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A proactive approach to quantitative assessment of disruption risks of 

petroleum refinery operation 
 

Abstract 

Petroleum refinery consists of numerous process units in operation, which are subjected 

to diverse accident risks in day-to-day operations under extreme operating conditions. 

Due to the complexity of petroleum refinery operations, any failure can lead to major 

accident and a huge financial loss for a petroleum refining company. However, petroleum 

refinery operations can be disrupted by various risk elements from the organization, 

technical, operational and external latent conditions. Risk elements are often inherent in 

operations, which can be based on uncertain knowledge, oversight and lack of perception 

of interactive events that can lead to disruption. In order to circumvent events that can 

cause disruption in a petroleum refinery, the criticality of the risk elements and their 

attributes that are associated with Petroleum Refinery Process Units (PRPU) operations 

need to be investigated. Therefore, there is a need to identify and assess the most critical 

risk elements and attributes that can interact to cause the disruption of operational 

reliability and availability of a petroleum refinery process unit. Hence, this article 

proposes a robust fuzzy linguistic assessment methodology for identification and 

assessment of PRPU risk elements and their attributes. The methodology deals with the 

main challenges of utilising expert’s subjective judgements, in terms of the assessment of 

PRPU risk elements under uncertain situations. The result of the evaluation and ranking 

of PRPU risk elements and their attributes can provide salient risk information to duty 

holders and decision makers in the petroleum refinery in order to prioritise resources for 

risk management of the most critical attributes of the risk elements.  



Keywords: Petroleum refinery process unit; Risk element; Risk management; Fuzzy 

Linguistic Preference Relation; Subjective Judgment. 

1. Introduction  

Petroleum refineries are complex infrastructures with various process units which can 

perform multiple phase operations. Petroleum Refineries Process Units (PRPU) are 

capital intensive and a constant flow production infrastructure with a high level of risk 

that can cause catastrophic accidents. However, the pressure of daily demand and 

commitment to production target in operations of most refineries around the globe has 

led to a strong push of safety boundaries, which has led to occurrences of major accidents. 

The breach of safety boundaries in a petroleum refinery domain is a result of combination 

of multiple interactive events. These series of interactive events often precipitate into the 

disruption of petroleum refinery operations. Based on historical cases of major accidents 

reported in the petroleum refining industry, it is evident that the build-up of interactive 

events is due to lapses in risk management. For instance, Saleh et al., (2014), emphasize 

that the violation of safety diagnosis principles can affect operators risk perception 

towards emerging hazard, because of the shrinkage in knowledge and situation awareness 

of unfolding hazardous events.      

Rodriguez et al., (2011), explain that the meaningful implication of accident reporting 

can boost healthy safety climate, if the lesson learnt from the accident is utilized to 

enhance the prevention of future accidents. This has been one of the challenges in the risk 

management of petroleum refinery operations, because operators sometimes fail to utilise 

the primary mechanism from shared lessons learnt from major accidents. Rather, they 

predominantly focus their attention on safety performance indicators for the conception 



of the current safety level of operations in order to enhance organizational means of 

controlling risk. Major accidents in petroleum refineries such as ConocoPhillips-Humber 

refinery accident 2001, BP-Texas City refinery accident 2005, Tesoro Anacortes refinery 

accident 2010, Amuay oil refinery accident 2012, Chevron Richmond refinery accident 

2012 and Bolshoy Uluy Krasnoyarsk refinery accident 2014, have raised important 

questions about the level of safety of petroleum refinery process units operations. 

According to Pasman et al., (2013), maintaining adequate safety level from time to time 

is a difficult task because of the need to balance productivity and budget constraints. 

Knegtering and Pasman (2009), observe that lapses or failure of petroleum refining 

companies in their risk management process gradually builds up events, which eventually 

escalate into an accident. This sometimes occurs when corporate management fails to 

commit tangible resources and expertise to their risk management program (Wood et al., 

2013).  Major accidents in petroleum refineries reveal that organization notions to safety, 

when accident risks are not perceived as a threat, has resulted in the degradation of safety 

attitude and neglect of early warning of risks. Owing to lack of insight of the operators or 

duty holder’s in terms of hazard awareness, reveals, how, early warnings of undesired 

events could have been utilised to prevent a disastrous accident. This observation 

indicates that early warning is important in order to mitigate major accident risks, by 

providing situation awareness at the level in the organization where corrective actions can 

be implemented.  According to Saleh et al., (2014), the capability to detect or analyse a 

hazardous condition of a system or any safety degradation is tantamount to sustaining the 

safety of a system. An important part of the in-depth analysis conducted by Saleh et al., 

(2014) indicates that lack of safety diagnosis ability in terms of perception or situation 



awareness can lead to potential concealment of petroleum refinery operations and hazard 

escalation.  

Isimite and Rubini, (2016) and Manca and Brambilla (2012), emphasize that lack of 

resilience in organisational culture towards management of safety climate, process safety 

management, and human elements are contributory events that have led to an accident in 

process facilities including petroleum refineries. All the aforementioned issues, to a great 

extent, incubate safety barrier weakness, latent failures or allow the interactions of major 

accident hazards at different levels of operations. This shows that over time, the risk level 

of major accident hazards need to be systematically evaluated, in order to monitor safety 

level, and to provide the necessary risk information for complex decision making in a 

petroleum refinery domain. Several petroleum refinery process unit accidents have 

resulted in significant loss of lives, damage to properties, environmental pollution and 

disruption of economic activities due to fires, explosions, and process related failures.  

 According to the CSB (2007) investigation report on the 2005 BP-Texas City refinery 

accident, the catastrophe was initiated by looming organizational safety deficiencies at all 

stages of refinery process units operations. In addition, years of inconsistent reporting and 

recording of numerous near miss events and the lack of investigation on the growing risks 

to the mechanical integrity program for process equipment’s of the Texas City refinery 

process units, massively contributed to the March 2005 disaster (Thomson, 2013; 

Knegtering and Pasman, 2009). Duty holders in the petroleum refinery industry tend to 

conceal salient information relating to major accident hazards or major events 

information, to protect their company reputation. Also, concealing major events 

information, portrays effective safety performance of their operations, to benefit from low 

insurance costs, and to create a lower risk perception about petroleum refinery operations 



to the regulators, government and the public (Nolan, 2014). Irrespective of the continuous 

development in safety design methods and operating procedures to overcome the high 

risks, which pose significant threat to life of personnel in PRPU environment, recordable 

losses due to major accidents still occur (Reniers and Amyotte, 2012; Vinnem et al., 2012; 

Knegtering and Pasman, 2009). Therefore, it is crucial to readdress the issue of PRPU 

risk management relating to technical, organizational, operational and external risk 

problems, which can result in high risk of disruption of PRPU operations. In order to 

mitigate high risk of PRPU accident, it is important to analyse and prioritise the 

significant root causes of disruption of PRPU operations, in order to improve the risk 

management process in a PRPU domain. Therefore, critical risk elements and their 

associated attributes that can cause the disruption of a PRPU operation must be analysed 

and prioritised in order to determine their level of influence in contributing to the 

disruption of petroleum refinery operations. Proactively identifying and prioritising the 

risk elements of refinery process units is vital to risk management of petroleum refinery 

process units operations. The outcome of the evaluation and the prioritization process can 

be utilised to support decision makers and duty holders’ aspirations in the petroleum 

refining industry, to enhance adequate decision-making, in terms of allocating resources 

efficiently. This paper is organised as follows. Section 2 presents a review of petroleum 

refinery risk elements. Section 3 presents a transparent description of the fuzzy linguistic 

assessment methodology, which was utilised in this study. Section 4 presents a case study 

analysis based on the methodology steps. Discussion and conclusion are presented in 

Sections 5 and 6. 



2. Refineries process unit risk elements  

The process of investigating and identifying critical risk elements for major hazard 

facilities like petroleum refinery process units has to be rigorous due to the complexity 

and diversity of their operations. The diagnosis of the risk elements and their attributes is 

often based on the accident investigation reports obtained from US Chemical Safety 

Board (CSB), UK Health and Safety Executive (HSE), and Analysis, Research and 

Information on Accidents (ARIA) database (ARIA (2012); CSB (2008); CSB (2001); 

HSE (2005);HSE (2003)and HSE (1997). The selection of the most critical risk elements 

and their attributes is carried out based on a comprehensive review of the major accidents 

from the aforementioned sources and brainstorming session with field experts in 

petroleum and gas refinery operations.  

The risk elements and their associated attributes are represented in a hierarchical model. 

