was an 

attempt to compensate for this field restriction by capturing local dot details within the central field. 

However, due to the minor statistical effects and comparatively limited range of visual fields (0-10°, 

>10°), future investigation is recommended on this matter. 

Limitations of the study 

There are differences between simulated and true visual impairment. Those with true visual 

impairment may have multiple deficits and there is likely wide variability between individuals due to 

the age of onset of the visual impairment and its cause (ocular, cortical), which may affect the 

development of visual processing. These multiple deficits cannot be simulated with a decrease of 

visual acuity or visual field. However, data from a small sample of individuals with true visual 

impairment (Appendix A, Supplementary Material) are consistent with the results of our simulation 

study. Further studies of participants with true visual impairment are required to assess the 

relationship between motion coherence thresholds and Para sport performance. 

 

Methods 

Participants 

Eighteen participants took part in the study (mean age = 24.3 years ± SD 5.3, range 18-40 

years). All participants had normal or corrected-to-normal vision (mean acuity = -0.18 logMAR ± SD 

0.08, range = -0.28 to +0.02). All participants had had a full eye exam less than two years before the 

date of the first study visit and none of the participants had any ocular or neurological conditions 
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(based on self-report). The study was designed in accordance with the Declaration of Helsinki and has 

been reviewed and received ethics approval through a University of Waterloo Research Ethics 

Committee. Informed consent was obtained from all participants prior to their participation in the 

study. 

 

Apparatus 

Stimuli were generated via Matlab (The Mathworks Inc., Natick, MA) running Psychtoolbox 

on a Lenovo Thinkpad P50 with NVIDIA Quadro M2000M graphics (temporal resolution = 60 Hz, 

spatial resolution = 1920 x 1080 pixels), and displayed on a gamma-corrected 50” Sony Bravia 3D 

LED television (Model: KDL-50W800C). The stimulus aperture reached within 174.5 mm of the 

screen edge to subtend a visual angle of 44.58 x 26.81° at a 1 m viewing distance. The RDK featured 

100 white dots (mean dot luminance = 119 cd/m2, dot density = 0.058 dot/deg2) on a black 

background moving at a velocity of 6°/s. There was a 5% chance of the dots disappearing upon each 

screen refresh (~16 ms). Each dot subtended a visual angle of 0.83° (14.54 mm), which equated to a 

single limb width of a 1.7 logMAR optotype for letter acuity. This size was chosen because pilot data 

indicated that a single dot of this size could be detected with a visual acuity ≥2.6 logMAR. It was 

possible to use dots that were smaller than the worst visual acuity impairment simulated because the 

visual acuity for detecting stimuli is better than the visual acuity for resolving stimuli details.22 

RDKs were presented with either translational or radial motion and consisted of white dots on 

a black background. For translational motion, the dots moved vertically up or down to avoid any 

contamination by horizontal nystagmus in future studies involving participants with low vision.23 For 

radial motion, a 1.4° region in the centre of the display remained blank24 and the dots moved inwards 

or outwards. Dots wrapped-around when they reached the edge of the stimulus aperture. 

The participant’s task was to respond “up” or “down” for the translational motion and “in” or 

“out” for the radial. Stimuli were displayed for a maximum of 16 s and were extinguished when a 

participant responded. A no response (failure to respond within the designated time) was considered 

to be incorrect. Stimulus trials were run using a 2 down-1 up staircase procedure with 8 reversals. 

Thresholds were calculated as the mean percentage of signal dots from the last 6 reversals. The 
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staircase began at 100% coherence and had a proportional step size of 25% before the first reversal 

and 10% thereafter. The staircase was terminated prematurely if the participant gave incorrect 

responses for the first five trials, made two incorrect responses at the ceiling (100% coherence), or 

made two correct responses at the floor (2% coherence) of the staircase. If participants hit the ‘ceiling’ 

or ‘floor’ of the task prior to reaching the end of the criterion staircase (8 reversals), then they were 

scored according to the last recorded number of signal dots (i.e., 100% coherence (‘ceiling’) or 2% 

coherence (‘floor’). Mean response time was also recorded for each trial (time between stimulus onset 

and response). 

Gaze position data were collected using an EyeTribe eye tracker (30 Hz, spatial resolution of 

0.1°, accuracy of 0.5-1.0°)25 positioned below the display for trials involving simulated visual fields 

(i.e., excluding simulated acuity conditions). All raw gaze position data were reviewed for potential 

failings in the registration between eye position and the centre of the visual field prior to analysis. 

This check was essential in order to uphold the integrity of our simulated field conditions and avoid 

participants from seeing dot motion within an unintended area of their field (e.g., dot motion within 

the central field (<10°) during the >10° field condition). 

 

Visual acuity measurements 

Static visual acuity was assessed using ETDRS visual acuity charts and the Berkeley 

Rudimentary Vision Test (BVRT) – White Field Projection (WFP) test card that can measure visual 

acuities to 2.9 logMAR.26 The viewing distance was 4 m for the normal vision conditions and began 

at 1 m for the simulated visual acuity loss conditions. Charts were front-lit to a luminance of ~160 

cd/m2 ± 10%.27 Visual acuities were measured using a per- letter scoring system (0.02 units per 

letter)28 and participants were stopped once they reported ≥3 incorrect responses on a single line. 

