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Abstract

This thesis presents and evaluates software for simultaneous, high-resolution

time–frequency discrimination. Whilst this is a problem that arises in many

areas of engineering, the software here is developed to assist musicological

investigations. In order to analyse musical performances, we must first know

what is happening and when; that is, at what time each note begins to sound

(the note onset) and what frequencies are present (the pitch). The work

presented here focusses on onset detection, although the representation of

data used for this task could also be used to track the pitch. A potential

method of determining pitch on a sample-to-sample basis is given in the

final chapter.

Extant software for onset detection uses standard signal processing tech-

niques to search for changes in features like the spectrum or phase. These

methods struggle somewhat, as they are constrained by the uncertainty prin-

ciple, which states that, as time resolution is increased, frequency resolution

must decrease and vice versa.

However, we can hear changes in frequency to a far greater time resolu-

tion than the uncertainty principle would suggest is possible. There is an

active process in the inner ear which adds energy and enables this perceptual

acuity. The mathematical expression which describes this system is known

as the Hopf bifurcation.

By building a bank of tuned resonators in software, each of which oper-

ates at a Hopf bifurcation, and driving it with audio, changes in frequency
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can be detected in times that defy the uncertainty relation, as we are not

seeking to directly measure the time–frequency features of a system, rather it

is used to drive a system. Time and frequency information is then available

from the internal state variables of the system.

The characteristics of this bank of resonators — called a ‘DetectorBank’

— are investigated thoroughly. The bandwidth of each resonator (‘detector’)

can be as narrow as 0.922 Hz and the system bandwidth is extended to the

Nyquist frequency. A nonlinear system may be expected to respond poorly

when presented with multiple simultaneous input frequencies; however, the

DetectorBank performs well under these circumstances.

The data generated by the DetectorBank is then analysed by an On-

setDetector. Both the development and testing of this OnsetDetector are

detailed. It is tested using a repository of recordings of individual notes

played on a variety of instruments, with promising results. These results

are discussed, problems with the current implementation are identified and

potential solutions presented.

This OnsetDetector can then be combined with a PitchTracker to create

a NoteDetector, capable of detecting not only a single note onset time and

pitch, but information about changes that occur within a note.

Musical notes are not static entities: they contain much variation. Both

the performer’s intonation and the characteristics of the instrument itself

have an effect on the frequency present, as well as features like vibrato.

Knowledge of these frequency components, and how they appear or disap-

pear over the course of the note, is valuable information and the software

presented here enables the collection of this data.
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There is a general rule by means of which the musician can

obtain the symphony from the score, and which makes it possi-

ble to derive the symphony from the groove on the gramophone

record, and, using the first rule, to derive the score again. That is

what constitutes the inner similarity between these things which

seem to be constructed in such entirely different ways. And that

rule is the law of projection which projects the symphony into

the language of musical notation. It is the rule for translating

this language into the language of gramophone records.

— Wittgenstein, Tractatus Logico-Philosophicus
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Chapter 1

Introduction

1.1 What is onset detection?

This thesis details an investigation into a novel approach to automatic note

onset detection in musical audio.

A musical note can be defined in either a technical context or a cultural

one. Technically, a note is characterised by a fundamental frequency and an

amplitude; it commences at its onset time. It’s fine-grained spectral char-

acteristics and its envelope are related to the instrument of its production.

The fundamental frequency is associated with pitch by cultural conven-

tion. The pitch remains constant throughout the note duration, subject to

the culturally accepted norms for variation, for example vibrato.

Culturally, the note onset is defined by a simultaneity with the action

that produced the note, for example a string being struck or bowed or air

being blown into a wind instrument.

Identifying a note onset in a technical context requires the definition of a

note boundary. Considering the audio signal from a monophonic instrument,

before the onset, the signal contains no energy relating to the note. The

onset marks the appearance of energy in the spectrum. Initially, there is a

transient phase of the note during which the spectrum is changing rapidly;

1
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after this, the spectrum becomes steady. The duration of the transient

depends on the instrument and the technique used to excite it. In the

steady state, the signal is not completely stationary; there will always be

some variation over the course of the note, as different harmonics decay at

different rates.

Onset detection refers to the task identifying a single moment corre-

sponding to the beginning of the note, or, in more general terms, locating

the times at which spectral components appear in a signal.

This project focusses on developing software to perform onset detection

on monophonic audio signals. Although potential algorithms for this task are

evaluated on these terms, it is important to consider that further work may

include extending it to incorporate pitch tracking and analysis of polyphonic

signals. It may also be desirable to operate in real time. As such, these traits,

whilst not central, should not be rendered impossible by the design of the

algorithm.

Detecting the onset of a given frequency component in a wideband sig-

nal is a problem that arises in many areas of engineering; for example,

fault detection in various mechanical systems relies on detecting changes in

the spectrum of a signal which correspond to failures in gear teeth or mo-

tor components (Benbouzid 2000, Staszewski et al. 1997, Feng et al. 2013,

Ghasemloonia & Khadem 2011).

It is also relevant when using empirical methods to analyse musical per-

formance and perception. Fields which undertake such study — empirical

musicology and music information retrieval — have to acquire data about

many aspects of music (Clarke & Cook 2004). Onset detection provides

useful data in studies of musical perception or performance; for example, for

calculating the interonset interval, a standard method of measuring rhythm

(London 2012). In any experiment to measure a subject’s perception of

rhythm or meter in music performed by a person (as opposed to generated
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by a computer), it is necessary to know the actual onset times with which

the subject’s responses can be compared. Similarly, we may wish to measure

a performer’s timing decisions in order to provide insight into interpretation

of a score.

The quotation from Wittgenstein (2014) which opens this thesis uses

the relationship between music as notated, performed and recorded as an

analogy for the relationship between linguistic or mathematical represen-

tations of the world and the world itself. They are superficially different

representations of the same entity, what Wittgenstein refers to as an “inner

similarity” between them. This passage is interesting from the point of view

of the central question of this thesis. A trained musician can indeed derive

the symphony from the score; the groove on a record can be translated into

the sound of the symphony with the correct configuration of mechanical and

electrical parts or even from an image of the groove (Li et al. 2009, Räisä-

nen 2017). However, reversing this process and deriving the score from the

waveform is not a case of simply “using the [same] rule to derive the score

again”. There is no simple translation from audio to score. In order to create

the audio, a musician first had to interpret the notation, then perform it on

an instrument. This introduces a number of complications. Perception is a

necessary part of the process: both the performer’s perception of the score,

which influences their timing and intonation choices, and the audience’s

perception of the sound.

For example, when listening to a piece of music and trying to work out

the time signature, you must first discern whether you are listening to sim-

ple or compound time, then decide the number of beats in the bar, which

depends on where emphasis is placed. This emphasis comes not only from

the rhythm, but also the harmony and melodic shape. Not to mention the

additional difficulty of features like polyrhythms or mixed metres, for exam-

ple, “America”, from West Side Story, which feels like the time signature is
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Figure 1.1: Extract from “America”, from West Side Story, with the shifting
meter explicitly marked.

changing from 6
8 to 3

4 every bar (see Figure 1.1).

We also must consider the complexity of musical signals; they are rapidly

changing and comprise many frequency components alongside the funda-

mental. It is not controversial to say that computer generated audio of a

performance is never as good as a performance by musicians: there is always

some qualitative difference.

Sound production by an instrument or voice can be broken down in

to discrete stages for the purposes of study; however, in reality there are

additional intricacies, which — although small — have a profound effect on

our perception of the sound.

For example, the relationship between the tension in a string, the length

and the linear mass density tells us the frequency at which it will vibrate

when excited. However, if attempting to synthesise the sound of a string,

there are many more parameters to consider, like the effect of the finger

stopping the string and the force with which it is played. In the case of

bowed strings, we must also consider the effect of continuous excitation,

resulting in continuously changing parameters over time (Percival 2013).

Similarly, pitched vocal sounds arise when air from the lungs causes the

vocal cords to vibrate at a certain frequency. The sound produced by this

is then shaped by the vocal tract — the tongue and lips, etc. — as well

as the resonant cavities of the throat, mouth and nose. The vocal tract

allows different sounds to be articulated and the resonant cavities give rise
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to formants in the spectrum (Reetz & Jongman 2009).

All this is to say that musical sounds are not simple, stationary signals.

Sounds can generally be split into two categories: pitched or unpitched.

However, even a note with a pitch may contain unpitched elements. For

instance, we often speak of the transient portion of a note: this is the initial

part of the note where the signal is changing rapidly and the pitch has not

yet established. It should also be noted that unpitched sounds due to the

note production, like a violin bow scraping on the string, can be audible —

that is to say present in the audio — but not part of the note itself.

It is, therefore, apparent that a note is not a static entity: the funda-

mental frequency can vary, along with changes that affect the quality of the

sound, rather than the perceived pitch of the note.

These features are absent from a score and occur due to the instru-

ment itself and the musician’s intonation. Therefore, data regarding this

can only be gleaned by measuring the instrument or the performance. Al-

though measuring instruments is not directly related to this thesis, the soft-

ware presented here for measurement of performance may well be useful in

organology.

The ability to measure performances could provide information that en-

able us to answer a number of questions that arise in musicology. For in-

stance: What distinguishes different musicians’ performances of the same

piece? Are there underlying features of a particular musician that appear in

many of their performances, like a musical fingerprint? Or does a particular

instrument have certain characteristics which distinguish it from similar in-

struments? In a selection of performances which are all technically correct,

what elevates some to great beauty, whilst others are ‘merely’ good?

Such endeavours should not be limited to music that falls into the western

classical tradition. Music outwith this, especially that which comes from

oral traditions or which uses different scales, may not be notated or may
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be difficult to transcribe accurately within the system largely developed for

the western classical tradition. However, audio recordings can be obtained

which, at time of collection, are not subject to the interpretation and biases

of the person collecting it, unlike transcription.

If we wish to pursue these questions, we must first be able to measure

performances and retrieve quantifiable data about small changes in intona-

tion and timing. As stated in Milligan et al. (2016): “What we want to know

is not just that [musicians] diverge from the literal and mechanical [interpre-

tation of the score], but when, why, how and more.” These small deviations

from the music as written in the score — or from what may be expected

— may contain the key to understanding our perception of music. Indeed,

Huron (2006) puts forward the theory that the psychology of expectation is

key to understanding our emotional responses to music.

Attempting to analyse music using scientific methods is not a new idea.

In his writings on the aesthetics of music, nineteenth century musicologist

Eduard Hanslick (1986) wrote that “the striving for as objective as possi-

ble a scientific knowledge of things... must necessarily also have an impact

upon the investigation of beauty”. These writings precede the invention of

the phonograph in 1877 (Edison 1878) — the first device capable of both

recording and reproduction of sound — which subsequently enabled mu-

sicologists to gather with greater accuracy than allowed by transcription.

Several composers in the first decades of the twentieth century — for exam-

ple, Percy Grainger, Béla Bartók and Leoš Janáček — used the phonograph

to collect folk music in various European countries, which then informed

their own compositions (Ross 2008).

Further developments in sound recording, and the advent of computing,

have allowed for more rigorous study. As computers can handle increasing

volumes of data at faster rates, we have new opportunities to analyse larger

and larger data sets at greater levels of detail.
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In order to answer large-scale questions, like those given above, we must

first be able to gather information about what is happening and when at

the lowest level: the time a note begins to sound (its onset) and its pitch

class, as well as what changes occur within the note and when they occur.

Identifying notes in audio by hand is a time-consuming and error-prone

process, as it requires a very small subset of samples to be selected as the

exact onsets. For example, five minutes of audio, recorded at a standard

sample rate of 48 kHz, contains over 14 million samples, of which a few

hundred may represent note onsets.

When manually marking-up onsets, there are two possible types of error

that may occur. The time chosen may be too early — perhaps we reacted

in anticipation of an onset — or too late — maybe the onset was masked by

another sound. Generally, sounds will be perceived as simultaneous if they

occur within 30 ms of each other (Moore 2012). This gives us the maximum

acceptable error when identifying onsets.

An accurate method for automatic onset detection would be a significant

gain for the musicologists’ toolbox, as it data collection would be both much

faster and much more reliable. The ability to analyse large data sets allows

more robust conclusions to be drawn.

Before we begin to design software to identify note onsets, we must first

consider the defining characteristics of a note.

1.2 What is a note?

A note is the fundamental unit of music; built up to form phrases, which

in turn form themes, movements and whole works. However, the question

“What is a note?” is deceptively simple, as the parameters of an answer to

this question will change depending on the context: a note in a score has

different defining characteristics from a note in audio. There are also edge

cases which any definition must encompass.
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When seen in a score, we may say a note is represented by a dot on

the page, the vertical and horizontal location of which determines the pitch

and time. Both pitch and time fall into a discrete set of possible values.

In aural terms, we can provide a similarly rudimentary definition: a note is

an individual sound produced by an instrument. There are infinite possible

values for its pitch and time.

It is important to note that pitch and frequency are not the same thing.

Frequency is the rate of repetition of a pattern in a signal; pitch is the

perception of a note’s position in a scale, across the whole range of the given

instrument. Pitch class is the set of notes given the same name regardless

of octave (Morehead & MacNeil 1992).

There are several features which appear in music like vibrato, glissandi

and ornaments which create ambiguity in how the music is perceived: are

these intended to be heard as multiple, discrete note events or one continuous

note event? (Milligan et al. 2018)

Ornaments (or grace notes) do not change a melody, but add flourishes.

In the Baroque era, ornaments were not included in scores — performers

would be expected to add them — but are typically notated in more recent

traditions. From the perspective of the score, it may be said that ornaments

are not notes in their own right. They are attached to other notes and

have no meaning on their own: a grace note can be removed from a note,

but if the note itself is removed, the grace note must necessarily go with it.

However, they do have pitches and times independent of the melody notes,

which will be heard when the music is performed.

Vibrato is an example of a feature which occurs in audio, but very infre-

quently in notation and then only as a general direction. Very wide vibrato

could sound like a trill, but only a trill would appear in the score.

In deciding what characteristics to use when defining a note, it may

helpful to study existing computerised representations of notes in both audio
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Figure 1.2: Waveform of a note, with ADSR envelope marked

and notation software.

1.2.1 Audio

When analysing recorded audio, the change in amplitude of the waveform

a note over time is often described by a four stage envelope: the attack,

decay, sustain and release (ADSR). The attack is the initial period when

the amplitude of the waveform is rises to its maximum. This is followed by

a short decay in amplitude to a steady level, which is sustained while the

note continues to be played. Bowed strings, brass, woodwind, piano and

voice have the capacity for an extended sustain region; plucked strings and

percussive instruments have short sustains which cannot be prolonged. This

sustain portion of the note is where we are likely to find significant variation

in frequency characteristics. The release occurs as the note ends and the

sound fades away. Figure 1.2 shows the waveform of a note, overlaid with

the envelope outline.

Note that the attack is not synonymous with the transient. The attack
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Figure 1.3: Short piano excerpt, with the nine onsets present marked in (b)
by blue dashed lines.

refers to the time in which the amplitude has not yet reached its maxi-

mum; the transient is the period before the signal is sufficiently steady for

frequencies to occur.

This project is primarily concerned with onsets. The onset time is a sin-

gle point in time chosen to be the beginning of the note, i.e. the start of the

attack. Identifying these can be a difficult task, particularly for instruments

which do not have percussive onsets. For example, Figures 1.3 and 1.4 show

short excerpts of piano and vocal melodies, respectively. The piano excerpt

consists of monophonic staccato notes, therefore the approximate locations

of the onsets (see Figure 1.3b) are quite easy to see by visual inspection; the

vocal onsets (Figure 1.4b) cannot be identified in this manner. However,

it should be noted that, even when the approximate onsets seem clear, as

in Figure 1.3a, the process of selecting a single moment — in this case, a

single sample — from the thousands that surround it is open to mistakes,

as discussed in Section 1.1.

The highly changeable nature of a note, discussed in the previous sec-

tion, is particularly apparent in onset detection in vocal music, as one note

may comprise more than one speech sound. For example, the word ‘stood’,

shown in Figure 1.5a sung at an A4 (440 Hz), starts with an unpitched,
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Figure 1.4: Short vocal excerpt, with the eight onsets present marked in (b)
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Figure 1.5: (a) waveform and (b) spectrogram of ‘stoo’ sung at A4 (440Hz).
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Figure 1.6: Extracts of the waveform and spectrogram in Figure 1.5.
(a) shows part of the ‘s’ sound, with the energy spread across the frequency
components in the audible range. (b) shows part of the ‘oo’ sound. The
signal is periodic here, so most of the energy is concentrated in the low
frequency region.
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voiceless ‘s’ sound and contains two short, plosive sounds: ‘t’ and ‘d’, al-

though the ‘d’ sound has been omitted by the singer in this example. The

‘oo’ sound is the only periodic, and therefore pitched, sound in the whole

word (Roach 2001). This can be seen in the spectrogram, shown in Fig-

ure 1.5b. The energy is initially spread across the spectrum, as the ‘st’

sound is sung, before becoming concentrated at lower frequencies when ‘oo’

is sung. Figures 1.6a and 1.6b show the waveform and spectrum of the ‘ss’

and ‘oo’ sounds, respectively. However, the sound extracts are very short

(20 ms), which restricts the frequency resolution available in these graphs.1

We also encounter the inverse of this problem: one speech sound may

also be spread over several notes. In this case (known as melisma), notes

may be missed due to lack of a pronounced onset.

We may also encounter problems due to features like reverb — either

added as an effect or as a consequence of the environment in which the

music is performed — which can partially mask note onsets.

1.2.2 Notation

We will here consider two widely-used, non-proprietary methods of storing

and representing note data: MIDI and MusicXML.

MIDI

MIDI (Musical Instrument Digital Interface) (The Complete MIDI 1.0 De-

tailed Specification 2014) was created in the 1980s. Although intended pri-

marily for performance, not notation, the information contained in the some

of the messages is instructive. The MIDI messages NoteOn and NoteOff are

comprised of three attributes: channel, note and velocity, where each of

1The scripts used to create these figures can be found at https://github.com/keziah55/
ExtraThesisMaterial/tree/master/Introduction_figures. The parameters used to generate
the spectrograms can be found in these files, and the relevant module documentation can
be found at https://matplotlib.org/api/_as_gen/matplotlib.pyplot.specgram.html.

https://github.com/keziah55/ExtraThesisMaterial/tree/master/Introduction_figures
https://github.com/keziah55/ExtraThesisMaterial/tree/master/Introduction_figures
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.specgram.html
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these can take integer value up to 127.2 Whilst ‘channel’ does not provide

useful information here, ‘note’ and ‘velocity’ record which note was played

and the force with which the key was pressed. From these, and the timings

of the NoteOn and NoteOff events, a basic profile of the note can be formed.

MIDI keyboards can be to investigate characteristics of a pianist’s tim-

ing, as precise note onset times are provided. However, this is not practical

for large-scale musicological studies for several reasons, the most obvious

being that it can only be used to study piano performance. Additionally,

data collection requires the pianist to perform on the keyboard; whilst there

are repositories of MIDI performances — for instance, Yamaha have a pub-

licly available collection of MIDI recordings for the Disklavier (The web’s

signature MIDI collection 2015) — the quantity available is slight compared

with recorded audio. Lastly, and perhaps most importantly, the mechanical

response of digital pianos is different from that of real pianos, a difference

which is perceptible to players and so may affect their performance (Fontana

et al. 2015).

MusicXML

In the early 2000s, MusicXML was created as a way to share scores (Good

et al. 2001). Using XML confers a number of benefits: XML is widely-

used, human readable and available to anyone and storing scores in XML

databases also enables musicological analysis with tools such as XQuery

(Ganseman et al. 2008).

As MusicXML elements relate either to how a note should sound or how

it should appear in the score, MIDI renderings can easily be obtained from

a MusicXML file.

MusicXML note elements contain pitch information, which itself is com-

2The document type definition (DTD) for MIDI messages can be accessed at https:
//www.midi.org/dtds/MIDIEvents10.dtd.html

https://www.midi.org/dtds/MIDIEvents10.dtd.html
https://www.midi.org/dtds/MIDIEvents10.dtd.html
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Table 1.1: MusicXML elements comprising a pitch element

Element Description
step Diatonic name (A–G)
alter −1 or 1, denoting flat or sharp
octave Number (0–9), where 4 is the octave beginning at middle C

Table 1.2: MusicXML elements which specify intended and notated duration

Element Description
duration Number which multiplies the divisions attribute

type Note type in American terminology (e.g. ‘quarter’, ‘half’)

prised of the elements given in Table 1.1.3

Changes in pitch over the course of a note can be represented with

glissando, slide and bend elements, or ornaments like tremolo and

trill-mark, all of which would also be notated. Aspects of intonation,

like vibrato, are not included in MusicXML.

Grace notes do not contain duration information, but regular notes do.

This is specified by two elements: type and duration, shown in Table 1.2.

The former gives the symbol to be notated; the latter indicates the length of

time (in divisions) that the note is intended to sound for. In some scenarios,

the duration will differ from what may be expected from the type; for

example, if the note is to be swung.

divisions is an attribute which is specified along with the time signa-

ture. It gives a number of divisions of a crotchet which is then multiplied

by duration.

For example, if divisions is 4, the shortest note that can be represented

— a note with a duration of 1 — is a semi-quaver. To represent a crotchet

(or quarter note) in this instance, duration should then be 4, as seen in

Code Extract 1.1.

note elements can also have attack and release attributes, given in terms

3The MusicXML note element DTD can be accessed at https://github.com/w3c/
musicxml/blob/v3.1/schema/note.mod

https://github.com/w3c/musicxml/blob/v3.1/schema/note.mod
https://github.com/w3c/musicxml/blob/v3.1/schema/note.mod
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1 <attributes>
2 <divisions>4</divisions>
3 </attributes>
4 <note>
5 <pitch>
6 <step>C</step>
7 <octave>4</octave>
8 </pitch>
9 <duration>4</duration>

10 <type>quarter</type>
11 </note>

Code Extract 1.1: MusicXML extract, representing one note

musicxml_demo

  
Figure 1.7: C4, as specified by Code Extract 1.1

of divisions, to further adjust the onset and offset times.

Unlike MIDI, onset times are not directly recorded by MusicXML and

instead should be inferred from duration elements. The pitch information

in MusicXML provides context not available in MIDI, which gives only a

key number; for example, enharmonic notes are indistinguishable in MIDI,

whereas MusicXML is guided by the key signature and needs to be told

where in the stave to place the note.

1.2.3 So, what is a note, then?

When considering the question ‘What is a note?’ we must also think about

what information the software could return. Given that we cannot know all

possible applications of the software a priori, it should be designed to provide

results that may be useful to various users in various scenarios. Potentially

useful data should not be discarded because they do not fall into a simple

set of categories corresponding to a note.

This section has shown a wide variety of characteristics that indicate or
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represent notes in different contexts. For our purposes, despite the fact that

we are working with audio, not scores, the typical representation of a note

as found in notation software is more suited to our purposes.

The (deliberately loose) characterisation that will be used as a starting

point when designing and building this software is:

Definition 1. A note is an entity with an onset time and pitch, where the

onset is a single moment in time which marks the beginning of the note.

We must also bear in mind that the actual frequencies present can vary

over the course of the note. Information identifying these changes — both

how the frequency has changed and when — is also potentially useful data.

Any technology would struggle to deal with such complex problems,

particularly new technology; however, good software should be able to deal

with a range of inputs robustly and should be open to extension.

Software yielding results that adhere to the definition given above must

be composed of several parts. The lowest level of this should identify events

corresponding to any change in frequency. Classifying events in this data,

for example, as one note containing vibrato or an acciaccatura and a note

as two separate events, can then happen on a higher level: either by another

program or a person. This may mean that, in practical terms, the definition

of a note can be broadened to:

Definition 2. A note is an entity with at least an onset time and pitch,

where the onset is a single moment in time which marks the beginning of

the note. It may also contain intra-note events corresponding to inflections

within the note.

One difficulty of the problem of onset detection is that it requires us to

consider several levels of context simultaneously. It is necessary to ‘zoom in’

and consider a small number of samples to identify the precise onset times,

but decisions must be informed by high-level considerations of how the event

fits into a wider context.
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As such, this project details the design and development of a number of

software objects, each of which is specialised to a particular part of the note

detection task.

1.3 Content and scope of this project

This thesis presents software for the automatic detection of note event on-

sets. The remainder of this chapter reviews existing methods of onset de-

tection, before introducing the physiological and mathematical basis for the

novel approach to frequency and time measurement at the centre of this

thesis.