The model is an illustrative structure that depicts the common interactions of risk 

elements and their attributes, in order to analyse the disruption risk of PRPU operation. 

The overall effects of the risk elements and their attributes on PRPU operations can be 

quantify by incorporating an effective risk modelling methodology. The most significant 

risk elements that can cause interruption of petroleum refinery process units’ safety and 

effectiveness in operation are enumerated in Table 1 and are further discussed in detail in 

Sections 2.1 to 2.4.  The hierarchical model for petroleum refinery, process units’ risk 

elements and their attributes is presented in Figure 1. 

2.1 Technical risk elements  

In a major hazard facility like a petroleum refinery, a variety of potentially hazardous 

products are being produced from crude oil, therefore, it is very important that the 



technical reliability of functional assets used in refinery process units is achieved at an 

optimum level to enable smooth operations. Any failure or deficiency in technical 

measures and performance can cause significant issues, such as process equipment, 

instrument, piping and utility system failures, which can interrupt smooth operations of 

refinery process units and cause huge financial consequences. Due to the complexity of 

technology to control and maintain operational reliability of refinery process units and 

other interconnected structures, there is a need to consider the aforementioned risk issues 

in order to identify and understand their interactions and influences with other potential 

hazards that can lead to accidents.  

2.2 Operational risk elements  

Refinery process units consist of several interconnections of complex equipment and 

machinery, which operate, in extreme conditions. Any deterioration in operating 

performance of the equipment and machinery under severe conditions in the refinery 

process unit environment, can result in a terrible operational hazard that can sometimes 

affect operations such as start-up, shutdown, maintenance, processing and storage (Shin 

2014; Shin 2013; Khan and Amyotte, 2007). If a significant operational hazard is not 

critically addressed in an appropriate fashion, it may increase the probability of 

operational risks, which may result in higher operating costs, production loss, and 

dangerous situations that could cause a serious accident. In order to reduce high risk of 

operational failure and boost refinery process unit’s operational availability and reliability, 

focus must be on operational risk elements that are considered as important initiator of 

disruptions to refinery process unit operations. Attributes such as deviations from 

operational procedure, operator incompetency, inadequate communications and 

inadequate maintenance procedure are identified as the most critical elements of 



disruption risk that can threaten refinery process units’ operational reliability and 

availability.   

2.3 Organizational risk elements  

In the petroleum refining industry, organizational drive for efficiency and cost cutting can 

be a direct influence on overall safety perception and the safety level in the organization. 

Organization safety alertness and focus is crucial to proactive evaluation and management 

of safety in a high risk critical system like a petroleum refinery. High risk of process unit 

operations needs to be anticipated and appropriate organizational safety management 

approach should be adopted in a systematic manner to prevent the risk or to mitigate the 

consequences of risk. In a petroleum refinery, organizational safety management under-

performance is a critical issue that has wreaked havoc by contributing to major refinery 

accidents. For example, the BP Texas refinery accident in 2005 and Chevron Richmond 

refinery accident in 2012 provides a clear view of the significant impact of organizational 

safety management under-performance, as a major factor in the build-up to the accident. 

In order to maintain a high level of organizational safety performance in petroleum and 

gas refineries, it is important to consider some significant root causes of organizational 

risk elements. Examples are inappropriate management procedure, inappropriate decision 

making, inadequate staffing, poor safety monitoring and auditing, and lack of safety 

training and drills.  

2.4 External risk elements  

To reduce the risk of petroleum refinery process unit accidents or mitigate the 

consequences, there is a need to address core external risk elements, which have 

contributed significantly to accidents in the past, in petroleum and gas refineries. Root 



causes of external risk element, such as natural hazards, sabotage and terrorist attacks, 

have contributed to disruption of PRPU operations.  

Table 1: Significant risk elements and attributes 

Level 2 risk element Level 3 attributes 

𝐸1   Technical risk element 𝐸11    Process equipment failure 

 𝐸12    Instrument failure 

 𝐸13    Piping system failure 

 𝐸14    Utility system failure 

𝐸2   Organizational risk element 𝐸21    Inappropriate management policy/procedure 

 𝐸22    Inappropriate decision making 

 𝐸23    Inadequate staffing 

 𝐸24    Poor safety monitoring/auditing  

 𝐸25    Lack of safety training/drill 

𝐸3   Operational risk element 𝐸31     Deviation from operation procedure 

 𝐸32     Operator incompetency 

 𝐸33     Inadequate communication 

 𝐸34     Inadequate maintenance procedure 

𝐸4    External risk element 𝐸41     Natural hazard 

 𝐸42     Sabotage 

 𝐸43     Terrorist attack 

 

The hierarchical levels of the disruption risks elements presented above is based on robust 

literature review and meticulous study of major accidents in the oil and gas-refining 

domain. The main attributes of the risk elements (organizational, operational and external) 

describe human factor issues that have been recurrent incidents or part of contributory 

causes to major accidents. Notable accident reports and literatures such as CSB, (2007); 



CSB (2014a) CSB (2014b); CSB (2014c); CSB (2017a); CSB (2017b); Qi et al. (2012) 

Baybutt, (2003) have all emphases the gap  for improving knowledge on 

human/organizational factors as a vital paradigm to improve system safety in the oil and 

gas-refining refining sector. The element of human factors, which are represented as 

attributes associated with organizational, operational, and external in the hierarchy model 

present in this study are in concur with the underlying human and organizational factors 

broken down into categories in Gordon, (1998) and Bea, (1998). The hierarchical model 

integrate Schönbeck et al. (2010) ideology, which indicates that the operation of a highly 

risky socio technical system is reliant on the interaction of technical, organisational, 

managerial, human, social and environmental elements. Therefore, the hierarchical levels 

presents a corroborated picture of a causative model that fulfil the mechanism of a holistic 

approach for modelling disruption risks in a petroleum refinery domain.   

Øien et al. (2011) conducted a research on the concepts safety indicator and risk indicator 

required to measure safety or risk. The main function of the concepts is a measure of 

safety performance to describe the safety level within an organization, establishment, or 

work unit. Their study is structured according to a combination of two perspective in 

relation to develop a search for accidents causals considering the path from technical, to 

human and organisational causes. Thus, there perspective is viewed in the light of a 

predictive versus a retrospective view. In retrospect, the measure of establishing the 

concepts of safety/risk indicator in terms of technical–human–organizational perspective 

and further extends to look at remote causes as external factor. Therefore, Øien et al. 

(2011) substantiate that the proactive approaches for the assessment of underlying factors’ 

influence on safety/ risk can be illustrated by reversing the development moving from 

technical, to human, to organizational  and to external factor for the purpose of accident 



investigation. This indicates that there is interdependences in terms of analysing the 

interaction path among the underlying factors. Nevertheless, there are challenges relating 

to dilemma with lack of data and lack of consensus in terms of prediction or estimating 

the path of dependencies. This have to do with biases of experts’, because 

interdependencies of factors are measured based on different approaches, which can lead 

to oversimplification of influences path in a safety causal model (Mohaghegh et al., 2009).   

It is recognizable in risk modelling of major accidents in oil and gas refining domain that 

organizational factor, technical system failure coupled with human and external events 

are always defined in the scope of investigation.  

Overview of the notion pathway of risk models from technical, to human, to 

organizational and external factor; differentiate the theoretical interest of researchers in 

the safety community. Hence, this study concentrate majorly on the background 

knowledge of experts, overview of lesson from major accident causal in relation to 

technical, organizational operational, and external element of disruption risks to 

determine the significance of risk elements and their  attributes using a quantitative 

assessment method.  

 

 

 

 

 

 

 

 

 



3. Methodology 

In order to enhance a comprehensive risk management of petroleum refinery process unit 

operations, it is very important to carry out effective risk modelling of disruption risks of 

PRPU operations. Therefore, identifying and assessing the most significant PRPU risk 

elements and attributes will contribute a first phase of proactive risk management of 

PRPUs operations. A systematic approach based on utilising a Fuzzy Linguistic 

Preference Relation (FLPR) technique is incorporated into the methodology steps in this 

paper. The methodology will provide the flexibility to quantify experts’ judgements 

qualitatively, in order to analyse the risks of PRPU in a situation where the availability 

and consistency of risk data is uncertain. The following steps present a transparent 

description of the methodology: 

Step 1: Identification of risk elements and attributes. 

Step 2: Develop a generic hierarchical model based on the risk elements and attributes.                                                                                     

Step 3: Linguistic assessment of risk elements and attributes.                                                                                                         

Step 4: Apply an FLPR approach to determine the weight of all risk elements and 

attributes in the hierarchical structure. 

