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Variants of Partial Update Augmented CLMS
Algorithm and Their Performance Analysis

Vahid Vahidpour, Amir Rastegarnia, Azam Khalili, Wael M. Bazzi, and Saeid Sanei,

Abstract—Naturally complex-valued information or those pre-
sented in complex domain are effectively processed by an aug-
mented complex least-mean-square (ACLMS) algorithm. In some
applications, the ACLMS algorithm may be too computationally-
and memory-intensive to implement. In this paper, a new algo-
rithm, termed partial-update ACLMS (PU-ACLMS) algorithm is
proposed, where only a fraction of the coefficient set is selected
to update at each iteration. Doing so, two types of partial-
update schemes are presented referred to as the sequential and
stochastic partial-updates, to reduce computational load and
power consumption in the corresponding adaptive filter. The
computational cost for full-update PU-ACLMS and its partial-
update implementations are discussed. Next, the steady-state
mean and mean-square performance of PU-ACLMS for non-
circular complex signals are analyzed and closed-form expres-
sions of the steady-state excess mean-square error (EMSE) and
mean-square deviation (MSD) are given. Then, employing the
weighted energy-conservation relation, the EMSE and MSD
learning curves are derived. The simulation results are verified
and compared with those of theoretical predictions through
numerical examples.

Index Terms—Augmented CLMS, energy-conservation,
non-circular, partial-update, sequential algorithm, stochastic-
algorithm, widely linear model.

I. INTRODUCTION

COMPLEX-valued adaptive filters are exploited in many
practical signal processing applications such as channel

estimation [1], [2], frequency estimation [3]–[5], and self-
interference cancellation [6], [7]. The standard complex least-
mean-square (CLMS), as the generic extension of LMS al-
gorithm in the complex domain C [8], [9], is one of the
widely-used adaptive signal processing algorithms, because
of its simplicity and ease of implementation [10], [11]. In
some scenarios, often the source signals are non-circular or
improper. Recent advances have put this assumptions under
scrutiny [12], [13]. Specifically, adaptive filtering techniques
developed with non-circularity or impropriety in mind have
been manifested to possess superior performance in an ex-
panding number of applications [12]–[15].

The augmented complex statistics have provided the pos-
sibility to adequately use the complementary information of
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signal non-circularity [13], [16]–[19]. This has served as a
basis for the evolution of the class of augmented adaptive
filtering algorithms. These adaptive algorithms are usually
known as widely linear algorithms, e.g., ACLMS algorithms
[9], widely linear LMS (Wl-LMS) [20], augmented affine pro-
jection algorithm (AAPA) [21], widely linear recursive least-
squares (WL-RLS) [22], regularized normalized augmented
complex LMS (RN-ACLMS) [23], and augmented extended
Kalman filter (AEKF) algorithms [24].

Some adaptive filtering applications, like channel equaliza-
tion, echo cancellation, and multi-user detection, require an
adaptive filter with a very large coefficient vector. In such ap-
plications, the ACLMS algorithm may be too computationally-
and memory-intensive to implement. In order to overcome the
mentioned constraints, one might allow a subset of the adaptive
filter coefficients to be updated at each iteration, rather than
the entire coefficient vectors. Such a process is called partial
coefficient update or briefly partial update [25]. Availability
of a finite number of hardware multipliers often driven by
cost, space and power consumption considerations, is the main
reason for partial updating.

To reduce the computational costs and power consumption,
various types of partial update schemes, such as periodic and
sequential LMS algorithm [26], and stochastic partial updating
[27] have been applied to LMS algorithm. In the periodic
LMS algorithm, all the filter coefficients are updated every
P -th iteration. The sequential LMS algorithm updates only a
portion of coefficients at each iteration. The stochastic partial-
update LMS [27] is a randomized version of sequential LMS
algorithm in that the coefficient subsets are chosen in a random
instead of deterministic fashion. Another approach referred to
as max partial-update LMS algorithm has been proposed in
[28]–[30]. Diniz and Werner [31] proposed another variant
known as set-member-ship partial-update NLMS algorithm
based on data-selective updating. The performance analysis of
time-domain adaptive filters in the under-modeling situation
is established in [8], where a deficient length ACLMS in C
has been considered for second order improper signals. Some
distributed versions of partial-update adaptive filters such as
[32]–[37] have been developed in the literature.

In this paper, a reduced complexity ACLMS algorithm
employing partial updating for improper complex signals is
proposed. The algorithm, referred to as partial-update ACLMS
(PU-ACLMS) algorithm involves selection of a fraction of the
coefficients at every iteration. To this end, we consider two
types partial-update schemes namely sequential and stochastic
partial-update.
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TABLE I
SYMBOLS AND THEIR DESCRIPTIONS

Symbol Description

(·)T Matrix transposition
(·)∗ Complex conjugate
(·)H Hermitian transposition
‖ · ‖2 Squared Euclidean norm
‖x‖2Σ Weighted norm, xHΣx
tr(X) Trace of matrix X
E[·] Statistical expectation
⊗ Kronecker product

The main contributions of this paper are summarized as
follows:

• A new algorithm, called PU-ACLMS is proposed to
control the computational complexity;

• The computational complexity for full-update ACLMS
and its partial-update implementations are examined thor-
oughly. For large filter lengths the PU-ACLMS algo-
rithms are able to lower the full-complexity by approxi-
mately a factor of two;

• In the absence of exact performance analysis the concept
of energy-conservation is utilized to derive approximate
closed-form expressions for mean-square-error (MSE)
and excess mean-square-error (EMSE) of the proposed
algorithm;

• The closed-form expressions enable us to find a mono-
tonically increasing relationship between these quantities
and the step-size parameter µ;

• The stability conditions for PU-ACLMS algorithm are
derived both in mean and mean-square senses for non-
circular signals scenarios. Conditions on step-size µ are
established to guarantee the mean and mean-square sta-
bility of PU-ACLMS algorithms;

• Employing the energy-conservation approach, closed-
form expressions to describe the EMSE and MSD learn-
ing curves are derived;

• The convergence rates of PU-ACLMS algorithms and the
full-update ACLMS are investigated.