Chapter 2 discusses the design and implementation of a piece of software

referred to as the ‘DetectorBank’, along with a detailed investigation of its

response characteristics. Chapter 3 then details how note onset times can be

found by analysing the output of the DetectorBank. A number of possible

data extraction techniques are evaluated, the best of which is forms the

foundation of an OnsetDetector. The full source code of all the software

developed here is available at https://github.com/keziah55/DetectorBank.

The OnsetDetector is tested with a wide range of audio samples, re-

sults of which are presented in Chapter 4 and evaluated in Chapter 5. Sec-

tion 5.3.2 describes how the software could be extended to include pitch

data.

Throughout the thesis, short code extracts are provided. The purpose

of these is to illustrate algorithms and ideas described in the text. They

are presented in simple Python, rather than pseudocode or diagram, to

ensure consistency and concision, and to give readers the ability to execute

examples directly. Any reader unfamiliar with basic programming language

constructs may find Appendix A useful.

https://github.com/keziah55/DetectorBank
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1.4 Evaluation of onset detection techniques

1.4.1 Signal processing techniques

There are a number of common signal processing techniques and terms that

provide useful background information here. This section provides a brief

summaries; detailed descriptions can be found in digital signal processing

textbooks, for example Stein (2000).

Fourier transform

The Fourier transform, X(ω), given in Equation (1.1), is used to find the

frequency-domain representation of a function, x(t).

X(ω) =
∫ ∞

−∞
x(t)e−jωtdt (1.1)

To apply a Fourier transform to a discrete time series, the discrete time

Fourier transform (DTFT), Equation (1.2) is used.

X(ω) =
∞∑

n=−∞
x[n]e−jωn (1.2)

In digital systems, it is necessary for signals to be sampled in both the

time and frequency domains, and for both input and output to be finite. This

is achieved with the discrete Fourier transform (DFT), shown in Equation

(1.3).

X(k) =
N−1∑
n=0

x[n]e−j2πkn/N (1.3)

Energy

The energy in a signal provides a measure of its capacity to influence a

physical system. The total energy in a signal x(t) can be found with

E =
∫ ∞

−∞
|x(t)|2dt (1.4)
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Parseval’s theorem gives the relation between energy in the time and

frequency domains

∫ ∞

−∞
|x(t)|2dt = 1

2π

∫ ∞

−∞
|X(ω)|2dω (1.5)

From this, it can be seen that the total energy in the signal is the same

whichever domain it is considered in.

For discrete signals, this becomes

N−1∑
n=0

|x[n]|2 = 1
N

N−1∑
k=0

|X[k]|2 (1.6)

Causal signals

The Fourier transform, given in Equation (1.1), is non-causal, as it requires

integration from negative time. In practice, this is often managed by apply-

ing a time delay to the output. This delay is constant at all frequencies.

Another possible solution is to use the Laplace transform, shown in Equa-

tion (1.7), which can be used to transform causal signals from the time to

frequency domain.

X(s) =
∫ ∞

0
x(t)e−stdt, s ∈ C (1.7)

In the sampled domain, the z-transform, given in Equation (1.8), can be

used to represent causal signals.

X(z) =
∞∑

n=0
x(n)z−n, z ∈ C (1.8)

Bandwidth

The bandwidth of a signal is the difference between the minimum and max-

imum frequencies it contains. In more general terms, bandwidth refers to

the range of any band of frequencies.
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The term ‘wideband noise’, used in Section 2.2.9, refers to noise dis-

tributed across the range of frequencies. In uniform wideband noise, or

white noise, the power is equal across the frequency components.

Sampling theorem

An essential step in digitizing a signal is sampling in the time domain. In

order to completely represent a signal with a bandwidth of BHz, samples

must be taken at time steps no more than 1/2B seconds apart, i.e. at a rate

of 2BHz. This minimum sampling frequency is known as the Nyquist rate.

1.4.2 Review of software

These tests were originally presented and discussed in Milligan & Bailey

(2015) and are reproduced here.

Methods

In their paper reviewing onset detection techniques, Bello et al. (2005) de-

fine the onset of a note as “a single instant chosen to mark the temporally

extended transient”, distinguishing it from the attack and the transient.

The output of an onset detector should, therefore, be a series of times

identifying the exact moments where each note begins.

Broadly, the approaches to onset detection reviewed here can be split

into the following categories:

Energy-based As the transient part of a sound is essentially a burst of

white noise, onsets can be detected by looking for energy changes either

in the high frequencies or across the whole spectrum (Bello et al. 2005,

Brossier 2006).

Spectral-based A musical signal (and its spectrum), being largely com-

prised of periodic elements, does not vary greatly from one short-time
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frame to another. Spectral-based detectors compare the spectra of two

consecutive frames — a relatively large difference is taken to signify a

new note onset, rather than continuation of the same note (Bello et al.

2005, Brossier 2006, Scheirer & Slaney 1997, Foote & Uchihashi 2001).

Another method involves analysing over frequency bands with a width

of one semitone (Pertusa et al. 2005).

Phase-based Tracking how the phase changes with time can be used to

identify onsets, as the change from steady-state to transient will be

pronounced (Bello et al. 2005, Brossier 2006, Bello & Sandler 2003).

Complex domain Duxbury et al. (2003) propose a method which com-

bines phase and energy techniques, with the aim that the benefits of

each will offset the drawbacks of the other.

Sonic Visualiser (Cannam et al. 2010) is a program designed to aid musi-

cological analysis of audio files. Several onset detector plug-ins are available

for Sonic Visualiser. Additionally, Böck & Widmer (2013a,b) have developed

two spectral-based algorithms and released them as command line tools.4

These onset detectors were tested, and the results were then compared with

manually marked-up onsets.

As discussed in Section 1.1, the process of manually marking note onsets

in audio is susceptible to error. For this analysis, a tolerance of 50 ms was

used; that is, if an onset was detected within 50 ms of the manually found

time, it was regarded as correct. Recall that, in most circumstances, stimuli

will be perceived as simultaneous if they occur with 30 ms of each other

(Moore 2012). A wider tolerance was chosen here to account for any human

error when manually marking-up the audio.

The onset detectors were tested using recordings of solo voice and solo
4These can be found at the following Git repositories: https://github.com/CPJKU/

onset_detection and https://github.com/CPJKU/SuperFlux, and were downloaded for
these tests on 8 February 2016.

https://github.com/CPJKU/onset_detection
https://github.com/CPJKU/onset_detection
https://github.com/CPJKU/SuperFlux
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trumpet, as these both have non-percussive onsets and therefore present a

more challenging task. For each of these, pieces in both twelve and nineteen

equal divisions of the octave (EDO) were used,5 as a robust onset detector

should work for a broad range of music. Each group of test audio comprises

three pieces of music and contains an average of 280 notes. Where necessary,

the audio files were shortened to no more than 1 minute 30 seconds long.

The test pieces used are detailed in Tables 1.3 to 1.6 and the recordings used

are listed in the Discography.

Test results and discussion

For each algorithm, the number of correct detections (true positives, TP),

erroneous detections (false positives, FP) and missed onsets (false negatives,

FN) can be combined as in Equations (1.9) and (1.10) to calculate the

precision, P , and recall, R, respectively (Witten et al. 2017) .

P = TP
TP + FP

(1.9)

R = TP
TP + FN

(1.10)

TP+FP gives the total number of detections returned by the algorithm.

Thus, the precision provides a measure of how many of the detections are

correct.

TP + FN is the number of hand-annotated onsets, so the recall tells us

how many of the onsets are successfully found.

These two values provide useful information about how well the onset

detector performs. They can be distilled into a single number, known as the

5Table 1.6 lists the 19 EDO trumpet pieces used. The programme notes for these
recordings, available here https://microtonalprojects.files.wordpress.com/2016/12/yasser-
programme-notes.pdf, note that one of the chosen pieces, A Hundred Valleys, is written in
just intonation, resulting in pitches which are “are close to the natural harmonics arising
out of each tube length of the 19-tone trumpet”.

https://microtonalprojects.files.wordpress.com/2016/12/yasser-programme-notes.pdf
https://microtonalprojects.files.wordpress.com/2016/12/yasser-programme-notes.pdf
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Table 1.3: Details of 12 EDO soprano voice data set

Title Composer Duration Onsets
Four Late Poems and an
Epigram of Rainer Maria
Rilke: epigram - I. Idol

Oliver Knussen 01:28 71

Four Late Poems and an
Epigram of Rainer Maria
Rilke: replica - II. Gravity

Oliver Knussen 01:36 75

Ariel: No. 2. I boarded
the King’s ship Jonathan Dove 00:59 114

Table 1.4: Details of 19 EDO soprano voice data set

Title Composer Duration Onsets
Three Songs from

the Turkish: 1. Wine Graham Hair 01:08 87

Three Songs from
the Turkish: 2. Ash Graham Hair 01:04 81

Three Songs from
the Turkish: 3. Dance Graham Hair 01:13 113

Table 1.5: Details of 12 EDO trumpet data set

Title Composer Duration Onsets
Fanfare Abblasen Gottfried Reiche 00:36 104
Good Night for
Trumpet Solo Luciano Berio 01:13 46

The Big Turtle György Ligeti 00:44 85

Table 1.6: Details of 19 EDO trumpet data set

Title Composer Duration Onsets

Bye Bye Alexander
Grebtschenko 01:07 153

Melody in
19-division tuning Michael Parsons 01:25 59

A Hundred Valleys Michael H. Dixon 01:03 131
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Table 1.7: Abbreviations used for each onset detection algorithm in Fig-
ures 1.8 and 1.9, derived from the maker and the method.

Label Maker Method
aub_cd Aubio Complex domain
aub_eb Aubio Energy-based
aub_hfc Aubio High frequency content
aub_kl Aubio Kullback-Liebler

aub_mkl Aubio Modified Kullback-Liebler
aub_pd Aubio Phase deviation
aub_sd Aubio Spectral difference
aub_sf Aubio Spectral flux
cpj_od Böck & Widmer Spectral-based
cpj_spf Böck & Widmer Super flux

qmu_ber Queen Mary University Broadband energy rise
qmu_cd Queen Mary University Complex domain
qmu_hfc Queen Mary University High frequency content
qmu_pd Queen Mary University Phase deviation
qmu_sd Queen Mary University Spectral difference
uoa_s University of Alicante Semitone filterbank

F-measure, F , in a simple fashion

F = 2PR
P +R

(1.11)

Expressed as a percentage, the F-measure provides a value for the overall

effectiveness of the algorithm.

Figures 1.8 and 1.9 shows the precision, recall and F-measure of the

algorithms for each test audio group and Table 1.8 summarises the minimum

and maximum F-measure for each group in the data set. It can be seen that

the instrumentation has a greater effect on the results than the scale, with

vocal music being particularly bad. Although the detectors gave significantly

better results for the trumpet music, still only one algorithm achieves an F-

measure of greater than 90%.

Across all the test sets, detectors based on phase deviation performed

badly, as did those employing spectral difference or spectral flux. Kullback-

Liebler and modified Kullback-Liebler techniques, which look for increases
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Figure 1.8: Graphs showing the precision, recall and F-measure of each
algorithm for both soprano data sets. The keys for each algorithm are
detailed in Table 1.7.
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Figure 1.9: Graphs showing the precision, recall and F-measure of each
algorithm for both trumpet data sets. The keys for each algorithm are
detailed in Table 1.7.
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Table 1.8: Minimum and maximum F-measures for each group in the data
set, and the algorithm that achieved each.

Group Min. F-measure,
Algorithm

Max. F-measure,
Algorithm

Soprano, 12 EDO 9.344%,
qmu_pd

48.480%,
aub_mkl

Soprano, 19 EDO 25.574%,
qmu_pd

52.485%,
cpj_od

Trumpet, 12 EDO 37.318%,
qmu_pd

92.299%,
cpj_od

Trumpet, 19 EDO 45.212%,
qmu_pd

90.721%,
cpj_od

in energy from one time frame to the next (Brossier 2006), tended to give

the best results, along with the spectral-based algorithms detailed in Böck &

Widmer (2013a,b). Aubio plug-ins generally gave better results than those

developed by Queen Mary University or the University of Alicante. Interest-

ingly, the semitone filterbank worked just as well for the microtonal trumpet

pieces as the 12 EDO ones and considerably better for the microtonal than

12 EDO for the soprano pieces. It may be that it performed badly for chro-

matic passages in the microtonal, but for the most part, successive notes fell

within different bands of the filter anyway.

Somewhat surprisingly, onset detection in vocal music was better for the

nineteen EDO pieces than twelve EDO, although this may be due to the

twelve EDO test pieces having a larger dynamic range. Adaptive whitening

(Stowell & Plumbley 2007) is designed to rectify this by reducing amplitude

differences in the spectrum so that quieter sections of audio are not neglected

by the detector. This feature is available for the Queen Mary University

plug-ins, but even with this, the algorithms do not give accurate results.

It is possible that applying dynamic range compression before the onset

detection function would improve this.

MIREX (Music Information Retrieval Evaluation Exchange) runs an-

nual competitions in, amongst others things, onset detection. The results
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are available online6, the most recent of which are broadly similar to the

experimental results above. In the 2018 results, the average F-measures of

the tested algorithms are between 68% and 87%. When broken down by

instrumentation, all algorithms perform poorest on solo singing voice — the

minimum and maximum F-measures are 17% and 62%, respectively — but

better on solo brass instruments, with F-measures ranging from 66% to 94%.

The criteria by which MIREX evaluate onset detection algorithms are

similar to those used here: precision, recall and F-measure values are cal-

culated based on the numbers of correct detections, false positives and false

negatives; and the tolerance window for correct detections is also ±50 ms.

The number of doubled or merged onsets, i.e. two detections for one correct

onset or two onsets identified by a single detection time, are also taken into

account by MIREX, along with the time taken to analyse the audio, two

factors which are not measured here7.

There are several features of vocal music which can cause the algorithms

to fail. These were discussed in Section 1.2 of this chapter. To reiterate,

vibrato can give rise to false positives, where changes in energy are wrongly

taken to be new notes; melismata can result in false negatives, where the

onset of a new note is not clear enough for the detector.

Figures 1.5 and 1.6 in Section 1.2 illustrated the complexity of the spec-

trum when one sung note comprises multiple speech sounds. This also raises

questions regarding exactly where the onset occurs. For the experimental

data used here, onsets were manually marked at the beginning of the word or

syllable corresponding to that note (i.e. aligning with the score), but there is

an argument that the onset should be marked at the beginning of the vowel

sound (Sundberg 1994).

6Information about MIREX can be found here: http://www.music-ir.org/mirex/wiki/
MIREX_HOME and the onset detection results from 2018 can be found here: https:
//nema.lis.illinois.edu/nema_out/mirex2018/results/aod/index.html

7More details on the evaluation procedures can be found on the MIREX website https:
//www.music-ir.org/mirex/wiki/2018:Audio_Onset_Detection

http://www.music-ir.org/mirex/wiki/MIREX_HOME
http://www.music-ir.org/mirex/wiki/MIREX_HOME
https://nema.lis.illinois.edu/nema_out/mirex2018/results/aod/index.html
https://nema.lis.illinois.edu/nema_out/mirex2018/results/aod/index.html
https://www.music-ir.org/mirex/wiki/2018:Audio_Onset_Detection
https://www.music-ir.org/mirex/wiki/2018:Audio_Onset_Detection
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A robust note onset detector should be able to overcome the problems

presented above, just as humans have no trouble with tasks like distinguish-

ing between one note with vibrato and a series of notes or identifying note

onsets in quiet passages of music.

1.4.3 Candidate methods for new onset detection software

The Fourier transform — or discrete Fourier transform (DFT), in the case

of a digital signal — is a standard tool for translating a signal from the

time domain to the frequency domain. It assumes the signal is stationary

— that is, it does not change over time — and it requires that the signal be

integrated over infinite time. This means that taking the Fourier transform

of a non-stationary signal can reveal the spectral components present, but

provides no information about the times any frequency appears or disap-

pears.

The short term Fourier transform (STFT) attempts to rectify this by

taking the Fourier transform of short segments of signal, thus showing how

the spectrum changes over time (Stein 2000). However, frequency and time

resolution are inversely proportional to each other: the shorter the time

window used, the less accurately frequency within it can be measured and

vice versa.

There are several techniques that try to combat this limitation and so

would appear to be suitable as the engine of an onset detector: the chirp

z transform, constant Q transform and wavelet transform. Each of these

will be examined here, but ultimately none can overcome the restrictions

described by the uncertainty principle, which will be discussed following

this, in Section 1.4.4.
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Figure 1.10: Contours (blue points) on which the z transform may be cal-
culated in relation to the unit circle (dashed circle). (a) points on the unit
circle, from which the DFT can be calculated, (b) points within the unit
circle, and (c) points that spiral out from the centre. The points in (b) and
(c) can be used to calculate the CZT.

Chirp z transform

The z transform, given in Equation (1.8) in Section 1.4.1 maps a digital

signal x[n] to the z-plane, in the same way that the Laplace transform maps

a continuous function x(t) to the s-plane (Rabiner et al. 1969a).

When Equation (1.8) is evaluated around the unit circle, z = ejω, it

is equivalent to the DFT; evaluating any other contour yields the chirp z

transform (CZT) (Proakis & Manolakis 2007). Figure 1.10 shows various

possible points at which Equation (1.8) can be evaluated, relative to the

unit circle.

The full derivation of the chirp z transform is beyond the scope of the

current investigation, but can be found in the literature.

One advantage of the CZT is that it enables better resolution than the

DFT when a narrow band of frequencies is specified by the user. The DFT

generates equally-spaced bins from 0 Hz up to the Nyquist rate; with the

CZT, upper and lower frequency limits can be defined by the user, along

with the spacing of bins in this bandwidth (Rabiner et al. 1969b).

At the higher end of the musical scale, the gap between adjacent funda-

mental frequencies can be large. Therefore, the ability to select frequencies
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of interest and the resolution at which they are examined — that is, fo-

cussing on the fundamentals and their immediate environs, without wasting

resources on the gaps in between — would be valuable when analysing mu-

sical signals.

However, DFTs are required to calculate the CZT, so ultimately this

technique has the same pitfalls as the Fourier transform.

Constant Q transform

The constant Q transform uses logarithmically spaced, rather than linearly

spaced, frequency bins, so that the ratio of centre frequency to bandwidth

is constant, hence constant Q (Brown 1991). Therefore, this transform is

more suited to musical applications, as the human perception of frequency is

logarithmic. A number of studies present techniques for pitch tracking using

this transform, for example Brown (1992), Smaragdis (2009) and Fuentes

et al. (2012).

It could also be useful for onset detection, as this requires information

about frequency components corresponding to musical fundamental frequen-

cies. Simply using the Fourier transform will result in a dearth of data at

low frequencies and an overabundance at high frequencies.

In a standard 12 EDO scale, the frequency of any note k steps from a

reference frequency f0 is

fk = 2k/12f0 (1.12)

The quality factor, Q, for each of these steps can be calculated like so:

Q = f

(21/r − 1)f
(1.13)

= 1
21/r − 1

(1.14)

where f is the centre frequency in question and r is the resolution, i.e.

number of divisions per octave. From this, we know that Q = 16.8 when
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r = 12 EDO.

In order to construct a transform where the frequencies are spaced ac-

cording to thisQ factor, we first must consider the short time discrete Fourier

transform:

X[k] =
N−1∑
n=0

W [n]x[n]e−j2πkn/N (1.15)

where X[k] is the kth frequency component, the digital frequency is 2πk/N ,

x[n] is the nth input sample and W [n] is a window function. Here, the win-

dow length, N , is fixed. In order to have greater resolution at low frequencies

than high, the window length must change depending on the frequency, so,

for the constant Q transform, the window is a function of k and n, i.e.

W [k, n], with length N [k].

Equation (1.15) can then be adapted to yield the discrete constant Q

transform:

X[k] = 1
N [k]

N [k]−1∑
n=0

W [k, n]x[n]e−j2πQn/N [k] (1.16)

More computationally efficient implementations have been devised, using

the fast Fourier transform (Brown & Puckette 1992) and adaptive bandwidth

windowing (Velasco et al. 2011, Holighaus et al. 2013).

Although the constant Q transform presents method of investigating the

timing of frequency components in a signal more suited to musical appli-

cations, it does not overcome the problem of time resolution and frequency

resolution each coming at the cost of the other.

Wavelet transform

The wavelet transform is a multi-scale resolution method of analysing a

signal (Nanavati & Panigrahi 2004). Like the chirp z and constant Q trans-

forms, it enables a signal to be analysed with a different resolution at dif-

ferent points.

The problem of time and frequency resolution being inversely propor-
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Figure 1.11: Heisenberg boxes illustrating the time and frequency resolution
for (a) STFT and (B) wavelet transform. For the STFT, the boxes are the
same size at all time–frequency values; the wavelet transform allows different
resolutions by adjusting the dilation and location parameters of the wavelet.

tional to each other is illustrated by diagrams known in wavelet theory as

‘Heisenberg boxes’ (Addison 2002). The resolution of a STFT is determined

by the window length, so all of the Heisenberg boxes are the same shape, no

matter what the frequency. These are drawn in light blue in Figure 1.11a.

Figure 1.11b shows Heisenberg boxes for the wavelet transform. A high

frequency resolution (box A) requires a low time resolution; a high time

resolution (box C) reduces the frequency resolution. The wavelet transform

allows a signal to be analysed at multiple scales: the resolution is not limited

to one value. This gives the wavelet transform an obvious advantage over

the STFT, as it can be used to gather information at different scales.

The wavelet transform is the convolution of a wavelet function with the

signal. Two commonly used wavelets are shown in Figure 1.12. A wavelet

function must have finite energy, no zero frequency component and, for

complex functions — like the Morlet wavelet in Figure 1.12b — the Fourier

transform must be real and must be zero for negative frequencies.

To implement the wavelet transform, a wavelet family must be selected
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Figure 1.12: Two common wavelets, (a) the Haar wavelet, a discontinuous
function used in the discrete wavelet transform, and (b) the real part of a
Morlet wavelet, often used in the continuous wavelet transform.

(e.g. Haar, Morlet, Hermitian etc). The chosen wavelet function is then

denoted as:

ψa,b(t) = w(a)ψ
(
t− b

a

)
(1.17)

where b is the location parameter (i.e. the area of the time series to anal-

yse), a is the dilation parameter (i.e. the magnification at b) and w(a) is a

weighting function. These parameters can be varied to carry out multi-scale

analysis and zoom in on different parts of the signal.

The wavelet transform of a continuous signal x(t) is:

Ta,b =
∫ ∞

−∞
x(t)ψ∗

a,b(t)dt (1.18)

To discretize the wavelet transform, the parameters a0 and b0 set fixed

dilation and localisation steps. The desired dilation and localisation for the

wavelet are then set by scaling a0 and b0 by integers m and n. This results
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in the following discretized form of the wavelet function:

ψm,n[t] = w[a]ψ
[
t− nb0a

m
0

am
0

]
(1.19)

= w[a]ψ[ta−m
0 − nb0] (1.20)

Orthogonal to any given wavelet is the scaling function ϕm,n(t), from

which the average of a part of the signal can be calculated. The wavelet

function and corresponding scaling function are sometimes known as the

mother and father wavelets, respectively.

The procedure for calculating the continuous and discrete wavelet trans-

forms can be found in Addison (2002). For our purposes, it will suffice to

state that the multiresolution representation of the signal x(t) can be given

as a continuous approximation of itself plus a certain amount of variation,

given at an arbitrary level of detail.

Formally:

x(t) =
∞∑

n=−∞
Sm,nϕm,n(t) +

m0∑
m=−∞

∞∑
n=−∞

Tm,nψm,n(t) (1.21)

Here, Sm,n represents approximation coefficients, which are calculated by

taking a weighted average of the original signal. Combining these with the

scaling function gives a continuous approximation of the signal.

The remaining part of Equation (1.21) represents the detail added at the

chosen scale m0. This is calculated by summing the product of the discrete

wavelet transform values, Tm,n, with the wavelet function at all location

points n for every dilation level up to m0.

Whilst the wavelet transform offers a method of changing the resolution

at different scales — which is useful for musical applications, given that

perception of frequency is logarithmic — it is still the case that, as time

resolution increases, frequency resolution must necessarily decrease. This

means the wavelet transform is not suitable for detecting the onset of fre-



1.4. EVALUATION OF ONSET DETECTION TECHNIQUES 37

quency components at a high resolution in both domains.

1.4.4 Uncertainty

The uncertainty principle is most commonly associated with quantum phy-

sics, but is found in any wave-based system. Generally, it refers to the

impossibility of having simultaneously sharply localised representations of a

pair of properties of a function (Ricaud & Torrésani 2013).

