
                                                                    

University of Dundee

Diagnosis of Autism Spectrum Disorder Using Central-Moment Features From Low-
and High-Order Dynamic Resting-State Functional Connectivity Networks
Zhao, Feng; Chen, Zhiyuan; Rekik, Islem; Lee, Seong-Whan; Shen, Dinggang

Published in:
Frontiers in Neuroscience

DOI:
10.3389/fnins.2020.00258

Publication date:
2020

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Discovery Research Portal

Citation for published version (APA):
Zhao, F., Chen, Z., Rekik, I., Lee, S-W., & Shen, D. (2020). Diagnosis of Autism Spectrum Disorder Using
Central-Moment Features From Low- and High-Order Dynamic Resting-State Functional Connectivity Networks.
Frontiers in Neuroscience, 14, 1-15. [258]. https://doi.org/10.3389/fnins.2020.00258

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

 • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 21. May. 2020

https://doi.org/10.3389/fnins.2020.00258
https://discovery.dundee.ac.uk/en/publications/aef1ab28-d326-45b5-8372-3bc4775aa9a7
https://doi.org/10.3389/fnins.2020.00258


fnins-14-00258 April 24, 2020 Time: 17:55 # 1

ORIGINAL RESEARCH
published: 28 April 2020

doi: 10.3389/fnins.2020.00258

Edited by:
Xiaoping Philip Hu,

University of California, Riverside,
United States

Reviewed by:
Liang Wang,

Institute of Psychology (CAS), China
Delin Sun,

Duke University, United States
Jun Shi,

Shanghai University, China
Mingli Zhang,

Mcgill University, Canada

*Correspondence:
Dinggang Shen

dgshen@med.unc.edu

Specialty section:
This article was submitted to

Brain Imaging Methods,
a section of the journal

Frontiers in Neuroscience

Received: 07 December 2019
Accepted: 09 March 2020

Published: 28 April 2020

Citation:
Zhao F, Chen Z, Rekik I, Lee S-W

and Shen D (2020) Diagnosis
of Autism Spectrum Disorder Using

Central-Moment Features From Low-
and High-Order Dynamic

Resting-State Functional Connectivity
Networks. Front. Neurosci. 14:258.

doi: 10.3389/fnins.2020.00258

Diagnosis of Autism Spectrum
Disorder Using Central-Moment
Features From Low- and High-Order
Dynamic Resting-State Functional
Connectivity Networks
Feng Zhao1,2, Zhiyuan Chen1,2, Islem Rekik3, Seong-Whan Lee4 and Dinggang Shen5,4*

1 School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China, 2 Shandong
Co-Innovation Center of Future Intelligent Computing, Yantai, China, 3 BASIRA Lab, CVIP Group, Computing, School
of Science and Engineering, University of Dundee, Dundee, United Kingdom, 4 Department of Brain and Cognitive
Engineering, Korea University, Seoul, South Korea, 5 Department of Radiology and Biomedical Research Imaging Central,
University of North Carolina at Chapel Hill, Chapel Hill, NC, United States

The sliding-window-based dynamic functional connectivity networks (D-FCNs) derived
from resting-state functional magnetic resonance imaging (rs-fMRI) are effective
methods for diagnosing various neurological diseases, including autism spectrum
disorder (ASD). However, traditional D-FCNs are low-order networks based on
pairwise correlation between brain regions, thus overlooking high-level interactions
across multiple regions of interest (ROIs). Moreover, D-FCNs suffer from the temporal
mismatching issue, i.e., subnetworks in the same temporal window do not have
temporal correspondence across different subjects. To address the above problems,
we first construct a novel high-order D-FCNs based on the principle of “correlation’s
correlation” to further explore the higher level and more complex interaction relationships
among multiple ROIs. Furthermore, we propose to use a central-moment method to
extract temporal-invariance properties contained in either low- or high-order D-FCNs.
Finally, we design and train an ensemble classifier by fusing the features extracted
from conventional FCN, low-order D-FCNs, and high-order D-FCNs for the diagnosis
of ASD and normal control subjects. Our method achieved the best ASD classification
accuracy (83%), and our results revealed the features extracted from different networks
fingerprinting the autistic brain at different connectional levels.

Keywords: autism spectrum disorder, dynamic functional connectivity networks, resting-state functional MRI,
central-moment features, conventional FC network

INTRODUCTION

Autism spectrum disorder (ASD) is a serious childhood neurodevelopmental disease, characterized
by the impairment in social interaction, communication, and many other behavioral and cognitive
functions in varying degrees (Geschwind and Levitt, 2007). According to the 2018 community
report from the Centers for Disease Control and Prevention (CDCP)1, about 1 in 59 American

1https://www.cdc.gov/ncbddd/autism/data.html.
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children has been identified with some form of ASD, with
about four times more common among boys than among
girls. Thus, accurate early diagnosis and timely intervention
of ASD, especially for the infants under 12 months old,
may have pivotal importance in preventing the progression of
detrimental symptoms (Jin et al., 2015). However, ASD is a
very complex and highly heterogeneous neurological disorder,
which affects many higher-level brain functions and sometimes
whole-brain structures, making it challenging for accurate
diagnosis. To address this, extensive research efforts (Geschwind
and Levitt, 2007; Anagnostou and Taylor, 2011; Jin et al.,
2015; Wang et al., 2018) have been dedicated to analyzing
the neuroimaging data with different modalities, including
structural magnetic resonance imaging (s-MRI) (Wee et al.,
2013), functional MRI (fMRI) (Zhao et al., 2018), diffusion tensor
imaging (DTI) (Deshpande et al., 2013), and positron emission
tomography (PET) (Zürcher et al., 2015), to investigate ASD-
related biological or neurological mechanisms. In this way, the
respective biomarkers could be identified for characterizing ASD.

Recently, resting-state fMRI (rs-fMRI) uses blood-
oxygenation-level-dependent (BOLD) signals to probe brain
activity, which has shown great potential in exploring the
in vivo neuronal underpinnings of ASD (Fornito et al., 2015;
Liu et al., 2016; Huang et al., 2018; Zhao et al., 2018). Since
BOLD signals are sensitive to the spontaneous and intrinsic
neural activities within the brain, re-fMRI can be used as an
efficient and noninvasive way for investigating neuropathological
substrates of many neurological and psychiatric disorders at a
whole-brain system level (Admon et al., 2012; Ganella et al.,
2017; Li et al., 2017). Temporal correlation of the BOLD signals
between different pairs of brain regions of interest (ROIs) is often
used to define brain functional connectivity (FC), which can
be used to explore how brain ROIs interact with each other. In
practice, FC is often modeled as a FC network (FCN), with each
specific brain ROI as a node in the network, and the strength
of FC between a pair of brain ROIs as an edge (or link). In
terms of both topological structures and connection strength,
the differences between normal and disrupted FCN caused
by certain pathological attacks reveal potential biomarkers to
understand pathological underpinnings of ASD. Therefore, FCN
has charted out a promising research direction to investigate the
brain’s functional differences between control and disease groups
(Zhang et al., 2015, 2016; Qiao et al., 2018).