Step 5:  Ranking decision on each risk element and attributes according to the 

decreasing order of values. 

 3.1 Identification of risk elements and attributes of PRPU disruption  

In view of the complexity of refineries, process units, structures and operations, the risk 

elements and attributes of disruption risk to PRPU operation are identified based on 

information extracted from a literature review of historical accident reports, literatures on 



accident analysis and brainstorming session with domain experts. The process of 

identification of PRPU risk elements and attributes is important to have in-depth 

knowledge and a real understanding of the PRPU disruption risks problem.  

3.2 Hierarchical structure of petroleum refineries process unit disruption 

risk 

An integrated hierarchical structure of refinery process units risk elements relationship, 

which incorporates important diverse details, is developed. The hierarchical structure for 

the PRPU risk elements provides systematic interpretation of risk elements interactions, 

such that an attribute at a lower level is linked to the risk element at higher level. For 

instance, attribute at lower levels as process equipment failure is a subset element of 

technological risk element at a higher level. For the purpose of this study, the term 

‘element’ is used to describe part of something, particularly situations or activities that 

can initiate hazardous events (Wu et al., 2015). Figure 1 presents the detailed hierarchical 

model for refinery, process units’ disruption risks. 

 



Level 1

Level 3

Disruption risk of 
refinery process 
unit operations

Technical risk 
element 

Organizational 
risk element 

Operational risk 
element 

External risk 
element 

Process equipment failure

Piping system failure

Instrument failure

Utility system failure

Inappropriate management policy 
and procedure

Poor safety monitoring and audit

Lack of safety training/drill

Inappropriate decision 
making

Inadequate staffing

Deviation from operation 
procedure

Operator incompetency

Inadequate communication

Inadequate maintenance 
procedure

Natural hazard 

Sabotage

Terrorist attack

Level 2

 

Figure 1. Hierarchical model for disruption risk of petroleum refinery process unit 

operation 

 

 



3.3 Linguistic assessment of risk elements and attributes 

Linguistic variables are regarded as expressions in natural or artificial language, which 

can be implemented to indicate the preference value of one criteria over another in a 

decision-based hierarchical model. For the purpose of this study, the idea of using the 

linguistic assessment variables is to deal with complexity or inconsistency of decision 

maker’s opinion in order to express it in a quantitative manner. Linguistic expressions 

such as; absolutely not important, very strongly not important, essentially not important, 

weakly not important, equally important, very strongly important and absolutely 

important are used for pairwise comparisons of risk elements and attributes of disruption 

risk of PRPU operations. The linguistic expressions can expressed in fuzzy numbers 

based on the Triangular Fuzzy Number (TFN) proposed by (Chen and Hwang, 1992). 

TFN is a fuzzy set function that can be adopted to deal with the uncertainty and vagueness 

associated with decision makers’ opinion in terms of solving practical problems. TFN 

provides decision makers’ with a reasonable way to represent subjective and imprecise 

information in a logical manner. For a fuzzy number, 𝑃̃, TFN can be denoted by 𝑃̃ = 

(𝑙, 𝑚, 𝑢) where 𝑙, 𝑚 and 𝑢 are expressed as lower, upper and median bounds of the fuzzy 

number. Based on operational laws of TFN in Wang and Chen (2008), the algebraic 

operations of any two triangular fuzzy numbers 𝑃̃1  and 𝑃̃2  can be expressed in the 

following manner:  

Addition operation ⊕: 

 

𝑃̃1 ⊕ 𝑃̃2 = (𝑙1,  𝑚1,  𝑢1) ⊕ (𝑙2,  𝑚2,  𝑢2)  = (𝑙1 + 𝑙2 , 𝑚1 + 𝑚2, 𝑢1 +

𝑢2  )                                                                                                                                                (1)                                                                                                                   
  

 

 

 



Subtraction operation ⊝:  

       

𝑃̃1 ⊝ 𝑃̃2 = (𝑙1,  𝑚1,  𝑢1) ⊖ (𝑙2,  𝑚2,  𝑢2) =  (𝑙1 − 𝑢2 , 𝑚1 − 𝑚2, 𝑢1 − 𝑙2  )                                                                                                                          (2) 

Multiplication operation ⨂:  
 

𝑃̃1  ⨂ 𝑃̃2  = (𝑙1,  𝑚1,  𝑢1) ⊗ (𝑙2,  𝑚2,  𝑢2) = (𝑙1𝑙2 , 𝑚1𝑚2, 𝑢1𝑢2  )  ≅ for 𝑙1 >

 0, 𝑚1 > 0, 𝑢1 > 0.        

   

      (3) 

Division operation ⊘: 
 

𝑃̃1  ⊘ 𝑃̃2 =  (𝑙1,  𝑚1,  𝑢1)  ⊘  (𝑙2,  𝑚2,  𝑢2) ≅ (
𝑙1

𝑢2
,

𝑚1

𝑚2
,

𝑢1

𝑙2
) for 𝑙1 > 0, 𝑚1 >

0, 𝑢1 > 0              
                                                                                                            

       (4) 

Logarithm operation:  
       

log𝑘(𝑃̃) = (log𝑘 𝑙, log𝑘 𝑚, log𝑘 𝑢,) where k is base.                                                                             (5) 

 Reciprocal operation:  
    

(𝑃̃)
−1

= (𝑙, 𝑗, 𝑢)−1 ≅   for 𝑙, 𝑚, 𝑢 >  0          (6) 

The TFN membership function is expressed in Equation (7).  

𝜇𝑝̃ =  𝑓(𝑥) = {

 
𝑥−𝑙

𝑚−𝑙
    𝑙 ≤ 𝑥 ≤ 𝑚

𝑢−𝑥

𝑢−𝑚
  𝑚 ≤ 𝑥 ≤ 𝑢

0,                            

                                                                                                        (7) 

3.3.1 Triangular fuzzy conversion scale for pairwise comparison 

Appropriate selection of fuzzy scale for pairwise comparisons of fuzzy opinions of 

experts is adopted from Wang and Chen (2011). The pairwise comparison scale is used 

in this study to establish the intensity of risk elements of petroleum refineries process 

units disruption risk based on expert judgement, which are represented using linguistic 

terms with corresponding triangular fuzzy numbers as shown in Table 2. In addition, 

Figure 2 shows the triangular fuzzy importance scale.   



  1  0.1 0.9

1

0
  0.2   0.3   0.4   0.5   0.6 0.7 0.8

Figure 2. Triangular fuzzy importance scale adapted from Wang and Chen, 2011 

Table 2: Fuzzy linguistic assessment variables 

Linguistic variables  
Triangular fuzzy 

number  

Triangular fuzzy 

reciprocal scale 

Equally important (EQ) (0.45, 0.5, 0.55)  

Intermediate value between equally 

important and weakly more important  

(WE)  

(0.5, 0.55, 0.6)  (0.4, 0.45, 0.5) 

Weakly more important (WK)  (0.55, 0.6, 0.65)  (0.35, 0.4, 0.45) 

Intermediate value between weakly more 

important  and strongly more important 

(WS)  

(0.625, 0.675, 

0.725) 
 (0.275, 0.325, 0.375) 

Strongly more important (ST) (0.7,0.75, 0.8)  (0.2, 0.25, 0.3) 

Intermediate value between ST and very 

strongly more important (VT) 

(0.775, 0.825, 

0.875) 
 (0.125, 0.175, 0.225) 

Very strongly more important (VS) (0.85,0.9,0.95)  (0.05, 0.1, 0.15) 

Intermediate value between very strongly 

more important and absolutely  important 

(VA) 

(0.9, 0.95, 1)  (0, 0.05, 0.1) 

Absolutely  important (AB) (0.95, 1, 1)  (0, 0, 0.05) 

The inverse of the linguistic variables are 

(LWE), (LWK), (LWS), (LST), (LVT), 

(LVS), (LVA), (LVS), and (LAB). These 

inverse linguistic variables are 

represented as the triangular fuzzy 

reciprocal values. 

  

 



where LWE is the inverse of WE, LWK is the inverse of WK, LWS is the inverse of WS, 

LST is the inverse of ST, LVT is the inverse of VT, LVA is the inverse of VA, LVS is 

the inverse of VS and LAB is the inverse of AB.  

3.3.2 Determining the weight of experts  

It is important in a decision making process to determine the weights of experts employed, 

to give their subjective opinion on risk elements or attributes that can affect the reliability 

of a system under investigation. Therefore, the reliability and quality of experts’ 

subjective opinions are based on the assigned weights of each expert using criteria such 

as experience/knowledge (EK), academic qualifications (AQ), and industrial position (IP). 