Throughout the paper, we adopt normal lowercase letters for
scalars, bold lowercase letters for column vectors and bold
uppercase letters for matrices, while I denotes an identity
matrix of appropriate size. The real and complex domains are
denoted by R and C. R≥0 denotes the set of positive real
numbers. For ease of reference, a list of main symbols used
throughout the text are collected in Table I.

The rest of the paper is organized as follows: In Section II,
the widely linear model and the ACLMS algorithm are briefly
introduced. The PU-ACLMS algorithm and its computational
complexity is provided in Section III. Section IV investigates
the different aspects of PU-ACLMS algorithm including its
steady-state performance, stability conditions, transient per-
formance and convergence analysis. Performance evaluations
are illustrated in Section V. The paper is finally concluded in
Section VI.
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Fig. 1. Schematic diagram for a conventional adaptive filter parameter
estimation.

II. AUGMENTED CLMS ALGORITHM

Consider the parameter estimation problem as depicted in
Fig. 1. Here, d(n) ∈ C denotes a second order non-circular
desired signal generated by a widely linear model as [18]

d(n) = uT(n)ho + uH(n)go + υ(n) (1)

where ho and go denote the optimal standard and conjugate
weight vectors respectively. Moreover, υ(n) ∈ C is the mea-
surement noise and u(n) = [u(n), . . . , u(n−N+1)]T ∈ CN×1
is the input vector. The following assumptions are considered
for the data:

Assumption 1.
(i) The input vectors {u(n)} and the additive noise {υ(n)}

are stationary and zero-mean.
(ii) The noise sequence {υ(n)} is independent and identi-

cally distributed (i.i.d.) with variance σ2
υ = E

[
|υ(n)|2

]
.

(iii) The noise sequence {υ(n)} is statistically independent
of u(`) for all n 6= `.

(iv) The regressor covariance matrix is positive-definite
Cu = E[u(n)uH(n)] > 0.

The problem of estimating the model parameters can be
formulated as follows:

arg min
{h,g}

J(h,g) = E
[
|e(n)|2

]
= E

[
|d(n)− y(n)|2

]
(2)

where h(n) and g(n) are adjustable filter weight vectors,
called standard and conjugate weight vectors, respectively. In
addition, using the augmented statistics, the output y(n) can
be written as [9]

y(n) = uT(n)h(n) + uH(n)g(n) (3)

In order to solve (2), the ACLMS algorithm updates its weight
vectors according to

h(n+ 1) = h(n) + µe(n)u∗(n) (4)
g(n+ 1) = g(n) + µe(n)u(n) (5)

A detailed study of this algorithm can be found in [9].

III. PARTIAL-UPDATE ACLMS ALGORITHM

A. Algorithm Derivation

In the partial-update schemes, only M out of N weights are
allowed to be updated at each iteration. This can be achieved

CMP3SANEIS
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by modifying the adaptation recursions in (4) and (5) as:

h(n+ 1) = h(n) + µe(n)IM(n)u∗(n) (6)
g(n+ 1) = g(n) + µe(n)IM(n)u(n) (7)

where IM(n) is an N×N diagonal coefficient selection matrix
defined as:

IM(n) = diag {i1(n), i2(n), · · · , iN (n)}

The IM(n) entries satisfy the following constraints:

ik(n) ∈ {0, 1},
N∑
k=1

ik(n) = M

In the sequential partial update ik(n) is given by

ik(n) =

{
1 if k ∈ Smod(n,β)+1

0 otherwise
(8)

where β = dN/Me and the operator, mod(n, β), returns the
reminder of the Euclidean division of n by β. Briefly, at
a given iteration n, on of the coefficient subsets St, t =
{1, . . . , β} is selected deterministically in a round-robin fash-
ion [25], and the update is performed.
Remark 1. The coefficient subsets St are not uniquely speci-
fied if they meet the following conditions [25]:

1)
⋃β
t=1 St = S, where S = {1, 2, . . . , N};

2) St ∩ S` = φ, ∀t, ` ∈ {1, . . . , β} and t 6= `.
In the stochastic PU-ACLMS, at a given iteration n one

of the sets St, t = {1, . . . , β}, is selected in random form
{S1, . . . ,Sβ} with equal probability, whereas for sequential
PU-ACLMS one of the sets St is selected in a deterministic
fashion.
Remark 2. Let’s define the partial-augmented weight vector
w(n), the augmented system input vectors z(n) and diagonal
matrix J M(n) as follows

w(n) , [hT(n),gT(n)]
T (9)

z(n) , [uH(n),uT(n)]
T (10)

J M(n) , Blkdiag {IM(n),IM(n)} (11)

Using the above definitions, the augmented partial-coefficient-
update equations (6) and (7) become:

w(n+ 1) = w(n) + µe(n)J M(n)z(n) (12)

Remark 3. It should be noted that (6) and (7) can be rewritten
in an equivalent form as

hM(n+ 1) = hM(n) + µe(n)u∗M(n) (13)
gM(n+ 1) = gM(n) + µe(n)uM(n) (14)

where hM(n) denotes M × 1 sub-vector of h(n) which is
formed at time n by stacking the elements of h(n) with
ik(n) = 1. The vectors gM(n) and uM(n) are respectively
the M × 1 sub-vector of g(n) and u(n) defined similarly to
hM(n). It is noteworthy to mention that (13) and (14) represent
a reduced-size adaptive filter in accordance with the partial
update.

The summary of PU-ACLMS algorithm can be seen in
Algorithm 1.

Algorithm 1 The pseudocodes of PU-ACLMS Algorithm.
Set a small µ value and initialize h0 and g0 randomly. Then perform the
following steps for n ≥ 1:
1. Evaluate the output y(n) via (3);
2. Compute the error signal e(n) = d(n)− y(n);
3. Select St (based on the sequential or stochastic rules).
4. Update h(n) via (6);
5. Update g(n) via (7);
6. If convergence is achieved stop, otherwise go to 1.

B. Computational Complexity

The total computational complexity of the ACLMS algo-
rithm is 16N + 2 real multiplications and 16N real additions
per iteration. The computational complexity for the sequential
PU-ACLMS comprises of the following steps at each iteration:

1) 8N real multiplications and 8N − 2 real additions to
compute the current output y(n).