To date, researchers have developed many FCN models
to capture rich information exchange across ROIs so that
functional neurological biomarkers can be reliably identified for
ASD diagnosis (Jie et al., 2014; Ha et al., 2015a; Plitt et al.,
2015). The most commonly adopted FCN, namely, conventional
FCN (C-FCN), is usually rooted in the assumption that the
strength of FC is temporally stationary in the entire rs-fMRI
scan duration (Achard, 2006; Zhao et al., 2018). Under such an
assumption, FC is quantified with the correlation (e.g., Pearson’s
correlation) between a pair of rs-fMRI time series from two
ROIs. As a result, C-FCN captures the functional connectivity
between two ROIs in a static manner, which unfortunately
overlooks the dynamic interaction between brain ROIs during
the scan period.

In fact, recent studies have demonstrated that the dynamic
changes of FC throughout the entire scan time may be an intrinsic
property of brain function (Damaraju et al., 2014a; Kudela et al.,
2017). Given the increasing evidence that dynamic FC during
the entire scan time is very important for understanding the
fundamental properties of brain network and the underpinnings
of disordered brain connectivity changes, different studies have
resorted to dynamic FC networks (D-FCNs) to characterize
dynamic changes of FC, as well as the association of these
dynamic changes with brain diseases (Damaraju et al., 2014b;
Wee et al., 2015; Guo et al., 2017).

The most commonly used strategy of constructing D-FCNs
is the sliding-window approach (Hutchison et al., 2013). The
detailed contracture process of D-FCNs [i.e., low-order dynamic
functional connectivity networks (Lo-D-FCNs), which will be
discussed in the following section) is shown in Figure 1.
Specifically, the entire rs-fMRI time series from a subject were
segmented into multiple overlapping subseries by a sliding
window with prefixed window length and step size between
two successive windows (Figure 1A1). For each subseries, a
FC subnetwork is constructed by calculating the short-term
correlation between different ROIs, which is similar to the
construction of C-FCN. As an example, the construction process
of the second subnetwork is shown in Figures 1A2,B2, where
xi and xj, respectively, denote the average rs-fMRI time series
across all voxels within the ith and the jth ROIs, and their
correlation ρij(2) is computed as the FC strength between the ith
and the jth ROIs. In such a way, we can obtain a FC subnetwork
(Figure 1B2), which reflects a short-term FC relationship
between two ROIs. Repeating the above process, we can obtain
a temporal FC subnetwork series, which is called dynamic FC
networks (D-FCNs, i.e., Lo-D-FCNs) (Figure 1B1). Obviously,
the correlation series (e.g., [ρij (1) , ρij (2) , · · · , ρij (K)] in
Figure 1B1) along the scanning time between a pair of ROIs
can represent the temporal change of FC between the two
ROIs, which indicates that D-FCNs can capture the dynamic
properties of FC throughout the scan time and can provide rich
discriminative information for ASD diagnosis.

While D-FCNs opens a new avenue for us to comprehensively
understand brain activities, it still has the following two issues
need to be addressed.

First, D-FCNs cannot reveal the potentially much complex
and high-level relationship among multiple ROIs. Similar to
C-FCN, D-FCNs is also based on computing pairwise correlation
between neural signals, such as Pearson’s correlation and
partial correlation, between a pair of rs-fMRIs from two ROIs
to estimate the FC strength (Figure 1A2). Although such
simple FC network representation has been widely utilized
for examining brain functional activity, it dramatically ignores
much complex and high-level interactions across multiple ROIs.
In such a sense, C-FCN and D-FCNs are referred to as the
low-order FCN, and thus, D-FCNs also will be named as
Lo-D-FCNs in this paper. Recently, emerging connectomic
studies have demonstrated that examining more complex
interactions involving multiple ROIs can provide more valuable
insights into brain disease fingerprinting and diagnosis (Chen
et al., 2016; Zhang et al., 2016, 2017a,b,c; Guo et al., 2017;
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FIGURE 1 | Flow chart of constructing low- (Lo-D-FCNs) and high-order dynamic functional connectivity networks (Ho-D-FCNs), where (A1) denotes the
resting-state functional MRI (rs-fMRI) time series associated with each region of interest (ROI), (A2) denotes the second rs-fMRI subseries based on a sliding window,
(B1) is the Lo-D-FCNs, (B2) is the second subnetwork of Lo-D-FCNs, (C1) is the Ho-D-FCNs, and (C2) denotes the second subnetwork from Ho-D-FCNs.

Morris and Rekik, 2017; Soussia and Rekik, 2018; Zhao
et al., 2018). Correspondingly, those FCNs, reflecting complex
interactions across multiple ROIs, are referred as the high-
order FCN (Ho-FCN).

By far, much attention has been dedicated to construct Ho-
FCN models for exploring the interactions among multiple
ROIs. For instance, Chen et al. (2016) constructed a Ho-FCN
model based on the correlations between each pair of dynamic
FC time series from sliding-window-based Lo-D-FCNs. Guo
et al. (2017) modeled a Ho-FCN using a minimum spanning
tree for Alzheimer’s disease (AD) classification. Based on a
more simple and intuitive way, i.e., correlation’s correlation
strategy, a new Ho-FCN was developed by Zhang et al.
(2016) for more sensitive early AD detection. Different from
Lo-FCN or Lo-D-FCNs, Ho-FCN presented by Zhang et al.
defines another correlation between two brain regions based
on their FC profiles, rather than BOLD signals. Here, the
FC profile of a brain region means the traditional low-
order FC of this region. In such a way, the correlation’s
correlation is able to reveal some interesting information; for
example, some brain regions may exhibit stronger correlation
with each other in a feature space (defined by FC profile)
than the raw neural signal space. Consequently, Ho-FCN is
able to provide another source of information for diagnosis
(Zhang et al., 2016).

Inspired from the principle of the correlation’s correlation,
we construct a novel high-order dynamic FCNs (Ho-D-
FCNs) for exploring the high-order dynamic FC relationships
among multiple ROIs. Figures 1C1,C2 display the flowchart of
constructing Ho-D-FCNs. For each subnetwork from the Lo-
D-FCNs, such as the second one shown in Figure 1B2, we
regard the correlations series between a ROI and all other ROIs
as its short-time FC profile, which reflects the FC relationship
between this ROI and all other ROIs in a short scanning
time. For example, ρi (2) is the short-time FC profile of the
ith ROI and ρj (2) is that of the jth ROI (Figure 1B2). Then,
the high-order correlation is computed for each pair of ROI
based on the associated short-time FC profiles, such as hpij(2)
shown in Figure 1C2. Intuitively, such correlation reflects the
relatively shorter time resemblance between a pair of FC profiles
from two ROIs (i.e., correlation’s correlation) and thus involves
multiple ROIs. By doing so, we can obtain a corresponding
high-order subnetwork (e.g., Figure 1C2) from each low-
order subnetwork (e.g., Figure 1B2), which reflects how the
low-order temporal correlations between different brain ROIs
interact with each other during a short scan time. Accordingly,
the high-order subnetwork series (Figure 1C1) is referred as
Ho-D-FCNs and utilized to reveal some new characteristics
for biomarker detection. In fact, the experimental result in
The Most Discriminative Features for ASD Diagnosis shows
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that Ho-D-FCNs can provide complementary information to
C-FCN and Lo-D-FCNs.