When seen in signal processing applications, the uncertainty principle

states that as time resolution increases, frequency resolution must necessar-

ily decrease and vice versa (Williams et al. 1991). This can be understood

by considering the mechanics of time–frequency measurements. We know

that in order to increase the resolution of a frequency measurement, the

length of time over which the signal is measured should be increased: in

mathematical terms, the Fourier transform requires integration over infinite

time. In practice, this means frequency measurement corresponds to a time

window, rather than a time instant. Increasing the resolution of the time

measurement requires shortening the window over which the frequency is

calculated and therefore decreasing the resolution of the resultant frequency

calculations.

Gabor (1946) investigates time and frequency analysis of signals and in

doing so derives the uncertainty relation between time resolution, ∆t, and

frequency resolution, ∆f :

∆t∆f ≥ 1
2

(1.22)

Cohen (1995) applies the concept of standard deviation as a representa-

tion of ∆t and ∆f , although more formally we would refer to the support of

the function (Hill 2013). The standard deviation relates to the localisation

of the signal in time or frequency. A small standard deviation in the spectral

distribution implies a restricted bandwidth and the delivery of the majority

of the energy of the signal in a short duration implies a restriction in time.
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Uncertainty tells us that when measuring a signal and interpreting it

simultaneously in time and frequency, we cannot have finite support in both

domains; however, by changing the way in which the signal is observed it is

possible to choose between high resolutions in frequency and time, because

the uncertainty principle only applies to a single indivisible measurement.

Therefore, it is permissible to filter the signal in such a way as to pro-

duce another signal which has a specific time location, but preserves very

little frequency information. Of course, the time–bandwidth product of this

output signal will be greater than or equal to 1/2. The frequency informa-

tion can be determined through other means and is not part of the same

measurement.

The next section will summarise research into the auditory system. We

shall see that perception of time and pitch in sound are similarly precise.

This is achieved by physical processes in the human auditory system, rather

than by psychoacoustic ones (Gomez & Stoop 2014).

Further sections will then explore using these processes to build the

system with the desired properties, and examine how this system can be

used to gather time and frequency information from audio.

1.5 A new approach

The software at the centre of this thesis takes a different approach to onset

detection than the methods discussed in Sections 1.4.2 and 1.4.3, in order to

circumvent the problems that arise due to the uncertainty principle. When

designing this software, it was first necessary to consider the auditory sys-

tem’s response to time and frequency information, and the mathematical

representation of this process.
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1.5.1 Auditory system

Physiology

The physiology of the auditory system is immensely complex and intricate.

The following description summarises the details which are relevant to this

project. Readers in search of a fuller explanation are directed to Pickles

(2012).

For the purposes of study, the auditory system can be split into three

parts: the outer ear, middle ear and inner ear. The outer and middle ears

are important for sound localisation and efficient transmission of pressure

waves to the inner ear. However, they are of little consequence to the present

inquiry into time and frequency perception. As reported by Gomez & Stoop

(2014), perception of note events occurs in the part of the inner ear known

as the cochlea, rather than any other part of the ear or the cerebral cortex.

The other part of the inner ear — the vestibular system — is associated

with balance, so is also not relevant here.

The cochlea comprises three chambers (scala vestibuli, scala media and

scala tympani), separated by two membranes (Reissner’s membrane and the

basilar membrane). Vibration is transmitted by two membranous openings:

the oval window, by which vibration comes in, and the round window, the

movement of which allows the vibration to travel through the almost incom-

pressible fluids in the scalae.

The basilar membrane is of particular interest here for two reasons. The

first is the way in which it responds to sound stimuli. The second is the

oscillation of the outer hair cells, which are receptor cells found in the organ

of Corti, a structure which sits on the membrane. These will be discussed in

more detail following the next section’s summary of cochlear nonlinearties.
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Pitch and time perception

As stated in Section 1.2, frequency is the rate of repetition of a pattern in

a signal; pitch is a perceptual phenomenon. When we talk about pitch per-

ception in the auditory system, that is exactly what we mean: the auditory

system does not perceive individual frequencies in a sound, but a general

‘pitch impression’. In some cases, we hear frequencies that are not present

in the stimulus.

If we hope to find a mathematical function which describes cochlear

behaviour in response to a tone at a given frequency — a cochlear transfer

function — we must consider these ‘phantom’ frequencies.

Residue pitch is a term describing the perception of a missing fundamen-

tal frequency: if presented with a series of harmonics with the fundamental,

f0, removed, i.e. a sound composed of
∑N

k=2 kf0 Hz, the perceived pitch of

the sound corresponds to the missing fundamental (Moore 2012).

Combination tones occur when two tones at different frequencies, f1 and

f2, are presented. In addition to f1 and f2, additional frequencies may

be perceived at values corresponding to the form f1 − k(f2 − f1), where

k is an integer. As frequencies of this form can be generated by a cubic

distortion, these are often known as cubic difference tones (Smoorenburg

1972). Difference tones can also be heard at f2 − f1, although this cannot

be explained by a cubic distortion (Pickles 2012).

These features demonstrate that the cochlear response is nonlinear. This

nonlinearity is an essential part of the inner ear; indeed according to Eguíluz

et al. (2000), “there is no audible sound soft enough that the cochlear re-

sponse is linear”. However, early experiments into auditory system mechan-

ics were carried out post-mortem. The results of these showed linear re-

sponses to sound; it was not until experimentation on living cochleas became

possible that the hypotheses explaining the perceived nonlinear phenomena

could be physiologically corroborated.
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Travelling waves across the basilar membrane in response to sound were

first observed in harvested cadaveric cochlea samples in experiments carried

out in the 1930s (Olson et al. 2012). The point of greatest displacement of

the membrane varies depending on the frequency of the sound, with lower

pitches exciting the apex of the membrane and higher pitches at the base.

Therefore, the basilar membrane maps frequency.

Indeed, it is often modelled as a series of overlapping bandpass filters,

referred to as critical bands, in order to explain phenomena such as mask-

ing. This occurs when multiple tones, presented at similar frequencies, are

perceived as a single combination tone, rather than two distinct tones at dif-

ferent frequencies. The range of frequencies in which this one will be masked

by another is known as the critical bandwidth (Pickles 2012). This concept

will be returned to in Section 3.1.2, when designing the OnsetDetector.

The idea that the basilar membrane frequency mapping is the mechanism

behind pitch perception is known as the place theory of pitch. However,

it cannot explain the sharpness of human hearing: although the smallest

detectable change in frequency (known as the difference limen for frequency

or just-noticeable difference) varies with frequency and intensity of sound,

it is always a fraction of a percent. This is far smaller than the 15% or so

(Plack 2012) that place theory would suggest is possible.

The place theory also cannot account for the nonlinearities discussed

above, as the residue pitch and combinations tones do not correspond to the

area of greatest basilar membrane displacement, or the nonlinearities ob-

served when the basilar membrane is measured in vivo (Rhode 1971, Rhode

& Robles 1974).

The other main theory of pitch — the temporal theory — is based on

the phase locking of auditory neurons. However, this too has flaws, as phase

locking breaks down for sounds over 5kHz and despite this, people can still

discern pitch changes above this threshold.
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Gold (1948) proposed that there is an active process adding energy in

the cochlea which would sharpen the response and thus explain the disparity

between the actual capability of human hearing and what was suggested by

hypotheses and experiments which assumed, or required, a passive cochlea.

For example, in a healthy living cochlea, the smallest detectable change

in sound pressure is 20µPa. The ‘loudness’ of a sound is often expressed in

terms of the sound pressure level (SPL). This is the ratio of the amplitude

of the sound (in Pascals) to this smallest detectable change. Therefore, the

lower threshold of hearing is 0 dB SPL; however, in a purely passive cochlea,

i.e. one that has been deprived of energy, the threshold of hearing rises to by

up to 60 dB SPL (Hudspeth 2008). Furthermore, there is a factor of a million

difference between the amplitude of the quietest detectable sounds (0dB

SPL) and the loudest tolerable sounds (120 dB SPL), yet this corresponds

to only a hundred-fold increase in basilar membrane displacement, from

±0.1 nm to ±10 nm (Hudspeth 2008). Experiments reported by Ruggero

& Rich (1991) reveal that a 20 dB increase in stimulus level corresponds

to a 20 dB increase in basilar membrane response in a cochlea measured

post-mortem, but only a 4.6 dB increase in vivo.

The discovery of both stimulated and spontaneous otoacoustic emissions

(Kemp 1978, 1979) due to oscillation of the outer hair cells suggested that

the active cochlea theory is correct and energy is added at this stage, causing

the response to be nonlinear.

All these phenomena — the accurate pitch perception, the large range

of perceivable intensities, the otoacoustic emissions and the nonlinearities

— can be explained by the mechanism known as the Hopf bifurcation (Kern

& Stoop 2003, Hudspeth 2005, Hudspeth et al. 2010). When the outer hair

cells are poised just on the stable side of the critical point of the bifurcation,

they amplify, compress and tune the response greatly. On the unstable side,

oscillation of the outer hair cells results in otoacoustic emissions.
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Recent work by Majka et al. (2015, 2018) has demonstrated that pitch

can be perceived in Gaussian pulses which last fractions of a millisecond, a

phenomenon which seems to be in direct opposition to what the uncertainty

principle tells us. Although Majka et al. consider cochlear nonlinearity

to be outwith the scope of their experiments, it is clear that their results

demonstrate that the acuity of people’s pitch and time perception reaches

far beyond the limitations of processes discussed in the previous section.

The research summarised here shows that nonlinearities are essential to

pitch and time perception, and that the Hopf bifurcation is an excellent

candidate for describing the behaviour of hair cells in the inner ear. This

suggests that software which uses the Hopf bifurcation may be able to per-

form time–frequency detection in audio signals at a higher resolution than

the standard linear approaches to this problem.

The investigations presented here will now proceed by studying the Hopf

bifurcation, in order to find a form suitable for use as the engine of a bank

of damped tuned resonators. The response characteristics of these will then

allow simultaneous time and frequency discrimination at a level of precision

that the uncertainty principle would suggest is not possible.

1.5.2 Hopf bifurcation

In general terms, bifurcation theory describes changes in a system’s topology

— for example, stationary points appearing and disappearing or periodic

orbits arising — that occur when a parameter passes through a critical

value (Wiggins 1990).

Such a system is often presented as a first-order differential

dx

dt
= f(x, µ), x ∈ Rn, µ ∈ R (1.23)

where µ represents the bifurcation parameter.

A bifurcation can be detected by finding the value of µ for which a
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fixed point becomes non-hyperbolic, i.e. the eigenvalues of the Jacobian of

Equation 1.23 have no real part (Glendinning 1994).

A Hopf bifurcation (sometimes referred to in literature as the Poincaré-

Andronov-Hopf bifurcation) occurs when a system changes from stability to

instability as the bifurcation parameter, µ, passes the critical point, µ0, and

the complex conjugate eigenvalues become purely imaginary (Guckenheimer

& Holmes 1983, Rosales 2005). In this case, we have a pair of eigenvalues,

rather than a single one, so the solutions are periodic orbits around an

equilibrium, rather than stationary points (Glendinning 1994). Figure 1.13

illustrates the appearance of periodic orbits that arise from a Periodically

forced Hopf bifurcation, which will be discussed later in this section.

The Hopf bifurcation is not only the mechanism behind the action of the

outer hair cells in the cochlea, but also a wide variety of systems which ex-

hibit spontaneous oscillation (or self-excitation), for example the appearance

of periodic pulsations in detuned lasers (Ning & Haken 1990), the dynamics

of neural networks (Song et al. 2005) and food webs in ecosystems (Zhang

et al. 2018).

Derivation of Hopf bifurcation normal form

Following the procedures of Kuznetsov (2004), the system of equations

ẋ1 = µx1 − ωx2 − x1(x2
1 + x2

2) (1.24a)

ẋ2 = ωx1 + µx2 − x2(x2
1 + x2

2) (1.24b)

can be expressed as

f(x) = ẋ = Ax − (x2
1 + x2

2)x (1.25)
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Figure 1.13: State space diagrams, showing the growth of periodic orbits,
when a resonator operating at a Hopf bifurcation is driven by a sinusoid at
a rate equal to the characteristic frequency, ω0. The bifurcation parameter
is positioned at the critical point, the first Lyapunov coefficient is −1 and
the momentum, dz/dt, has been scaled by ω0.
The first Lyapunov coefficient is introduced during the Derivation of Hopf
bifurcation normal form and the characteristics of a Periodically forced Hopf
bifurcation is addressed later in this section.
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where A is the Jacobian of the system, calculated thus:

A = df
dx =

 ∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

 (1.26a)

∂f1
∂x1

= µ− 3x2
1 − x2

2 (1.26b)

∂f1
∂x2

= −ω − 2x1x2 (1.26c)

∂f2
∂x1

= ω − 2x1x2 (1.26d)

∂f2
∂x2

= µ− x2
1 − 3x2

2 (1.26e)

When x1 = x2 = 0, ẋ1 = ẋ2 = 0 for all µ and ω (by (1.24)) and the system

is in equilibrium. Therefore

A =

µ −ω

ω µ

 (1.27)

Observing the eigenvalues of the system, equivalently the poles of its

transfer function, determines not only the stability of the system, but also

the frequency of the periodic solutions. As µ tends to µ0, the angular fre-

quency of the orbits tends to ω0. Solving to find the eigenvalues of Equation

(1.27) gives

λ1,2 = µ± jω (1.28)

To find the normal form of the Hopf bifurcation, we introduce the com-

plex variable

z = x1 + jx2 (1.29)
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from which follows

z∗ = x1 − jx2 (1.30a)

zz∗ = |z|2 = x2
1 + x2

2 (1.30b)

ż = ẋ1 + jẋ2 (1.30c)

Combining eqs. (1.24), (1.29) and (1.30) gives the normal form of the Hopf

bifurcation

ż = (µ+ jω)z − z|z|2, z ∈ C (1.31)

where the positive eigenvalue (1.28) appears as the coefficient of z. The

real part of the coefficient of the cubic term determines the stability of the

orbits.

This cubic coefficient is known as the first Lyapunov coefficient and will

be denoted b, where b = −1 in the above equation. b is a real value, the sign

of which determines the stability of the solutions (Guckenheimer 2008). In

the case b < 0, the bifurcation is supercritical and the periodic orbits are sta-

ble; when b > 0 there is a subcritical bifurcation and the orbits are unstable,

therefore Equation (1.31) represents a supercritical Hopf bifurcation.

Explicitly including the first Lyapunov coefficient gives a new form of

the Hopf bifurcation

ż = (µ+ jω)z + b|z|2z, z ∈ C (1.32)

Periodically forced Hopf bifurcation

Per Section 1.5.1, we wish to have a form of the Hopf bifurcation which

represents the response of the outer hair cells to an input. When including

this in the expression, it takes the form of a sinusoidal forcing function F .

For a Hopf resonator at the bifurcation point, µ = µ0, tuned to a charac-

teristic frequency ω0 with forcing frequency ωin (Zhang & Golubitsky 2011)
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Figure 1.14: Output of Hopf system with characteristic and forcing frequen-
cies both at 100 Hz. (a) first 200 ms of the response in the complex plane,
(b) absolute value of response over 1 second.

ż = (µ0 + jω0)z + b|z|2z + F (1.33)

where F = Xejωint or, in a real system, F = Xcos(ωint).

As was stated at the beginning of this section, a condition of the Hopf

bifurcation is that, at the bifurcation point, the eigenvalues lie on the imag-

inary axis, therefore µ0 = 0. Therefore, Equation (1.33) can be simplified

to

ż = jω0z + b|z|2z + F (1.34)

If the forcing frequency ωin is equal to the characteristic frequency of

the system ω0, periodic orbits with angular frequency ω0 will appear. For

example, Figure 1.14 shows the response of a forced system with a real input,

where ω0 = ωin = 200π rad s−1 and X = 25. Figure 1.14 (a) shows the first

200 ms of the response in the complex plane as the periodic orbits are being

established, and (b) shows the absolute value of z over 1 second.

Constructing a bank of these resonators tuned to a range of character-

istic frequencies and analysing the |z| responses of each will allow those

frequencies to be detected in the signal.
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Degenerate Hopf bifurcation

The Derivation of Hopf bifurcation normal form introduced the first Lya-

punov coefficient and its effects on the stability or instability of the solutions.

If the first Lyapunov coefficient vanishes, i.e. b = 0, a degenerate bifurca-

tion occurs. This is also known as a Bautin or generalised Hopf bifurcation

(Kuznetsov 2004).

ż = (µ+ jω0)z, z ∈ C (1.35)

The nonlinear term disappears, but there are still periodic orbits, as the

limit cycle ‘degenerates’ into the plane at µ = 0 in (x1, x2, µ)-space. This

creates a relatively simple equation for a degenerate bifurcation exhibiting

a periodic solution:

ż = jω0z (1.36)

and for a forced degenerate bifurcation:

ż = jω0z + F (1.37)

1.5.3 Summary

As we have seen, the auditory system’s response to sound can be described

by the Hopf bifurcation, where the sound input takes the role of the forcing

function.

Equation (1.34) can now be used at the basis for a new approach to

automatic onset detection, one which is not subject to the same limitations

on simultaneous time and frequency measurement as existing methods. The

following chapters will discuss the development and results of this software.

It should be noted that, while the auditory system provides important

background, the purpose of the software is not to model the auditory system,

but to detect notes in musical audio.
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Chapter 2

Building the DetectorBank

As discussed in Chapter 1, the behaviour of the Hopf bifurcation in response

to audio will form the basis of the onset detection software developed here.

This chapter details the design and implementation of the DetectorBank:

a bank of nonlinear tunable resonators (detectors), each of which operates

at a Hopf bifurcation. The characteristics of this system are then explored,

and new features implemented to overcome deficiencies.

Unlike the many attempts to solve time and frequency detection prob-

lems which are based on conventional signal processing techniques, our ap-

proach to this problem sidesteps uncertainty-related issues: we do not seek

to measure the signal directly, instead the signal is used to drive a bank of

tuned resonators. Frequency and time information can then be found from

observable internal state variables, without the limitations imposed by the

uncertainty principle.

The DetectorBank source code is available at https://github.com/keziah55/

DetectorBank and additional Python scripts with which the DetectorBank

was tested can be found at https://github.com/keziah55/ExtraThesisMaterial.

51
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1..*
DetectorBank AbstractDetector

RK4Detector CDDetector

Figure 2.1: UML diagram of the DetectorBank and detectors

2.1 Implementation of the Hopf bifurcation

2.1.1 Structure

Per UML terminology (Fowler 2004), a DetectorBank is an aggregation of

AbstractDetectors (the base class for a detector). A simplified UML dia-

gram showing the DetectorBank and detectors is given in Figure 2.1. Each

detector implements the expression for a forced Hopf bifurcation, as given

in Equation (1.34), using either the central difference approximation or the

fourth order Runge-Kutta method (see Section 2.1.2).

Two potential drawbacks of the idea of multiple detectors are the resul-

tant resource and memory usage. The output of a DetectorBank comprised

of k detectors, each of which operates on N input samples, will be a k ×N

array. Requesting more detectors or more input samples increases both the

time a DetectorBank will take to run and the memory required to store the

output array, which could potentially exceed the available RAM.

The effect of the first of these problems can be mitigated by incorporating

multithreading. As each detector operates independently of all others —

the DetectorBank is embarassingly parallel — they can be run in multiple

concurrent threads, and utilising all available CPUs on a computer will

reduce execution time.

There are two methods provided by the DetectorBank which utilise mul-

tiple threads: getZ(), which calculates the result of the Hopf bifurcation,

and absZ(), which calculates the absolute value of the getZ() output.
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Table 2.1: Ratios of time taken when one thread is used, T1, to time with
four threads, T4, for the two multithreaded methods provided by the Detec-
torBank

Method T1/T4
getZ() 2.895

getZ() and absZ() 2.532

Table 2.1 shows the speed increase measured when testing these multi-

threaded methods on a computer with Intel i5-4210M CPUs, which operate

at 2.6 GHz and are capable of running four concurrent threads.1 12 GB of

RAM were available; there was no swap usage, so none of the time taken

can be attributed to transferring data to virtual memory.

The second problem is averted by the DetectorCache object. This fills a

fixed number of segments with DetectorBank output. After the last segment

is filled, the first segment is re-used. This not only keeps the memory usage

under control, but also provides a mechanism by which results could be

generated in response to a continuous live input stream.

2.1.2 Realisation

As Equation (1.34) cannot be discretized, numerical approximations are used

in the implementation. The software allows users to choose between the cen-

tral difference approximation and the fourth order Runge-Kutta method.

These are implemented as subclasses of the AbstractDetector class: CD-

Detector and RK4Detector. These methods, and their implementation in

software, are presented in Appendix C.

Throughout the investigations in this thesis, the Runge-Kutta method

is predominantly used, as it is known to be well-conditioned when applied

to the Hopf bifurcation (Christodoulou 2008).

1The full specification can be found at https://ark.intel.com/content/www/us/en/ark/
products/81012/intel-core-i5-4210m-processor-3m-cache-up-to-3-20-ghz.html

https://ark.intel.com/content/www/us/en/ark/products/81012/intel-core-i5-4210m-processor-3m-cache-up-to-3-20-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/81012/intel-core-i5-4210m-processor-3m-cache-up-to-3-20-ghz.html
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Effect of numerical methods

The central difference approximation is significantly simpler than the Runge-

Kutta. This reduces the time taken to execute it, but also reduces the

accuracy of the results.

When the detectors are operating at a degenerate Hopf bifurcation, both

of these numerical approximations introduce errors, where, at high frequen-

cies, the detector frequency and the input frequency can appear to be mis-

matched. Adjusting the characteristic frequency of the detector can mitigate

this. For example, when the fourth order Runge-Kutta method is selected,

a detector nominally operating at 2 kHz requires its frequency to be shifted

by 0.066%; a 3 kHz detector requires frequency adjustment of 0.25%.

A method for frequency normalisation — referred to as search normal-

isation — is provided. This iteratively searches for the detector frequency

which provides the optimal response at a given input frequency and auto-

matically adjusts the characteristic frequencies of the detectors accordingly,

thus allowing the software to be used over a wider range of frequencies.

These errors arise due to the numerical methods and there is no analytical

expression for search normalisation.

These effects are not seen in the responses of non-degenerate detectors,

as the widening bandwidth (as discussed in Section 2.2.5) masks any such

errors.

The threshold up to which the responses do not require normalisation is

higher when the Runge-Kutta method is used than central difference, how-

ever central difference method typically performs about three times faster

than the Runge-Kutta.

Damping factor

When Equation (1.34) is implemented in software and sinusoidal forcing is

applied, the periodic orbits increase in magnitude to a maximum. When the
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forcing is stopped, the orbits remain at this magnitude. In order to cause

the system behaviour to relax, a damping factor is introduced, which scales

each output z value.

This is included in the implementation described in Appendix C; and its

effect on bandwidth and time response is investigated in Section 2.2.6.

2.2 Empirical investigation of DetectorBank char-

acteristics

In order to characterise this system, we must measure the bandwidth and

time response of a single detector, the maximum bandwidth of the Detector-

Bank and the effect of varying the forcing amplitude. It is also desirable to

determine how a detector behaves when its characteristic frequency is pre-

sented in the presence of others. As the system is nonlinear, each of these

attributes cannot be analysed in isolation: the effect on the whole system

must always be considered.

The following investigations are presented with musical applications in

mind, so typical audio sample rates are used and the frequency range of

interest covers the range of fundamental frequencies in music (27.5 Hz to

approximately 4.2 kHz) and the range of human hearing (20 Hz to 20 kHz).

The control parameter µ is set to zero (i.e. at the bifurcation point).

Unless otherwise stated, the first Lyapunov coefficient is also zero so that

the detectors are operating at a degenerate Hopf bifurcation; a damping

factor of 1 · 10−4 and forcing amplitude X = 5 are used. These values

produce an output which generally falls within the range |z| ≤ 1. As will

be discussed in Sections 2.2.5, 2.2.6 and 2.2.8, the system turns out to be

well-conditioned when these parameters are altered.

As seen in Figure 1.14b of Chapter 1, plotting the absolute value of z

gives a line clearly showing the growth of the periodic orbits. Henceforth,
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“the detector response” will refer to the absolute value of z over time. It is

important to consider not only the magnitude of the response, but also its

shape, as this provides more information about how the system is reacting.

Both the fourth order Runge-Kutta and central difference methods are

used, with and without search normalisation, over a range of frequencies

and with a range of sample rates (48 kHz, 96 kHz and 192 kHz). The test

audio comprises sine waves generated at various frequencies, either a single

tone or a series of tones. All end with a period of silence, so the response in

relaxation is also visible. Using signals of this form has the advantage that

the precise frequencies are known, so a poor response for a certain frequency

can be attributed to the detector, not the input. However, a pure sine wave

has neither the complexity nor variation found in musical audio.