2) Two real additions are required to evaluate the error
signal, e(n).

3) Two real multiplications are needed to compute µe(n).
4) 8M real multiplications and 4M real additions are needed

to compute µe (i) u∗M (i) and µe(n)uMe(n).
5) Finally, the update of hM and gM requires 4M real

additions in total.
Therefore, each iteration of sequential PU-ACLMS requires
8(N+M)+2 real multiplications and 8(N+M) real additions.

Compared to sequential PU-ACLMS, the computational cost
of the stochastic PU-ACLMS algorithm requires evaluation of
two additional quantities:

1) One real multiplication and one real addition for the
implementation of random coefficient selection, employ-
ing a simple random generator, e.g., linear congruential
generator defied by [38]:

x(n+ 1) = mod{(ax(n) + b), c}, n ≥ 0 (15)

where a and b are some positive integers, c is the
modulus, and x(0) is known as a seed for the random
number generator.

2) One real multiplication and one real addition for the
random integer

π(n) =
β − 1

c− 1
x(n) + 1 (16)

where π(n) is an independent random variable with
discrete uniform distribution:

Pr{π(n) = t} =
1

β
(17)

Consequently, the stochastic PU-ACLMS algorithm has the
computational complexity of 8(N+M)+4 real multiplications
and 8(N + M) + 2 real additions per iteration. Table II
summarizes the respective computational complexity of the
ACLMS algorithm and its partial-update implementations, per
iteration for complex-valued data.
Remark 4. For large values of N , the PU-ACLMS algorithm
is capable of lowering the full-complexity approximately by
a factor of two. It can, however, lead to some performance
deterioration.
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TABLE II
COMPUTATIONAL COMPLEXITY OF ACLMS AND PU-ACLMS

ALGORITHMS AT EACH ITERATION.

Algorithm × +
ACLMS 16N + 2 16N
Sequential PU-ACLMS 8(N +M) + 2 8(N +M)
Stochastic PU-ACLMS 8(N +M) + 4 8(N +M) + 2

Remark 5. Clearly, partial update algorithms are likely to
reduce the computational cost. Their implementation require
some additional computations for selecting the sub-set of
weights to be updated. To address this issue, some available
methods such as short-sort approach [39] that use efficient
weight selection procedures to minimize the processing over-
head can be applied. However, they are effective where the
unknown system’s impulse response is sparse [40] or the
weights are significantly different in value (e.g. amplitude of
some weights are much larger than the others).

IV. PERFORMANCE ANALYSIS

In this section, the performance of PU-ACLMS algorithm is
studied in detail. More specifically, we investigate the steady-
state performance, stability conditions, transient behavior and
the algorithm convergence.

A. Steady-state Analysis
In this sub-section, we use PU-ACLMS given by (13) and

(14) to obtain a closed form for EMSE measure defined as

ζ(∞) , lim
n→∞

E
[
|ea(n)|2

]
(18)

where ea(n) is defined as

ea(n) = uT(n)h̃(n) + uH(n)g̃(n) (19)

with
h̃(n) = ho − h(n), g̃(n) = go − g(n) (20)

Let’s also denote by hoM(n) and goM(n) M × 1 vectors which
are formed at any time instant n by stacking the elements of
ho and go with ik(n) = 1, respectively. Subtracting (13) and
(14) from hoM(n) and goM(n) gives

h̃M(n, n+ 1) = h̃M(n, n)− µe(n)u∗M(n) (21)
g̃M(n, n+ 1) = g̃M(n, n)− µe(n)uM(n) (22)

where h̃M(n, n+1) = hoM(n)−hM(n+1) and g̃M(n, n+1) =
goM(n)− gM(n+ 1) are the partial-update coefficient errors at
time instant n. Pre-multiplying both sides of (21) by uT

M(n)
and both sides of (22) by uH

M(n) to yield

uT

M(n)h̃M(n, n+ 1) = uT

M(n)h̃M(n, n)− µ‖uM(n)‖2e(n)
(23)

uH

M(n)g̃M(n, n+ 1) = uH

M(n)g̃M(n, n)− µ‖uM(n)‖2e(n)
(24)

The partial-update a priori estimation error, εa(n) and the
partial-update a posteriori estimation error, εp(n) are defined
as:

εa(n) = uT

M(n)h̃M(n, n) + uH

M(n)g̃M(n, n) (25)

εp(n) = uT

M(n)h̃M(n, n+ 1) + uH

M(n)g̃M(n, n+ 1) (26)

It is easy to show that

εp(n) = εa(n)− 2µe(n)‖uM(n)‖2 (27)

Solving for e(n) we obtain

e(n) =
1

2µ‖uM(n)‖2
[εa(n)− εp(n)] (28)

Substituting (28) into (21) and (22) yields

h̃M(n, n+ 1) +
u∗M(n)

2‖uM(n)‖2
εa(n)

= h̃M(n, n) +
u∗M(n)

2‖uM(n)‖2
εp(n) (29)

g̃M(n, n+ 1) +
uM(n)

2‖uM(n)‖2
εa(n)

= g̃M(n, n) +
uM(n)

2‖uM(n)‖2
εp(n) (30)

Taking the squared Euclidean norm of both sides of (29) and
(30) the following energy conservation relations are obtained
which describe the evolution of the weight error vectors:∥∥∥h̃M(n, n+ 1)

∥∥∥2 + h̃H

M(n, n+ 1)
u∗M(n)

2 ‖uM(n)‖2
εa(n)

+ ε∗a(n)
uT

M(n)

2 ‖uM(n)‖2
h̃M(n, n+ 1) +

|εa(n)|2

4 ‖uM(n)‖2

=
∥∥∥h̃M(n, n)

∥∥∥2 + h̃H

M(n, n)
u∗M(n)

2 ‖uM(n)‖2
εp(n)

+ ε∗p(n)
uT

M(n)

2 ‖uM(n)‖2
h̃M(n, n) +

|εp(n)|2

4 ‖uM(n)‖2
(31)

and

‖g̃M(n, n+ 1)‖2 + g̃H

M(n, n+ 1)
uM(n)

2 ‖uM(n)‖2
εa(n)