The aforementioned criteria have been presented in Table 3. Hence, the experts’ weights 

can be calculated in a simple manner by using the Delphi method to obtain the weight 

score of each expert (𝑖 = 1, … . , 𝑛). Then, the weighting scores of the experts and their 

weights can be obtained based on Equations 8 and 9. 

Weighting score of 𝐸𝑖 = IP score of 𝐸𝑖  +  EK score of 𝐸𝑖 +  AQ score of 𝐸𝑖            (8)                                                                                 

W(𝐸𝑖) =
Weight score of 𝐸𝑖

∑ Weight score of 𝐸𝑖
𝑛
𝑖=1

                                                                                  (9)     

where W(𝐸𝑖) denotes the weight of expert 𝑖.                                                                                                   

In this study, the integration of the fuzzy judgments of a group of experts concerning 𝑛 −

1  pairwise comparison values (𝑝12 , 𝑝23 , … ..  𝑝(𝑛−1)𝑛)  was utilised to construct a 

consistent fuzzy linguistic preference relation matrix. The aggregated fuzzy judgment 

values of ‘n’ experts can be estimated using Equation 10.   

𝑝̅𝑖𝑗 =   {(𝑊(𝐸1)⨂𝑝̃𝑖𝑗
1 ) ⊕ (𝑊(𝐸2)⨂𝑝̃𝑖𝑗

2 ) ⊕ … … … ⊕ (𝑊(𝐸𝑛)⨂𝑝𝑖𝑗
n )}                      (10)                                                                         



where  𝑝̅𝑖𝑗 is the integrated fuzzy judgment values of ‘n’ decision makers and 𝑝𝑖𝑗
n  

 indicate the fuzzy judgment value of expert n.  

 

Table 3: Weighting scores for experts 

Criteria Categories Score 

Industrial position (IP) 

Petroleum refinery manager/ Refinery      

Consultant 

Senior (refinery engineer/process 

engineer/ process safety manager) 

Process safety analyst 

Junior engineer 

Technician 

5 

 

4 

                                                    

3                               

2 

1 

Experience / knowledge (EK)  

≥  20 years 

11- 20 years 

6-10  years 

1-5   years 

None of the above 

5 

4 

3 

2 

1 

Academic qualifications (AQ) 

PhD 

Master  degree 

Bachelor degree 

HND 

HNC 

5 

4 

3 

2 

1 

3.4 Application of an FLPR process for weight estimate  

In this study, the assessment of the relative weight of the risk elements and their attributes 

that can cause the disruption of a petroleum refinery process unit operations is important, 

in order to prioritize the risk elements and their attributes according to their levels of 

significance. The process will enhance the understanding of their impact in terms of 

disruption of PRPU operations. The FLPR procedure, which was presented in Section 3, 

is utilised in the assessment of PRPU risk elements and their associated attributes, in order 

to determine the degree of their importance.  

 The FLPR procedure lessens the difficulty and the inconsistency associated with the 

evaluation of a complex and sensitive hierarchical model problem (Wang and Chen, 2011; 

Huang et al., 2011). In terms of utilising the FLPR procedure in the estimation of the 



importance weights of the PRPU risk elements and their attributes, it provides the benefit 

of maintaining consistency of a pairwise comparison matrix of experts judgement or 

preferences (Wang and Chang 2007:Wang and Chen, 2008; Chen et al., 2011; Wang and 

Chen, 2011). In order to avoid uneven deductions in the assessment and ranking process 

of PRPU risk elements and their attributes, the FLPR procedure provides the flexibility 

for consistent comparability of the decision makers’ preference by using fuzzy linguistic 

assessments variables.   

When using the FLPR approach, it is quite easy to avoid exasperation in collecting a 

consistently sound judgement without prejudice from experts when using a questionnaire 

(Lu et al., 2013). Using FLPR approach is much more convenient and reasonable to avoid 

a complex pairwise comparison and to check for inconsistencies in the decision matrices. 

The schematic of the FLPR methodology is presented in Figure 4.   

3.4.1 Fuzzy linguistic preference relations (FLPR) 

Wang and Chen (2005, 2008, and 2010) developed the FLPR method. The method 

involves utilizing fuzzy linguistic assessment variables to construct fuzzy linguistic 

preference relation matrices based on consistent fuzzy preference relation. Chen et al., 

(2011), Wang and Chen (2011), Wang and Lin (2009) further used FLPR method in a 

suitable manner to solve multi-criteria decision-making problems. In a decision 

modelling problem, the preference of a decision maker when comparing a set of criteria 

X= (𝑥1, … … , 𝑥𝑛)  is depicted by  𝑛 × 𝑛  preference relation matrix P = [𝑝𝑖𝑗] . 𝑝𝑖𝑗  = 

𝑃(𝑥𝑖 , 𝑥𝑗  ) , for all 𝑖, 𝑗 ∈  {1, … … , 𝑛} . 𝑝𝑖𝑗  is depicted as the degree of importance of 

criterion 𝑥𝑖 over criterion 𝑥𝑗. Supposing 𝑝𝑖𝑗 = 0.5,  it indicates that there is no difference 

between 𝑥𝑖  and 𝑥𝑗  (𝑥𝑖~ 𝑥𝑗); 𝑝𝑖𝑗 > 0.5 indicates that 𝑥𝑖  is preferred to 𝑥𝑗  (𝑥𝑖 > 𝑥𝑗); and 



𝑝𝑖𝑗 = 1  indicates that 𝑥𝑖  is absolutely preferred to  𝑥𝑗 , and 𝑝𝑖𝑗 = 0  shows that 𝑥𝑗  is 

absolutely preferred to 𝑥𝑖. Hence, the preference matrix, P is assume to be an additive 

reciprocal given that  𝑝𝑖𝑗 + 𝑝𝑗𝑖 = 1 for all 𝑖, 𝑗 ∈ {1, … . , 𝑛}.  The rationale for developing 

a fuzzy linguistic preference relations matrix for a given set of criteria X is based on the 

consistent fuzzy preference relation concept and fuzzy linguistic assessment variables.  

Fuzzy linguistic assessment variables are generally depicted as 𝑃̃ = (𝑝𝑖𝑗) =  (𝑝𝑖𝑗
𝑙 , 𝑝𝑖𝑗

𝑚, 

𝑝𝑖𝑗
𝑢 ), where 𝑝𝑖𝑗

𝑙  and 𝑝𝑖𝑗
𝑢  indicates the lower and the upper bounds of the fuzzy number 𝑃̃, 

while 𝑝𝑖𝑗
𝑚 relatively indicates the median value instead of crisp values 𝑃 ̃ = (𝑝𝑖𝑗).  If the 

above preference relation matrix complies with additive reciprocal consistency, then the 

following propositions are equivalent.  

Propositions   

𝑝𝑖𝑗
𝑙 +  𝑝𝑗𝑖 

𝑢 =  1 ∀𝑖, 𝑗 ∈ {1, … … . . , 𝑛}                                                                           

𝑝𝑖𝑗
𝑚 +  𝑝𝑗𝑖 

𝑚 =  1 ∀𝑖, 𝑗 ∈ {1, … … . . , 𝑛}    

𝑝𝑖𝑗
𝑢 +  𝑝𝑗𝑖 

𝑙 =  1 ∀𝑖, 𝑗 ∈ {1, … … . . , 𝑛}   

𝑝𝑖𝑗
𝑙 +  𝑝𝑗𝑘

𝑙  + 𝑝𝑘𝑖
𝑢  =  

3

2
 ∀i <  j < k,      

𝑝𝑖𝑗
𝑚 +  𝑝𝑗𝑘

𝑚  + 𝑝𝑘𝑖
𝑚  =  

3

2
 ∀i <  j < k,   

  𝑝𝑖𝑗
𝑢 +  𝑝𝑗𝑘

𝑢  + 𝑝𝑘𝑖
𝑙  =  

3

2
 ∀i <  j < k,     

 𝑝𝑖(𝑖+1)
𝑙  +  𝑝(𝑖+1)(𝑖+2)

𝑙  +……. + 𝑝(𝑗−1)𝑗
𝑙  + 𝑝𝑗𝑖

𝑢  =  
(𝑗−𝑖+1)

2
   ∀i <  j, 

 𝑝𝑖(𝑖+1)
𝑚  +  𝑝(𝑖+1)(𝑖+2)

𝑚  +……. + 𝑝(𝑗−1)𝑗
𝑚  + 𝑝𝑗𝑖

𝑚  =  
(𝑗−𝑖+1)

2
   ∀i <  j, 

𝑝𝑖(𝑖+1)
𝑢  +  𝑝(𝑖+1)(𝑖+2)

𝑢  +……. + 𝑝(𝑗−1)𝑗
𝑢  + 𝑝𝑗𝑖

𝑙  =  
(𝑗−𝑖+1)

2
   ∀i <  j,         

         

(11) 

In the case of decision matrix with entries which are in the interval of [-c, 1+c] given  

(𝑐 > 0)  rather than interval  [0,1],  the following transformation function is used to 

transform the obtained fuzzy numbers to preserve the reciprocity and additive consistency 

f : [-c, 1+c] → [0,1]. 