2.2.1 Responses to frequencies across musical range

This section details the system responses at selected frequencies covering

the range of fundamentals found in music and seeks to develop a general

impression of the performance one can expect from the DetectorBank. The

following sections in this chapter investigate individual aspects of the system,

as well as discussing methods of compensating for any deficiencies in the

responses.

Octaves

Figure 2.2 shows the response to eight consecutive tones, each lasting for

one second. The frequencies ascend by octave from 27.5 Hz to 3520 Hz (i.e.

A0 to A7 in music). The sample rate of the audio is 48 kHz. It can be seen

that, for Runge-Kutta detectors, search normalisation somewhat improves

the 1760 Hz response, but the effect on the 3520 Hz detector is negligible.

The central difference detectors are much improved by search normalisation.

Small oscillations are noticeable in all the low frequency responses. Fig-
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Figure 2.2: DetectorBank responses to consecutive tones, lasting one second
each and rising by octave from A0 to A7. Eight detectors are used, tuned
to the corresponding frequencies, from 27.5 Hz to 3520 Hz. The sample rate
used here is 48 kHz.
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Figure 2.3: Detector response to 5 Hz tone

1.0 0.5 0.0 0.5 1.0
real

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

im
ag

(a) First 20 periods

1.0 0.5 0.0 0.5 1.0
real

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

im
ag

(b) Last five periods

Figure 2.4: The (a) beginning and (b) end of the complex response at 5 Hz
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Figure 2.5: The (a) beginning and (b) end of the complex response at 400 Hz
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Figure 2.6: 5 Hz response, as shown in Figure 2.3, with a 400 Hz response
subtracted, leaving the 10 Hz oscillations.
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ure 2.3 provides a clearer representation of this, showing the response to a

5 Hz tone, which lasts for two seconds. These oscillations are at twice the

driving frequency and arise because, as can be seen in Figure 2.4, the re-

sponse in the complex plane is not quite circular, but slightly elliptical: it is

slightly wider at two points and slightly narrower at two points, hence the

frequency-doubled oscillations. This is more pronounced at lower frequen-

cies, as can be seen by comparing Figure 2.4 with Figure 2.5, with the result

that the oscillations at higher frequencies are much smaller in magnitude.

The plots of the final five periods in response to the tone (Figures 2.4b

and 2.5b) show this difference particularly clearly. A circle should have an

eccentricity, e, of zero; for an ellipse, 0 < e < 1 (Brannan et al. 2012).

Measuring the eccentricity of the final periods of the responses yields results

which get closer to zero as the frequency is increased: e = 7.622 · 10−2 for

the final periods of the 5 Hz response; by 400 Hz this has dropped by two

orders of magnitude to e = 8.878 · 10−4.

In Figure 2.6, the response to a 400 Hz tone has been subtracted from

the 5 Hz response shown in Figure 2.3, leaving the prominent oscillations of

the 5 Hz response. Measuring the time between these oscillations yields a

frequency of 9.974 Hz. As the duration of the tone is increased, this mea-

surement reaches 10 Hz.

One of the functions of the amplitude normalisation feature, which will

be introduced in Section 2.2.8, is to correct this orbital eccentricity and

reduce the oscillations.

Figure 2.7 shows the eight octave response at two higher sample rates

(the responses for unnormalised Runge-Kutta detectors are shown; central

difference detectors did not give noticeably different results). It can be seen

that oscillations in the lower frequency responses become more pronounced

at higher sample rates.
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Figure 2.7: Responses of unnormalised Runge-Kutta detectors to consec-
utive tones, lasting one second each and rising by octave from A0 to A7.
The detectors are tuned to the corresponding frequencies, from 27.5 Hz to
3520 Hz. The sample rates are (a) 96 kHz and (b) 192 kHz.

Low frequencies

Figure 2.8 shows low frequency responses at the three sample rates. The

graphs shown are only Runge-Kutta detector output, as again there was no

discernible difference between this and central difference. All the detectors

are used without normalisation. The audio input spans a chromatic scale

in the lowest octave on a piano (i.e. from A0 to A1, 27.5 to 55 Hz). The

responses at low sample rates are more desirable, in that, although they

have a slower rate of response, they have better rejection of neighbouring

semitones. For example, at all sample rates, when the 27.5 Hz tone sounds,

the 29.1 Hz detector also reacts briefly, however the maximum amplitude of

the 29.1 Hz detector is 8.5 dB lower than that of the 27.5 Hz detector when

the sample rate is 48 kHz and only 2.3 dB lower when fs = 192 kHz.

This rejection of neighbouring frequencies also happens very quickly.
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Figure 2.8: Responses to a chromatic scale in the lowest octave on a piano.
Again, each tone lasts for one second, and the detectors are tuned to the
corresponding frequencies. The tones were generated at three sample rates:
(a) 48 kHz, (b) 96 kHz and (c) 192 kHz.
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Again, in the case of the 27.5 Hz tone, the 29.1 Hz detector begins to react

at the same time, but quickly reaches a maximum and stops responding. At

fs = 48 kHz, this difference of 1.6 Hz is being discriminated in about 265 ms.

When the sample rate is increased to 96 kHz, then 192 kHz, this time reso-

lution drops to 247 ms, then 230 ms. These are all significantly quicker than

the 312.5 ms that would be expected from the definition of the uncertainty

relation given in Gabor (1946), which was stated by Equation (1.22):

∆t∆f ≥ 1
2

At the three sample rates tested here, ∆t∆f = 0.433, 0.404 and 0.375.2

Given the work of Majka et al. (2015, 2018), as discussed in Pitch and

time perception in Section 1.5.1 of Chapter 1, it should come as no surprise

that a system based on the mechanism of the inner ear can achieve results

that surpass what is deemed possible by the uncertainty principle when

deriving the time and frequency from a single observation.

As will be discussed fully in Section 2.2.4, when a detector responds to

a driving frequency which is close to, but not the same as, its characteristic

frequency, the response will oscillate at a rate of the difference between

these frequencies. These oscillations are distinct from the small amplitude

oscillations which occur due to eccentricity in the complex orbits. When

analysing these difference oscillations, one might expect the local maximum

to occur at half the period of oscillation; however, a time shift is observed

due to the initial rate of change of the response, which results in a shorter

time to maximum. Various frequency differences and their corresponding

time shifts will be presented in Table 2.3 of Section 2.2.4.

2Of course, the reader will recall that the uncertainty principle applies only when ∆t
and ∆f refer to the same observation (as would be the case in an attempt to derive the
sub-band signals from, for example, a DFT). In this case, ∆f is a property of the detector,
not the signal under measurement.
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(b) Search-normalised; fs = 96 kHz
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Figure 2.9: Runge-Kutta detector responses to tones generated at frequen-
cies corresponding to the highest 17 notes on a standard piano (A6 to
C♯8), with the detectors tuned accordingly. (a) and (b) show results when
fs = 96 kHz; it can be seen that search normalisation improves the responses
somewhat. In (c), at the higher sample rate of 192 kHz, unnormalised de-
tectors give consistent responses.

High frequencies

Figures 2.9 and 2.10 look at higher frequencies for Runge-Kutta and cen-

tral difference detectors respectively. Only higher samples rates are shown

here, as the frequencies being tested are out of the range for which the

detectors at lower sample rates can adequately respond. At 192 kHz, no

normalisation is necessary for Runge-Kutta detectors: they respond well to

all frequencies up to the limit of fundamental frequencies found in music.

When the sample rate is 96 kHz, the shape of the responses of unnormalised

Runge-Kutta detectors becomes distorted above about 3 kHz. With search
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(b) Search-normalised; fs = 96 kHz
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(d) Search-normalised; fs = 192 kHz
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Figure 2.10: Responses to the same input as in Figure 2.9, but using central
difference detectors. At both sample rates, 96 kHz and 192 kHz, the re-
sponses, (a) and (c), are much improved when search normalisation is used,
as seen in (b) and (d).
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Figure 2.11: The maximum response amplitude decreases as detector fre-
quency increases. Values calculated here used an unnormalised Runge-Kutta
detector, with input samples generated at fs = 48 kHz.

normalisation, the range can be extended to 4 kHz. For both normalised

and unnormalised detectors, the amplitude of the responses decreases as the

frequency increases. The distorted shape is due to the detector’s characteris-

tic frequency not quite matching the input frequency; decreasing amplitude

means the detector is not responding as strongly, although the frequency

may still be correct. As we have seen, the first of these problems can be

mitigated with frequency normalisation, as described in Section 2.1.2; the

second suggests amplitude scaling may be necessary. This will be introduced

in the next section.

The central difference detectors (Figure 2.10) do not respond as well at

high frequencies. For either of the two higher sample rates normalisation is

required, although the responses of the frequency normalised detectors at

fs = 96 kHz are somewhat erratic.
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2.2.2 Amplitude scaling

As seen in Figures 2.9 and 2.10 of Section 2.2.1, as the characteristic fre-

quency and input frequency of a detector are increased, the amplitude of

the responses decreases. Despite this amplitude decay, the shape of the re-

sponses is retained, therefore this is not the result of distorted frequencies:

the detector response is weaker, but equally as sharp, at higher frequencies.

Maximum response values for various characteristic frequencies were

found for all detector types at a sample rate of 48 kHz. The results for

unnormalised Runge-Kutta detectors can be seen in Figure 2.11. Using

these values to scale up the detector responses creates a consistent output

over a larger range of frequencies.

2.2.3 System bandwidth

Section 2.2.1 investigated how the DetectorBank responds to frequencies

across the range of fundamentals typically found in musical audio. However,

there may be applications where it is instructive to apply the DetectorBank

to frequencies outwith this range; for example, analysing signals range of

audible frequencies (20 Hz–20 kHz).

The figures in Section 2.2.1 — for example, 2.2, 2.9 and 2.10 — show that

a uniform output can only be obtained up to a few kilohertz, depending on

the conditions used to create the DetectorBank. Although the point at which

the responses begin to deteriorate can by raised by changing parameters

like the sample rate, numerical method and normalisation, the maximum

frequency is still lower than desired.

This can be rectified by shifting the input signal down in frequency when

detectors are requested at frequencies above the point where the Detector-

Bank can adequately respond. This has the benefit that the signal only

has to be processed once before being applied to the DetectorBank, thereby

adding less overhead than, for example, increasing the sample rate.
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Figure 2.12: Procedure for shifting an input signal f(t) by ωc/2πHz.
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Figure 2.13: Response of five unnormalised Runge-Kutta detectors around
100 Hz to a tone which was generated at 4 kHz and shifted down to 100 Hz.

In our system, frequency shifting is achieved by generating a double

sideband signal, then subtracting a quadrature phase shifted version of the

signal, which leaves only the upper sideband of the positive frequencies and

the lower sideband of the negative frequencies (Van Trees 2001). Figure 2.12

shows how this can be implemented to shift a signal f(t) by ωc/2πHz. A

phase shift can be implemented using the Hilbert transform (Rabiner &

Gold 1975). More information on the Hilbert transform and its application

ro frequency shifting is provided in Appendix E.
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Figure 2.14: Unnormalised Runge-Kutta detector responses to a range of
frequencies, increasing by 100 Hz. As the frequency increases, the shape
of the responses becomes distorted. From this, the maximum frequency to
represent without frequency shifting was chosen to be 1.6 kHz.

Figure 2.13 shows the responses of five unnormalised Runge-Kutta detec-

tors, tuned to 90, 95, 100, 105 and 110 Hz and driven by a sine wave which

was generated at 4 kHz — far beyond the empirically determined maximum

for an unnormalised Runge-Kutta detector, see Figure 2.2a — and shifted

down to 100 Hz. The tone lasts for one second and is followed by one second

of silence and the sample rate is 48 kHz.

This process can also be used to shift frequencies up. This will gener-

ally not be required for audio signals, as detector responses for 27.5 Hz and

greater are adequate when the sample rate is 48 kHz, but for other appli-

cations it may be useful. Examples of this are given in Appendix E.3.4,

where the various different implementations of the Hilbert transform are

also discussed.

When running the software, frequency shifted versions of the input will
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Table 2.2: Empirically determined frequency thresholds, ft, above which
frequency shifting will be applied for each combination of numerical method
(fourth order Runge-Kutta, RK4, and central difference, CD) and normali-
sation (search normalised or unnormalised). These values were found for a
sample rate of 48 kHz.

Method Normalisation ft (Hz)
RK4 none 1600
RK4 search 2200
CD none 500
CD search 700

automatically be generated if any of the requested detector frequencies are

above a certain threshold, ft, given by the numerical methods and normal-

isation. Frequencies will be shifted into the range 50 Hz to ft + 50 Hz to

guarantee a clean response.

The threshold values, presented in Table 2.2, were obtained empirically

from results like those shown in Figure 2.14, which shows the response of

unnormalised Runge-Kutta detectors to frequencies ranging from 1.3 kHz

to 1.8 kHz. As the frequency increases, the shape of the response begins

to distort, with the response reaching a maximum, then decreasing to a

steady value. While search normalisation can increase the frequency at

which the distortion begins, it cannot prevent it entirely. In the case of

the unnormalised Runge-Kutta detectors shown in Figure 2.14, a threshold

frequency of 1.6 kHz was chosen. As the shifted signal will be between 50 Hz

and ft+50 Hz, the maximum frequency represented by unnormalised Runge-

Kutta detectors will be 1650 Hz. At this frequency, the steady amplitude of

the response is within 95% of the maximum value.

In musical terms, a frequency range of 27.5 Hz to 1.6 kHz covers the

fundamental frequencies of notes from A0 to G6 or 71 out of the 88 notes

on a standard piano: 80% of the note range one may expect to find in music

will be adequately covered without frequency shifting.

Figure 2.15 shows the amplitude of steady state responses of a Detector-
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Figure 2.15: Amplitude of steady state responses of DetectorBank to 400 Hz
tone; fs = 48 kHz.

Bank with unnormalised Runge-Kutta detectors ranging from 1 Hz to the

Nyquist rate (24 kHz) when presented with a 400 Hz tone. In addition to the

peak at 400 Hz, the detector at 23.6 kHz also responds, reaching a maximum

value 12.7 dB less than that of the 400 Hz detector. At 2.7 kHz, another peak

is present. This occurs 5.84 dB below the 400 Hz one and appears to be an

artefact of frequency shifting. This can be explained by considering that

frequencies above 1.6 kHz are modulated to the range 50 Hz to 1650 Hz. Ini-

tially, this is a shift down of 1550 Hz. At frequencies above n times 1.6 kHz,

the resultant shift is 1600(n − 1) + 1550 Hz. Peaks then appear at dou-

ble 1550 Hz minus the input frequency: in this case 3100 − 400 = 2700 Hz.

There are also small peaks at 1.6 kHz intervals above this, but always below

−50 dB. A future implementation of the DetectorBank may solve this prob-

lem by employing a better method of frequency shifting than single sideband

modulation via the Hilbert transform.

The peak at fs/2 − fin may be due to the nonlinearity of the system,

suggesting a higher sample rate may be required to represent the input
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without aliasing. However, as this is not deleterious to the system when used

for musical applications — and the scale, location and extent are known —

these are not investigated further in this project.

Testing the DetectorBank response to Low frequencies demonstrated

that there is less orbital eccentricity and better rejection of nearby frequen-

cies when signals were generated at lower sample rates. Therefore, despite

the spurious responses at the Nyquist frequency and double the shifting fre-

quency minus the input, from here on, unless otherwise stated, the sample

rate used to characterise the DetectorBank responses will be 48 kHz as, when

used with frequency shifting and amplitude scaling, this provides the best

results for the range of fundamental frequencies typically found in music.

2.2.4 Propinquitous frequencies

As was observed in discussion of Figure 2.8, a degenerate detector will still

respond when the driving frequency and characteristic frequency are not the

same, but are close. As the discrepancy between the frequencies increases,

the response becomes weaker. The range of frequencies to which it will

respond, and the strength with which it responds, is determined by the

bandwidth of the detector.

Section 2.2.3 introduced frequency shifting, which is used to extend the

system bandwidth of detectors operating on a 48 kHz input up to the Nyquist

frequency. Therefore, the effect of higher sample rates will not be considered

here. The detector bandwidth will be investigated in Section 2.2.5; this

section focusses on the response of detectors with a characteristic frequency

in close proximity to the driving frequency.

When the detector’s characteristic frequency and the driving frequency

are similar, the response will oscillate at the difference between the frequen-

cies.3 This suggests the response will reach its maximum after half a period
3This oscillation is not to be confused with the oscillations in the response due to

eccentricity in the orbit, which was discussed earlier in this chapter, in Octaves, and
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Figure 2.16: Responses of degenerate detectors at the driving frequency and
at ±1 Hz and at ±2 Hz from this frequency.

of oscillation, 1/2(fin − f0) seconds in this case, however it invariably takes

a shorter time than this. For example, in Figure 2.16, the orange line shows

the response of a detector at ±1 Hz from the driving frequency. One might,

therefore, expect the maximum to occur after 500 ms, but the response is

clearly reaching maximum significantly earlier than this. This cannot be at-

tributed to errors introduced by numerical approximation, as the time shift

is the same for both Runge-Kutta and central difference detectors.

As shown in Table 2.3, for degenerate detectors operating at 0.5 Hz from

the driving frequency (and with a damping of 1 · 10−4) the time advance is

231 ms, which decreases to 3.96 ms when the frequency difference increases

to 5 Hz.

As the oscillation frequency may be ascertained by measuring the time

from maximum to the following local minimum, this time shifting will allow

∆f to be obtained sooner.

The characteristics of the response immediately after forcing begins will

illustrated in Figures 2.3 to 2.6.
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Table 2.3: For detectors ∆f Hz from the input frequency (440 Hz), this table
gives the expected maximum time (half a period, T ), the time at the which
the maximum is found in practice, tm, and the resultant time shift. The
damping factor used here is 1 · 10−4.

∆f (Hz) T/2 (ms) tm (ms) tm − T/2 (ms)
0.5 1000 768.9 −231.1
1.0 500 423.4 −76.62
1.5 333.3 295 −38.37
2.0 250 226.8 −23.25
2.5 200 184.7 −15.29
3.0 166.7 155.1 −11.52
3.5 142.9 134.7 −8.169
4.0 125 118.8 −6.228
4.5 111.1 106.3 −4.840
5.0 100 96.04 −3.958

be investigated in Section 2.2.6.

2.2.5 Detector bandwidth

Any algorithm which analyses the responses may miss events where the

detector and driving frequencies do not quite match. For example, as can

be seen in Figure 2.16, the maximum response for detectors at ±1 Hz from

the driving frequency is roughly half that of the correct detector. In fact, the

ratio of maximum amplitude of the matched response to that of a slightly

mismatched response is approximately:

max(|zd|)
max(|z0|)

≈ 1
|fin − f0| + 1

(2.1)

where zd is the mismatched detector response, z0 is the matched detector

response, fin is the driving frequency and f0 is the detector frequency.4

In signal processing, the standard definition of bandwidth is the fre-

quency at which the response has decreased by 1/
√

2. This is equivalent

to a drop of 3 dB, hence it is commonly referred to as the 3 dB point. In
4This only holds when the sample rate is 48 kHz. At higher sample rates, the maximum

values of propinquitous detectors are higher.
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Table 2.4: Empirical values for first Lyapunov coefficient required for a 3 dB
point at ± 1 to 5 Hz, i.e. a detector bandwidth of 2–10 Hz, at fs = 48 kHz.

Bandwidth
(Hz)

First Lyapunov
coefficient

2 −0.160
4 −1.278
6 −4.303
8 −10.183
10 −19.863

this system, ‘3 dB point’ will be used to refer to the frequencies at which

detectors have a steady state response 3 dB lower than a detector tuned

to the input frequency. S Equation (2.1) suggests that the 3 dB point of

a detector is about ±0.41 Hz from the detector’s frequency. Experimental

measurements put the 3 dB point at ±0.46 Hz, i.e. the detector bandwidth

is 0.92 Hz (when the sample rate is 48 kHz, the damping is 1 · 10−4 and the

first Lyapunov coefficient is zero).

This extremely sharp cutoff will be good for many applications, but for

some — e.g. music analysis, where performed notes will rarely be at exactly

the ‘correct’ frequency, but will be perceived as being the correct pitch —

it may be desirable to widen the response of the detectors. This can be

achieved by using a non-degenerate Hopf bifurcation, i.e. one where the

first Lyapunov coefficient, b, is non-zero. For a supercritical bifurcation, i.e.

one which exhibits stable periodic solutions, b should be negative.

The value of b required for a 3 dB point at ±1 Hz from the detector

frequency for a purely sinusoidal input with amplitude X = 25 was exper-

imentally determined as approximately −0.16, which rapidly increased as

the frequency difference (in Hertz) is increased (see Table 2.4).

A proportionality is observed between the log of the values in Table 2.4.

Genetic algorithms5 were used to confirm this relationship for bandwidths
5As it cannot be ruled out that there are local minima, classical techniques for solving

these problems, such as gradient descent, may not be appropriate. As the calculation only
has to be run once, the computational overhead is not a significant consideration. The
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Figure 2.17: ln(|b|) against ln(B) for the b values found by the genetic
algorithm.

up to 110 Hz. The results of this can be seen in Figure 2.17. As these values

closely approximate a straight line, an equation relating bandwidth, B, and

first Lyapunov coefficient, b, can be derived using data from Table 2.4:

b = − exp
(
m
(

ln(B) − ln(x0)
)

+ ln(y0)
)

(2.2)

where x0 = 2, x1 = 10, y0 = 0.16, y1 = 19.863 and m =
(

ln(y1) −

ln(y0)
)
/
(

ln(x1) − ln(x0)
)
. With these values, m = 2.999 ≈ 3; using this

and log rules, Equation (2.2) can be greatly simplified to

b = −0.02B3 (2.3)

When tested with a range of target bandwidths from 1 Hz to 24 kHz,

GAs were implemented in Python using the DEAP (Distributed Evolutionary Algorithms
in Python) framework (Fortin et al. 2012); for full implementation, please see the Python
scripts in the GitHub repository at https://github.com/keziah55/ExtraThesisMaterial/
tree/master/DetectorBank_development.

https://github.com/keziah55/ExtraThesisMaterial/tree/master/DetectorBank_development
https://github.com/keziah55/ExtraThesisMaterial/tree/master/DetectorBank_development
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Table 2.5: Empirical values for first Lyapunov coefficient, b, required for a
3 dB point at bandwidths, B, of 2–10 Hz at high sample rates, with X = 25.

Bandwidth
(Hz)

First Lyapunov
coefficient
fs = 96 kHz

First Lyapunov
coefficient
fs = 192 kHz

2 −0.04 —
4 −1.25 −0.32
6 −4.44 −3.60
8 −10.64 −9.99
10 −20.61 −20.43

the results of Equations (2.2) and (2.3) differ by no more than 4%. The

discrepancy increases with the requested bandwidth. Bandwidths that may

be used for musical applications are unlikely to be greater than hundreds

of Hertz. The difference between the fundamental frequencies of the two

highest notes on a standard 88-key piano, C8 and B7, is 235 Hz. In the

case B = 235 Hz, the maximum variation between b as calculated by the

full expression and the simplified version is 2%. Discrepancies of this scale

will not be deleterious to the output, therefore Equation 2.3 is an acceptable

substitution in musical applications.

The first Lyapunov coefficients required for bandwidths of 2–10 Hz at

higher sample rates (96 kHz and 192 kHz) did not display the same trend

(see Table 2.5). As the sample rate is increased, the minimum detector

bandwidth increases and so smaller values of first Lyapunov coefficient are

required to widen the response. For 192 kHz, there is no value of b small

enough to bring the maximum responses of detectors at ±1 Hz down to

−3 dB. The limit seems to be around −1.36 dB. However, for larger band-

widths, e.g. 8 or 10 Hz, the first Lyapunov coefficient required is similar at

all tested sample rates. Therefore, clearly at neither of these higher sample

rates will plotting ln(|b|) against ln(B) yield a straight line.

As the first Lyapunov coefficient is increased, the magnitude of all the

responses decreases, even those where the input frequency and the detector
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Figure 2.18: The responses of four detectors, three damped with different
dampings, 1 · 10−4, 2 · 10−4 and 3 · 10−4, and one undamped.

frequency are exactly matched. This problem is addressed by amplitude

normalisation, discussed in Section 2.2.8.

2.2.6 Damping

Figure 2.18 shows the responses of four detectors to a one second sine tone.