+ ε∗a(n)
uH

M(n)

2 ‖uM(n)‖2
g̃M(n, n+ 1) +

|εa(n)|2

4 ‖uM(n)‖2

= ‖g̃M(n, n)‖2 + g̃H

M(n, n)
uM(n)

2 ‖uM(n)‖2
εp(n)

+ ε∗p(n)
uH

M(n)

2 ‖uM(n)‖2
g̃M(n, n) +

|εp(n)|2

4 ‖uM(n)‖2
(32)

Adding up (31) and (32) gives∥∥∥h̃M(n, n+ 1)
∥∥∥2 + ‖g̃M(n, n+ 1)‖2 +

|εa(n)|2

2 ‖uM(n)‖2

+
εa(n)

2 ‖uM(n)‖2

h̃H

M(n, n+ 1)u∗M(n) + g̃H

M(n, n+ 1)uM(n)︸ ︷︷ ︸
ε∗p(n)


+

ε∗a(n)

2 ‖uM(n)‖2

uT

M(n)h̃M(n, n+ 1) + uH

M(n)g̃M(n, n+ 1)︸ ︷︷ ︸
εp(n)


=
∥∥∥h̃M(n, n)

∥∥∥2 + ‖g̃M(n, n)‖2 +
|εp(n)|2

2 ‖uM(n)‖2
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+
εp(n)

2 ‖uM(n)‖2

h̃H

M(n, n)u∗M(n) + g̃H

M(n, n)uM(n)︸ ︷︷ ︸
ε∗a(n)


+

ε∗p(n)

2 ‖uM(n)‖2

uT

M(n)h̃M(n, n) + uH

M(n)g̃M(n, n)︸ ︷︷ ︸
εa(n)

 (33)

Consequently, the weight error energy conservation equation
for the widely linear modeling case becomes∥∥∥h̃M(n, n+ 1)

∥∥∥2 + ‖g̃M(n, n+ 1)‖2 +
|εa(n)|2

2 ‖uM(n)‖2

=
∥∥∥h̃M(n, n)

∥∥∥2 + ‖g̃M(n, n)‖2 +
|εp(n)|2

2 ‖uM(n)‖2
(34)

The expression (34) delivers an exact relation between the
partial-update a priori and a posteriori estimation errors and
partial-update weight errors. At the steady-state we have [1]

E
[
‖h̃M(n, n+ 1)‖2

]
= E

[
‖h̃M(n, n)‖2

]
<∞ (35)

E
[
‖g̃M(n, n+ 1)‖2

]
= E

[
‖g̃M(n, n)‖2

]
<∞ (36)

Taking the statistical expectation of both sides of (34), at
steady-state (34) becomes

E

[
|εa(n)|2

2 ‖uM(n)‖2

]
= E

[
|εp(n)|2

2 ‖uM(n)‖2

]
as n→∞ (37)

Substituting (27) into the right-hand-side of above expression,
we obtain

µE
[
|e(n)|2 ‖uM(n)‖2

]
= E[|εa(n)| |e(n)|] as n→∞ (38)

In the sequel, the steady-state variance relation (38) is used to
obtain a closed-form expression for the EMSE measure. First,
the following assumption is considered which is commonly
used to study adaptive filters [1]:
Assumption 2.

(i) The a priori estimation error εa(n) is statistically in-
dependent of the input regressor vector uM(m) for all
n 6= m.

(ii) (separation assumption [1]) uM(n) is statistically in-
dependent of ea(n) and alternatively. This means that
‖uM(n)‖2 is also statistically independent of e(n).

Since e(n) = ea(n) + υ(n), (38) can be rewritten as

µE
[
|ea(n)|2 + 2 |ea(n)| |υ(n)|+ |υ(n)|2

]
= E[|εa(n)| |ea(n)|+ |εa(n)| |υ(n)|] (39)

Under Assumptions 1 and 2.i, the above expression simplifies
to

µE
[
|ea(n)|2 ‖uM(n)‖2

]
+ µσ2

υtr(CuM) = E[εa(n)ea(n)]

(40)

where

tr(CuM
) = tr(E[uM(n)uH

M(n)]) = E
[
‖uM(n)‖2

]
(41)

For the first term in the RHS of (39) we have

E[εa(n)ea(n)] = ρME
[
|ea(n)|2

]
= ρMζ(∞) (42)

where 0 < ρM ≤ 1 is a constant that shows how much ea(n)
is lessened as a consequence of partial coefficient updates.
Substituting (41) into (40) gives:

ζ(∞) =
µ

ρM

(
E
[
|ea(n)|2 ‖uM(n)‖2

]
+ µσ2

υtr(CuM
)
)

(43)

Employing Assumption 2.ii, E
[
|ea(n)|2 ‖uM(n)‖2

]
can be

separated into the product of two expectations as follows:

E
[
|ea(n)|2 ‖uM(n)‖2

]
= E

[
|ea(n)|2

]
E
[
‖uM(n)‖2

]
(44)

Now substituting (44) into (43) gives the following steady-
state EMSE expression:

ζ(∞) =
µσ2

υtr(CuM
)

ρM − µtr(CuM
)

(45)

Remark 6. For sufficiently small step-size µ, at steady-state
we expect to have:

E
[
|ea(n)|2 ‖uM(n)‖2

]
� σ2

υtr(CuM) (46)

and we neglect the term E
[
|ea(n)|2 ‖uM(n)‖2

]
to derive an

closed-form for EMSE as

ζ(∞) ≈ µσ2
υtr(CuM

)

ρM

(47)

Corollary 1. If all the filter coefficients are updated (i.e. M =
N , IM(n) = IN , ρM = 1 and CuM

= Cu), then (45) changes
to

ζACLMS(∞) =
µσ2

υtr(Cu)

1− µtr(Cu)
(48)

For small step sizes this can be approximated as

ζACLMS(∞) ≈ µσ2
υtr(Cu) (49)

This expression is the steady-state EMSE for a full-update
PU-ACLMS algorithm.
Corollary 2. For the PU-ACLMS algorithm we have1

CuM
=
M

N
Cu, ρM =

M

N
(50)

Replacing (50) in (48) we obtain

ζ(∞) =
µσ2

υ
M
N tr(CuM

)
M
N − µtr(CuM

)
=

µσ2
υtr(Cu)

1− µtr(Cu)
(51)

which is the same steady-state EMSE as for the full-update
PU-ACLMS algorithm.