𝑓 (𝑥𝑙) =  
𝑥𝑙 +𝑐 

1+2𝑐
 , 𝑓  (𝑥𝑚)  =  

𝑥𝑚 +𝑐 

1+2𝑐
  ,   𝑓(𝑥𝑢) =  

𝑥𝑢 +𝑐 

1+2𝑐
                                                  (12) 

where 𝑓 (𝑥𝑙), 𝑓(𝑥𝑚) and 𝑓(𝑥𝑢) depict transform functions for the lower, medium and  

upper bound of  entries in a decision matrix that are in the interval [-c, 1+c].  𝑥𝑙 , 𝑥𝑚, 𝑥𝑢 

are defined as the lower, medium and upper bound values of all elements of a fuzzy 

linguistic preference relation (FLPR) matrix. In addition, c is the least value of all 

elements in FLPR matrix, which are not in interval of [0,1]. 

3.4.2 Fuzzy linguistic preference relation procedure for weighing and ranking 

Step 1. Decision makers express their fuzzy opinions on a set of alternatives X = 

{𝑥1 , 𝑥2 … … 𝑥𝑛} in a decision problem with pairwise comparisons of the alternatives using 

fuzzy linguistic assessment variable and develop an incomplete consistent FLPR matrix 

𝑃̃ = (𝑝̃𝑖𝑗)𝑛×𝑛 with only n-1 judgments {𝑝12, 𝑝23, … … . . , 𝑝𝑛−1𝑛}.  

Step 2. Develop a complete FLPR matrix 𝑃̅̃ = (𝑝̅𝑖𝑗)𝑛×𝑛  by adopting the known elements 

in 𝑃̃ and the reciprocal additive propositions to calculate the unknown elements in 𝑃̃.   

Step 3 Applying linguistic averaging operator to determine the average 𝐴𝑖̃  of the ith 

alternative over all other alternatives in order to obtain the fuzzy weights of all 

alternatives. 

𝐴𝑖̃ =
∑ 𝑝̅̃𝑖𝑗

𝑛
𝑗=1

𝑛
  for all 𝑖                                                                                                    (13)     

to calculate the averaged 𝐴𝑖̃  of  the ith alternative over other alternatives.                 

The weight  𝑊̃ of each alternative is estimated as:  

𝑊̃ =  𝐴𝑖̃/ ∑ 𝐴𝑖̃
𝑛
𝑖=1                                                                                                            (14)        



Step 4. Defuzzification process of final fuzzy weight values of alternatives is based on 

the adoption of defuzzification techniques such as the Centre Of Area (COA), fuzzy mean 

and spread method and other methods like Mean Of Maximum (MOM), and 𝛼 cut. A 

simple approach using fuzzy mean and spread method by (Lee and Li, 1988) is utilized 

to obtain the crisp value of triangular fuzzy values. The fuzzy mean and spread method 

is reliable in terms of defuzzifying and ranking of fuzzy numbers because of its easiness 

to determine the optimum alternatives. The fuzzy mean and spread method for 

defuzzification is expressed as:  

x(𝑈̃𝑖) = (𝑙 + 𝑚 + 𝑢)/3                                                                                                  (15)  

x(𝑈̃𝑖) represent the fuzzy mean of a TFN, where 𝑙 and 𝑢 depict the lower and the upper 

bound of the TFN, and 𝑚 is the median value. 

Step 5. Determination of the optimum alternative from the highest value of fuzzy mean 

x(𝑈̃) values of all alternatives.  

Using the stated procedure above, a pairwise comparison FLPR matrix can be constructed 

easily based on (𝑛 − 1) judgments for 𝑛 criteria or alternatives.  
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Figure 4. Schematic of FLPR methodology for assessment and ranking of disruption 

risks of PRPU operation 

4. Case study 

A case study of an onshore complex petroleum refinery, with over 20 years of operation, 

reasonable management of change in organizational structure and policies, and fairly 

reliable safety standards, is considered for investigation. With the aim of reducing high 

risk of disruption of PRPU operation, the major challenge is how to determine the 



importance level of the risk elements and their attributes, which has been identified and 

approved by experts as the significant causes of disruption of PRPU operations.  For the 

purpose of this study, six experts are successfully convinced to participate in the 

assessment process.  

 Step 1: Identify risk elements and attributes associated with the disruption of 

PRPU operation  

Critical literature review and brainstorming sessions with experts and scholars having 

years of practical experiences can provide a comprehensive understanding of petroleum 

refinery process unit operations. This will provide the basic information for identification 

of significant risk elements and attributes that are observed and perceived to be a 

significant threat to PRPU operations. In this study, four major risk elements and sixteen 

attributes are considered as the major threat to PRPU operations.   

 Step 2: Develop the hierarchical structure  

The relationship between the four major risk elements and sixteen attributes that are 

identified is presented in the hierarchical structure. The hierarchical structure provides 

reliable information for the risk evaluation process in order to enhance effective risk 

management of PRPU operations.  

 Step 3: Linguistic assessment of risk elements and attributes  

The linguistic variable for pairwise comparison rating for the risk elements and their 

attributes are presented in Table 2. The pairwise comparisons of risk elements and their 

attributes in the hierarchical structure are established based on the experts’ judgement. A 

questionnaire was provided to experts with 5 to 20 or more years’ of experience, in order 

to obtain their opinion on the disruption risk of refinery process unit operations. The 



experts conduct the pairwise comparisons of the risk elements with respect to the goal. 

They also compared the attributes with respect to the risk elements. The weights of the 

experts that gave the judgements on the pairwise comparisons of the risk elements and 

their attributes are obtained. Table 4 shows the experts weights based on Delphi 

evaluation procedure.   

Table 4: Weight of experts 

Position 

Experience/ 

knowledge 

proficiency 

Qualification Weighting factor Weight of experts 

Consultant  10 years PhD 5+3+5 = 13  
13

74
     = 0.176 

Senior engineer 5 years Masters 4+2+4 = 10  
10

74
     = 0.135 

Senior engineer Over 20 years  Bachelor degree 4+5+3 = 12  
12

74
     = 0. 162 

Senior manager Over 20 years PhD 5+5+5 = 15  
15

74
    = 0.202   

Senior engineer 5 years Masters 4+2+4 = 10   
10

74
   = 0.135 

Senior manager Over 15 years PhD 5+4+5 = 14  
14

74
   = 0.19 

                   74                1 

To determine the overall value of experts for the pairwise comparison of risk elements 

and their attributes, the weight of each expert and their rating were aggregated. The six 

expert judgments assigned to the pairwise comparison of risk elements are used to 

calculate the overall experts’ judgement on each risk element and their attributes’ in the 

hierarchical model. Table 5 shows the linguistic variables assigned by the experts for 

pairwise comparisons of the risk elements with respect to the goal. The judgment of the 

six experts for the pairwise comparison of risk elements, and the aggregated value of the 

six expert judgement for risk elements with respect to the goal are presented in Tables 6 

and 7. Furthermore, each expert’s linguistic judgment of all the attributes in regard to the 

risk elements is presented in Table 8.    