One detector is undamped — the response reaches its maximum, but does

not return to zero after the tone stops. The other three detectors are damped

with different damping factors: 1 · 10−4, 2 · 10−4 and 3 · 10−4 (the first of

those being the damping which has been used in all the experiments here

thus far).

The choice of damping factor effects several aspects of the response, from

the minimum bandwidth of a detector to the time response.

Minimum detector bandwidth

As would be expected, as the damping factor increases, the maximum am-

plitude becomes lower and the detector bandwidth widens.



2.2. EMPIRICAL INVESTIGATION 79

439.4 439.6 439.8 440.0 440.2 440.4 440.6
Frequency (Hz)

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Pe
ak

 a
m

pl
itu

de
 (d

B)

Figure 2.19: Maximum steady state amplitude of 501 detector responses
around 440 Hz, when fs = 48 kHz and damping factor is 1 · 10−4. The 3 dB
points found here are 439.546 Hz and 440.461 Hz.

Table 2.6 shows experimentally derived values for the natural bandwidth

of degenerate Hopf detectors (at three sample rates) for five damping factors

from 1 · 10−4 to 5 · 10−4. For each damping factor, the bandwidth was found

by making a DetectorBank with 501 detectors around the centre frequency

(at increments of a few millihertz), then finding at which frequencies the

response amplitude is closest to 3 dB from that of the centre frequency. As

these values are not guaranteed to be positioned exactly around the centre,

the bandwidth is taken to be twice the largest difference from centre, i.e. the

minimum value that covers both 3 dB points. Figure 2.19 shows the peak

amplitudes for a DetectorBank around 440 Hz, when sample rate is 48 kHz

and damping factor is 1 · 10−4. The 3 dB points are found at −0.454 Hz and

+0.461 Hz, giving in a minimum bandwidth of 0.922 Hz.

From the values in Table 2.6 it can be seen that the detector bandwidth

changes linearly with damping at all three sample rates.

Genetic algorithms were used to verify these results. The method of
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Table 2.6: Minimum bandwidths for various damping levels and sample
rates.

Damping Bandwidth (Hz)
fs = 48 kHz

B’width (Hz)
fs = 96 kHz

B’width (Hz)
fs = 192 kHz

1 · 10−4 0.922 1.824 3.653
2 · 10−4 1.832 3.648 7.307
3 · 10−4 2.752 5.496 11.040
4 · 10−4 3.606 7.328 14.700
5 · 10−4 4.560† 9.160 18.367

† Please note that this value will be increased to 4.860 Hz following the investigation
in Section 2.2.7.

determining bandwidth used here differs from that described above. Rather

than creating a large DetectorBank with detectors at fixed, discrete frequen-

cies, the genetic algorithm creates detectors at frequencies plus and minus

half an estimated bandwidth from centre. Many potential values are gen-

erated and tested, with the final result being the bandwidth at which the

responses were closest to −3 dB from centre.

The genetic algorithm yielded values very similar to the original results.

For a sample rate of 48 kHz, the largest difference between the minimum

bandwidths is 0.327%. At higher sample rates, the difference ranged from

0.073% to 0.633%.

Equation (2.3), which finds the first Lyapunov coefficient for a given

bandwidth (when the sample rate is 48 kHz), was derived from experiments

which used a damping factor of 1 · 10−4. For damping factors greater than

this (up to 5 · 10−4) and bandwidths above the minimum values given in

Table 2.6, this relation still holds.

Time response

Figure 2.20a shows the responses of five detectors with different damping

factors with the 10%–90% rise times marked by dotted lines and Figure 2.20b

shows the same responses with the relaxation time (time taken for the am-
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Figure 2.20: The responses of five damped detectors with (a) the rise times
marked and (b) the relaxation times marked.
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Table 2.7: Rise times for different damping factors (fs = 48 kHz)

Damping 10% time (ms) 90% time (ms) Rise time (ms)
1 · 10−4 43.8125 956.438 912.625
2 · 10−4 22.0833 480.229 458.146
3 · 10−4 14.4583 320.042 305.583
4 · 10−4 10.8958 240.458 229.562
5 · 10−4 8.66667 191.729 183.062

Table 2.8: Relaxation times for different damping factors (fs = 48 kHz)

Damping Relaxation time (ms)
1 · 10−4 416.396
2 · 10−4 208.104
3 · 10−4 138.667
4 · 10−4 103.958
5 · 10−4 83.1250

plitude of the response to fall to 1/e of the maximum) marked. The exact

times are given in Tables 2.7 and 2.8. It can be seen that the times measured

here are inversely proportional to changes in damping factor.

When in relaxation, the responses drop by (1 − d)1/2 at every sample,

where the factor of two appears in the power because each value of z is cal-

culated using the previous two z values. Therefore, for a desired relaxation

time, tms, the required damping factor can be found with

d = 1 − exp(−2t/fs) (2.4)

Taken together, Tables 2.6 to 2.8 show that there is a trade-off between

improving time performance of the detectors and reducing the frequency

selectivity.

Figure 2.21 plots the initial responses when the damping factor and

sample rate are varied. In both cases, although the detectors all respond

at the same rate initially, the responses start to diverge at approximately

25 ms. Responses with lower damping factors or sample rates increase in

amplitude at a faster rate and reach a higher maximum value.



2.2. EMPIRICAL INVESTIGATION 83

0 25 50 75 100 125 150 175 200
Time (ms)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

|z|

Damping factor
Undamped
1e-04
2e-04
3e-04
4e-04
5e-04

(a) Initial response of 440 Hz detectors to 440 Hz tone at 48 kHz, at a variety of
damping levels.
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(b) Initial response of 440 Hz detectors to 440 Hz tone generated at a variety of
sample rates, with a constant damping factor of 1 · 10−4.

Figure 2.21: Initial responses at different damping levels and sample rates.
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Figure 2.22: Divergence between damped and undamped responses of Fig-
ure 2.21a, as a proportion of the undamped response.

Figure 2.22 shows the difference between damped and undamped re-

sponses as a proportion of the undamped response at every sample. The

least damped response diverges most slowly, taking 89.54 ms to differ from

the undamped response by 10%; the most damped response differs by 10%

after only 18 ms.

We will return to the difference in response rate of change and maximum

value due to damping factor when discussing Amplitude normalisation in

Section 2.2.8.

Summary

Increasing the damping has a similar effect to increasing the sample rate.

Figure 2.8 shows that using a higher sample rate leads to greater oscillations

in the response. Section 2.2.5 discussed the effect of the first Lyapunov

coefficient on bandwidth, mostly considering a sample rate of 48 kHz, but

mention was made of the bandwidth and first Lyapunov coefficient at higher

sample rates, the effect of which is very similar to that of increasing the
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damping. This is because when implemented, in both the Runge-Kutta and

central difference methods, each z value is scaled by both 1/sr and 1 − d.

2.2.7 Input amplitude

The bandwidth of a detector is also seen to widen when the forcing ampli-

tude is increased. The relationship between bandwidth and first Lyapunov

coefficient given in Equation (2.3) was experimentally determined for sinu-

soidal forcing with a constant amplitude X = 25. It is therefore necessary

to adapt this to accommodate varied forcing amplitudes.

Genetic algorithms were once again used to analyse the relationship be-

tween first Lyapunov coefficient and bandwidth at different damping factors

as the input amplitude is varied. These results can be seen in Figure 2.23.

Although the lines are a somewhat irregular shape at bandwidths below 6 Hz,

it can be seen that the output follows a similar pattern for each amplitude

tested. Above the minimum detector bandwidth, the relationship between

first Lyapunov coefficient and amplitude is the same for all damping factors.

From these results, we can say that a known first Lyapunov coefficient,

b0, can be scaled by the ratio of amplitudes squared to find the first Lyapunov

coefficient required when the forcing amplitude is changed.

b1 = b0

(
X0
X1

)2

(2.5)

Equation (2.3) calculates the first Lyapunov coefficient for a given band-

width B when the amplitude X0 = 25. Substituting these values into Equa-

tion (2.5) yields the following expression for the first Lyapunov coefficient

with an arbitrary input amplitude X:

b = −12.5B3

X2 (2.6)

When attempting to verify this relationship with the data from the ge-
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Figure 2.23: First Lyapunov coefficient (b) values required for various band-
widths (B) at different levels of damping (1 · 10−4 to 5 · 10−4), when the
forcing amplitude (X) is varied, as given by genetic algorithms. Results
are shown for values above the minimum bandwidth for the given damping
factor.
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netic algorithm, some variation was found for values approaching the mini-

mum bandwidth. For the two smallest damping factors, this was within 5%;

however for larger damping factors this error increases. When calculating b

for a bandwidth of 4.602 Hz, at a damping factor of 5 · 10−4, the error was

up to 95%. This error reduced to within 5% when the desired bandwidth

was increased to 5.437 Hz. This suggests that the minimum bandwidth for

detectors with a damping of 5 · 10−4 should be widened. Considering band-

widths above 4.860 Hz at this damping factor reduces the largest error to

8%.

2.2.8 Output amplitude

In nonlinear systems, the principle of superposition does not apply, so all

input parameters must be considered when describing the output of the

system.

Amplitude scaling (see Section 2.2.2) corrects any decay in output am-

plitude due to characteristic frequency, numerical method or frequency nor-

malisation. However, other DetectorBank parameters — forcing amplitude,

sample rate and damping factor — can affect the output amplitude.

The effect of changing forcing amplitude can be seen in Figure 2.24. As

the input amplitude is increased while all other parameters remain the same,

the output amplitude approaches the cube root of the input. For the special

case of a degenerate Hopf bifurcation, given in Equation (1.37), the cubic

term disappears, and the system becomes linear.

The effect of varying damping factor was discussed in Section 2.2.6. This

focussed on the relationship with minimum bandwidth and time responses;

however, the results also provide insight into the effect on output amplitude.

From Figure 2.20a, it can be seen that the output amplitude decreases as

the damping is increased. Considering this in conjunction with the results

in Tables 2.7 and 2.8 — which show that increasing the damping reduces



88 CHAPTER 2. BUILDING THE DETECTORBANK

0 20 40 60 80 100
Input amplitude

0.0

0.2

0.4

0.6

0.8

1.0

Ou
tp

ut
 a

m
pl

itu
de

Figure 2.24: As the input signal amplitude increases, the maximum response
amplitude increases at a rate approximate to the cube root of the input
amplitude. The bandwidth used when generating this figure was 5 Hz, i.e.
the first Lyapunov coefficient was non-zero.

the rise and relaxation times — suggests that using a higher damping and

scaling up the response can improve on the response of a detector with a

smaller damping factor.

The effect of varying the sample rate can be seen by comparing the axes

in Figures throughout Section 2.2.1, for example Figure 2.8: as the sample

rate increases, the output amplitude decreases.

The situation may arise where a user wishes to analyse or compare the

responses of different DetectorBanks. This would require consistency in the

output of any DetectorBank given the same input. To achieve this, we

employ amplitude normalisation.

Amplitude normalisation

Amplitude normalisation is implemented by finding the real and imaginary

parts of the maximum value in a detector’s response to a 60 second tone
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at the characteristic frequency. These values are then used to scale the

detector’s response. It also corrects any eccentricity in the orbit by scaling

the imaginary part of the response, an aberration which was discussed in

Octaves.

To do this, two scale factors are employed: sa and si. The former is a

complex number which scales the z results and the latter uses the ratio of

the real and imaginary parts of the orbit to scale only the imaginary part

of z.

The amplitude scale factor, sa, is simply 1/z, where z is the point at

which |z| is at maximum.

The eccentricity scale factor, si, is found by analysing the periodic orbits

towards the end of the response, once the orbits have reached their full

extent (see, for example, Figure 2.4 for a comparison of the first and last n

periods of a response). The scale factor is the ratio of the maximum real

and maximum imaginary values in these periods.

z values generated in response to the user’s input buffer will then be

normalised using the sa and si obtained from the test tone.

Figure 2.25 shows the results of amplitude normalisation on detectors

with different damping and gain levels. All responses now reach a maximum

of 1, with the detectors with larger damping factors reaching their maxima

earlier.

Figure 2.26 shows the effect of amplitude normalisation on orbital eccen-

tricity. The eccentricity of the ellipse in Figure 2.26a (a reprint of Figure 2.4b

in Section 2.2.1) is 7.475 ·10−2; in Figure 2.26b, the eccentricity has dropped

by a factor of eight to 9.347 · 10−3.

Measuring the rise and relaxation times with amplitude normalisation

applied shows small differences between the results given in Tables 2.7

and 2.8, generally in the order of tens or hundreds of milliseconds, up to

a maximum time difference of 0.325%
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Figure 2.25: Responses of five detectors with different damping factors and
gains (a) unnormalised, and (b) with amplitude normalisation.
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Figure 2.26: Last five periods of 5 Hz response (b) with and (a) without
amplitude normalisation. It can be seen that the unnormalised orbits have
a greater eccentricity than the normalised ones.
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2.2.9 Multiple simultaneous frequencies

Nonlinearities may introduce artefacts at frequencies within the range of in-

terest. The discussion of Pitch and time perception in the auditory system

mentioned the the perception of frequencies not present in a stimulus. This

phenomenon arises because of cochlear nonlinearities. There is, therefore, a

legitimate cause for concern that a system which operates with the same me-

chanical process as the outer hair cells in the cochlea — the Hopf bifurcation

— will give false results when multiple frequencies are presented simultane-

ously. However, this does not occur; Appendix D presents demonstrations

of this.

The response to a signal in the presence of wideband noise presents a

more legitimate cause for concern, as, due to the nonlinear nature of the

system, it is not possible to deal with the wideband response of the system

by considering the superposition of partials. This is investigated below.

Wideband noise

Figure 2.27a shows a detector response to uniformly distributed wideband

noise; the power spectral density is uniform up to the Nyquist sampling

limit and the probability density function is uniform between +1 and −1.

It can be seen that the range of resulting values is two orders of magnitude

less than typical responses shown earlier in this chapter. (See, for example,

Figure 2.16.)

Figure 2.27b shows the response to white noise and a sine tone presented

simultaneously. It can be seen that there is little difference between the

shape of the response to only a sine tone (again as seen in Figures preceding

these) and the response when noise is introduced; however the amplitude has

halved. The signal-to-noise ratio of the signal used to generate Figure 2.27b

is 1.75 dB.

Negative signal-to-noise ratios still produce useable results, although the
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Figure 2.27: Detector response in the presence of white noise. When (a)
noise is presented alone, the response of a single detector is low amplitude
and noisy. When (b) noise is presented along with a 440 Hz tone at a signal-
to-noise ratio of 1.75 dB, the response shape is largely unaffected by the
noise, although the amplitude is lower than might be expected.

output amplitude is significantly reduced and the shape of the response

becomes noisier. For example, Figure 2.28 shows the output when the signal

is (a) 4 dB and (b) 15 dB below the noise.

Figure 2.29 shows the frequency response of a DetectorBank comprising

unnormalised Runge-Kutta detectors covering the range 1 Hz to 24 kHz (the

Nyquist rate) when the input is white noise. The noise rejection is partic-

ularly good at low frequencies; the maximum response amplitude does not

exceed −20 dB until 3.2 kHz. Above this point, a series of peaks at 1.6 kHz

increments can be seen. As was noted in the discussion of Figure 2.15 in

Section 2.2.3, these are artefacts of frequency shifting.

Figure 2.30a similarly recalls Figure 2.15. It shows the frequency re-

sponse of a DetectorBank presented with a 400 Hz tone and white noise

simultaneously, at a signal-to-noise ratio of −4 dB. The 400 Hz peak reaches

−9.26 dB and, as seen before, there is another peak at 2.7 kHz. Here, it is

5.12 dB lower than the 400 Hz peak. The response at higher frequencies here

is similar to that of only noise, as shown in Figure 2.29.

When the signal-to-noise ratio is further decreased to −15 dB, the 400 Hz
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Figure 2.28: Detector responses to a 440 Hz tone in the presence of noise,
where the signal-to-noise ratio, SNR, is negative. As the noise amplitude
increases, distortions in the shape of the response become visible.
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Figure 2.29: Amplitude of steady state responses of DetectorBank to uni-
formly distributed wideband noise.
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Figure 2.30: Responses across DetectorBank to 400 Hz tone presented with
white noise at different signal-to-noise levels.

response only reaches −16.8 dB. Once again, there is a peak at 2.7 kHz;

however at −21.0 dB, it is smaller than subsequent peaks which appear due

to the noise.

2.3 Summary

Despite the limitations imposed by the uncertainty principle, it is possible

to obtain precise data about both the time and frequency characteristics of a

signal simultaneously. This is achieved not by directly measuring the signal,

but by using it to drive a bank of tuned, nonlinear resonators (‘detectors’).

Time and frequency information can then collected by accessing the state

variables of the system.

The characteristics of the detectors depend on the input parameters, but

it is possible to construct detectors with a narrow bandwidth (down to a

minimum of 0.922 Hz) which will reject frequencies outwith this range in less

than half the period of the frequency difference.

The deficiencies brought about by the use of numerical approximations to

implement the Hopf equation can be circumvented with various techniques

including frequency shifting, frequency normalisation, amplitude scaling and

amplitude normalisation, with the result that the system bandwidth can be
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extended to the Nyquist frequency.

Although the current implementation of frequency shifting introduces

artefacts at high frequencies, the fundamental frequencies of 80% of the

note range of standard 12-EDO music can be covered without recourse to

frequency shifting.

Information about the frequency of the input is available not only from

the response of the detector that matches the frequency, but also from the

difference oscillations in the responses of propinquitous detectors. Addi-

tionally, the bandwidth of a detector can be widened from its minimum to

encompass a greater range of the spectrum.

Frequency differences cause responses to diverge in a shorter time than

the uncertainty principle suggests is possible, although this is in keeping

with results of measuring human hearing.

Various factors affect output amplitude; these can be managed by em-

ploying amplitude normalisation, which also corrects eccentricity in the pe-

riodic orbits, and thus reduces the small oscillations visible in the low fre-

quency responses.

Potential problems associated with nonlinear systems and multiple si-

multaneous input frequencies do not emerge here: the system can withstand

a large amount of noise in the input signal.

The desired time response must be considered when selecting the Detec-

torBank parameters, as the rise and relaxation times of the responses can be

shortened in proportion to increases in the damping factor. However, fea-

tures such as amplitude normalisation allow the DetectorBank to produce

uniform results as other parameters are changed, such as first Lyapunov

coefficient (i.e. bandwidth), characteristic frequency and input amplitude.

The following chapters will consider methods of analysing the Detector-

Bank output to identify notes in the input. This will focus on detecting

onset times; however, the DetectorBank could also be used as the basis for
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pitch tracking software, as it enables discrimination of pitch changes within

a note. The onset detection software presented in the next chapter could

form a note detector, if used in conjunction with a pitch tracker.



Chapter 3

Onset Detection

3.1 Overview

When looking for notes in audio, both the time and frequency domains must

be considered. We need to know when the note begins (its onset time) and

what frequencies are present (its pitch).

By providing a bank of narrow-bandwidth tuned resonators, referred

to here as detectors, the DetectorBank enables us to detect the frequency

variation within a note, rather than simply declaring one value to be the

frequency of the entire note. When a given detector’s characteristic fre-

quency in present in the input signal, the detector will resonate. The time

at which it begins to resonate is the onset time of the note. The features of

the response, like amplitude and oscillations, provide information about the

frequency of the note. Considering these in conjunction with the responses

of propinquitous detectors may enable us to calculate the pitch of the in-

put. Although building a pitch tracking algorithm is beyond the scope of

this project, the note detection software presented here is designed in such

a way that a pitch tracker could be integrated in the future.

A note detector (‘NoteDetector’ in software) should consist of an onset

detector and a pitch tracker, both of which operate on the output samples

97
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NoteDetector

OnsetDetector PitchTracker

DetectorBank

Figure 3.1: UML diagram of a NoteDetector and its components

of a DetectorBank. Figure 3.1 gives a simple UML outline for this structure.

In this diagram, the OnsetDetector and PitchTracker share a DetectorBank;

in practice, there must be a means of providing these objects with the data

they require in an efficient manner.

When presenting the Structure of the DetectorBank software, potential

problems in computation overhead were discussed, along with methods of

avoiding them: multithreading and the DetectorCache object. Onset detec-

tion may have a similar problem, as the output of the DetectorBank must

be processed in some way in order to identify the points which correspond

to note onsets, a task which is likely to occupy much CPU time and RAM

usage. Although the methods presented here are not realtime, a desired out-

come of this work is to make possible realtime response and, as such, CPU

utilisation is an important design consideration. This informs the overall

design presented in Section 3.1.4.

This chapter discusses techniques for onset detection. The methods pre-

sented in this chapter are tested with short audio extracts, the details of

which are given in Table 3.1. Scores for these are provided in Appendix B.

The digital piano extracts were performed by the author; the extract from
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Table 3.1: Test audio details

Title Instrument Note range Freq. range
Dream a Little
Dream of Me Digital piano D4–B4 293.7 Hz–493.8 Hz

Alice Digital piano F3–A♭4 174.6 Hz–415.3 Hz
Swan Lake excerpt 1 Digital piano G1–F♯2 49.0 Hz–92.5 Hz
Swan Lake excerpt 2 Digital piano B2–C♯4 123.5 Hz–277.2 Hz

Before All Things Soprano voice F4–A♭5 349.2 Hz–830.6 Hz

Before All Things is from a private recording.

3.1.1 Initial idea

The initial onset detection algorithm was very simple. Nevertheless, it em-

bodies important concepts which are crucial to a successful implementation

of a more sophisticated version.

It works by thresholding and backtracking: when a response exceeds a

given threshold, it backtracks, sample by sample, to find the point at which

the detector began to react.

When backtracking, the current value is compared with the mean of

the log of the preceding N samples. If this mean is less, the sample under

consideration is moved back one step and checked again. When the mean

log is no longer smaller, the onset has been located.

1 # get value at current sample, n,and channel, k
2 current = getResultItem(k,n)
3
4 # get mean of log of previous N values
5 mean = 0
6 for i in range(n-N, n):
7 mean += log(getResultItem(k,i))
8 mean /= N
9

10 # begin backtracking
11 while mean < current:
12
13 # decrement current sample number
14 n -= 1
15
16 # get new 'current' value
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17 current = getResultItem(k,n)
18
19 # remove most recent value from mean
20 mean -= log(current/N)
21
22 # add new (older) value to mean
23 mean += log(getResultItem(k,n-N)/N)

Code Extract 3.1: Initial backtracking algorithm

Code extract 3.1 provides pseudocode for backtracking, from current

sample n, where the function getResultItem(k,n) returns the value of

sample n in channel k from the DetectorBank. When the while loop exits,

the sample number n is the onset time.

Evaluation

The extent to which this onset detector works is largely dependent on choos-

ing the correct DetectorBank parameters and threshold. Figure 3.2 shows

the responses of two detectors at different damping levels, when driven by

the test extract Dream a Little Dream of Me. A larger damping factor

causes faster rise and relaxation times and therefore more clearly defined

peaks in the response (at the expense of widening the minimum bandwidth

from 1.16 Hz to 4.86 Hz, as presented in Table 2.6). However, the rough

locations of the notes are clear from visual inspection of both graphs.

We can also determine thresholds from these graphs: 0.8 and 0.3 would

appear to be suitable for Figures 3.2a and 3.2b respectively. These values

are roughly half the maximum in each case.

Zooming in on the responses between about 8 and 10 seconds shows two

potential problems for the onset detector (see Figure 3.3). First, when the

damping is 1 · 10−4, the note at around 9 seconds is missed because the

response has not fallen enough from the previous note to pass the threshold.

Second, the responses are oscillatory: there will be threshold-exceeded events

that must be ignored as they are due to oscillations during relaxation.
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(b) Damping = 5 · 10−4

Figure 3.2: Response of detector at 391.995 Hz (G4) to the melody of Dream
a Little Dream of Me with two different damping factors (a) 1 · 10−4 and
(b) 5 · 10−4.
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(a) Damping = 1 · 10−4, threshold = 0.8
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(b) Damping = 5 · 10−4, threshold = 0.3

Figure 3.3: Zooming in on responses in Figure 3.2, with the thresholds
marked. Three notes occur in the input in this time; at a low damping
factor, one of these notes would not be detected, as the relaxation is not
fast enough for the threshold to be passed.
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An onset detector must be able to address both of these issues: (i) the

amplitude of the peaks in the response, corresponding to notes, can vary a

lot — in both graphs in Figure 3.2, the maximum peak amplitude is more

than 60% larger than the minimum peak amplitude — and (ii) the responses

are not smooth.