According to corollaries 1 and 2, the steady-state perfor-
mance of the PU-ACLMS algorithm can be summarized as
the following Proposition.

Proposition 1. Let Assumptions 1 and 2 hold. Then, regardless
of the values of M , both sequential and stochastic partial-
update schemes have the same steady-state EMSE as that of
the full-update ACLMS algorithm.

1This relation holds for stationary input signals.



IEEE TRANSACTIONS ON SIGNAL PROCESSING 6

B. Stability Analysis

To gain further insight into the performance of partial-
update PU-ACLMS algorithms, we shall continue to examine
the stability of PU-ACLMS algorithm. To this end, we con-
sider the update equations (6) and (7). Let us also define the
partial-augmented weight vector w̃(n) as

w̃(n) , wo −w(n) (52)

where wo = [hoT,goT]
T. Substracting both sides of (12) from

the optimum solution wo gives

w̃ (i+ 1) = w̃(n) + µe(n)J M(n)z(n) (53)

It is useful to mention that the expression (53) leaves non-
updated subsets of w̃(n) and w̃(n+ 1) identical. From (53),
the output-error e(n) can be rewritten as

e(n) = zH(n)w̃(n) + υ(n) (54)

Then, the weight-error-recursion in (53) becomes

w̃(n+ 1) = [I− µJ M(n)z(n)zH(n)] w̃(n)

− µJ M(n)z(n)υ(n) (55)

In the sequel, recursion (55) is used to obtain the mean and
mean-square stability conditions.

1) Mean Stability: Applying statistical expressions to the
both sides of (55) and employing Assumption 1, yields

E[w̃(n+ 1)] = (I− µE[J M(n)z(n)zH(n)])E[w̃(n)]

=
(
I− µC∗zM

)
E[w̃(n)] (56)

where CzM
is the partial-augmented covariance matrix of

z(n), given by

CzM , E[J M(n)z(n)zH(n)]

= E

[[
IM(n) 0

0 IM(n)

] [
u(n)uH(n) u(n)uT(n)
u∗(n)uH(n) u∗(n)uT(n)

]]
=

[
CuM

DuM

D∗uM
C∗uM

]
(57)

The matrices CuM
and DuM

are respectively denoted as
the partial covariance and partial complementary covariance
matrices of uM(n).

We establish the following Proposition which guarantees
asymptotic unbiasedness of the PU-ACLMS algorithm.

Proposition 2. (Mean Stability) Let the widely-linear model
(1) and Assumption 1 hold. Then, the PU-ACLMS algorithm is
asymptotically unbiased for any initial condition if, and only
if, the positive step-size parameter µ satisfies

0 < µ <
2

λmax (CzM
)

(58)

where λmax (CzM
) is the largest eigenvalue of the partial-

augmented matrix CzM
.

Proof: See Appendix A.

2) Mean-square Stability: By computing the weighted
norm of both sides of (55), for an arbitrary Hermitioan weight-
ing matrix Σ > 0, and applying the expectation operator
together with employing Assumption 1, we arrive at the
following weighted variance relation:

E
[
‖w̃(n+ 1)‖2Σ

]
= E

[
‖w̃(n)‖2Σ′

]
+ µ2σ2

υE[zH(n)J M(n)ΣJ M(n)z(n)] (59)

Σ′ = Σ− µΣJ M(n)z(n)zH(n)− µz(n)zH(n)J M(n)Σ

+ µ2z(n)zH(n)J M(n)ΣJ M(n)z(n)zH(n) (60)

Under Assumptions 1 and 2, w̃(n) is independent of both Σ
′

and z(n). Thus, we can split E
[
‖w̃(n)‖2Σ′

]
into

E
[
‖w̃(n)‖2Σ′

]
= E

[
‖w̃(n)‖2E[Σ′]

]
(61)

with the weighting matrix Σ
′

replaced by its mean, denoted
by Γ, i.e. Γ , E

[
Σ′
]
. In this way, the recursions (59) and

(60) are rewritten as follows:

E
[
‖w̃(n+ 1)‖2Σ

]
= E

[
‖w̃(n)‖2Γ

]
+ µ2σ2

υE
[
‖J M(n)z(n)‖2Σ

]
(62)

Γ = Σ− µΣCzM
− µCzM

Σ

+ µ2E
[
‖J M(n)z(n)‖2Σ z(n)zH(n)

]
(63)

By defining γ , vec {E[Γ]} and σσσ , vec {E[Σ]} in addition
to applying the Kronecker product notation property2 we can
modify (63) as

vec {Γ} = vec {Σ} − µvec {ΣCzM
} − µvec {CzM

Σ}

+ µ2E
[
vec
{
‖J M(n)z(n)‖2Σ z(n)zH(n)

}]
(64)

After vectorization, the relations (62) and (63) become:

E
[
‖w̃(n+ 1)‖2σσσ

]
= E

[
‖w̃(n)‖2Fσσσ

]
+ µ2σ2

υc
T

Mσσσ (65)

where the coefficient matrix F is given by

F = I(2N)2 − µ
(
CT

zM
⊗ I2N + I2N ⊗CzM

)
+ µ2E

[
(z(n)zH(n)J M(n))

T ⊗ (z(n)zH(n)J M(n))
]

(66)

and the vector cM is defined as

cM = vec {E[J M(n)z(n)zH(n)J M(n)]} (67)

which is derived from

E
[
‖J M(n)z(n)‖2Σ

]
= E[zH(n)J M(n)ΣJ M(n)z(n)]

= tr(E[J M(n)z(n)zH(n)J M(n)Σ])

= tr(E[J M(n)z(n)zH(n)J M(n)] Σ)

= vecT {E[J M(n)z(n)zH(n)J M(n)]}σσσ
= cT

Mσσσ (68)

2For any matrices A, B and Σ with compatible dimensions we have

vec {AΣB} =
(
BT ⊗A

)
vec {Σ} ,
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Note that, the (2N)
2 × (2N)

2 coefficient matrix F can be
expressed as:

F(µ) = I− µP + µ2Q (69)

where (2N)
2 × (2N)

2 matrices {P,Q} are given by

P = CT

zM
⊗ I2N + I2N ⊗CzM

(70)

Q = E
[
(z(n)zH(n)J M(n))

T ⊗ (z(n)zH(n)J M(n))
]

(71)

To derive the stability conditions for the step-size parameter
µ, we employ the state-space model developed in [1]. Here, we
avoid to expose the corresponding argument, except to state
that the stability of matrix F ensures the mean-square stability
of the PU-ACLMS algorithms. In this way, the following
proposition holds.