Second, Lo-D-FCNs is sensitive to the chronological order
of its subnetworks, which limits its use in comparative
studies. Specifically, due to the unconstrained mental activity
during the brain resting state, we cannot establish the
temporal correspondence among these FC subnetworks from
the same temporal window across different subjects. Therefore,
the subnetwork series concatenated along scanning time
(i.e., Lo-D-FCNs) might be dynamically mismatched across
different subjects, which somewhat hinders the investigation and
comparison of dynamic FC at a population level. It is noteworthy
that Ho-D-FCNs presented in previous section also faces the
same problem. By far, no method is proved to be effective in
addressing this issue (Zhang et al., 2017a).

Statistical moment methods, including central, Hu, Zernike
moments, and so on, have been broadly used in many areas for
detecting and deriving various invariant properties of random
signals (Hu, 1962; Hung et al., 2006). For the processing of a
one-dimensional random sequence generated from a random
variable, central-moment method owns the following merits:
(Geschwind and Levitt, 2007) although central moment of
different order partly characterizes some dynamic properties
of a random sequence from its distinct view, their integration
can provide a comprehensive characterization of the fluctuation
properties of this sequence. (Jin et al., 2015) Most of central-
moment features have the clear mathematical interpretability,
e.g., for a sequence, its first-order central moment (i.e., mean)
can reflect the fluctuation central; second-order central moment
(i.e., variance) can reflect the fluctuation level; third-order
central moment can reflect the skewness; and the fourth-order
central moment can reflect the kurtosis. In theory, the change
characteristics of a random sequence can be better represented by
central-moment features. Usually, these central-moment features
with the range from first- to seventh order are enough for us to
analyze and describe the wave profile distribution of a random
variable implicated in the sequence (Anagnostou and Taylor,
2011). More importantly, central-moment features are invariant
to the temporal order of a sequence. In other words, as one
expressional form of a random variable’s probability distribution,
central-moment features of a random sequence are immune to
the order of its elements (in a mathematical sense).

To clarify the characteristic of central moment, we show the
calculated central-moment values of four sequences Y1–Y4 in
Figure 2, where the values in the parentheses following each
sequence (Y1–Y4) sequentially denote the mean, variance, and
third- and forth-order central moment. In Figure 2A, Y1 and Y2
denote two sequences with reversed order. We can see that Y1
and Y2 have the same values of central moment, demonstrating
the invariance of central-moment features with respect to the
sequence order. In Figure 2B, Y3 and Y4 are two symmetric
sequences with identical symmetry axis but rather different
fluctuating range. From the calculated central moments for Y3
and Y4, we can see that, except for the mean, the other central
moments have noticeable difference, which means that central-
moment features are able to reflect the dynamic change of a
sequence. Based on the analysis of Figure 2, we can see that the

central-moment features is invariant to sequence order and is
able to capture the dynamic variation of a sequence.

Inspired by the advantages of central-moment method, we
put forward a new approach that employs central-moment
technique to excavate the temporal-invariance discriminative
features of Lo-D-FCNs. Specifically, we treat each FC correlation
time series of a pair of ROIs in a Lo-D-FCNs (such as
[ρij (1) , ρij (2) , · · · , ρij (K) ] in Figure 1B1), which reflects
the temporal changes of FC between two ROIs, as a one-
dimensional random sequence that is generated from a
random variable, and then, we extract the central-moment
features of the sequence for further classification. Similarly,
for Ho-D-FCNs, we regard the connection strength (i.e., the
connection weight of an edge) series along the scanning time
(such as[hρij (1) , hρij (2) , · · · , hρij (K)] in Figure 1C1) as a
one-dimensional sequence and extract corresponding central-
moment features.

Using the central-moment features, we can summarize the
dynamic variation of either low- or high-order FC among
multiple ROIs along the scanning time and give a general
physiological interpretation to some extent. For example, if the
value of the first-order central moment (i.e., mean value) from the
FC correlation time series between a pair of ROIs in Lo-D-FCNs
or among multiple ROIs in Ho-D-FCNs is relatively large, these
ROIs may have strong functional correlation with each other.
Similarly, if the value of the second-order central moment (i.e.,
variance value) is relatively large, it means that the correlations
among the corresponding ROIs is very unstable during the whole
scanning time; in other words, the periods of high correlation
among all the corresponding ROIs may alternate with the periods
of low correlation. Contrarily, such an interpretation is very hard
to be obtained by directly analyzing Lo-D-FCNs or Ho-D-FCNs
due to the large-scale and dynamic network structure.

In summary, there are three parts of contribution in this paper:
(Geschwind and Levitt, 2007) proposing new Ho-D-FCNs (never
used in previous ASD diagnosis) to reflect high-level connectivity
information across multiple ROIs; (Jin et al., 2015) utilizing a
central-moment method to capture FC properties derived from
Lo-D-FCNs or Ho-D-FCNs without performing chronological
time matching; (Anagnostou and Taylor, 2011) employing three
multilevel FCN models (i.e., C-FCN, Lo-D-FCNs, and Ho-D-
FCNs) to comprehensively investigate complex and multilevel
functional associations among brain ROIs.

MATERIALS AND PREPROCESSING

Subjects
The rs-fMRI dataset used in this paper was downloaded from
a publicly available Autism Brain Imaging Data Exchange
(ABIDE) database (Di Martino et al., 2013). To alleviate data
heterogeneity, we only consider the rs-fMRI data acquired from
45 ASD patients and 47 normal controls (NCs) with ages ranging
from 7- to 15 years old, scanned at New York University
Langone Medical Center. All these considered subjects had
no excessive head motion with a displacement of <1.5 mm
or an angular rotation of <1.5◦ in any of three directions.
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FIGURE 2 | Illustration of the calculated mean, variance, and third- and forth-order central moment (sequentially denoted in the corresponding parentheses) for four
sequences Y1–Y4. (A) Two sequences (Y1 and Y2) with reversed order. (B) Two symmetric sequences (Y3 and Y4) with identical symmetry axis but different
fluctuating range.

The detailed demographic information of these subjects is
summarized in Table 1. As shown in Table 1, there were
no significant differences (p > 0.05) in gender, age, and FIQ
between two groups. ASD subjects were diagnosed based on
the autism criteria in Diagnostic and Statistical Manual of
Mental Disorders, 4th Edition, Text Revision (DSM-IV-TR)
(American Psychiatric Association, 2000). More details on the
data collection, exclusion criteria, and scan parameters can be
obtained from the ABIDE website2.