When testing onset detectors, true positives will be defined as any de-

tection within ±50 ms of the (manually determined) correct time. Although

we perceive sounds that occur within 30 ms of each other as simultaneous,

this generous range of ±50 ms allows us to gauge whether onset detector is

somewhat in the right area or completely wrong, as well as compensating

for human error in the manual markup.

The concept of backtracking appears to work quite well, if sub-optimally.

With a damping factor of 5 · 10−4 and a threshold of 0.3, the onset detector

can find all notes in the Dream a Little Dream of Me melody: 33 notes in 15

seconds, between D4 (293.665 Hz) and B4 (493.883 Hz). The F-measure of

this is 100%. 22 of these detections are within ±15 ms of the manually found

onset time; the remaining 11 detections are between 16 and 32 ms late.

However, these results cannot be replicated when the damping factor is

1 · 10−4; the fixed threshold causes many notes to be missed, as well as some

false positives. The F-measure drops to 73%. When a threshold of 0.6 is used

(lower than that determined by inspection of Figure 3.2a to accommodate

the output of all detectors required), only nine of the 22 true positives fall

within ±15 ms.

In both of these tests, the backtracking algorithm had a tendency to exit

too early. Two onsets are detected at exactly the right time, one is before

the correct time and the rest of the detections are late.

Backtracking gives promising results, but it needs to be refined if it is to

be an effective part of onset detection. Such improvements will be detailed

in Section 3.5 of this chapter, but first we must determine the structure and
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features of the OnsetDetector.

3.1.2 Return to the auditory system

Sine tones, generated at various frequencies, were used when characteris-

ing the DetectorBank, as knowing the exact form of the input allows us

to draw conclusions from the output. However, musical signals are more

complex than this. They contain components at multiple frequencies, which

can change over the course of the note. Additionally, although there are

some instruments which play notes at fixed pitches — pianos or percussion

instruments like xylophones and marimbas — there are many capable of

creating sounds at any pitch, depending on the instrument itself, as well as

the technique of the performer.

Therefore, for woodwind, brass or string instruments, attempting to find

a note by using a single detector — tuned to the expected fundamental

frequency — may result in events being missed by an OnsetDetector, even

though they would be perceived as the correct pitch class by a listener.

The counter this potential problem, we return to the physiology of the

auditory system. In audiology, the phenomena of auditory masking and

beating are attributed to the behaviour of the basilar membrane, which can

be modelled as a series of overlapping bandpass filters (Pickles 2012). The

term critical band refers to a rectangular filter which is equivalent to the

auditory filter.

We will use a slightly different definition of critical band to that found

in audiology, as the aim of the project is not to build a model of the au-

ditory system, but rather to detect notes in musical audio. Given a fre-

quency, f0, the NoteDetector will construct a DetectorBank of n detectors

centred around f0. Together, these detectors will respond to the band of fre-

quencies that could be considered to be in the same pitch class. Therefore, if

the user specifies p frequencies, pn detectors must be created. Although this



3.1. OVERVIEW 105

requires more memory and CPU usage, it is necessary if we wish to create

software that can analyse music, rather than simply tones at set frequencies.

The concept of critical bands allows us to regard all the detectors in the

band as a single entity, rather than a collection of components. Designing

an OnsetDetector which utilises this idea will compress the information in

n detector responses down to representation more suited to purpose. The

OnsetDetector can then operate unimpeded by superfluous minutiae.

Using critical bands will also be useful for identifying pitch, as the rel-

ative strength of response amplitudes within the band could be used to

determine the exact frequency sounding at any given moment.

3.1.3 Why not use machine learning?

Although many aspects of this project draw heavily on biological processes,

neural networks or similar machine learning techniques are not suitable here.

These were considered, but not pursued; the main reason for this decision

was the data sets that would be required.

In machine learning terms, the process of identifying what features of the

DetectorBank responses correspond to onsets is called classification learning

(Witten et al. 2017). This is implemented by providing a training set that

includes the correct onset times. Definition 2 stated that

A note is an entity with at least an onset time and pitch, where

the onset is a single moment in time which marks the beginning

of the note. It may also contain intra-note events corresponding

to changes within the note.

This suggests that it may be useful for the training set to include data

about the timing of events within notes, i.e. the onset times of frequency

components that do not correspond to note onsets.

Given that there is so much variation possible in a musical signal, that

this would likely require a very large training set to ensure that onsets can
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reliably be detected in different contexts. Another independent data set

would also be required to evaluate the resulting algorithm. To the author’s

knowledge, there is no extant data set of note onset times in a large body

of samples that includes timings of intra-note events.

The data set that will ultimately be used in Chapter 4 to evaluate this

software comprises notes played on a range of instruments and with a range

of playing techniques. Each note is played individually and left to ring out.

This means it is suitable for evaluating the accuracy of the detections in a

controlled manner and comparing results for different categories of input;

however, the ideal training set would include data more like the samples we

wish to analyse with the software, i.e. full performances.

The most practical way to obtain a sufficiently large data set, for which

both exact frequencies and onset times are known a priori, is to generate

tones, with MIDI or a similar process. However, generated tones have sig-

nificantly different response characteristics from organic musical tones.

This is demonstrated by Figure 3.4, which shows the responses of a

DetectorBank, tuned to the fundamental frequencies of the notes G4–A♭5,

when driven by the extract from Before All Things. In Figure 3.4a, the

DetectorBank is driven by the original extract, performed by a singer; Fig-

ure 3.4b uses a MIDI rendering of the score to generate the responses. It is

apparent from the responses that the MIDI signal is much less complex than

the voice: each individual MIDI note is clear, whereas the vocal responses

are far busier. For example, the vibrato in the vocal extract is much wider

than the MIDI; this is particularly apparent in the notes from six to ten

seconds. Is is clear from the MIDI responses that the two notes here are

B♭4 followed by C5. Some vibrato can be seen from the small oscillations

in the C5 response. However, the same period in the vocal sample is far

busier. For both notes, it can be seen that the vibrato reaches up to the

neighbouring semitone.
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Detector frequencies, note name
349 Hz, F4
370 Hz, G 4
392 Hz, G4
415 Hz, A 4

440 Hz, A4
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Figure 3.4: The first 15 seconds of Before All Things, with detectors tuned
to the fundamentals of the notes from F4–A♭5. In (a) the melody is sung;
in (b) a MIDI rendering of the melody is used the drive the DetectorBank.
The complexity of the voice signal compared with the MIDI rendering is
apparent.
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This difference between generated signals and notes played by a per-

former is not a problem when characterising the system — in this instance,

we want to know how the system responds in ideal or controlled situations

— but an algorithm trained to find MIDI notes will not necessarily be able

to find ‘real’ notes.

3.1.4 Outline of an OnsetDetector

The basic structure of an OnsetDetector comprises two stages. The first

should be a ‘rough’ stage, which operates on every input sample. Most

samples will not represent an onset, so the first stage should be able to

analyse its input without expending vast amount of computation analysing

samples which will be rejected anyway. There should be no false negatives

in the output of this stage, although false positives are acceptable.

The second stage will be activated whenever the first stage finds a pos-

sible onset. It will examine the responses in more detail to either verify

or reject the initial detection. If verified, this should return an exact onset

time.

Three approaches to stage one were tried; the first two were unsuccessful.

All three methods will be outlined here and the shortcomings of the first two

will be discussed.

3.2 Sum gradient

The first idea prototyped and tested for stage one was to look at the rate

of change of the responses. This was implemented by calculating a rough

gradient over M samples. The gradient of each response in the band is

summed at every sample. For this reason, we refer to this as the ‘sum

gradient’ technique. Equation (3.1) shows this, where z is an N ×K array
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of DetectorBank output samples.

x =
∑

n

∑
k

z[k][n] − z[k][n−M ]
M

(3.1)

Although this approach may seem crude, it has the overwhelming benefit

is that it satisfies the requirement that the first stage of an onset detector

identifies potential onsets with minimal computational requirements and

latency, as is shown in the evaluation in Section 3.2.1.

This method allowed us to regard the responses as states rather than

numerical values. The two basic states were ‘rise’ and ‘fall’: when the

responses are rising, there may be a note onset; when they are falling, the

note may be ending. Rise or fall is determined on a sample-by-sample basis.

When these are examined over time, we can broaden the states out to include

steady states (either during a note or between notes).

The state of the band at sample n is given by the sign of the sum gradient

at that sample. Regarding the magnitude of this as a confidence allows for

more nuance in the state decisions: a large positive (or negative) value means

the band is very likely increasing (or decreasing); a small value means the

band may be in a steady state.

Regions where the state is rise or fall for a significant period of time (e.g.

30 ms) are then regarded as possible onsets or offsets by stage one. This

then alerts stage two. As stated in Section 3.1.4, the job of stage two is to

analyse the responses at this time more closely. For this prototype, a very

basic stage two was implemented, which considered the confidence values

immediately before the onset time given by stage one. If a certain proportion

of these exceeded a given threshold, the onset was verified. Otherwise, it

was rejected.
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3.2.1 Evaluation

The method has a number of advantages. It makes effective use of the

critical band concept: the responses of multiple detectors are reduced to a

single value at every sample. The required memory for each band is kept to

a minimum by considering the values N samples ago (where N will typically

be a small proportion of the sample rate); samples older than this can be

discarded. Also, the sum gradient algorithm requires only a small number

of operations, thus deferring heavy computation until stage two is called.

However, there are disadvantages which become apparent when considering

an example.

The output of the prototype can be seen in Figure 3.5. A critical band,

comprising 21 detectors at 1 Hz increments around 391.995 Hz, was set up

and driven by Dream a Little Dream of Me: the same input and centre

frequency as used in the Evaluation of the initial idea presented earlier in

this chapter. The gradient was calculated over N = 1000 samples.

The rise and fall states are shown in this figure by dark and light grey

regions in the background. Onsets, initially found by stage one then verified

by stage two, are marked with green lines. This seems to have been success-

ful, but there is one false negative (shown by a dashed red line). This onset

was also missed when the Initial idea of thresholding and backtracking was

tested, but this time it is due to the note beginning when the detectors are

still in relaxation from the previous note, as can be seen in Figure 3.6. The

magnitude of the sum gradient is smaller than it would have been if the

responses were starting from zero, so the confidence at this time does not

meet the threshold.

This is an insurmountable problem for this implementation of the On-

setDetector. Stage two would have to be implemented in ways which would

negate the advantages. Despite this, from Figure 3.5 (and others like it) we

can see that the offset periods are very clear: the long ‘fall’ states are obvi-
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Figure 3.5: Dream a Little Dreams of Me melody, with detectors tuned to
critical band frequencies around G4 (391.995 Hz). Onsets found by the sum
gradient method are marked in green; the dashed red line marks a missed
onset. The background colours dark or light grey, shows the whether sum
gradient is positive or negative on a sample-by-sample basis, i.e. whether
the state of the band is ‘rise’ or ‘fall’ at that point.
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Figure 3.6: Zooming in on the DetectorBank responses shown in Figure 3.5,
at the region where the onset shortly before 9 seconds was missed.

ous. Although the sum gradient method is problematic, it could potentially

be useful if a method for offset detection is required. However, it must be

abandoned as an approach to onset detection.

3.3 Hough transform

The next idea developed approached the problem in a completely different

manner. Instead of calculating the rate of change at every sample, we look

for the shape of a note in the DetectorBank output. The basic shape of

responses to a note is known: a line, which rapidly increases to its peak,

then decays. Figure 3.7 shows a detector response to a sung note, overlaid

with lines which approximate the onset and offset shape: a straight line and

a decaying exponential. An algorithm that can detect the appearance of

this shape in the responses may be a suitable stage one of onset detection.

The Hough transform is a technique used to find patterns in data. It is

often used in computer vision to find a shape in an image, regardless of size,

location and rotation (Nixon & Aguado 2012), but has also been used to
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Figure 3.7: Detector response to a sung note (purple), with lines fit to the
rise and decay.

analyse audio signals (Dennis et al. 2015). There are versions of the Hough

transform for finding various geometric shapes, as well as arbitrary shapes.

The Hough transform for straight lines is suitable for matching the onset

and could be used for the offset too, as the log of a decaying exponential is

a straight line, as shown in Figure 3.7.

The Hough transform is a good candidate for this task, as it is tolerant

of noise in the signal and gaps that may occur if there is a glitch in the

waveform. It is also generalisable to arbitrary shapes, if straight lines do

not turn out to be the ideal shape to search for in the data.

Section 3.3.1 introduces the Hough transform for lines, as it is used in

image processing. Sections 3.3.2 and 3.3.3 then present ideas for adapting

this to operate on DetectorBank output and shortcomings of this technique.
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3.3.1 Hough transform for lines

The polar equation of a line is integral to the Hough transform. It is defined

as

ρ = x cos(θ) + y sin(θ) (3.2)

and can be found by drawing a line which is perpendicular to the original

line and goes through the origin. The length of this line is ρ and the angle

between it and the horizontal axis is θ.

For example, Figure 3.8 shows a blue line, defined by y = x/2 − 1. The

perpendicular line to the origin is shown as a red dashed line. The length of

the red line (ρ) and the angle between it and the x-axis (θ) define the blue

line. In this case, ρ = 0.894 and θ = 1.107.

From simple geometry, the relationship between the linear equation of a

straight line, y = mx + c, and the polar equation, ρ = x cos(θ) + y sin(θ),

can be derived:

m = 1
tan θ

(3.3)

and

c = ρ

sin θ
(3.4)

From this, we can see that ρ calculated from Figure 3.8 should be negative.

By convention, 0 ≤ θ < π; the sign of ρ shows whether the angle is being

measured above or below the x-axis (see Figure 3.9).

In order to find the Hough transform, we first calculate ρ for a range

of angles at every point of interest in the input. As a (θ, ρ) pair uniquely

defines a straight line, points which form a straight line will have the same

ρ values for a particular angle. Therefore, the ρ and θ values which occur

most frequently correspond to the lines which are present in the input.

In order to find the Hough transform of an image, it must be preprocessed

by an edge detector, as only the pixels corresponding to a discontinuities in

brightness need to be considered in the calculation.
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Figure 3.8: Line y = x/2 − 1 (blue) with perpendicular line to the origin
(red). The magnitude of the red line (ρ) is −0.894 and the angle between it
and the x-axis (θ) is 1.107 radians.
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Figure 3.9: Illustration of different ρ sign when θ is calculated clockwise
(orange) or anticlockwise (green).
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The angles at which ρ will be found must be chosen by the user. Choosing

a greater number of angles between 0 and π may in greater accuracy in the

output. The maximum possible ρ is
√

width2 + height2, where width and

height are in pixels. Together, the resolution of θ and the value of ρmax

determine the resource requirement and the accuracy of the output.

We then create a 2D array (known as the accumulator), initialised with

zeros, to store the final output. The width and height of this array should

be the chosen number of angles and 2ρmax respectively, where ρmax has

been rounded to the nearest integer and doubled to accommodate positive

or negative values of ρ. At every pixel of interest in the input, we cycle

through the range of angles. For each angle θ at every point (x, y), ρ is

calculated using Equation (3.2) and rounded to the nearest integer. The

value in the accumulator corresponding to the tested θ and calculated ρ is

incremented.

On completion, the accumulator contains maxima at the (θ, ρ) positions

of the associated lines in the input.

3.3.2 Using the Hough transform with the DetectorBank

The Hough transform returns parameters of lines. When used to analyse

DetectorBank output, each set of parameters must then be translated into

an onset time. The points at which a line described by (θ, ρ) overlap with

the input can be found (i.e. the parts of the response θ and ρ actually

represent). Then the response can be traced backwards from here to the

point where it began to react. The time at this point is the output of stage

one.

Applying the Hough transform to the DetectorBank output is a subtly

different problem from applying it to an image. The points in the response

are equivalent to the reduced set of points obtained by applying an edge

detector to an image. When calculating ρ for an image, the pixels’ x and y
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coordinates are used. These are discrete integer values, and, although the

output of the DetectorBank is sampled in the time domain, the amplitude

values are continuous (and often very small). If the sample number (x) is

orders of magnitude greater than the response amplitude (y), the x cos θ

term will almost always dominate. In order to apply the Hough transform

to the DetectorBank output, the response must be quantised in amplitude,

then referred to by index in the calculation. The number of amplitude

quantisation steps and the length of the input signal determine ρmax.

For the purposes of note onset detection, we only need to find lines which

satisfy the following criteria: (i) they have a steep, positive gradient and

(ii) they cross the x-axis after zero (i.e. have a negative y-intercept). This

means the perpendicular line to origin should be similar to the orange line in

Figure 3.9. ρ is negative, therefore the accumulator size can be halved, and

the range of angle to be searched can be reduced, to at least 0 ≤ θ < π/2

and possibly further.

These optimisations represent significant gains in efficiency, but unfor-

tunately the Hough transform has drawbacks which suggested its further

development will not be productive.

3.3.3 Shortcomings

Peak picking in the accumulator will not be a simple task when the input

is DetectorBank output, rather than an image. Initial tests, for instance

the accumulator shown in Figure 3.10, suggest there are not clear discrete

maxima, but clusters of peaks, representing short segments of straight line

in the input. Finding the whole line (or lines) in the input requires a method

of partitioning the accumulator, then reducing each of these groups of peaks

to a single (θ, ρ) pair. From this pair, the onset time will be calculated.

We know that the maximum error for an onset time is 30 ms; however, the

maximum allowable error in (θ, ρ) required for the onset time to fall within
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Figure 3.10: Accumulator generated by taking the Hough transform of the
detector response to a sung note shown in Figure 3.7.

this window is, as yet, unknown. Additionally, the number of notes, i.e.

number of maxima, present in any given input may not be known a priori,

so determining line parameters from the accumulator represents a significant

difficulty.

The form of both the input and output must also be considered. De-

tectorBank output is a 2D array, k channels by N samples. Reducing the

number of samples to process reduces ρmax and thus the accumulator size.

Subsampling the responses will achieve this, as will providing the input in

short buffers. These buffers would have to overlap so that onsets which oc-

cur on the edges would not be missed. To generate Figure 3.10, the three

second extract from the responses was subsampled by a factor of 100. How-

ever, even with this, the accumulator is an array of 180 × 3506 values, the

vast majority of which are irrelevant to the task at hand. Further devel-

opment of this technique for onset detection would likely require an new

implementation of the Hough transform to be devised, in order to store the
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most frequently occurring θ and ρ values in a more efficient manner and

thus reduce the memory needed.

Additionally, the prototype of this method did not utilise the idea of a

critical band as a single entity; a single detector response was given as the

input. A suitable method for generating a 1D input from k responses would

be required, as running the Hough transform on every detector in a band is

inefficient.

Ultimately, whilst the Hough transform is a useful tool for finding straight

lines and other shapes in many applications, it is not suited to this task. It

would require significantly more development to be an effective stage one of

onset detection.

3.4 Mean log

All methods considered for note detection so far proved to have intractable

problems. A new approach is needed.

When we look at the graph of responses of a critical band, we can gen-

erally identify areas which might be notes without too much difficulty. For

example, examination of Figure 3.11 suggests there are notes shortly after

six seconds and around eleven seconds. There are lower amplitude peaks

around two, five and thirteen seconds: these could be notes in this band or

neighbouring bands ‘spilling over’ into this one.

The initial idea behind this project is biologically inspired: creating sym-

pathetic resonators using the Hopf bifurcation, as it models how the inner

ear responds to sound. A similar motivation forms the basis of this method

for note detection: we want to mimic what the brain is doing when it finds

potential notes in Figure 3.11.

In the process of identifying notes in DetectorBank output by eye, we

(i) compress a lot of data to make big picture observations and (ii) consider

a wide context: all detectors simultaneously, over a significant time. These
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Figure 3.11: Band of 21 detectors around 466.164 Hz (B♭). The input signal
is the first 15 seconds of the soprano part of Before All Things, by Graham
Hair, recorded at sample rate of 48 kHz.
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two strategies allow us to focus on a response when its amplitude is greater

than others and ignore it when its amplitude is significantly lower.

Replicating this automatically provides stage one of an onset detector,

as outlined in Section 3.1.4.

3.4.1 Proof of concept

This was implemented by splitting the responses of an entire band into 30 ms

segments, then taking the mean of each segment. If at least four consecutive

means are increasing — and the final value in this consecutive run is greater

than a given threshold — this may be an onset.

Code extract 3.2 presents an algorithm for this. getSegAvg() is a func-

tion that returns the average of the next 30 ms segment; findExactTime()

is a function which performs stage two of onset detection and returns a

boolean and an integer: whether the onset was verified and the sample

number of the verified onset.

1 count = 0 # no. of consecutively increasing segments
2 seg_count = 0 # current segment number
3 last = 0 # mean of previous segment
4 onsets = [] # list to store verfied onsets
5
6 while True:
7
8 # get mean of next segment
9 current = getSegAvg()

10
11 # whilst current >= last, keep getting averages
12 # and count how many have been increasing
13 if current >= last:
14 count += 1
15
16 # otherwise, if at least 4 have been increasing...
17 # (count starts from 0, so we say >=3)
18 else:
19 if count >= 3 and last >= threshold:
20 # ...calculate sample numbers of the beginning
21 # and end of the increasing run
22 start = (seg_count-count)*seg_len
23 stop = (seg_count-1)*seg_len
24
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25 # verify or reject
26 verified, onset = findExactTime(start, stop)
27 # if verified, put in onsets list
28 if verified:
29 onsets.append(onset)
30
31 # reset count
32 count = 0
33
34 # roll values round for next segment
35 last = current
36 seg_count += 1

Code Extract 3.2: Onset detection based on segment means

Figure 3.12a shows the average of the responses in Figure 3.11 over

30 ms segments. Now there are 500 data points to analyse, rather than

the 21 × 15 × 48000 = 1.512 · 107 points in the critical band plotted in

Figure 3.11.

Figure 3.12b highlights points where the average is increasing for four or

more consecutive segments and the last segment exceeds a threshold of 0.05.

In this example, there are eight such runs of points, covering the following

segment indices:

• 177, 178, 179, 180, 181;

• 208, 209, 210, 211, 212, 213;

• 350, 351, 352, 353, 354, 355, 356, 357;

• 358, 359, 360, 361;

• 363, 364, 365, 366;

• 372, 373, 374, 375, 376;

• 377, 378, 379, 380, 381, 382, 383; and

• 416, 417, 418, 419.
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Figure 3.12: Average |z| values for the band of detectors shown in Figure
3.11. Each point marks the mean of the whole band over a 30 ms period. In
(b), four or more successively increasing points are shown in blue.
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The first, second and last of these each correspond to a note; the other five

sets of points correspond to two notes around eleven seconds.

Figure 3.13 zooms in on this area. Figure 3.13a shows the averages of

segments 350–400 and Figure 3.13b shows the band response from which

these are derived.

Examining these graphs, we can see why five areas of increase were found,

rather than two. Runs of increasing segments 350–361 and 372–383 are

each broken in two by a decrease in the average (at segments 358 and 377

respectively). The four increasing segments 363–366 are separated from the

previous run of increasing values by a single segment. We can see from

Figure 3.13b that these are not due to a fault in the algorithm: they are

accurate reflections of the input data. There are two notes here (manually

found to start at 10.592 s and 11.151 s). As this is a sung note, fluctuations

in pitch are not unexpected. The occasional decreases in average amplitude

are due to changing pitch in the input. These detections should not be

dismissed as erroneous or inexact; we are not attempting to transcribe the

input and assign a single pitch and duration to the whole note. Rather, we

are attempting to measure what is happening when a musician performs.

Pitch changes over the course of a note are an important part of this.

Evaluation

When this is tested with a short, monophonic piano sample (the melody to

Dream a Little Dream of Me again) as the input, a damping factor of 1 · 10−4

and a threshold of 0.2, all but one onset is found within 50 ms, resulting in

a precision, recall and F-measure which are all 96%. This time window was

also used in the Evaluation of the initial prototype and is wider than the

30 ms interval within which sounds will be perceived as simultaneous, but

it is possible, given the inexact nature of manually selecting single instants

from millions of samples, that the hand-annotated onsets contain errors.
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(a) Segments 350–400 of Figure 3.12. Consecutively increasing segments are again
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Figure 3.14: First ten segment averages for Dream a Little Dream of Me.

Setting a wider interval for detections to be considered correct should help

to offset human error in the markup process.

The largest time delay for a detection in the output of this algorithm

is 20 ms and the largest time advance is 14 ms. In total, six detections are

more than 15 ms from the correct time.

The first note in the audio — a G4 which occurs at 101 ms — is the one

missed by the algorithm, which instead returns an onset time of 0 seconds.

The averages for the first ten 30 ms segments in the band around 391.995 Hz

are plotted in Figure 3.14. It can be seen that the first four are all blue —

indicating that the values are increasing, although they are all very close

to zero — hence an onset time of 0 seconds is returned. The actual onset

appears to be between segments 3 and 4 (i.e. between 90 and 120 ms).