Proposition 3. (Mean-square Stability) Let the data
{d(n),u(n)} satisfy the widely-linear model (1) and the inde-
pendence assumption 1 holds. Then, the PU-ACLMS algorithm
is mean-square stable if, and only if, the step-size µ is chosen
to satisfy

0 < µ < min

{
1

λmax (P−1Q)
,

1

max {λ {G} ∈ R>0}

}
(72)

where P and Q are defined by (70) and (71), and G ∈
CM2×M2

is defined by the following block matrix

G =

[
P/2 −Q/2

I 0

]
(73)

Proof: See Appendix B.

C. Transient Analysis

1) Learning Curves: Evolution of the EMSE and MSD over
time is described by the learning curves which are defined as

ζ(n) = E
[
|ea(n)|2

]
, η(n) = E

[
‖w(n)‖2

]
(74)

First, the learning curve for EMSE is obtained. Iterating (65)
starting from n = 0 we achieve

E
[
‖w̃(n+ 1)‖2σσσ

]
= ‖wo‖2Fn+1σσσ + µ2σ2

υ

n∑
j=0

cT

MF
kσσσ

= E
[
‖w̃(n)‖2σσσ

]
+ ‖wo‖2Fn+1σσσ − ‖w

o‖2Fnσσσ + µ2σ2
υc

T

MF
nσσσ

= E
[
‖w̃(n)‖2σσσ

]
+ ‖wo‖2Fn(F−I)σσσ + µ2σ2

υc
T

MF
nσσσ (75)

where w (0) = 0. Using ea(n) = zH(n)w̃(n) the EMSE at
time n can be expressed alternatively as

ζ(n) = E[w̃H(n)z(n)zH(n)w̃(n)]

= E[E[w̃H(n)z(n)zH(n)w̃(n)] |w̃(n)]

= E[w̃H(n)Czw̃(n)]

= E
[
‖w̃(n)‖2Cz

]
(76)

where Cz = E[z(n)zH(n)]. Thus, by setting σσσ = vec {Cz} in
(75), the time evolution of EMSE can be obtained.

Proposition 4. (Learning Curve) Consider the same setting
of Proposition 3. Let ζ(n) denote the time evolution of EMSE,

as defined by (76). Then, the EMSE learning curve of PU-
ACLMS is given by the following recursion over n ≥ 0:

ζ(n+ 1) = ζ(n) + ‖wo‖2Fn(F−I)vec{Cz}

+ µ2σ2
υc

T

MF
nvec {Cz} (77)

Similarly, using (74) the MSD learning curve can be evaluated
by setting σσσ = vec {I} in (75) which gives

η(n+ 1) = η(n) + ‖wo‖2Fn(F−I)vec{I}

+ µ2σ2
υc

T

MF
nvec {I} (78)

2) Alternative Steady-state Analysis: Recursion (65) can be
used to derive the steady-state values for EMSE and MSD by
setting n→∞. In this case recursion (65) becomes

E
[
‖w̃ (∞)‖2σσσ

]
= E

[
‖w̃ (∞)‖2Fσσσ

]
+ µ2σ2

υc
T

Mσσσ (79)

which is equivalent to

E
[
‖w̃ (∞)‖2(I−F)σσσ

]
= µ2σ2

υc
T

Mσσσ (80)

To specify the EMSE, it is required to evaluate E
[
‖w̃ (∞)‖2σσσ

]
by setting σσσ = (I−F)

−1
vec {Cz}. In this way, the left-hand

side of (80) is the steady-state EMSE and we have

ζ(∞) = µ2σ2
υc

T

M (I−F)
−1

vec {Cz} (81)

For sufficiently small step-size µ, expression (66) can be
approximated by

F ≈ I− 2µ(CzM ⊗ I) (82)

Substituting (82) into (81) leads to

ζ(∞) = µ2σ2
υc

T

M (I−F)
−1

vec {Cz}

≈ µσ2
υ

2
cT

M (CzM ⊗ I)
−1

vec {Cz}

≈ µσ2
υ

2
cT

M

(
C−1zM

⊗ I
)

vec {Cz}

≈ µσ2
υ

2
cT

Mvec
{
CzC

−1
zM

}
≈ µσ2

υ

2
tr
(
E[J M(n)z(n)zH(n)J M(n)] CzC

−1
zM

)
(83)

Under Assumptions 1 and 2, we have

E[J M(n)z(n)zH(n)J M(n)] = CzM (84)

tr
(
E[J M(n)z(n)zH(n)J M(n)] CzC

−1
zM

)
= tr(Cz) (85)

replacing (84) and (85) in (83) yields

ζ(∞) ≈ µσ2
υ

2
tr(Cz) (86)

Since tr(Cz) = 2tr(Cu), the steady-state EMSE is given by

ζ(∞) ≈ µσ2
υtr(Cu) (87)

This is the same result as that obtained for the full-update
ACLMS algorithm (see (49)), which according to Proposition
1 is also valid for partial update schemes. The steady-state
MSD can be calculated in a similar way as

η(∞) ≈ µσ2
υN (88)
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D. Convergence Rate Analysis
It is useful to compare the convergence rate of PU-ACLMS

algorithms to the full-update ACLMS algorithm. For this, we
examine the decay rates of sequential and stochastic schemes
under the following assumptions.
Assumption 3.

(i) The filter length N is a multiple of β, i.e. NM is an integer.
(ii) The augmented covariance matrix of z(n), Cz, is block-

diagonal such that
∑β
t=1 T tCzT t = Cz. The matrix

T t is defined by zeroing out some rows in the identity
matrix I such that

∑β
t=1 T t = I.