 

Visual impairment simulations 

Visual acuity loss was simulated using <0.1, 0.1, and 0.6 Bangerter foils,29 which were 

combined with laminate sheets for the most severe visual acuity loss conditions. The Bangerter foils 

(and/or laminate sheets) were applied to plano lenses in Halberg clips that were placed on to 
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participants’ habitual lenses or on to plano-lens spectacles supplied by the experimenter. Visual acuity 

impairments of ≥2.6, ≥1.5, ≥1.0, ≥0.4 logMAR were simulated. The first 3 conditions were 

synonymous with the Paralympic classification criteria for visual impairment (B1-B3 classes, Table 2) 

and the last condition was equal to the North American definition of low vision (≥0.4 logMAR; 20/50 

or poorer).30,31 

Two visual field loss conditions were simulated; a peripheral scotoma with a preserved central 

region of visual field and a central scotoma. In both cases, the central region of the visual field was 

circular with a diameter of 10°, which is consistent with the visual field criterion for the B2 

Paralympic classification (Table 2). However, one Paralympic visual field criteria (B3, <40° 

diameter) could not be tested due to display size limitations. During each trial, the position of the 

scotoma was updated in real-time based on the participant’s eye movements (Figure 3). Therefore, the 

eyes were free to move around the display but the scotoma remained within the selected visual field 

area. The gaze trace was smoothed using EyeTribe’s custom proprietary filtering algorithm. 

 

Insert Table 2 approximately here 

 

Insert Figure 3 approximately here 

 

Procedure 

Participants attended three study visits. The first visit involved completion of the self- 

reported ocular health history form, a baseline measure of static acuity, determination of foil and 

laminate combinations for each of the simulated visual acuity impairments, and a baseline 

measurement of each motion coherence threshold (translational, radial) under normal viewing (no 

visual impairment). The second and third visits involved confirming the appropriate level of visual 

impairment by re-checking visual acuity with the selected foils and/or laminate and completing the 

global motion perception tasks under the simulated low vision conditions. In some cases, the filters 

needed a subtle adjustment at either visit 2 or visit 3. If an adjustment was made to participants’ 
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filters, the adjusted filter was used for the remainder of the study. All reported simulated acuity 

thresholds are based on the final adjusted simulations. 

Prior to starting the global motion task with the simulated vision impairments on the second 

visit, participants’ ability to detect the stimulus dots at the most severe visual acuity impairment 

condition (≥2.6 logMAR) was confirmed using a single dot detection task similar to the BVRT. A 

white dot (same size as the global motion task stimuli; 0.83°) was randomly presented in one of the 

four corners of the screen (8 presentations total), and participants were asked to indicate where they 

saw the dot. 

Two consecutive staircases were run for each condition (normal vision and simulated 

impairment conditions) and the mean of the two thresholds was calculated to determine the coherence 

threshold. The order of stimulus motion (translation, radial) and simulated field impairments (central, 

peripheral) were counter-balanced across participants. The order of the simulated acuity impairments 

(≥2.6, ≥1.5, ≥1.0, ≥0.4) was randomized across participants. In total 28 global motion trials were 

completed across the three study visits (Visit 1 = 4 trials (normal vision; 2 translational and 2 radial), 

Visit 2 = 12 trials (three simulated impairments), Visit 3 = 12 trials (three simulated impairments). 

 

Data Analysis 

Three participants were excluded from the study due to initial problems with their gaze 

registration (final n = 15). Separate two-way repeated-measures Analysis of Variance (ANOVA) 

models were constructed: 2 motion (translational, radial) x 5 acuity (normal, ≥0.4, 

≥1.0, ≥1.5, ≥2.6), and 2 motion (translational, radial) x 3 field (full, 0-10°, >10°). In the event of a 

violation of the assumption of equal variance of differences, as evaluated by Mauchly’s test, the 

Hynh-Feldt correction was applied when the Epsilon value was ≥.75 and the Greenhouse-Geisser 

correction was applied otherwise (the original degrees-of-freedom are reported). Tukey HSD was 

used for post-hoc analysis and significance was declared at p < 0.05.  
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Tables 

Table 1 

 
normal ≥0.4 ≥1.0 ≥1.5 ≥2.6 

Mean -0.18 0.55 1.16 1.57 2.72 

SD 0.08 0.06 0.05 0.03 0.06 

Max 0.02 0.64 1.20 1.62 2.86 

Min -0.28 0.46 1.08 1.52 2.66 

Table 1. Means, standard deviations, maximum and minimum logMAR visual acuities obtained 

for each target visual acuity threshold following the application of Bangerter foils and/or laminate 

sheets 

 

Table 2 

Classification Visual Acuity Visual Field 

B1 ≥2.6 logMAR n/a 

B2 ≥1.5 to <2.6 logMAR <10° diameter 

B3 ≥1.0 to <1.5 logMAR <40° diameter 

Table 2. International Paralympic Committee (IPC) classifications for visual impairment2 
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Figure Captions 

Figure 1. Mean motion coherence thresholds (%) with individual participant data (x) as a function of 

simulated visual acuity impairment (normal, >0.4, >1.0, >1.5, >2.6) and simulated visual field 

impairment (full, 0-10°, >10°). (A) Translational motion-simulated visual acuity; (B) radial motion-

simulated visual acuity; (C) translational motion-simulated visual field; (D) radial motion-simulated 

visual field. 

 

Figure 2. Example gaze position traces of representative individual participants at select trials (10-

20th response step in staircase) for translational motion stimuli. Full, 0-10° and >10° visual field 

conditions are represented by the white, red, and blue lines, respectively. Top panel illustrates cases of 

predominantly central fixation with minor search. Bottom panel illustrates cases of overt searches 

away from centre only during the 0-10° field condition. Note, images are scaled to actual display size 

of the experiment. 

 

Figure 3. Illustration of the simulated visual field impairment conditions: peripheral (>10°) (A) and 

central (0-10°) (B). The lower rectangle represents the location of the gaze tracker Dots were mapped 

with respect to a 10° diameter area, which was centred at the participant gaze location (as indicated by 

grey dotted circle; which was not present during the motion stimulus display). Note, images are not 

drawn to scale. 