 



Table 5: The linguistic terms of expert judgement for pairwise comparisons of risk 

elements 

 Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Expert 6  

𝐸1 LST ST EQ VS LST WS 𝐸2 

𝐸2 VS WS LST LVT VS EQ 𝐸3 

𝐸3 LVT ST LST ST VS VS 𝐸4 

 

Table 6: Judgement of six experts for risk elements 

 Expert1(0.176) 
Expert 2 

(0.135) 

Expert 3 

(0.162) 

Expert 4 

(0.202) 

Expert 5  

(0.135) 
Expert 6 (0.19)  

𝐸1 (0.2, 0.25, 0.3) (0.7, 0.75, 0.8) 
(0.45, 0.5, 

0.55) 

(0.85, 0.9, 

0.95) 

(0.2, 0.25, 

0.3) 

(0.625, 0.675, 

0.725) 
𝐸2 

𝐸2 (0.85, 0.9, 0.95) 
(0.625,0.675, 

0.725) 
(0.2,0.25,0.3) 

(0.125, 0.175, 

0.225) 

(0.85, 0.9, 

0.95) 
(0.45, 0.5, 0.55) 𝐸3 

𝐸3 
(0.125, 0.175, 

0.225) 
(0.7, 0.75, 0.8) (0.2, 0.25, 0.3) 

(0.7, 0.75, 

0.8) 

(0.85, 0.9, 

0.95) 
(0.85, 0.9, 0.95) 𝐸4 

Table 7: Aggregated value of experts on pairwise comparisons of risk elements  

Risk elements Aggregated expert value Risk elements 

𝐸1 (0.52,0.57,0.62) 𝐸2 

𝐸2 (0.49,0.54,0.61) 𝐸3 

𝐸3 (0.56,0.61,0.67) 𝐸4 

 

Table 8: The linguistic terms of expert judgement for pairwise comparisons of 

attributes (FLRP) 

  Expert1 Expert 2 Expert 3 Expert 4 Expert 5 Expert 6  

𝐸1 𝐸11 LVS LST EQ VS LST EQ 𝐸12 

 𝐸12 ST VS AB EQ VS VS 𝐸13 

 𝐸13 VS ST LVS VT VS WS 𝐸14 

𝐸2 𝐸21 VS EQ LST ST VT VT 𝐸22 

 𝐸22 ST ST VS WS EQ VS 𝐸23 

 𝐸23 LST LST VS VS LVS LST 𝐸24 

 𝐸24 LVS WS VS EQ LVS LAB 𝐸25 

𝐸3 𝐸31 LVS EQ VS ST VS LST 𝐸32 

 𝐸32 VA EQ LST VS VS LWS 𝐸33 

 𝐸33 LST EQ VS ST LST ST 𝐸34 

𝐸4 𝐸41 ST LWS ST WS LST ST 𝐸42 

 𝐸42 VS LST WS EQ VS EQ 𝐸43 



 Step 5: Application of FLPR process to determine the weight of each risk element 

and their attributes in the hierarchical structure   

The weights of the risk elements and attributes of the disruption risk of PRPU operations 

are estimated using FLPR. Based on the application of FLPR procedure, the subjective 

response of experts can be transformed into quantitative variables to estimate the weight 

of risk elements and attributes presented in the hierarchical structure and rank them 

according to their level of importance.  

The feedback from the experts is utilised to construct an incomplete FLPR matrix for a 

set of n-1 preference values as stated in the FLPR process. The incomplete FLPR matrix 

values are represented in triangular fuzzy importance scale values as detailed in Table 2. 

The complete FLPR matrix is established using Step 2 of the FLPR procedure.  

The whole procedure for establishing the FLPR pairwise comparison matrix and the 

process of obtaining risk elements weights are illustrated in this study by presenting the 

evaluation of attributes with respect to a technical risk element. For example, the 

attributes defined as 𝐸11,  𝐸12,  𝐸13 and  𝐸14 , have only three pairwise comparison 

judgements (𝑝12, 𝑝23 𝑝34 ), which means comparisons from 𝐸11 to 𝐸12, from 𝐸12 to 𝐸13 

and from 𝐸13  to 𝐸14  are required to construct the fuzzy linguistic preference relation 

matrix. The pairwise comparison matrix structure for the attributes relating to the 

technical risk element is shown in Table 9.  Due to the differences in preferences and 

competencies of the experts, a questionnaire designed based on linguistic assessment 

variables is used to obtain fuzzy data on pairwise comparisons of the attributes relating 

to the technical risk element. The fuzzy data obtained from the experts is converted into 

triangular fuzzy values, which to construct the initial FLPR matrix as shown in Table 10. 



The proposition stated in Section 3.4.2, is used to develop the FLPR matrix of the 

attributes relating to the technical risk elements. 

Table 9: Pairwise comparison matrix structure for attributes relating to technical risk 

element 

Attributes 𝐸11 𝐸12 𝐸13 𝐸14 

𝐸11 𝑝11 𝑝12 𝑝13 𝑝14 

𝐸12 𝑝21 𝑝22 𝑝23 𝑝24 

𝐸13 𝑝31 𝑝32 𝑝33 𝑝34 

𝐸14 𝑝41 𝑝42 𝑝43 𝑝44 

 

Table 10: Incomplete FLPR pairwise comparison matrix of attributes with respect to 

technical risk element 

Attributes  𝐸11 𝐸12 𝐸13 𝐸14 

𝐸11 (0.5, 0.5, 0.5) (0.39, 0.43, 0.48) 𝑃13 𝑝14 

𝐸12 𝑝21 (0.5, 0.5, 0.5) (0.76, 0.81, 0.85) 𝑝24 

𝐸13 𝑝31 𝑝32 (0.5, 0.5, 0.5) (0.64, 0.69, 0.74) 

𝐸14 𝑝41 𝑝42 𝑝43 (0.5, 0.5, 0.5) 

 

Based on the FLPR process, an element 𝑝𝑖𝑗 can denote the ratio of the preference intensity 

of an attribute 𝑥𝑖 over attribute 𝑥𝑗 , which satisfy the condition that 𝑝𝑖𝑗 = 0.5. Then, this 

condition implies that no difference exist between attributes 𝑥𝑖  and 𝑥𝑗  after pairwise 

comparison. In Table 9, this condition applies to the diagonal elements 𝑝11, 𝑝22, 𝑝33 and 

 𝑝44 in the matrix structure, which were presented as triangular fuzzy number (0.5, 0.5, 

0.5) as shown in Table 10. Also,  𝑝12,  𝑝23  and 𝑝34  indicate the 𝑛 − 1 pairwise 

comparisons of four attributes with respect to the technical risk element. Hence, the 

unknown elements in the matrix which are  𝑝13, 𝑝14, 𝑝21, 𝑝24, 𝑝31, 𝑝32 , 𝑝41, 𝑝42  and 

𝑝43 are calculated using the FLPR propositions. The complete FLPR matrix for the 

calculations above is shown in Table 11. The FPLR matrix has certain values, which are 

not in the interval [0, 1]. Therefore, the FPLR matrix is transformed using the transform 

function as stated in Section 3.4.1 to preserve the reciprocity and additive consistency of 



the matrix. Table 12 shows the transformed FLPR matrix. Using the same steps in the 

FLPR procedure, the FPLR matrices for other attributes with respect to their risk elements 

and that of the risk element with respect to the goal are estimated and presented in Tables 

13, 14, 15, 16, 17, 18 and 19. Furthermore, the average values (𝐴𝑖̃) , the weights(𝑊)̃, and 

the deffuziffied values of all risk elements and their attributes are calculated and presented 

in Table 20. Defuzzified values are obtained based on the fuzzy mean and spread method 

to perform ranking of the risk elements and their attributes according to the level of their 

importance.  

Table 11: Complete FLPR pairwise comparison matrix of attributes with respect to 

technical risk element 

 𝐸11 𝐸12 𝐸13 𝐸14 

𝐸11 (0.50,0.50,0.50) (0.39,0.43,0.48) (0.65,0.74,0.83) (0.79,0.98,1.07) 

𝐸12 (0.52,0.57,0.61) (0.50,0.50,0.50) (0.76,0.81,0.85) (0.90,1,1.09) 

𝐸13 (0.17,0.26,0.35) (0.15,0.19,0.24) (0.50,0.50,0.50) (0.64,0.69,0.74) 

𝐸14 (-0.07,0.28,0.46) (-0.09,0,0.10) (0.26,0.31,0.36) (0.50,0.50,0.50) 

 

Table 12: Transform FLPR matrix of technical risk element attributes 

 𝐸11 𝐸12 𝐸13 𝐸14 

𝐸11 (0.51,0.51,0.51) (0.41,0.45,0.50) (0.64,0.72,0.79)  (0.76,0.92,1.0) 

𝐸12 (0.53,0.57,0.60) (0.51,0.51,0.51) (0.73,0.78,0.82) (0.85,0.94, 1.0) 

𝐸13 (0.22,0.30,0.38) (0.21,0.24,0.28) (0.51,0.51,0.51) (0.63,0.67,0.72) 

𝐸14 (0.02,0.09,0.25) (0,0,0.16) (0.30,0.34,0.38) (0.51,0.51,0.51) 

 

Table 13: Incomplete FLPR pairwise comparison matrix of risk elements with respect 

to goal 

 𝐸1 𝐸2 𝐸3 𝐸4 

𝐸1 (0.5,0.5,0.5) (0.52,0.57,0.62) 𝑝13 𝑝14 

𝐸2 𝑝21 (0.5,0.5,0.5) (0.49,0.54,0.61) 𝑝24 

𝐸3 𝑝31 𝑝32 (0.5,0.5,0.5) (0.56,0.61,0.67) 