Data Acquisition and Preprocessing
All included subjects were scanned using a 3-T Siemens Allegra
scanner at the NYU Langone Medical Center. During the 6 min
rs-fMRI scan procedure, most subjects were instructed to relax
with their eyes and stare at a white fixation cross at the center
of the black screen. Their eye statuses were monitored by an eye

2http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html.

TABLE 1 | Demographic information of the subjects.

ASD NC p-values

Gender (M/F) 36/9 36/11 0.2135a

Age (mean ± SD) 11.1 ± 2.3 11.0 ± 2.3 0.773b

FIQ (mean ± SD) 106.8 ± 17.4 113.3 ± 14.1 0.0510b

ADI-R (mean ± SD) 32.2 ± 14.3c – –

ADOS (mean ± SD) 13.7 ± 5.0 – –

ASD, autism spectrum disorders; NC, normal control; M, male; F, female; FIQ, Full
Intelligence Quotient; ADI-R, Autism Diagnostic Interview-Revised; ADO, autism
diagnostic observation schedule. aThe p value was obtained by χ2-test. bThe
p-value was obtained by two-sample two-tailed t-test. cTwo patients do not have
the ADI-R score.

tracker. The mean framewise displacement (FD) was computed
to describe head motion for each individual. The individuals
were excluded if their mean FD is >1 mm (Lin et al., 2015;
Ray et al., 2015). On the other hand, head motion effect was
further corrected with the Friston 24-parameter model in the
following process. The main scanning parameters used in this
dataset include the flip angle = 90, 33 slices, TR/TE = 2,000/15
ms, 180 volumes, and voxel thickness = 4 mm.

For rs-fMRI data preprocessing, we used the Statistical
Parametric Mapping (SPM8) software3. Specifically, the first
10 rs-fMRI volumes were removed to ensure magnetization
stabilization. Then, all rs-fMRI volumes were normalized to the
Montreal Neurological Institute (MNI) space with the resolution
of 3 × 3 × 3 mm3. Subsequently, ventricle, global signals
were regressed out as nuisance signals, while head motion
was corrected with the Friston 24-parameter model (i.e., 6
head motion parameters, 6 head motion parameters from the
previous time point, and the 12 corresponding squared items)
for decreasing head motion effects (Satterthwaite et al., 2013; Yan
et al., 2013). Furthermore, the band-pass filtering (0.01–0.08 Hz)
and signal detrending were also performed to avoid physiological
noise (Cordes et al., 2001), measurement error (Achard et al.,
2008), and magnetic field drifts of the scanner (Tomasi and
Volkow, 2010). Finally, the brain was parcellated into 116 brain
ROIs using the Automated Anatomical Labeling (AAL) atlas
(Tzourio-Mazoyer et al., 2002). Next, the average rs-fMRI time
series was calculated for each brain ROI and then represented in
a data matrix X ∈ R170 × 116 , where 170 denotes the total number
of temporal image volumes and 116 denotes the total number
of all brain ROIs.

3http://www.fil.ion.ucl.ac.uk/spm/software/spm8/.
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METHOD

In this section, we mainly detail how to construct our Ho-
D-FCNs based on the “correlation’s correlation” principle. As
mathematical notations, we use uppercase bold letters (e.g., G,
C) to denote FC networks or matrices, lowercase bold letters
(e.g., x) to denote vectors, and lower case letters (e.g., i, j)
to denote scalars.

Figure 3 displays the flowchart of our proposed classification
framework, including the following four steps: ¬ constructing
various FC networks, including C-FCN, Lo-D-FCNs, and Ho-D-
FCNs;  extracting the central-moment features, ranging from
the first- to the seventh-order, from Lo-D-FCNs and Ho-D-
FCNs (central-moment extracted from Lo-D-FCNs and Ho-D-
FCNs can be regarded as the network feature since each of its
elements is derived from a correlation time series of a pair of
ROIs); ® selecting the most discriminative features in a two-stage
feature selection process for reducing feature dimensionality and
eliminating irrelevant features to the target classification task; and
¯ classification fusion. We construct an ensemble classifier with
three linear support vector machines (SVM) classifiers (Cortes
and Vapnik, 1995), each being trained with a specific type of
FC features. The classification scores by all SVM classifiers are
finally fused, by weighted averaging, to predict the target class
label (ASD or NC) for a given testing subject.

Multilevel FC Networks Construction
A network structure can be modeled as a graph comprising a set
of vertexes and edges linking them. Let G denote a FC network
where each vertex represents a specific ROI, and each edge is
weighted by the strength of FC between its end vertices (i.e.,
ROIs). Let C denote the connectivity matrix of G, where each
column (resp. row) denotes a specific ROI, and each element of
C denotes the strength of FC between two ROIs. The structure
of G is encoded in C. Next, we will detail how the corresponding
connectivity matrices of C-FCN, Lo-D-FCNs, and Ho-D-FCNs
are constructed.

C-FCN Construction
For each subject, let xi = (xi1, xi2, · · · , xiM)(i = 1, 2, · · · ,N)
denote the average rs-fMRI time series across all voxels within
the ith ROI, where M denotes the total number of temporal
image volumes, and N denotes the total number of all ROIs.
We can generate the conventional correlation-based FC network
(C-FCN) GC by a symmetric matrixCC , defined as:

CC = (ρij)1≤i,j≤N, (1)

where ρij denotes the Pearson’s correlation between the average
rs-fMRI time series from the ith and the jth ROIs, defined as:

ρij = corr(xi, xj), (2)

It can be seen from Equation (1) that each row or column of
CC denotes the Pearson correlation series between a specific ROI
and all other ROIs. Notably, GC encodes the static interactions
between any pair of ROIs during the entire scanning duration,
which fails to capture the dynamic nature of neural activity.

Lo-D-FCNs Construction
To encode the nonstationary interactions between different
ROIs, we adopt the sliding-window strategy to generate
Lo-D-FCNs. Specifically, suppose that the length of the
sliding window is T and the step size between two
successive windows is S, thus the entire rs-fMRI time series
xi = (xi1, xi2, · · · , xiM)(i = 1, 2, · · · ,N) corresponding to the
ith ROI are partitioned into K overlapping segments with a
predefined sliding window, where K = [(M − T)/S]+ 1.

Letting xi(k) =
[
xi1
(
k
)
, xi2

(
k
)
, · · · , xiT

(
k
)]
(k = 1, 2, · · · ,

K) denote the kth time subseries of xi , we can calculate the kth
submatric CLo−D(k) as Equation (1).