Note that, Assumption 3-ii is used to make the analysis
tractabe.

First, it is required to restate the evolution equations of the
existing algorithms. Thus, for the regular full-update ACLMS
algorithm the recursion (56) is rewritten as follows:

E[w̃(n+ 1)] = (I− µC∗z)E[w̃(n)] (89)

Combining β-iterations of the recursion (89), yields the mean
of the coefficient error vector update given by

E[w̃ (n+ β)] =

β∏
t=1

(I− µC∗z)E[w̃ (n+ t− 1)]

= (I− µC∗z)
β E[w̃(n)] (90)

For the sequential PU-ACLMS, the mean-error-update equa-
tion is given by

E[w̃ (n+ 1)] =
(
I− µT mod(n,β)+1C

∗
z

)
E[w̃(n)] (91)

For any number of optional fractions, the update equation (91)
can be written as

E[w̃ (n+ β)] =

β∏
t=1

(
I− µT mod(n+t,β)+1C

∗
z

)
E[w̃(n)] (92)

Combining β updates of (92), the following relation for
evolution of mean-error-update is obtained:

E[w̃ (n+ β)] =

(
I− µ

β
C∗z

)β
E[w̃(n)] (93)

In the stochastic scheme, the following evolution equation
conditioned on a choice St, t = 1, . . . , β, results in:

E[w̃ (n+ 1) |St] = (I− µTnC∗z)E[w̃(n)|St]
= (I− µT tC

∗
z)E[w̃(n)|St] (94)

where the matrix Tn is chosen randomly from T t, t =
1, . . . , β, with equal probability. Averaging (94) over all
choices of Sk, we get

E[w̃ (n+ 1)] =

(
I− µ

β
C∗z

)
E[w̃(n)] (95)

Collecting β updates of this equation, the mean of coefficient
error vector update is

E[w̃ (n+ β)] =

β∏
t=1

(
I− µ

β
C∗z

)
E[w̃ (n+ t− 1)]

=

(
I− µ

β
C∗z

)β
E[w̃(n)] (96)

In order to gain further insight into the convergence be-
havior of the proposed algorithms, we used the method in [1,
pp. 148–150] to obtain the modes of convergence for diferent
algorithms. To continue, since C∗z is Hermitian and positive
semi-definite, we can write the eigen-decomposition of it as

C∗z = UΛUH

where Λ = diag {λ1, . . . , λN}, λk ≥ λk+1, is the diagonal
matrix of the eigenvalues of C∗zM

and U is the matrix of the
corresponding eigenvectors 3.

To express the convergence modes [12] solely in terms of
the corresponding eigenvalues of the partial correlation matrix,
we rotate the partial weight error vector w̃(n) by the eigen-
matrix U , that is, w̃

′
(n) = Uw̃(n). This linear transformation

changes the evolution of the partial weighted error vectors in
different algorithms as follows:

E[w̃′ (n+ 1)] = (I− µΛ)E[w̃′(n)] , (full) (97)

E[w̃′ (n+ 1)] = (I− µΛ)
β E[w̃′(n)] , (seq) (98)

E[w̃′ (n+ 1)] = (I− µΛ)
β E[w̃′(n)] , (stoch) (99)

From (97), (98), and (99), the modes of convergence for
different algorithms are given by

rfull,m =
(

1− µλm
)β

(100)

rseq,m =
(

1− µλm
β

)β
(101)

rstoch,m =
(

1− µλm
β

)β
(102)

Fig. 2 shows the modes of convergence for a special case
Cz = I, for β = {2, 4}, where µ̄ , µλ. The smaller
magnitude modes of convergence results in a faster decay to
zero. Thus, from Fig. 2 it can be observe that the full-update
ACLMS algorithm is faster than sequential and stochastic
PUACLMS algorithms, regardless of the values of step-size
parameter.

V. SIMULATION RESULTS

In order to evaluate the performance of proposed PU-
ACLMS algorithms the parameter estimation problem as
shown in Fig. 1 is considered. The non-circular input vectors
u(n) are generated

u(n) =
√

1− δ2qr(n) + δqi(n) (103)

where 2 = −1 and δ = 0.95. Moreover, qr(n) and qi(n) are
zero-mean doubly-white circular Gaussian noise process with
covariance matrix σ2

qI with σ2
q = 0.9. The measurement noise

v(n) is generated from a zero-mean doubly-white circular
Gaussian noise process with unit variance. The weights were
initialized randomly. Te required matrices Cz and Cu are
approximated with Mont Carlo (MC) simulation. All graphs
are obtained by averaging over 100 independent trials. Fig. 3
show the scatter plot of desired signal d(n) and measurement
noise u(n).

3The eigenvectors, U , may be chosen to be orthonormal in which cases U
is unitary matrix; UUH = UHU = I

CMP3SANEIS
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Fig. 2. The modes of convergence for different algorithms, β = 2 (top) and
β = 4 (bottom).

Figs. 4 and 5 illustrate the resulting theoretical and simu-
lated learning curves, EMSE, and MSD curves of PU-ACLMS
algorithm using sequential and stochastic schemes for different
choices of coefficients update M . From these figures it can
be observed that the theoretical analysis precisely specify the
EMSE and MSD evolutions, in both transient and steady-state
stages.

Evidently, the full-update cases have the fastest conver-
gence rate in comparison to PU-ACLMS algorithms. Generally
speaking, the speed of convergence reduces proportionally
for both sequential and stochastic schemes as the number
of updated coefficients per iteration is decreased. Fig. 6
provides a comparison between MSD curves of sequential
and stochastic schemes. As can be seen, the transient and
steady-state behavior of of these two schemes are quite similar
throughout all stage of adaptation.

It should be noted that, although the proposed algorithm
has slower convergence rate compared with the full update
ACLMS algorithm, due to its lower computational complexity,
its execution time (per iteration) is lower than that of the full
update ACLMS algorithm. For example, in our system4 the
execution time (per iteration) for M = 2, 4, and 6 is 0.2304
mSec, 0.2381 mSec, and 0.2414 mSec, respectively. This time
for the full update ACLMS algorithm is 0.2469 mSec.