𝐸4 𝑝41 𝑝42 𝑝43 (0.5,0.5,0.5) 

 

 

 

 



Table 14: Complete FLPR pairwise comparison matrix of risk elements with respect to 

goal 

  𝐸1 𝐸2 𝐸3 𝐸4 

𝐸1 (0.50,0.50,0.50) (0.52,0.57,0.62) (0.51,0.61,0.73) (0.57,0.72,0.90) 

𝐸2 (0.38,0.43,0.48) (0.50,0.50,0.50) (0.49,0.54,0.61) (0.55,0.65,0.78) 

𝐸3 (0.27,0.39,0.49) (0.39,0.46,0.51) (0.50,0.50,0.50) (0.56,0.61,0.67) 

𝐸4 (0.10,0.28,0.5) (0.22,0.35,0.45) (0.33,0.39,0.44) (0.50,0.50,0.50) 

 

Table 15: Complete FLRP pairwise comparison matrix attributes with respect to 

organizational risk element 

 𝐸21 𝐸22 𝐸23 𝐸24 𝐸25 

𝐸21 (0.50,0.50,0.50) (0.63,0.68,0.73) (0.83,0.93,1.03)  (0.74,0.87,1.04) (0.52,0.81,0.91) 

𝐸22 (0.27,0.32,0.37) (0.50,0.50,0.50) (0.70,0.75,0.80) (0.61,0.71,0.81) (0.39,0.53,0.68) 

𝐸23 (-0.03,0.07,0.17) (0.20,0.25,0.30) (0.50,0.50,0.50) (0.41,0.46,0.51) (0.19,0.28,0.38) 

𝐸24 (-0.04,0.13,0.26) (0.19,0.29,0.39) (0.49,0.54,0.59) (0.50,0.50,0.50) (0.28,0.32,0.37) 

𝐸25 (0.09,0.19,0.48) (0.32,0.47,0.61) (0.62,0.72,0.81) (0.63,0.68,0.72) (0.50,0.50,0.50) 

 

Table 16: Transformed FLRP matrix for organizational risk element attributes 

 𝐸21 𝐸22 𝐸23 𝐸24 𝐸25 

𝐸21 (0.50,0.50,0.50) (0.62,0.67,0.71) (0.81,0.90,0.99)  (0.72,0.84,1.0) (0.52,0.79,0.88) 

𝐸22 (0.29,0.33,0.38) (0.50,0.50,0.50) (0.69,0.73,0.78) (0.60,0.69,0.79) (0.40,0.54,0.67) 

𝐸23 (0.09,0.10,0.19) (0.22,0.27,0.32) (0.50,0.50,0.50) (0.41,0.46,0.51) (0.21,0.30,0.39) 

𝐸24 (0,0.16,0.28) (0.21,0.31,0.40) (0.49,0.54,0.58) (0.50,0.50,0.50) (0.31,0.33,0.38) 

𝐸25 (0.12,0.21,0.48) (0.33,0.47,0.60) (0.61,0.70,0.79) (0.62,0.67,0.70) (0.50,0.50,0.50) 

     

Table 17: Complete FLPR pairwise comparison matrix of attributes with respect to 

operational risk element 

 𝐸31 𝐸32 𝐸33 𝐸34 

𝐸31 (0.50,0.50,0.50) (0.50,0.55,0.60) (0.56,0.71,0.76) (0.69,0.74,0.89) 

𝐸32 (0.40,0.45,0.50) (0.50,0.50,0.50) (0.56,0.61,0.66) (0.09,0.19,0.29) 

𝐸33 (0.24,0.29,0.44) (0.34,0.39,0.44) (0.50,0.50,0.50) (0.53,0.58,0.63) 

𝐸34 (0.11,0.26,0.41) (0.71,0.81,0.91) (0.37,0.42,0.47) (0.50,0.50,0.50) 

 



Table 18: Complete FLPR pairwise comparison matrix of attributes with respect to 

external risk element 

 𝐸41 𝐸42 𝐸43 

𝐸41 (0.50,0.50,0.50) (0.56,0.61,0.66) (0.61,0.71,0.81) 

𝐸42 (0.34,0.39,0.44) (0.50,0.50,0.50) (0.55,0.60,0.65) 

𝐸43 (0.19,0.29,0.39) (0.35,0.40,0.45) (0.50,0.50,0.50) 

 

Table 19: Complete FLPR decision matrix for risk elements and attributes of PRPU 

operations 

 𝐸1 𝐸2 𝐸3 𝐸4  

𝐸1 (0.50,0.50,0.50) (0.52,0.57,0.62) (0.51,0.61,0.73) (0.57,0.72,0.9)  

𝐸2 (0.38,0.43,0.48) (0.50,0.50,0.50) (0.49,0.54,0.61) (0.55,0.65,0.78)  

𝐸3 (0.27,0.39,0.49) (0.39,0.46,0.51) (0.50,0.50,0.50) (0.56,0.61,0.67)  

𝐸4 (0.10,0.28,0.5) (0.22,0.35,0.45) (0.33,0.39,0.44) (0.50,0.50,0.50)  

𝐸1 𝐸11 𝐸12 𝐸13 𝐸14  

𝐸11 (0.51,0.51,0.51) (0.41,0.45,0.50) (0.64,0.72,0.79)  (0.76,0.92,1.0)  

𝐸12 (0.53,0.57,0.60) (0.51,0.51,0.51) (0.73,0.78,0.82) (0.85,0.94, 1.0)  

𝐸13 (0.22,0.30,0.38) (0.21,0.24,0.28) (0.51,0.51,0.51) (0.63,0.67,0.72)  

𝐸14 (0.02,0.09,0.25) (0,0,0.16) (0.30,0.34,0.38) (0.51,0.51,0.51)  

𝐸2 𝐸21 𝐸22 𝐸23 𝐸24 𝐸25 

𝐸21 (0.50,0.50,0.50) (0.62,0.67,0.71) (0.81,0.90,0.99)  (0.72,0.84,1.0) (0.52,0.79,0.88) 

𝐸22 (0.29,0.33,0.38) (0.50,0.50,0.50) (0.69,0.73,0.78) (0.60,0.69,0.79) (0.40,0.54,0.67) 

𝐸23 (0.09,0.10,0.19) (0.22,0.27,0.32) (0.50,0.50,0.50) (0.41,0.46,0.51) (0.21,0.30,0.39) 

𝐸24 (0,0.16,0.28) (0.21,0.31,0.40) (0.49,0.54,0.58) (0.50,0.50,0.50) (0.31,0.33,0.38) 

𝐸25 (0.12,0.21,0.48) (0.33,0.47,0.60) (0.61,0.70,0.79) (0.62,0.67,0.70) (0.50,0.50,0.50) 

𝐸3 𝐸31 𝐸32 𝐸33 𝐸34  

𝐸31 (0.50,0.50,0.50) (0.50,0.55,0.60) (0.56,0.71,0.76)  (0.69,0.74,0.89)  

𝐸32 (0.40,0.45,0.50) (0.50,0.50,0.50) (0.56,0.61,0.66) (0.09,0.19,0.29)  

𝐸33 (0.24,0.29,0.44) (0.34,0.39,0.44) (0.50,0.50,0.50) (0.53,0.58,0.63)  

𝐸34 (0.11,0.26,0.41) (0.71,0.81,0.91) (0.37,0.42,0.47) (0.50,0.50,0.50)  

𝐸4 𝐸41 𝐸42 𝐸43   

𝐸41 (0.50,0.50,0.50) (0.56,0.61,0.66) (0.61,0.71,0.81)    

𝐸42 (0.34,0.39,0.44) (0.50,0.50,0.50) (0.55,0.60,0.65)   

𝐸43 (0.19,0.29,0.39) (0.35,0.40,0.45) (0.50,0.50,0.50)   

        

 



Table 20: Evaluated weight and ranking of risk elements and attributes of PRPU 

operations 

Risk 

elements 

(level 2) 

Average Fuzzy weight Defuzzified 

values 

Normalized 

Crisp values 

Ranking  

𝐸1 (0.53,0.60,0.69) (0.23,0.30,0.40) 0.31 0.30 1  

𝐸2 (0.48,0.53,0.59) (0.21,0.27,0.34) 0.27 0.26 2  

𝐸3 (0.42,0.49,0.52) (0.19,0.25,0.30) 0.25 0.24 3  

𝐸4 (0.57,0.72,0.9) (0.13,0.19,0.27) 0.20 0.20 4  

Attributes  

(Level 3) 