CLo−D
(
k
)
=
[
ρij
(
k
)]

1≤i,j≤N
(
k = 1, 2, · · · ,K

)
(3)

where ρij
(
k
)

is computed as:

ρij
(
k
)
ρij
(
k
)
= corr

[
xi
(
k
)
, xj

(
k
)]

(4)

Obviously, CLo−D(k) reflects the interaction between two
ROIs during a relatively shorter time period. The submatrix
series

{
CLo−D

(
k
)}K

k=1 along the scanning time describes the
temporal change of the connectivity strength for all ROI pairs.
The corresponding FCN of

{
CLo−D

(
k
)}K

k=1 is called Lo-D-FCNs
and denoted asCLo−D(k) (see Figure 3).

Ho-D-FCNs Construction
To fully capture high-order functional interactions across
brain ROIs, we adopt the “correlation’s correlation” principle
(Zhang et al., 2016; Morris and Rekik, 2017; Soussia and
Rekik, 2018; Zhao et al., 2018) to generate Ho-D-FCNs.
Specifically, for the ith ROI of a subject, we can get a
correlation series ρi

(
k
)
=
[
ρi1
(
k
)
, ρi2

(
k
)
, . . . , ρiN

(
k
)]

from
the kth submatrixCLo−D(k) (see Equation 3). Mathematically,
ρi
(
k
)

denotes the ith row or column of the symmetric
matrixCLo−D(k). We regard ρi

(
k
)

as the short-time FC profile of
the ith ROI on the kth time subseries, reflecting the correlations
between the ith ROI and all other ROIs during the kth time
section. Then, the correlation is computed between the short-
time FC profile ρi

(
k
)

of the ith ROI and the short-time FC profile
ρj
(
k
)

of the jth ROI as follows:

hρij
(
k
)
= corr

[
ρi
(
k
)
, ρj(k)

]
, (5)

Obviously, hρij
(
k
)

denotes the “correlation’s correlation”
between the ith ROI and the jth ROI in the kth time section,
quantifying how the correlation series ρi

(
k
)

[i.e., the FC profiles
ρi
(
k
)

between the ith ROI and all other ROIs resemble the
correlation series ρi

(
k
)
[i.e., the FC profiles ρj

(
k
)
] between the

jth ROI and all other ROIs. As a result, hρij
(
k
)

can reveal more
complex relationship between the FC profiles ρi

(
k
)

andρj
(
k
)
,

not just the original rs-fMRI time series xi
(
k
)

and xj
(
k
)
. Thus,

the correlation coefficient hρij
(
k
)

can characterize more complex
and abstract interactions among multiple ROIs, which occur in
a relatively shorter time period. We further define a submatrix
CHo−D

(
k
)

in the kth time section as follows:

CHo−D
(
k
)
=
[
ρhij

(
k
)]

1≤i,j≤N , (6)
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FIGURE 3 | Overview of our proposed classification framework, including four main steps: ¬ constructing multiple functional connectivity networks (FCNs), 

extracting central-moment features, ® feature selection, and ¯ classification fusion. Lo-CM denotes the central-moment features from low-order dynamic functional
connectivity networks (Lo-D-FCNs), and Ho-CM is from high-order dynamic functional connectivity networks (Ho-D-FCNs). The means of other symbols are the
same with those presented in Introduction.

Based on Equation (6), we can construct a Ho-D-
FCNs, denoted asCHo−D

(
k
)
, where the submatrices series{

CHo−D
(
k
)}K

k=1 is regarded as the associated dynamic FC of
CHo−D

(
k
)

along the scanning time. Obviously, CHo−D
(
k
)

can capture high-level interactions across multiple ROIs
while preserving the dynamic aspect of brain functional
activity. Similar to GLo−D, Figure 3 displays the main steps for
constructing GHo−D

(
k
)
.

Feature Extraction and Selection
With the above-mentioned methods in Multilevel FC Networks
Construction, three different types of FCN, i.e., GC, GLo−D
and GLo−D, are obtained to form multilevel representations of
functional interactions across multiple ROIs. In this section,
we mainly introduce how to extract and select features
from these FCNs.

Central-Moment Feature Extraction
We note that both FC networks GLo−D and GHo−D are out
of temporal synchrony across different subjects. In other words,
the kth time subseries, ρl

ij
(
k
)
(k = 1, 2, · · · ,K) [or hρl

ij
(
k
)
] from

the lth subject may be inconsistent with ρr
ij
(
k
)

[or hρr
ij
(
k
)
]

from the rth subject due to the unconstrained mental activities
during resting state. To extract consistent dynamic connectomic
features across subjects, we propose to extract the central-
moment features of GLo−D and carry out the same procedure
for GHo−D. Specifically, we first construct a FC time series ρij
between the ith ROI and the jth ROI by concatenating the
elements ρij

(
k
)

(see Equation 3) as follows:

ρij = [ρij (1) , ρij (2) , · · · ρij
(
k
)
, · · · , ρij

(K)](1 ≤ i, j ≤ N, 1 ≤ k ≤ K), (7)
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where ρij reflects the FC dynamic changes along the scanning
time between the ith ROI and the jth ROI. We calculate its dth
order central-moment mij(d) of ρijas follows:

mij
(
d
)
=

d

√∑K
k=1

[
ρij
(
k
)
− ρ̄ij

]d

K
(d = 1, 2, · · ·D), (8)

where D denotes the highest order. We further get a
central-moment matrix series

{
MLo−D(d)

}D
d=1 from GLo−D

[i.e., {CLo−D
(
k
)
}

K
k=1 ] by the following definition:

MLo−D
(
d
)
=
[
mij

(
d
)]

1≤i,j≤N (d = 1, 2, · · ·D), (9)

It can be seen from Equation (8) that mij
(
d
)

is invariant to the
element order of ρij = [ρij (1) , ρij (2) , · · · ρij

(
k
)
, · · · , ρij (K)].

Thus,
{

MLo−D(d)
}D

d=1 is insensitive to temporal
asynchrony across subject.

We use the same strategy to derive central-moment matrix
series

{
MHo−D(d)

}D
d=1 of GHo−D [i.e., {CHo−D

(
k
)
}

K
k=1 ] using

the following formula:

MHo−D
(
d
)
=
[
hmij

(
d
)]

1≤i,j≤N (d = 1, 2, · · ·D), (10)

where hmij
(
d
)

is computed as follows:

hmij
(
d
)
=

d

√√√√∑K
k=1

[
hρij

(
k
)
− hρij

]d

K
(d = 1, 2, · · ·D), (11)

hρij
(
k
)

denotes the “correlation’s correlation” between the ith
ROI and the jth ROI in the kth time section (see Equation 5).
We also give a brief illustration of MLo−D(d) and MHo−D

(
d
)

construction in Figure 3.