However, this is not a cause for concern, as the precision of detections like

these will be improved by stage two.

This method gives promising results from initial tests. It also meets every

criterion for success discussed so far in this chapter: by identifying areas

where the average is increasing by any amount (and setting a threshold)
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it side-steps problems associated with the variation in amplitude; taking

the average also means the oscillatory nature of the responses is also not

an issue here; it uses critical bands to its advantage, vastly reducing the

amount of data which has to be kept in memory; and it employs a very

simple algorithm.

3.4.2 Further improvements

Detector spacing

Heretofore, crude critical bands have been constructed with 21 detectors

spaced at 1 Hz intervals. This band size and detector spacing were both

chosen arbitrarily, as the initial tests were designed to assess whether the

averaging technique was suitable.

Using 21 detectors at 1 Hz increments around the centre frequency has

not compromised the tests carried out on Dream a Little Dream of Me, as the

frequencies of interest have been within one octave: D4 to B4, corresponding

to 293.665 Hz to 493.883 Hz. At the lower end, the critical bands overlap;

at the higher end there is a gap of up to 7.7 Hz between adjacent bands.

This gap has been inconsequential in these tests, as the instrument used to

record the excerpt was a digital piano, so there is very little deviation from

the ideal fundamental frequency.

Nevertheless, values for band size and spacing which are appropriate for

all inputs must be found.

In music, fundamental frequencies are not linearly spaced. This suggests

that a more apt method of determining the frequencies in a band of n de-

tectors around centre frequency f0 is to vary the spacing logarithmically:

fk = f0 · 2k/(12n), where fk is the kth semitone from f0.

However, a constant band size leads to detectors close together at low

frequencies and far apart at high frequencies. The spectrum between the

fundamental frequencies is not uniformly covered, and therefore some notes
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may be missed by the OnsetDetector.

Instead of fixing the band size and varying spacing, a more even spread

of detectors across the spectrum can be achieved by placing detectors at in-

tervals according to their bandwidth until the boundary of the neighbouring

pitch class is met.

Given that detector bandwidth bears no relation to the spacing of mu-

sical fundamental frequencies, the exact point between two semitones is

unlikely to be met. Detector frequencies should therefore be generated until

they are sufficiently close to the boundary. If the maximum gap at each end

of a critical band is defined as being within a quarter of a bandwidth, then

the maximum gap between two bands is half a bandwidth.

1 freq = [] # empty list to store frequencies
2 f = f0 # start calculating at centre frequency
3 f1 = f0*2**(1/24) # stop frequency (half a semitone up)
4
5 # difference between stop frequency 'f1' and current 'f'
6 diff = f1-f
7
8 # Run until difference between 'f1' and 'f' is at a minimum
9 # or until 'f' is within bw/4 of stop value 'f1'

10 while f1-f <= diff and f1-f > bw/4:
11 # before new 'f', get 'diff' for next time round loop
12 diff = f1-f
13 # generate the next frequency
14 f += bw
15 # put f in the list
16 freq.append(f)

Code Extract 3.3: Generating the upper half of a critical band

Code extract 3.3 demonstrates this method for calculating the critical

band frequencies between the centre frequency, f0, and the point halfway to

the semitone above, f1, for detectors with bandwidth bw. Frequencies are

generated at increments of bw, until reaching a value within a quarter of a

bandwidth of the ‘stop’ frequency, f1. In practice, when detector frequency

is incremented by bw, it may not get within bw/4 of this boundary frequency.

In this case, it will stop when the difference between the current frequency
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Table 3.2: Minimum, maximum and mean gaps between critical bands at
different bandwidths

Bandwidth (Hz) Min (Hz) Max (Hz) Mean (Hz)
0.922 0.016 0.339 0.131
1.832 0.007 0.702 0.259
2.752 0.200 1.037 0.612
3.660 0.017 1.732 0.567
4.860 0.080 2.313 1.159

Table 3.3: Minimum, maximum and mean overlaps between critical bands
at different bandwidths

Bandwidth (Hz) Min (Hz) Max (Hz) Mean (Hz)
0.922 0.009 1.238 0.546
1.832 0.012 2.428 1.269
2.752 0.004 3.869 1.940
3.660 0.186 5.375 2.895
4.860 0.470 7.124 3.781

f and boundary frequency f1 is at a minimum. The lower half of the band

can be created in a similar fashion.

Typical sizes of gaps and overlaps between adjacent bands can be found

by creating critical bands covering fundamental frequencies from A0 to C8

(i.e. 88-key piano) at five bandwidths, corresponding to the minimum band-

widths at different damping factors, which were experimentally determined

in Chapter 2 and listed in Table 2.6.

The minimum, maximum and mean values of gaps and overlaps are given

in Tables 3.2 and 3.3 respectively. All of the maximum gaps in Table 3.2

are less than half the bandwidth and all mean gaps are within a quarter of

a bandwidth. The mean overlaps are larger than the mean gaps, but are all

still within a bandwidth.

Perceptual loudness

Perception of the loudness of a sound is highly subjective, and hence difficult

to measure, but an often-used approximation is that a 10 dB increase in
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Table 3.4: Recall and precision for four piano extracts, using 30 ms segments

Test audio Recall Precision
Dream 87% 100%
Alice 94% 68%

Swan Lake 1 62% 25%
Swan Lake 2 86% 54%

Table 3.5: Recall and precision for four piano extracts, using 20 ms segments

Test audio Recall Precision
Dream 100% 84%
Alice 100% 50%

Swan Lake 1 68% 19%
Swan Lake 2 97% 44%

intensity corresponds to a doubling of loudness (Pickles 2012).

This relationship between the perceived loudness, L, of a sound and

its intensity, I, can be represented by Stevens’ law, L = kIa, where k is a

constant and the exponent a is log10(2). Although somewhat controversial in

its simplicity, this law provides a useful concept for improving the averaging

algorithm, as it tells us that log(L) ∝ log(I).

By returning the mean of the log of the band’s responses, rather than

simply the mean, from getSegAvg and taking the log of the threshold, we

can mimic the compression of loudness that occurs in the auditory system.

Note that this idea also appears in the backtracking algorithm in code

extract 3.1. This is also the reason that we refer to this idea as the ‘mean

log’ method.

More true positives

When the two changes given above are implemented, the number of true

positives in all test audio excerpts does not reach 100%, as detailed in the

‘recall’ values1 in Table 3.4.
1Precision and recall were defined in Chapter 1, equations 1.9 and 1.10 as Precision =

TP/(TP + FN) and Recall = TP/(TP + FN).
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The segment size of 30 ms was chosen somewhat arbitrarily. Reducing

the size to 20 ms increases the number of detections, both true and false

positives, in several test audio extracts (see Table 3.5). In Dream and Alice,

all onsets are now found. In Swan Lake excerpt 2, one onset is missed

because a detection is 51 ms early. This is the kind of error the second stage

will be tasked with fixing. In Swan Lake excerpt 1, a number of onsets in

the lowest frequencies are still being missed, suggesting that improvements

must be made for frequencies below 75 Hz.

Fewer false positives

This change to the segment size obviously reduces the total time over which

the mean has to be increasing for a potential onset to be detected. This

results in a rise in false positives and corresponding drop in precision.

Some of these detections are immediately identifiable as false positives

when inspecting graphs of the mean log by eye. For example, Figure 3.15

shows part of the mean log of the 392 Hz band response to Dream. It cor-

rectly identifies a region of increase corresponding to the note beginning at

4.14 s; however, it finds another period of increase which is not an onset.

This pattern — a correct detection followed by an erroneous one during

the note — is found repeatedly in the test results.

These can be identified automatically by comparing the mean log value

of the last segment in the run with the first. If there is not a significant

increase, the potential onset is rejected. In these tests, the value chosen was

log(2).

Employing this as an additional criterion (henceforth referred to as the

‘last-first’ criterion) for calling findExactTime() — along with the require-

ment for four or more segments to have been increasing and the last one to

have exceeded a threshold — reduces the number of false positives before

the second stage is utilised.
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Figure 3.15: In the mean log, shown by the blue line, two runs of three or
more increasing segments are found, here denoted by grey regions. The first
of these is a true positive; the second a false positive.

It is important to state that this reduces the number of detections that

do not correspond to hand-annotated onsets. This does not necessarily mean

the detections are erroneous: they occur due to changes in the DetectorBank

responses and so may reflect legitimate changes in the input audio. However,

the data with which these OnsetDetector prototypes are being tested con-

tains only information about note onsets. Further investigation is required

in order to determine whether inclusion of this ‘last-first’ criterion improves

the overall quality of results when intra-note detections can be taken into

account. Chapter 4 details the results of rigorous OnsetDetector testing,

both with and without the ‘last-first’ criterion.

In addition to these detections due to small changes in the mean log,

inspection of the results shows that the majority of false positives are due

to onsets being detected in multiple neighbouring bands: the onset time is

correct, but being attributed to the wrong frequency. When these ‘spillover’

detections are removed from the false positive count, the precision improves

dramatically (see Table 3.6).
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Table 3.6: Recall and precision (with and without spillover onsets), us-
ing 20 ms segments and requiring the mean log to increase by a significant
amount.

Test audio Recall Precision
(all detections)

Precision
(w/out spillover)

Dream 100% 100% 100%
Alice 100% 57% 96%

Swan Lake 1 68% 24% 85%
Swan Lake 2 97% 51% 89%

Classifying events as true positives, false positives or spillover detections

is not a task for an OnsetDetector, as it cannot access data from other

bands. However, a NoteDetector will have data from every OnsetDetector

and PitchTracker, so making such classification decisions will be the Not-

eDetector’s responsibility.

3.5 Back to backtracking

The backtracking algorithm introduced in Section 3.1.1 is a useful starting

point for developing a second stage, but it must be adapted to incorporate

the new ideas for onset detection, such as critical bands and using averaging

as stage one.

Line 26 of code extract 3.2 calls the function findExactTime(). An

implementation of this is provided in code extract 3.4. This expands the

original backtracking algorithm, but keeps the same structure: iteratively

calculating a ‘current’ value and mean log of N previous values until this

‘previous’ mean log is no longer less than ‘current’. The mean log method

is also used here to reduce a band of k detectors to a single value at every

sample of interest (see lines 20–23 of code extract 3.4, for example).

findExactTime() begins by setting the sample number at which it will

start backtracking and the minimum sample it will backtrack to. If this

minimum (stop) is reached, the function rejects the detection and returns
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False. It then calculates initial values for the mean log of the current

sample (current) and the previous N samples (mean) where N has been set

to the number of samples in 75 ms. These values are repeatedly calculated

and compared, moving backwards through the data. When it reaches the

point at which the mean log of the previous 75 ms is no longer less than the

mean log at the current value, it has found the point at which the responses

began to increase, so the function verifies the detection by returning True

and the current sample number.

1 def findExactTime(incStart, incStop):
2 # incStart and incStop are the samples at which the run
3 # of increasing segments began and ended, respectively
4
5 # backtrack as far as 100ms before incStart
6 # sr is sample rate of input
7 stop_time = sr * 0.1
8
9 # if 'incStart' is within the first 100ms, we can't

10 # go further back than sample 0
11 if stop_time > incStart:
12 stop = 0
13 else:
14 stop = incStart - stop_time
15
16 # idx will be current sample number as we backtrack
17 idx = incStop
18
19 # get mean log of critical band at current sample
20 current = 0
21 for k in range(chans):
22 current += log(getResultItem(k,idx))
23 current /= chans
24
25 # number of samples in 75ms
26 N = sr * 0.075
27
28 # calculate mean log over previous 75ms
29 mean = 0
30 for i in range(idx-N, idx):
31 for k in range(chans):
32 mean += log(getResultItem(k,i))
33 mean /= (chans*N)
34
35 # backtrack, finding mean of prev N samples each time
36 while idx > stop+N:
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37
38 # if mean of prev N samples is less than current
39 if mean < current:
40
41 # decrement current index
42 idx -= 1
43
44 # get new 'current' value
45 current = 0
46 for k in range(chans):
47 current += log(getResultItem(k,idx))
48 current /= chans
49
50 # remove most recent value from mean
51 mean -= (current / N)
52
53 # add new (older) value to mean
54 older = 0
55 for k in range(chans):
56 older += log(getResultItem(k,idx-N))
57
58 mean += (older / (chans*N))
59
60 # if mean > current, have found the onset
61 else:
62 return True, idx
63
64 # if while loop exits, have not found an onset
65 return False, 0

Code Extract 3.4: Backtracking with critical band

The results of testing this algorithm are given in Table 3.7. With the

exception of Swan Lake excerpt 1, the recall and precision for the test audio

extracts is 100% (when spillover detections are not regarded as false posi-

tives). However, a significant number of the detections are more than 15 ms

from the correct time. With the exception of one detection in Swan Lake

excerpt 2, all of these are more than 15 ms after the correct time, rather

than before. This imbalance suggests that the problem may be due to the

algorithm, rather than human error in identifying the correct onset times.

This tendency for the returned value to be too late may be because

when current is greater than mean, the value returned is at the end of

the N sample block, but in some cases the actual onset may be within this
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block. For example, in Figure 3.16, the red line marks the onset, detected at

13.241 s, and the grey region marks the 75 ms segment with which the value

is compared. However, the mean log reaches a minimum shortly before the

red line. This is where the onset should have been detected.

To compensate for this, when the algorithm finds a potential onset (i.e.

the red line in Figure 3.16), it then looks for a minimum in the 10 ms preced-

ing it. Figure 3.17a shows how this improves the onset time in Figure 3.16.

However, it is also important to note that, at some onsets, the preceding

mean log values are quite stable: backtracking alone will find the correct

time and moving the onset further back will be deleterious.

Therefore, when the local minimum is found, the mean log at this time

is compared with the mean log at the time found by backtracking. If these

are very similar (deviating by no more than 5% of each other), the local

minimum time is ignored and the time found by simply backtracking is

returned. Otherwise, the time at the local minimum is returned.

Figure 3.17 shows both scenarios and the (correct) onset time returned

in each; Table 3.8 shows that this improves the results for all four piano test

pieces, particularly Dream and Little Dream of Me and Swan Lake excerpt 2.

Backtracking start point

When tested with a more extensive data set (see section 4.1 in the next

chapter) than the one used to test the prototypes discussed in this chapter,

the OnsetDetector exhibited a tendency to return results tens, or even a

hundreds, of milliseconds late. Analysing the state of the OnsetDetector at

these points show that the backtracking algorithm was exiting far earlier

than the errors that the local minimum was introduced to compensate for,

so a different solution was required.

This was found by changing the point from which backtracking begins

(i.e. the value given to findExactTime() as incStop in Code Extract 3.4).
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Table 3.7: Results when backtracking is employed: recall and precision (with
and without spillover onsets) and the proportion of detections within 15 ms
of the correct time.

Test audio Recall Precision
(all detections)

Precision
(w/out spill.)

Time diff.
< ±15 ms

Dream 100% 100% 100% 76%
Alice 100% 58% 100% 76%

Swan Lake 1 65% 23% 88% 80%
Swan Lake 2 100% 52% 100% 71%
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Figure 3.16: Mean log (blue) with detected onset shown in red. The grey
region is the 75 ms over which the mean log is compared with the current
value. From visual inspection, it seems that the onset should be detected at
the local minimum point, a few milliseconds earlier.

Table 3.8: Results when backtracking with local minimum is employed:
recall and precision (with and without spillover onsets) and the proportion
of detections within 15 ms of the correct time.

Test audio Recall Precision
(all detections)

Precision
(w/out spill.)

Time diff.
< ±15 ms

Dream 100% 100% 100% 88%
Alice 100% 58% 100% 82%

Swan Lake 1 65% 23% 88% 86%
Swan Lake 2 100% 52% 100% 89%
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Figure 3.17: Mean log around notes, with returned onsets marked (dashed
red line) and the 10 ms over which the local minimum was found (grey
region). In (a), the local minimum provides a more accurate onset time
than that seen in Figure 3.16. However, in (b) the mean log at the time
found by backtracking alone (right hand edge of grey region) and that at
the time of the local minimum are very similar, so the onset time found by
backtracking is returned, as the time at the local minimum would be less
accurate.
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Rather than backtracking from the end of the consecutively increasing run

of segments, the OnsetDetector finds the point in this run with the largest

segment-to-segment increase and starts backtracking from this sample in-

stead.

This change resulted in a significant improvement in the proportion of

onsets that are successfully found by the OnsetDetector. For example, Fig-

ure 3.18 shows the mean log response to a trumpet note. In Figure 3.18a,

when backtracking from the end of the increasing run of segments, the re-

turned time is 140 ms late; however, Figure 3.18b shows that this is reme-

died when the new backtracking point is used: the difference between the

automatically- and manually-found onsets is now only 6.5 ms. Therefore,

this onset is now successfully detected.

Zero padding

The backtracking algorithm described here requires access to DetectorBank

output up to 100 ms before the segment averages began to increase. This

may cause problems in situations where the onset is within the first 100 ms

of the audio file: there may not be enough data available to backtrack

effectively.

To counter this, a quarter of a second of silence is prepended to the

audio buffer before onset detection begins. This offset is then subtracted

from the onset times before returning. If backtracking returns a time within

this offset period, the time returned will be zero.

An inconvenient consequence of zero padding arises when calculating the

mean log of a segment: log(0) is undefined. In this case, the segment mean

log is simply taken to be zero. This ensures that the point at which the

response begins to react can still be found.

It also has an impact when deciding whether or not to return the local

minimum time as the onset. In its initial implementation, if the local mini-
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Figure 3.18: The mean log response to a trumpet note, with the manually
found onset at 76 ms marked by the green line and the times returned by the
OnsetDetector marked with a red dashed line. In (a) the time returned was
216 ms, which is clearly wrong. (b) shows the result when backtracking from
the point with the largest segment-to-segment difference: the time returned
is now 69.5 ms, just 6.5 ms from the hand-annotated time and therefore well
within the range of times that would be perceived as simultaneous.



3.5. BACK TO BACKTRACKING 141

mum was less than 95% of the value at the time arrived at by backtracking,

the time chosen is the local minimum time. However, the scenario may arise

where the local minimum is sufficiently smaller because it falls within the

zero-padded region of audio, i.e. the local minimum is zero. In this case,

the local minimum time should not be used; the time found by backtracking

is returned.

1 # 'current' is the mean log at the point backtracked to
2 # 'mn' will store the local minimum in the 10ms before this
3 mn = current
4
5 # the onset time is intially set to the current index 'idx'
6 onset = idx
7
8 # number of samples in 10ms
9 M = sr * 0.01

10
11 # iterate through the 10ms before the current point
12 for i in range(idx, idx-M, -1):
13 # calculate the mean log at this sample
14 meanlog = 0
15 for k in range(chans):
16 meanlog += log(getResultItem(k,i))
17 meanlog /= chans
18
19 # if less than previous min, store the value and index
20 if meanlog < mn:
21 mn = meanlog
22 onset = i
23
24 # if the local min time is not is sufficiently
25 # different or the minimum is zero (current/mn is NaN)
26 # use original time, idx, rather than local min time, i
27 if isnan(current/mn) or current/mn >= 0.95:
28 onset = idx

Code Extract 3.5: Local minimum search

Code extract 3.5 gives a full implementation of the local minimum algo-

rithm. The local minimum is calculated in lines 12–22, then compared with

the current value in the if statement in lines 27–28. onset is the sample

number that would then be returned as the precise onset value.
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3.6 Final design

Figure 3.19 shows the structure of the software, comprising the following

objects:

NoteDetector Top-level object used to find notes.

EventDetector Created by NoteDetector to manage one band’s OnsetDe-

tector and PitchTracker.

OnsetDetector Analyses data provided by a band DetectorBank in order

to find note onsets.

PitchTracker Calculates the input frequency for notes in the PitchTracker’s

critical band.

DetectorBank Bank of detectors.

DetectorCache Object which provides up to N segments of DetectorBank

output.

The NoteDetector is the high-level object with which the user interacts.

It is constructed with an input buffer and associated sample rate; a list of

frequencies of interest; the target bandwidth of the detectors; the number of

divisions per octave in the input, from which the critical band limits will be

calculated; and any non-default parameters to be used when constructing

each band’s DetectorBank.

As stated in the discussion of Detector spacing, critical bands — as im-

plemented here, rather than as defined in audiology — enable us to search

for notes in a range of frequencies, rather than just notes at the given fre-

quency. In practice, a DetectorBank is created for each frequency of interest,

with n detectors tuned to cover the range determined by the band.

This DetectorBank provides the data to be analysed by an OnsetDetector

and a PitchTracker. Each band has its own DetectorBank, OnsetDetector
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NoteDetector

+default_bandwidth
+default_features
+default_damping
+default_gain
#sr
#freqs
#freqsSize
#edo
#bandwidth
#features
#damping
#gain
#inputBufferPad
#inputBufferPadSize
#eventdetectors
#threadPool
#Analyse_params

+NoteDetector()
+ ~NoteDetector()
+analyse()
#init()
#analyseDelegate()

EventDetector

#sr
#inputBuffer
#inputBufferSize
#f0
#edo
#dbpSize
#db
#od
#frequencies
#bandwidths
#bHz

+EventDetector()
+~EventDetector()
+analyse()
#makeBand()
#makeHalfBand()
#getMinBandwidth()

DetectorBank

DetectorCache

OnsetDetector

#db
#offset
#chans
#sr
#p
#seg_len
#num_segs
#cache
#n
#end

+OnsetDetector()
+~OnsetDetector()
+analyse()
#getSevAvg()
#findExactTime()
#logResult()

PitchTracker

+PitchTracker()
+~PitchTracker()
+analyse()

Figure 3.19: UML diagram showing the public (+) and protected (#) mem-
bers and methods of the NoteDetector, EventDetector and OnsetDetector.
The full DetectorBank UML was given in Figure 2.1; the PitchTracker is
not implemented in this project, so only a skeleton design is shown here.
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and PitchTracker and is independent of the other bands. Therefore, this

structure is perfectly suited to multithreading, which speeds up execution

considerably.

To manage this exchange of data between objects, another object is cre-

ated. Given a centre frequency and critical band size, the EventDetector con-

structs a DetectorBank, OnsetDetector and PitchTracker. The EventDetec-

tor’s analyse method runs the OnsetDetector and PitchTracker’s analyse

methods and returns the results to the NoteDetector.

The nomenclature here is important. The EventDetector does not re-

turn notes; it returns events, i.e. it reports that there is activity in the

band. These do not necessarily have a one-to-one correlation with notes.

For example, a single note with vibrato may appear as several events.

In order to classify the events as either note onsets or changes within

a note, a broader context must be considered. For example, wide vibrato

may only become clear when analysing events found in neighbouring bands.

Every EventDetector is independent of the others, so has insufficient data to

perform event classification. This task is the NoteDetector’s responsibility,

as it has access to the results from all the bands. However, an implementa-

tion of this is beyond the scope of this project. Currently, the NoteDetector

simply returns the times collected by the EventDetector. The PitchTracker

is also not currently implemented, although ideas for how it may work will

be presented in the Further work section of Chapter 5.



Chapter 4

Testing the OnsetDetector

4.1 Data set

The University of Iowa Electronic Music Studios have a publicly available

repository of musical instrument samples (Fritts 1997). A variety of brass,

woodwind, string and tuned percussion instruments are sampled, as well as

a piano and a guitar. Every note in each instrument’s range is sampled.

Figure 4.1 shows how many samples fall into each instrument category.

There is no available data concerning whether the performers are pro-

fessional or amateur musicians.

The playing techniques encompassed a broad range of what is possi-

ble with the instruments: string instruments were played both arco and

pizzicato; several brass and woodwind instruments were recorded with and

without vibrato; the percussion instruments were played with a variety of

different techniques and materials — for example, bowing or using mallets

with heads made of rubber, yarn or rosewood — and features like damp-

ing and sustain were varied. Rolls on marimba and xylophone notes and

xylophone glissandi were also recorded.

The wide range of instruments and playing techniques makes this a suit-

able data set for testing the OnsetDetector.

145
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Figure 4.1: The proportion of samples in the data set that fall into each
instrument category.

The ‘post-2012’ brass, percussion, strings and woodwind samples from

the repository were used, along with the ‘pre-2012’ guitar and piano sam-

ples.1 With the exception of the guitar samples, all audio files comprise one

note per file. The guitar files were split into individual notes for these tests.

The files were recorded at a sample rate of 44.1 kHz and were released as

AIFF (Audio Interchange File Format). Although 44.1 kHz is an acceptable

sample rate for this software, the files were resampled to 48 kHz for con-

sistency with previous tests, for example, the investigations in Chapter 2.