In the next scenario, the performance of PU-ACLMS algo-
rithm for different values of step-sizes, µ is evaluated. Fig. 7
shows the steady-state EMSE and MSD values of PU-ACLMS
algorithm as a function of step-size using the theoretical
expressions and simulated ones. It can be seen from 7 that the
theoretical steady-state EMSE and MSD can well follow the
simulated ones. Again in all figures, a good agreement between
analytical and empirical results is achieved with maximum
performance difference of only 0.002 dB.

Finally, we define the following performance loss to com-

4The simulations are done in a PC Laptop 64-bit Intel Core i7-4510U CPU
@ 2.002.60 GHz RAM 8.00 GB with MATLAB R2017b and its CVX toolbox
working with Gurobi.
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Fig. 3. The scatter plot of desired signal d(n) and measurement noise υ(n).
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Fig. 4. Theoretical and experimental EMSE (top) and MSD (bottom) of PU-
ACLMS algorithm using sequential scheme for different values of coefficients
update M , when the step-size is µ = 0.02.

pare the performance of different algorithms:

P (%) =
η(ns)− η(∞)

η(0)− η(∞)

where ns denotes the number of iterations that the full update
ACLMS algorithm reaches its steady-state value. Moreover,
η(0) and η(∞) denote the MSD values for the PU-ACLMS
algorithm for n = 0 and n → ∞, respectively. This quantity
for the PU-ACLMS algorithm with sequential scheme with
M = 2, 4, and 6 are 3.79%, 0.21%, and 0.01%, respectively.
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0 1000 2000 3000 4000 5000 6000 7000 8000
−40

−35

−30

−25

−20

−15

−10

−5

0

5

iteration

M
S

D
 (

dB
)

 

 
Theory

4000 4500 5000
−32

−30

−28

−26

−24

 

 

 

 
Sequential
Stochastic

M = 2
M = 4

M = 2

M = 6

M = 8

Fig. 6. MSD learning curves of PU-ACLMS algorithm for both sequential
and stochastic schemes for different values of coefficients update M , when
the step-size is µ = 0.02.

VI. CONCLUSION

In this paper, a new algorithm, termed briefly PU-ACLMS
algorithm has been proposed, where only a portion of coeffi-
cient weights are selected to update at each iteration. More-
over, the computational complexity for full-update ACLMS
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Fig. 7. Theoretical and experimental steady-state EMSE (top) and MSD
(bottom) of sequential PU-ACLMS algorithm in terms of the step-size
parameter µ.

and its partial-update implementations have been discussed.
It has been concluded that for large filter lengths the PU-
ACLMS algorithm is able to decrease the maximum com-
plexity approximately by a factor of two. The steady-state
performances of the proposed PU-ACLMS algorithm have
been analyzed and the mean and mean-square convergence
behavior of the PU-ACLMS algorithm studied for a second-
order non-circular Gaussian input regressor. In addition, three
cases of coefficient weight updates, i.e., full-update, sequential
and stochastic partial update have been analyzed. The EMSE
and MSD learning curves have been derived. The provided
analysis demonstrated that at a given step-size µ the level
of steady-state EMSE of full-update case and PU-ACLMS
algorithm are identical. However, their convergence speeds
are decreased in proportion to the number of coefficients
weights updated per iteration divided by the filter length. The
simulation results support the theoretical derivations.

APPENDIX A
PROOF OF PROPOSITION 2

Proof: Consider the update equation (56). Using the
eigen-decomposition of C∗zM

(see (97)) the evolution of the
partial weighted error vectors as follows:

E[w̃′ (n+ 1)] = (I− µΛ)E[w̃′(n)] (A.2)

As the maximum eigenvalue, λmax, yields the fastest mode
of convergence, the condition for convergence in mean of the
PU-ACLMS algorithm becomes

|λmax (I− µΛ)| (A.3)

Using the fact that C∗zM
and CzM

have the same eigenvalues,
the asymptotic unbiasedness and mean stability of the PU-
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ACLMS are guaranteed if

|1− µλmax (CzM)| < 1 (A.4)

This inequality determines the stability bounds for step-size µ
as

0 < µ <
2

λmax (CzM)
(A.5)

APPENDIX B
PROOF OF PROPOSITION 3

Proof: Consider the matrix F of the form (69) with
positive-definite matrix P > 0, non-negative definite matrix
Q ≥ 0, and positive step-size µ. For mean-square stability,
we need to determine a bound on µ such that all eigenvalues
of F are strictly inside the unite disc, i.e. |λ (F)| < 1. This
condition is satisfied if the step-size parameter µ satisfy

max
‖x‖=1

{
xF (µ) xH

}
< 1 (B.1)

or equivalently, P− µQ > 0, and

min
{
xH (µ) xH

}
> −1 (B.2)

or, equivalently, H (µ) = 2I − µP + µ2Q > 0. These
inequalities satisfy the stability conditions λ (F) < 1 and
λ (F) > −1, respectively.

In the light of Appendix 25.A of [1], the inequality (B.1)
holds if, and only if,

µ <
1

λmax (P−1Q)
(B.3)

Since the eigenvalues of H vary continuously with step-size
parameter µ, an upper-bound on µ, µmax, such that H (µ) > 0
is obtained from the roots of det [H (µ)] = 0. Employing the
block-matrix determinant principle, the determinant of H (µ)
is equal to the determinant of the block-matrix

K (µ) =

[
2I− µP µQ
−µI I

]
, (B.4)

Moreover, since

K (µ) =

[
2I 0
0 I

]([
I 0
0 I

]
− µ

[
P/2 −Q/2

I 0

])
(B.5)

the condition det [K (µ)] = 0 and det (I− µG) = 0 are
identical, where

G ,

[
P/2 −Q/2

I 0

]
(B.6)

In order to guarantee λ (F) > −1, the step-size µ must
satisfy the following inequality

µ <
1

max {λ {G} ∈ R>0}
(B.7)

It follows that the aforementioned results can be merged
together to yield the following condition

0 < µ < min

{
1

λmax (P−1Q)
,

1

max {λ {G} ∈ R>0}

}
(B.8)

The above range of step-size µ guarantees the stability of F .
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