Feature Selection Using a Two-Stage Approach
For the lth subject, we obtain three types of raw features,
i.e., the features C(l)C of C-FCN, the central-moment features
M(l)

Lo−D
(
d
)

of Lo-D-FCNs, and the central-moment features
M(l)

Ho−D
(
d
)

of Ho-D-FCNs, each of which is a N × N symmetric
matrix. Here, N denotes the number of ROIs, and N = 116
is set in our case. Since each matrix is symmetric, we only
vectorize their lower off-diagonal triangular part to define

the feature vector set
{

y(l)0 , y(l)1 , y(l)2

}
, for representing the lth

subject, where y(l)0 , y(l)1 , and y(l)2 denote the vectorization of C(l)C ,
M(l)

Lo−D
(
d
)
, and M(l)

Ho−D
(
d
)
, respectively. The dimensionality

of y(l)c (0 ≤ c ≤ 2) is N(N−1)
2 , and it is 6,670 in our case,

where c denotes the type of feature vector. Obviously, the
feature dimensionality is much larger than the total number
of subjects. More importantly, many features may be irrelevant
to ASD diagnosis.

To remove the redundant features while preserving a small
subset of discriminative features that are most likely relevant
to ASD pathology, we design a two-stage feature selection
strategy. Specifically, in the first stage, for each feature from

y(l)c (0 ≤ i ≤ 2), we perform a two-sample t-test between NC

and ASD subjects, due to its simplicity and efficiency. Then,
we select the features only with their p-values smaller than
a certain threshold. In such a way, we can get a preliminary
set of features that are highly correlated with the class label,
while the rest features not correlated with classification well
be eliminated. However, some feature may be still correlated
to each other, thus causing feature redundancy. Therefore,
to further remove features from these correlated features, we
adopt the L1-norm regularized least squares regression, known
as LASSO (Tibshirani, 1996), to further optimize the feature
subset in the second stage. Note that the t-test is performed
on each feature individually, while LASSO regression considers
all features jointly such that the correlation between features

can be taken into account. Specifically, let ȳ(l)c (0 ≤ c ≤ 2)
denote the features selected by the t-test. I(l) is the class

labels of ȳ(l)c , where I(l) = 1 if the lth subject is ASD and
I(l) = −1 if the lth subject is NC. Let wc represent the weight
vector for the feature selection task. Mathematically, the LASSO
model can be formalized as energy functional to optimize
(Tibshirani, 1996):

min
1
2

L∑
l=1

∣∣∣∣I(l)− < y(l)c ,Wc >
∣∣∣∣2 + λ||Wc||1 (12)

where 〈• , •〉 denotes the inner operator, L denotes the number
of subjects, and λ is a parameter, controlling the model’s sparsity
based on the L1-norm regularization. The larger the value of λ ,
the sparser the model is. In this way, we can jointly achieve sparse
feature selection. In other words, those features with nonzero
elements of wi were eventually retained. Let y(l)c (0 ≤ c ≤ 2)
denote the final selected set of feature from the original pool of

feature vectors y(l)c (0 ≤ c ≤ 2).

Classifier Learning and Fusing
After selecting the most important features by the two-stage
approach, we use SVM with linear kernel for ASD classification.
Considering these features y(l)c (0 ≤ c ≤ 2) are generated from
three FCNs with different level, we train an SVM classifier
for each type of features y(l)c (0 ≤ c ≤ 2). SVM seeks a
maximum margin hyper-plane to separate the samples from
two different classes. The empirical risk on the training data
and the complexity of the model can be balanced by the
hyperparameter γ, thus ensuring good generalization ability on
the unseen data. Finally, we can fuse these three SVM classifiers
together for making the final result. Specifically, each type of

features y(l)c are used to train a specific classifier. Then, for
a test subject, each SVM will output an associated decision
score, indicating the probability of that subject belonging to
a class. Finally, to obtain classification result, we calculate
the weighted average of the three decision scores from these
SVM models with weight α tuned for each SVM, which
reflects the reliability of corresponding decision score. In
Figure 3, we provide a brief illustration of the classifier
learning and fusing.
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EXPERIMENTAL ANALYSIS

For evaluating the performance of our proposed method, we
adopted a sixfold cross-validation (CV) strategy to perform
experiments. For example, all training subjects were randomly
partitioned into six subsets (each subset with a roughly equal
number of samples), and each time the samples within one
subset are selected as the testing dataset, while the remaining
samples within the other five subsets are combined together as
the training dataset for feature selection and classifier training.
For evaluation, we reported the average accuracy of classification
results across all six CV cases. Furthermore, to avoid any
possible bias in fold selection, the entire sixfold CV process
was repeated 10 times, with a different random partitioning
of samples each time. Finally, the average statistics of the 10
repetitions was reported. To carry out our proposed method and
other competing algorithms, some parameters need to set, such as
p-values in the two-sample t-test model, λ in the LASSO model
(Feature Selection Using a Two-Stage Approach), and γ and α

in the linear SVM model (Classifier Learning and Fusing). For
fair comparison, we use nested CV to tune the parameters in
each method. In particular, for each fold in the above sixfold
CV, we perform another fivefold CV on the five subsets, which
is used for training for the selection of parameters. The optimal
values can be determined by this inner fivefold CV when the
average classification accuracy reaches its optimum. Then, the
selected parameters are used to learn a model based on the
entire training dataset, which is further utilized for classification
on the testing dataset. For our approach, we determine the
optimal values for the parameters in the following range: p–values
∈ [0.01 : 0.01 : 0.1],λ ∈ [0.1 : 0.1 : 0.7], γ ∈

[
2−5, 2−4, · · · , 25],

and α ∈ [0.1 : 0.1 : 0.9].
As usual, we adopt six evaluation measures, i.e., classification

accuracy (ACC), sensitivity or true positive rate (TPR),
specificity or true negative rate (TNR), positive predictive
value (PPV), negative predictive value (NPV), and F1 score,
to comprehensively evaluate classification performance. Their
definitions are given as follows:

ACC =
TP + TN

TP + FP + TN + FN
, (13)

TPR =
TP

TP + FN
, (14)

TNR =
TN

FP + TN
, (15)

PPV =
TP

TP + FN
, (16)

NPV =
TN

FN + TN
, (17)

F1 =
2× TP

2× TP + FN + FP
, (18)

where TP, TN, FP, and FN indicate the true positive, true
negative, false positive, and false negative, respectively. Note that

we treat ASD patients as positive samples and NC as negative
samples in this paper.

The Influence of Parameters on D-FCNs
In the construction of D-FCNs (including Lo-D-FCNs and Ho-
D-FCNs) and feature extraction, there are three parameters to
tune: (1) sliding window length T, (2) the step size between
two successive windows S, and (3) the order of central
moment d, which jointly affects the diagnosis accuracy of Lo-
D-FCNs and Ho-D-FCNs. To evaluate the impact of these
parameters on classification performance and select a suitable
combination of parameters for the subsequent multiclassifier
fusion, we vary the values of these parameters in specific
range (i.e., T = [40 : 10 : 90] , S = [2 : 2 : 12] , d = [1 : 1 : 7])
and repeat the classification experiments based on different
combinations of these parameters. It is worth noting that
when d = 1, we use the mean value instead of the first-
order moment so that the method can better reflect the
sample characteristics.