    Global 

weight 

Global 

ranking 

𝐸11 (0.58,0.65,0.7) (0.26,0.32,0.38) 0.28 0.30 0.090 2 

𝐸12 (0.65, 0.7, 0.71) (0.30,0.35,0.39) 0.35 0.36 0.1080 1 

𝐸13 (0.39,0.43,0.47) (0.12,0.19,0.26) 0.19 0.20 0.0600 7 

𝐸14 (0.21,0.24,0.33) (0.10,0.12,0.18) 0.13 0.14 0.0420 14 

       

𝐸21 (0.63,0.93,1.02) (0.21,0.34,0.47) 0.34 0.33 0.0858 3 

𝐸22 (0.50,0.56,0.62) (0.16,0.21,0.29) 0.22 0.21 0.0546 9 

𝐸23 (0.27,0.33,0.38) (0.09,0.12,0.18) 0.13 0.13 0.0334 16 

𝐸24 (0.33,0.37,0.43) (0.12,0.14,0.20) 0.15 0.14 0.0364 15 

𝐸25 (0.44,0.51,0.61) (0.14,0.19,0.28) 0.20 0.19 0.0494 13 

        

𝐸31 (0.56,0.63,0.69) (0.25,0.31,0.39) 0.32 0.31 0.0744 5 

𝐸32 (0.39,0.44,0.49) (0.17,0.22,0.27) 0.22 0.22 0.0528 11 

𝐸33 (0.40,0.44,0.50) (0.18,0.22,0.28) 0.23 0.23 0.0522 12 

𝐸34 (0.42,0.50,0.57) (0.19,0.24,0.32) 0.25 0.24 0.0576 8 

       

𝐸41 (0.56,0.61,0.66) (0.34,0.40,0.48) 0.40 0.40 0.0800 4 

𝐸42 (0.46,0.50,0.53) (0.28,0.33,0.39) 0.33 0.33 0.0660 6 

𝐸43 (0.35,0.40,0.45) (0.21,0.26,0.33) 0.27 0.27 0.0540 10 

 Step 5: Ranking decision 

The calculation of the weights and ranking of risk elements and their attributes according 

to their importance level is presented in Table 20. Based on the result obtained, the trend 



of the ranking in descending order of risk elements in level 2 of the hierarchical model 

indicates that 𝐸1 > 𝐸2 > 𝐸3 > 𝐸4 . Also, the trend of ranking of attributes in level 3 based 

on their global weight indicates that 𝐸12 > 𝐸11 > 𝐸21 > 𝐸41 > 𝐸31 > 𝐸42 >  𝐸13 >

 𝐸34 > 𝐸22 > 𝐸43 > 𝐸32 > 𝐸33 > 𝐸25 > 𝐸14 >  𝐸24 > 𝐸23 .   

5. Discussion  

The ranking order for the level 2 of the hierarchical model, indicates that technical and 

organizational risk elements are more critical in terms of causing the disruption risk of 

PRPU operations. Due to the closeness of the ranking value of organizational risk element 

and operational risk element, we can substantiate that organizational element are risk-

influencing elements that has received a lot of attention in safety/risk research. During 

the past decades, it studies is highly relevant for the operation of safety of socio technical 

systems (e.g. Rahimi and Rausand (2013); Skogdalen and Vinnem, 2011; Aven et al. 

2006 Sklet et al. 2005; Mearns et al. 2001). Various studies across a wide range of socio 

technical systems have shown a positive correlation between organisational factors and 

safety performance (Mearns et al., (2003) and Itoh et al., (2004) cited in Reiman and 

Rollenhagen, 2011). Thus, the outcome of the analyses in this study shows that 

organizational risk element is relevant in the context specific to organisational perspective 

on all aspects of safety of a petroleum refinery operation. Furthermore, indications from 

Bley et al. (1992) cited in Schönbeck et al. (2010), stated that any probabilistic risk model 

that fails to observe the organisational factors definitely undervalue the overall risk to an 

undetermined extent.  This line of thought clearly substantiate the ranking of 

organisational element above operational risk element in terms of contributing to 

disruption risk in a petroleum refinery domain.  

https://scholar.google.com/citations?user=Sf2Q_cIAAAAJ&hl=en&oi=sra


The ranking of the attributes in the level 3 of the hierarchical model, indicates that 

instrument failure, process equipment failure, inappropriate management policy, 

inappropriate decision making, deviation from operation procedure, inadequate 

maintenance procedure and natural hazard are considered as the most significant 

attributes in relation to the risk elements. At present, no benchmark is available, with 

which the ranking results from this study can be compared. Therefore, the observations 

from other related works to this research domain, are utilised to substantiate the ranking 

result in this study. For instance, Moura et al., (2016) analyse multi-attribute accident 

data set, which include major accidents in the petroleum refining industry. The result of 

the analysis indicates that equipment failure has a higher rate of recurrence in terms of 

triggering accidents, when compared to other accident triggering attributes such as 

inadequate procedure, inadequate communication, maintenance failure and management 

problem. Saleh et al., (2014), diagnose petroleum refinery accidents triggering attributes 

such as instrument failure, deviation from operational procedure, inadequate 

communication and poor/inadequate decisions. However, instrument failure was 

recognized and analysed in-depth more than the other attributes. This is because of its 

high probability of developing into an adverse latent condition, which can precipitate the 

occurrence of a major accident with catastrophic consequence. Kidam and Hurmes, 

(2013a), conduct a statistical review of major accident cases in the process industry. The 

analysis identifies that the main contributors to accidents are 78% technical causes, 20% 

organizational/human causes and 2% external causes. This outcome can be compared to 

the ranking result of the risk elements in the level 2 of the hierarchical model. Kidam and 

Hurmes (2013b), concerning the analysis of accident sub contributors indicates that 

equipment/instrument failure, and deviation from operation procedure, are more critical, 



when compared to other accident sub-contributors relating to inadequate maintenance, 

inadequate communication (poor communication) and inadequate decision-making 

(misjudgment). Zhang and Zheng, (2012) probe the root causes of accidents in the process 

industries in China. The findings from their work indicate that active 

equipment/instrument failure is the highest causative factors, when compared to other 

critical events such as deviation from operation procedure, piping failure, natural hazard 

and human related causes. Furthermore, Underwood and Waterson (2014) indicated that 

traditional cause and effect accident models suggest that complex systems accidents are 

initiated by risky occurrence such as catastrophic equipment failure.  

The lowest ranked attributes in relation to the risk elements are poor safety monitoring 

and audit, utility system failure and lack of safety training/drill. This does not suggest that 

they are not likely to initiate disruption risk of PRPU operations, but their critical level is 

relatively low when compared to the other attributes.  Based on the rationalisation 

provided to support the ranking results in this research, it is envisaged that the ranking 

results are a reliable risk information source to support the risk management process in a 

petroleum refinery domain.  

 

 

 

 

 

 



 

6. Conclusion 

Addressing the issue of disruption risk of PRPU operations is very crucial in order to 

prevent the risk of catastrophic accidents in a petroleum refinery domain. This study 

presents a novel methodology using fuzzy linguistic preference relation approach to 

evaluate the risk elements and attributes which can cause disruption of PRPU operations. 

The fuzzy linguistic preference relation is utilised to analyse the hierarchical structure of 

disruption risk of the PRPU operations and to determine the weights of risk elements and 

attributes, and to obtain the final ranking. In addition, fuzzy linguistic preference relation 

effectively addresses the uncertainty and the imprecision from subjective judgements of 

domain experts.  

The subjective judgement of multiple experts on four risk elements and sixteen attributes 

of PRPU disruption risk is represented as fuzzy linguistic assessment variables, which are 

expressed by triangular fuzzy values to overcome vagueness or ambiguity of the 

judgements and for easy computation process. Using the FLPR approach provides the 

most convenient way to reduce the number of pairwise comparisons of risk elements and 

attributes in a questionnaire sent to domain experts. The questionnaire allows experts to 

express their response in a consistent manner without prejudice. The result in this study 

provides valuable reference to duty holders and stakeholders of petroleum refineries to 

improve their perception about how risk elements and attributes can be critically 

prioritised in the risk management process. The methodology proves to be a dependable 

evaluation procedure in terms of its flexibility and ease of application, when compared to 

other hierarchical modelling methods like fuzzy AHP, which requires more information 

and consistency checks in the decision making process. Finally, this study has 



demonstrated that the proposed methodology provides a resourceful, yet flexible 

approach to solve a risk problem in a practicable manner.  
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