Here, we use the average classification accuracy (ACC) to
evaluate the applicability of parameter combination to ASD
diagnosis. Figure 4 displays the ACC achieved by Lo-D-FCNs
and Ho-D-FCNs using different combinations of T, S, and d
values. The higher the accuracy is, the longer the length and the
warmer the color are.

As shown in Figure 4A, the optimal parameter combination
for Lo-D-FCNs is T = 60, S = 2, and d = 4, its ACC is
79.4, while the minimum value of ACC is 54.0 when
T = 60, S = 10, and d = 3. Likewise, from Figure 4B, we

can see that the optimal parameter combination for Ho-D-
FCNs is T = 40, S = 12, and d = 2, its ACC is 77.6, while the
minimum is 56.1 when T = 70, S = 8, and d = d. Therefore,
based on Figure 4, we can observe that the classification
preformation is rather sensitive to these parameters. For boosting
the final classification accuracy, we set these optimal parameters
(i.e., T = 60, S = 2, and d = 4 for Lo-D-FCNs and T = 40,
S = 12, and d = 2 for Ho-D-FCNs) as the default parameter for
the following experiments.

Fusion Results of the C-FCN,
Lo-D-FCNs, and Ho-D-FCNs
We select the combination of parameters that can lead to the
highest ACC from the SVMs of C-FCN, Lo-D-FCNs, and Ho-
D-FCNs, respectively, and obtain the final classification result by
linear fusion of the SVM ensemble decision scores. In addition
to our model, we also added another recently developed high-
order FC network approach (Zhou et al., 2018) for comparison.
Similar to our approach, this method also used sliding window
approach to capture the dynamic variation of FC, and a series
of traditional FC networks are constructed. Then, both low-
order (termed as LoM) and high-order FC (termed as HiO)
networks are constructed by maximum likelihood estimation
with the assumption that these D-FCNs follow the matrix variate
normal distribution.

Table 2 shows the average classification performance of
nine models. Among them, CC denotes the feature derived
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FIGURE 4 | The average classification (ACC) using different combinations of T, S, and d values. (A) The histogram of different ACC in Lo-D-FCNs. (B) The histogram
of different ACC in Ho-D-FCNs.

TABLE 2 | Autism spectrum disorder (ASD) classification using different feature types and evaluation measures.

Model ACC (%) TPR (%) TNR (%) PPV (%) NPV (%) F1 (%)

CC 74 ± 0.04 72 ± 0.23 76 ± 0.01 74 ± 0.05 74 ± 0.08 73 ± 0.07

CLo−D(1) 75 ± 0.12 73 ± 0.14 76 ± 0.29 74 ± 0.23 75 ± 0.08 74 ± 0.12

CLo−D(4) 79 ± 0.15 79 ± 0.10 79 ± 0.53 79 ± 0.38 79 ± 0.07 79 ± 0.12

CHo−D(2) 78 ± 0.06 79 ± 0.49 77 ± 0.24 76 ± 0.09 80 ± 0.25 77 ± 0.11

HiO 72 ± 0.16 71 ± 0.21 73 ± 0.32 72 ± 0.18 73 ± 0.28 72 ± 0.16

CC + CLo−D(4) 80 ± 0.20 78 ± 0.25 82 ± 0.39 80 ± 0.38 79 ± 0.17 79 ± 0.20

CC + CHo−D(2) 78 ± 0.11 79 ± 0.20 77 ± 0.26 77 ± 0.17 79 ± 0.12 77 ± 0.11

CLo−D(4) + CHo−D(2) 81 ± 0.06 82 ± 0.31 80 ± 0.11 80 ± 0.06 83 ± 0.17 81 ± 0.08

CC + CLo−D(4) + CHo−D(2) 83 ± 0.16 82 ± 0.10 84 ± 0.46 83 ± 0.34 83 ± 0.08 82 ± 0.13

Values highlighted in bold show best results.

from the conventional correlation-based FC network (C-
FCN), and CC + CLo−D denotes the fusion of C-FCN
and Lo-D-FCNs. The number following CLo−D denotes
the order of central moment used to extract features. For

example, CLo−D(1) means the low-order dynamic FC network
with mean as central moment. Notice that the constructed
LoM network in Zhou et al. (2018) is equivalent to our
proposed Lo-D-FCNs when the order of central moment
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FIGURE 5 | The circular graphs and the involved brain regions of interest (ROIs) of the top 10 discriminative connections selected by our proposed method. (A) The
correlation-based functional connectivity (FC) network (C-FCN), (B) the low-order dynamic FC network (Lo-D-FCNs), (C) the high-order dynamic FC network
(Ho-D-FCNs), and (D) the mutual comparison among three sets of connections. The selection frequency is encoded by the thickness of each connecting curve, i.e.,
thicker curves indicate higher selection frequency. For brain region abbreviations, please refer to Table 3.

equals to 1, i.e., CLo−D(1). We also report the standard
deviation of the classification accuracy. The best results are
highlighted in bold.

Based on Table 2, we can draw the conclusions below.
(1) In terms of ACC and other evaluation measures, the

performance of feature types derived from D-FCNs (i.e., Lo-
D-FCNs and Ho-D-FCNs) are superior to that of C-FCN, in
which ACC is increased by 4 and 5%, respectively, and other
performance are also improved accordingly. This result indicates
that the sliding-window-based D-FCNs can provide better
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features for ASD classification. (2) The classification result of
ensemble classifier consistently outperforms that of single feature
type, which supports the assumption of integrating multiorder
connectional features for boosting classification results. (3) The
fusion of C-FCN, Lo-D-FCNs, and Ho-D-FCNs achieved the
best classification performance, indicating that different-level
FCNs can provide complementary relevant information for ASD
diagnosis and classification, and the fusion of this information
can further improve the classification performance. This result
will also be reflected in the following experiments. (4) By
comparing our model with the approach proposed in Zhou et al.
(2018), we also find that our central-moment-based approach
performs better in terms of accuracy. Actually, the performance
of HiO is inferior to the corresponding low-order FC network
[i.e.,CLo−D(1)], which is consistent with the results given in Zhou
et al. (2018). This comparison also verifies the effectiveness of our
central-moment features.

The Most Discriminative Features for
ASD Diagnosis
We used t-test, followed by LASSO regression, to identify the
most discriminative features in C-FCN, Lo-D-FCNs, and Ho-
D-FCNs, respectively. In this study, we used the frequency,
at which features are selected in all cross-validation cases,
to quantify feature relevance to the target classification.
The higher the feature frequency, the more reliable and
discriminative it is regarded.

Figures 5A–C visualizes the top 10 most discriminative
features of C-FCN, Lo-D-FCNs, and Ho-D-FCNs in the form of
circular graphs, where each link corresponds to a connectional
feature and represents the correlation between two brain regions
(Krzywinski et al., 2009). Figure 5D also shows the mutual
comparison among three sets of connections. We use link
thickness to encode the degree of their correlation. The thicker
the link is, the stronger the correlation is; also, the higher
the frequency of the connection selected in cross-validation is,
the greater the contribution to the target classification tasks is.
For the abbreviations of brain regions in Figure 5, please refer to
Table 3. In addition, we mark L (or R) following a brain region
(or ROI) name to denote that it lies in the left hemisphere (or the
right hemisphere), such as ANGR means the right angular gyrus.

From Figure 5 and Table 3, we can derive the following. (1)
The discriminative connections is not limited to connect the
same hemisphere or brain lobe but also includes transhemisphere
and all brain lobe, which indicates that the brain function of
ASD patients has an abnormal distribution pattern over the
whole brain. (2) Most selected brain regions are associated
with emotional expression, language understanding, and motion
coordination, such as precentral gyrus, middle frontal gyrus,
middle cingulate gyrus, posterior cingulate gyrus, amygdala,
angular gyrus, and others. These observations are consistent with
previous studies (Qiu et al., 2010; Ecker et al., 2015; Ha et al.,
2015b; Huang et al., 2018). For example, we found that SFGmedL

(Andrews-Hanna et al., 2014), ANGR (Andrews-Hanna et al.,
2014), PCUNL (Urbain et al., 2015), CALL (Perkins et al.,
2015), FFGR (Urbain et al., 2016), INSL (Leung et al., 2015;

TABLE 3 | Abbreviations of ROIs selected from conventional functional
connectivity network (C-FCN), low-order dynamic FCNs (Lo-D-FCNs), and
high-order D-FCNs (Ho-D-FCNs).

Abbreviation ROI name Abbreviation ROI name

FRO: frontal lobe

PreCG Precentral gyrus MFG Middle frontal gyrus

ORBmid Orbitofrontal cortex
(middle)

IFGoperc Inferior frontal gyrus
(opercular)

ROL Rolandic
operculum

SMA Supplementary
motor area

SFGmed Superior frontal
gyrus (media)

ORBsupmed Orbitofrontal cortex
(medial)

REC Rectus gyrus

INS: insula

INS Insula

LIM: limbic system

DCG Middle cingulate
gyrus

PCG Posterior cingulate
gyrus

PHG Parahippocampal
gyrus

SBC: subcortical structures

AMYG Amygdala PUT Putamen

PAL Pallidum

OCC: occipital lobe

CAL Calcarine cortex SOG Superior occipital
gyrus

MOG Middle occipital
gyrus

IOG Inferior occipital
gyrus

FFG Fusiform gyrus

PAR: parietal lobe

PoCG Postcentral gyrus SPG Superior parietal
gyrus

ANG Angular gyrus PCUN Precuneus

TEM: temporal lobe

TPOsup Temporal pole
(superior)

MTG Middle temporal
gyrus

TPOmid Temporal pole
(middle)

ITG Inferior temporal

CER: cerebellum

II-Cb Crus II of cerebellar
hemisphere

IX-Cb Lobule IX of
cerebellar
hemisphere

X-Cb Lobule X of
cerebellar
hemisphere

VER: vermis

I-II-VER Lobule I, II of vermis III-VER Lobule III of vermis

IV-V-VER Lobule IV, V of
vermis

VI-VER Lobule VI of vermis

VII-VER Lobule VII of vermis VIII-VER Lobule VIII of
vermis

IX-VER Lobule IX of vermis X-VER Lobule X of vermis
(nodulus)

Urbain et al., 2016) contributed more to ASD identification,
which is in line with the recent finding reported in the existing
literatures. (3) Features selected from C-FCN, Lo-D-FCNs, and
Ho-D-FCNs have significant differences, which can be seen
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from three aspects: first, the selected connected features by each
FCN (i.e., the connectional lines in Figures 5A–C are almost
entirely different from each other, except for the connected
features (IX-CbL-PCUNR) selected by both Lo-D-FCNs and Ho-
D-FCNs although with different strength; second, according
to the affiliation relation of the selected ROIs with respect to
corresponding FCNs (Figure 5D), we find that most of the
selected ROIs merely belong to one FCN, except one ROI
(PUCNR) that is jointly selected by all the three FCNs, four
ROIs by C-FNC and Lo-D-FCNs (or Ho-D-FCNs), and five
ROIs by Lo-D-FCNs and Ho-D-FCNs; and third, the regional
distribution of the selected features has huge difference among
the three FCNs. For example, the connectional features selected
by C-FCN mainly distribute in TEML, PARL, OCCL, SBCL−R,
LIML−R, INSL−R, and FORL−R (Figure 5A). The features selected
by Lo-D-FCNs mainly locate in INSR, LIMR, SBCR, OCCR,
PARR, TEMR−L, CREL−R, and VERL−R (Figure 5B) and that
of Ho-D-FCNs is in INSL, LIML, SBCL, TEMR−L, and CERL−R

(Figure 5C). In summary, the above analysis of difference
among three FCNs show that their network infrastructures exist
significantly different, which indicate that FCNs of different level
can provide complementary information for diagnosis. We think
that the main reason causing the huge difference among the
three FCNs is that each FCN actually reflects the correlation
between brain regions from rather different viewpoints. C-FCN
generally captures the static connectional feature since its FC is
measured using the whole scanning time rs-fMRI series from
any pair of ROIs, while Lo-D-FCNs reveals the dynamically
connectional relationship between a pair of ROIs because its
FC metric is similar to C-FCN, just using a short-time rs-fMRI
series. Compared with C-FCN and Lo-D-FCNs, Ho-D-FCNs uses
a vastly different metric to measure the connectional relationship
between a pair of ROIs, i.e., using the synchronization of the
short-time FC profile between two ROIs to represent their
temporary correlation. Therefore, Ho-D-FCNs can reveal some
new FC interaction among ROIs, thus providing supplementary
information to C-FCN and Lo-D-FCNs.

CONCLUSION

In this paper, we proposed new Ho-D-FCNs and used the
central-moment method to eliminate the phase mismatch
problem of dynamic networks. Through the analysis of feature
selection, we believed that the presented Ho-D-FCNs could

provide complementary information to our previous research
(C-FCN, Lo-D-FCNs). Therefore, we fused these three methods
and got the optimal classification results. The experimental
results have shown that: (1) Ho-D-FCNs was indeed helpful
for mining the relevant information for ASD diagnosis; (2)
different level FCNs could provide complementary information
and improve the disease recognition rate through fusion;
and (3) the central-moment method could help to solve the
phase mismatch problem in dynamic networks, including Lo-
D-FCNs and Ho-D-FCNs, which were covered in the paper.
In addition, in the analysis of feature selection, we also
found that most brain regions contributing to classification
are related to emotional expression, language understanding,
and motion coordination. These findings agree with the
behavioral phenotype of ASD (Geschwind and Levitt, 2007;
American Psychiatric Association, 2013).

Finally, it should be indicated that the fusion of the three
methods based on the decision value of SVM might not
adequately integrate the complementary information and thus
have an impact on the classification accuracy. Therefore, feature
fusion is a direction for future improvement, which will be
our future work.
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