They were also converted to WAV files.

The guitar and piano samples have versions of each sample at three

different dynamic levels: pp, mf and ff .2 The other instruments are labelled

as having been recorded only at ff , although in practice, there is a great

deal of variation in loudness across these samples.

This data set comprises 2860 audio files. The onset time of each note was

1All ‘post-2012’ files and ‘pre-2012’ guitar files were accessed on 14 June 2018. The
‘pre-2012’ piano files were downloaded on 22 November 2016.

2pp, mf and ff mean very soft, moderately loud and very strong, respectively.
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Table 4.1: Proportion of onsets in each instrument category. Percussion
dominates here because the each onset in the rolls is marked up.

Category No. of onsets % of onsets
Brass 212 2.55
Guitar 352 4.23
Piano 260 3.12

Percussion 6237 74.87
Strings 784 9.41

Woodwind 485 5.82

manually marked up by the author, an exercise that took more than three

days. 148 of the audio files contain rolls played on marimba and xylophone

notes, with an average of 37 beats per roll. The onset of each strike in the

rolls were also marked-up. This brought the total number of onsets in the

data set up to 8330. The total duration of this audio is over five hours.

Figure 4.1 showed that approximately a quarter of the samples are per-

cussion recordings; however, due to the large number of onsets in the rolls,

the majority of the onsets are in the category of percussion, as detailed in

Table 4.1.

The names of the audio files in the data set indicate at least the in-

strument name, dynamics used and note sounding. Playing techniques,

the string on which the note is played and whether the recording is in

stereo are included, where relevant. The form of the naming convention can

be stated as “instrument.[technique.]dynamic.[string.]note.[stereo]”, where

square brackets indicate optional parameters. In some cases, more than one

playing technique may be given, for example when the beater type is speci-

fied and the file contains a roll: “Xylophone.rosewood.roll.ff.A4.stereo”. The

other options are illustrated by file names like “Violin.arco.ff.sulA.E6.stereo”,

“Horn.ff.C4.stereo”, “Piano.pp.B4” and “SopSax.vib.ff.A4.stereo”. The only

exceptions to this format are the xylophone glissandi, which are named “Xy-

lophone.gliss.down.stereo” and “Xylophone.gliss.up.stereo”.

This means that for all files except the glissandi, the frequency to be
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Figure 4.2: Proportion of onsets in each octave in the data set

requested from the OnsetDetector can be derived by parsing the file name

to find the note being played. For the ascending and descending glissandi,

the frequencies requested corresponded to the lowest and highest notes on

the xylophone, respectively. In this case, the lowest note was F4 (349.228 Hz)

and the highest was C8 (4186 Hz).

The samples span a wide range of pitches from A0 (27.5 Hz) to C8

(4186 Hz). The distribution of number of onsets per octave is shown in

Figure 4.2. As would be expected, most of the onsets are found in the mid-

dle octaves, where most instrument’s ranges are concentrated and therefore

where they overlap. Also, between them, the xylophone and marimba rolls

account for two thirds of the onsets in the data set. These instruments

have a range of F4–C8 and C2–C7, respectively. In total, 75.8% of the on-

sets fall within octaves 3–6 (corresponding to fundamental frequencies from

130.813 Hz to 1975.53 Hz); only 2% of the onsets lie in the two lowest and

single highest octaves.



4.2. TEST SETUP 149

4.2 Test setup

The files were analysed using six CPUs simultaneously. This was made

possible by using the Python module SCOOP (Scalable COncurrent Oper-

ation in Python), which enables parallel computing on a number of hosts

(Hold-Geoffroy et al. 2014).

The samples were tested at two damping factors: 1 · 10−4 and 5 · 10−4.

The former requires a smaller frequency step between detectors in the critical

band, therefore more detectors must be used and the time taken to analyse

the audio files increases accordingly.

With this setup, it took approximately 90 minutes to find all onsets when

the damping was 5 · 10−4 and seven hours when the damping was 1 · 10−4.

Both of these times are significantly less than the time taken to find the

onsets by hand. The total duration of the audio in the data set is five hours:

this analysis ran more than three times faster than real time with the higher

damping factor, and at 70% of real time at the lower damping factor.

The OnsetDetector uses the DetectorCache to retrieve DetectorBank

samples, which means this analysis does not demand a significant amount

of memory.

During the OnsetDetector development, detailed in Chapter 3, a feature

was added with the aim of finding Fewer false positives by suppressing intra-

note detections. This was referred to as the ‘last-first’ criterion. As discussed

when this feature was introduced, these are not necessarily errors; they are

detections in response to changes in the frequency components present in

any given band. However, the results returned by the OnsetDetector will be

compared with the manually determined onset times, which do not include

data about intra-note changes.

The only potential exception to this is the xylophone and marimba rolls,

for which every note in the roll was marked. Although these are not techni-

cally intra-note events — as each onset corresponds to the note being struck
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Figure 4.3: Band of responses to a xylophone A5, played both (a) as an
individual note, and (b) as a roll. The damping factor used here is 5 · 10−4,
so the band consists of detectors at intervals of 4.86 Hz around 880 Hz.
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with the mallet, rather than changes within the note due to features like vi-

brato — the response characteristics are somewhat similar to what we would

expect from a note containing much variation, as new notes begin while the

responses are still in relaxation from the previous event. Figure 4.3 shows a

band of responses to two xylophone samples. The first is a single note and

the second is a roll. The responses to the roll are clearly continually reacting

to new events. For this reason, when the ‘last-first’ criterion is disabled, we

would expect to see a high number of false positives — and hence, a low

value for precision — for all inputs but the rolls. Indeed, when the Onset-

Detector analysed the roll shown in Figure 4.3b under these circumstances,

all 29 onsets were successfully found.

4.3 Results

The results of these tests are presented in terms of the precision, recall

and F-measure. As stated when evaluating onset detection software in Test

results and discussion of Section 1.4.2, the precision is a measure of how

many of the automatic detections are correct and the recall tells us what

proportion of the hand-annotated onsets have been successfully detected.

These can be combined to provide a single value — the F-measure — which

describes how well the OnsetDetector performs overall.

For both damping factors tested, the onset detection results are given for

the entire data set, then broken down first by instrument category — brass,

guitar, piano, percussion, strings and woodwind — then further divided by

individual instrument and factors like the octave each sample falls in or

technique used to play an instrument. For instruments that were recorded

with two contrasting playing styles, like arco and pizzicato strings or the

brass and woodwind instruments recorded with and without vibrato, these

results are presented side-by-side. Results for percussive instruments are

given all together and split into those with rolls and those without.
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Percussion rolls are the only group for which we have data points that

may be identified by the OnsetDetector when the ‘last-first’ condition is

not enabled. Results found without this feature cannot meaningfully be

compared with the rest of the data set, so are not broken down as compre-

hensively.

Some of the results are also plotted as radar charts, which are a com-

mon method of visualising three-dimensional data. One criticism of radar

charts is that they exaggerate some results because the area of the triangles

generated by the three data points scales by r2, rather than r. Despite this,

they are useful here, as they provide a visual comparison of the extent of

data points, either along the same axis or around different axes. They are

included here to illustrate the effect of changing one parameter in the test

setup, or the difference in results from the same instruments with contrast-

ing playing styles. For each figure, readers are referred to the tables that

provide the exact values plotted.

In this chapter, the results are simply presented. Chapter 5 provides a

full evaluation and discussion of the information given here.

4.3.1 Low damping

This section presents test results when a damping factor of 1 · 10−4 is used.

The threshold was set to 3 · 10−4.

Table 4.2 and Figure 4.4 present and compare the precision, recall and

F-measure for all samples, with and without the ‘last-first’ criterion.

Table 4.3 gives the results for each instrument category when the intra-

note detections are suppressed; Table 4.4 gives the results when they are

not.

In Table 4.5, the percussion results are split into groups depending on

whether they contain rolls or single notes, both with and without the ‘last-

first’ feature. Tables 4.6 and 4.7 show the results for each percussion in-
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strument on which rolls were recorded, with the ‘last-first’ criterion enabled

and disabled, respectively, and Table 4.8 presents the results for percussion

samples that contain one note, with intra-note detection suppression.

Tables 4.9 to 4.11 detail the results for the string instruments when

played arco and pizzicato, both for each instrument and taken as a whole.

Table 4.12 presents the results for all brass instruments and Table 4.13

for all woodwind instruments. Table 4.14 presents the results from both

these categories where information about vibrato is available.

The radar charts in Figure 4.5 show comparisons of arco and pizzicato

strings, and of brass and woodwind samples with and without vibrato.

The guitar and piano samples results are presented, for each of the three

dynamic levels at which they were recorded, in Tables 4.15 and 4.16 and

radar graphs plotted in Figure 4.6.

Table 4.17 breaks down the results for all samples by octave. Figure 4.2

in Section 4.1 shows the proportion of onsets in the data set that fall in each

octave and therefore provides additional context for these results.
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Table 4.2: Results of OnsetDetector tests on all samples. Low damping.

‘last-first’ Precision % Recall % F-measure %
Enabled 76.878 26.7956 39.7399
Disabled 8.80152 77.5402 15.8086

F-measure

Precision Recall

20%
40%

60%
80%

100%

With 'last-first'
W/out 'last-first'

Figure 4.4: The precision, recall and F-measure for the whole data set with
the with (blue) and without (orange) the ‘last-first’ criterion to reduce the
number of detections within a note. Low damping.
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Table 4.3: Results, by instrument category, with ‘last-first’ criterion enabled.
Low damping.

Instrument
Category Precision % Recall % F-measure %

Brass 94.9495 88.6792 91.7073
Guitar 77.748 82.3864 80.0
Piano 100.0 58.8462 74.092

Percussion 94.1558 11.6316 20.7054
Strings 70.5418 79.7194 74.8503

Woodwind 47.8927 51.5464 49.6524

Table 4.4: Results, by instrument category, with ‘last-first’ criterion dis-
abled. Low damping.

Instrument
Category Precision % Recall % F-measure %

Brass 4.41522 88.6792 8.41163
Guitar 3.7037 82.3864 7.08873
Piano 6.70465 58.8462 12.0378

Percussion 18.1268 79.3037 29.5087
Strings 3.18581 80.6122 6.12938

Woodwind 2.10544 51.5464 4.04563
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Table 4.5: Precision, P, recall, R, and F-measure, F, for percussion samples,
split by those that contain rolls and those that contain a single note, with
and without the ‘last-first’ criterion. Low damping.

Style ‘last-first’ P % R % F %
Rolls Enabled 98.5149 3.54471 6.84319
Rolls Disabled 61.9554 77.7699 68.9677

Single note Enabled 92.6056 84.9758 88.6268
Single note Disabled 2.85333 93.2149 5.53716

Table 4.6: Precision, recall, and F-measure for percussion samples containing
rolls, with the ‘last-first’ criterion enabled. Low damping.

Instrument Precision % Recall % F-measure %
Marimba 97.561 3.36889 6.51289

Xylophone (hardrubber) 100.0 3.47044 6.70807
Xylophone (rosewood) 100.0 4.08163 7.84314

Table 4.7: Precision, recall, and F-measure for percussion samples containing
rolls, with the ‘last-first’ criterion disabled. Low damping.

Instrument Precision % Recall % F-measure %
Marimba 57.601 77.653 66.1406

Xylophone (hardrubber) 66.0455 82.0051 73.1651
Xylophone (rosewood) 75.215 75.5102 75.3623
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Table 4.8: Precision, recall, and F-measure for percussion samples contain-
ing one onset (this includes the xylophone glissandi), with the ‘last-first’
criterion enabled. Low damping.

Instrument Precision % Recall % F-measure %
Bells (brass) 88.0952 90.2439 89.1566

Bells (plastic) 95.122 95.122 95.122
Crotale 84.6154 88.0 86.2745

Marimba (cord) 100.0 100.0 100.0
Marimba (deadstroke) 100.0 100.0 100.0

Marimba (rubber) 100.0 96.7213 98.3333
Marimba (yarn) 98.3333 98.3333 98.3333

Thai gong 92.3077 92.3077 92.3077
Vibraphone (bow) 39.1304 42.8571 40.9091

Vibraphone (dampen) 97.4359 90.4762 93.8272
Vibraphone (shortsustain) 100.0 100.0 100.0

Vibraphone (sustain) 100.0 92.6829 96.2025
Xylophone (gliss) 100.0 100.0 100.0

Xylophone (hardrubber) 100.0 61.3636 76.0563
Xylophone (rosewood) 100.0 27.2727 42.8571
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Table 4.9: Precision, recall and F-measure for string samples, split according
to playing technique: arco or pizzicato. Low damping.

Style Precision % Recall % F-measure %
Arco 62.2 79.9486 69.9663

Pizzicato 81.3472 79.4937 80.4097

Table 4.10: Results for each string instrument, when played arco. Low
damping.

Instrument Precision % Recall % F-measure %
Bass 80.0 92.3077 85.7143
Cello 45.7364 62.1053 52.6786
Viola 49.6403 69.0 57.7406
Violin 77.6786 96.6667 86.1386

Table 4.11: Results for each string instrument, when played pizzicato. Low
damping.

Instrument Precision % Recall % F-measure %
Bass 83.4862 87.5 85.446
Cello 75.2475 76.0 75.6219
Viola 82.0 82.0 82.0
Violin 85.5263 71.4286 77.8443
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Table 4.12: Results for each brass instrument recorded. The trumpet sam-
ples were recorded both with and without vibrato. Low damping.

Instrument Precision % Recall % F-measure %
Bass trombone 90.4762 70.3704 79.1667

Horn 89.3617 95.4545 92.3077
Tenor trombone 100.0 100.0 100.0

Trumpet (vibrato) 96.7742 85.7143 90.9091
Trumpet (no vibrato) 97.1429 94.4444 95.7746

Tuba 96.7742 81.0811 88.2353

Table 4.13: Results for each woodwind instrument recorded. Some samples
were specifically labelled as being with or without vibrato. Low damping.

Instrument Precision % Recall % F-measure %
Alto flute (vibrato) 57.7778 72.2222 64.1975
Alto sax. (vibrato) 26.4706 28.125 27.2727

Alto sax. (no vibrato) 31.25 31.25 31.25
Bass clarinet 53.1915 54.3478 53.7634

Bass flute 60.0 71.0526 65.0602
Bassoon 100.0 100.0 100.0

B♭ clarinet 10.6383 10.8696 10.7527
E♭ clarinet 12.8205 12.8205 12.8205

Flute (vibrato) 42.0 55.2632 47.7273
Flute (no vibrato) 69.0476 74.359 71.6049

Oboe 100.0 100.0 100.0
Soprano sax. (vibrato) 21.875 21.875 21.875

Soprano sax. (no vibrato) 32.3529 34.375 33.3333

Table 4.14: Precision, recall and F-measure for woodwind and brass instru-
ments that were recorded with and without vibrato. Low damping.

Style Precision % Recall % F-measure %
Vibrato 40.2516 46.3768 43.0976

No vibrato 97.1429 94.4444 95.7746
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Figure 4.5: Figures comparing the results presented in (a) Table 4.9 and (b)
Table 4.14
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Table 4.15: Guitar results at various dynamic levels from very soft (pp) to
very strong (ff ). Low damping.

Dynamic Precision % Recall % F-measure %
pp 70.9091 66.6667 68.7225
mf 73.5294 84.7458 78.7402
ff 88.189 95.7265 91.8033

Table 4.16: Piano results at various dynamic levels from very soft (pp) to
very strong (ff ). Low damping.

Dynamic Precision % Recall % F-measure %
pp 100.0 28.7356 44.6429
mf 100.0 65.8824 79.4326
ff 100.0 81.8182 90.0

Table 4.17: Precision, recall and F-measure for all samples, split by octave
number. Low damping.

Octave no. Precision % Recall % F-measure %
0 0.0 0.0 0.0
1 82.0 44.086 57.3427
2 82.5967 26.7921 40.4601
3 76.4706 35.3064 48.3087
4 76.3871 32.5454 45.6438
5 73.5577 27.1277 39.6373
6 74.3119 17.7632 28.6726
7 89.5349 10.5769 18.9189
8 84.6154 16.6667 27.8481
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Figure 4.6: Figures comparing the results at different dynamic levels of (a)
guitar samples (Table 4.15) and (b) piano samples (Table 4.16)
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4.3.2 High damping

This section presents the results generated when the damping factor is set

to 5 · 10−4. In this case, the required threshold was also 5 · 10−4. As with

the Low damping section, the first three tables here, Tables 4.18 to 4.20,

present results for all samples and categories, with and without the ‘last-

first’ condition. The precision, recall and F-measure for all samples are again

compared with the graph in Figure 4.7.

The results are then broken down in a similar fashion. First, percussion

results are presented, split by whether the samples contain a single note or a

roll, and by whether the ‘last-first’ criterion is enabled (Tables 4.21 to 4.24);

then strings played arco or pizzicato (Tables 4.25 to 4.27); woodwind and

brass samples with and without vibrato (Tables 4.28 to 4.30); guitar and

piano results at each dynamic level (Tables 4.31 and 4.32) and finally by

octave (Table 4.33).

Readers are once again referred back to Figure 4.2, which plots the pro-

portion of onsets in each octave and so provides context when results are

presented by octave.

The results for string playing technique, vibrato on brass and woodwind

instruments and piano and guitar dynamic levels are plotted as radar charts

in Figures 4.8 and 4.9.
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Table 4.18: Results of OnsetDetector tests on all samples. High damping.

‘last-first’ Precision % Recall % F-measure %
Enabled 70.5109 39.9472 51.0005
Disabled 8.31118 85.6113 15.1515

F-measure

Precision Recall

20%
40%

60%
80%

100%

With 'last-first'
W/out 'last-first'

Figure 4.7: The precision, recall and F-measure for the whole data set with
the with (blue) and without (orange) the ‘last-first’ criterion to reduce the
number of detections within a note. High damping.
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Table 4.19: Results of OnsetDetector test with ‘last-first’ criterion enabled.
High damping.

Instrument
Category Precision % Recall % F-measure %

Brass 96.0396 91.5094 93.7198
Guitar 30.4258 83.2386 44.5627
Piano 82.4324 70.3846 75.9336

Percussion 95.1451 27.3544 42.4922
Strings 68.8017 84.949 76.0274

Woodwind 50.0 58.7629 54.0284

Table 4.20: Results of OnsetDetector test with ‘last-first’ criterion disabled.
High damping.

Instrument
Category Precision % Recall % F-measure %

Brass 2.80064 91.5094 5.43493
Guitar 2.70872 82.9545 5.24614
Piano 4.82341 70.3846 9.02812

Percussion 16.6278 88.1277 27.977
Strings 3.79041 86.7347 7.26341

Woodwind 2.15232 58.9691 4.15305
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Table 4.21: Precision, P, recall, R, and F-measure, F, for percussion samples,
split by those that contain rolls and those that contain a single note, with
and without the ‘last-first’ criterion. High damping.

Style ‘last-first’ P % R % F %
Rolls Enabled 99.1604 21.0367 34.7098
Rolls Disabled 66.8256 87.3709 75.7295

Single note Enabled 87.188 84.6527 85.9016
Single note Disabled 2.28838 94.9919 4.4691

Table 4.22: Precision, recall, and F-measure for percussion samples contain-
ing rolls, with the ‘last-first’ criterion enabled. High damping.

Instrument Precision % Recall % F-measure %
Marimba 98.4802 18.192 30.7109

Xylophone (hardrubber) 100.0 24.6787 39.5876
Xylophone (rosewood) 100.0 26.7661 42.2291

Table 4.23: Precision, recall, and F-measure for percussion samples contain-
ing rolls, with the ‘last-first’ criterion disabled. High damping.

Instrument Precision % Recall % F-measure %
Marimba 62.0063 82.4256 70.7726

Xylophone (hardrubber) 70.2048 96.9152 81.4255
Xylophone (rosewood) 79.3599 95.3689 86.631
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Table 4.24: Precision, recall, and F-measure for percussion samples contain-
ing one onset (this includes the xylophone glissandi), with the ‘last-first’
criterion enabled. High damping.

Instrument Precision % Recall % F-measure %
Bells (brass) 88.6364 95.122 91.7647

Bells (plastic) 95.122 95.122 95.122
Crotale 40.678 96.0 57.1429

Marimba (cord) 100.0 100.0 100.0
Marimba (deadstroke) 100.0 100.0 100.0

Marimba (rubber) 100.0 96.7213 98.3333
Marimba (yarn) 96.6667 96.6667 96.6667

Thai gong 100.0 100.0 100.0
Vibraphone (bow) 36.7347 42.8571 39.5604

Vibraphone (dampen) 97.2222 83.3333 89.7436
Vibraphone (shortsustain) 100.0 100.0 100.0

Vibraphone (sustain) 100.0 90.2439 94.8718
Xylophone (gliss) 66.6667 100.0 80.0

Xylophone (hardrubber) 100.0 61.3636 76.0563
Xylophone (rosewood) 100.0 22.7273 37.037
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Table 4.25: Precision, recall and F-measure for string samples, split accord-
ing to playing technique: arco or pizzicato. High damping.

Style Precision % Recall % F-measure %
Arco 59.1474 85.6041 69.958

Pizzicato 82.2222 84.3038 83.25

Table 4.26: Results for each string instrument, when played arco. High
damping.

Instrument Precision % Recall % F-measure %
Bass 71.5328 94.2308 81.3278
Cello 43.2624 64.2105 51.6949
Viola 56.9536 86.0 68.5259
Violin 65.6716 97.7778 78.5714

Table 4.27: Results for each string instrument, when played pizzicato. High
damping.

Instrument Precision % Recall % F-measure %
Bass 78.0488 92.3077 84.5815
Cello 74.5283 79.0 76.699
Viola 91.0891 92.0 91.5423
Violin 88.0 72.5275 79.5181
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Table 4.28: Results for each brass instrument recorded. The trumpet sam-
ples were recorded both with and without vibrato. High damping.

Instrument Precision % Recall % F-measure %
Bass trombone 85.0 62.963 72.3404

Horn 95.4545 95.4545 95.4545
Tenor trombone 100.0 100.0 100.0

Trumpet (vibrato) 100.0 100.0 100.0
Trumpet (no vibrato) 94.5946 97.2222 95.8904

Tuba 96.9697 86.4865 91.4286

Table 4.29: Results for each brass instrument recorded. Some samples were
specifically labelled as being with or without vibrato. High damping.

Instrument Precision % Recall % F-measure %
Alto flute (vibrato) 47.3684 75.0 58.0645
Alto sax. (vibrato) 31.4286 34.375 32.8358

Alto sax. (no vibrato) 39.3939 40.625 40.0
Bass clarinet 55.3191 56.5217 55.914

Bass flute 47.3684 71.0526 56.8421
Bassoon 100.0 100.0 100.0

B♭ clarinet 19.1489 19.5652 19.3548
E♭ clarinet 22.5 23.0769 22.7848

Flute (vibrato) 37.6812 68.4211 48.5981
Flute (no vibrato) 66.6667 71.7949 69.1358

Oboe 100.0 100.0 100.0
Soprano sax. (vibrato) 50.0 53.125 51.5152

Soprano sax. (no vibrato) 50.0 53.125 51.5152

Table 4.30: Precision, recall and F-measure for woodwind and brass instru-
ments that were recorded with and without vibrato. High damping.

Style Precision % Recall % F-measure %
Vibrato 43.0052 60.1449 50.1511

No vibrato 94.5946 97.2222 95.8904
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Figure 4.8: Figures comparing the results presented in (a) Table 4.25 and
(b) Table 4.30



4.3. RESULTS 171

Table 4.31: Guitar results at various dynamic levels from very soft (pp) to
very strong (ff ). High damping.

Dynamic Precision % Recall % F-measure %
pp 33.0677 70.9402 45.1087
mf 29.7059 85.5932 44.1048
ff 29.3011 93.1624 44.5808

Table 4.32: Piano results at various dynamic levels from very soft (pp) to
very strong (ff ). High damping.

Dynamic Precision % Recall % F-measure %
pp 97.5 44.8276 61.4173
mf 91.3043 74.1176 81.8182
ff 71.6814 92.0455 80.597

Table 4.33: Precision, recall and F-measure for all samples, split by octave
number. High damping.

Octave no. Precision % Recall % F-measure %
0 0.0 0.0 0.0
1 78.125 53.7634 63.6943
2 55.1873 34.319 42.3204
3 58.8508 44.2201 50.497
4 78.0836 42.1111 54.7143
5 70.354 37.5887 48.9985
6 84.4311 41.2281 55.4028
7 89.5973 36.6758 52.0468
8 88.4615 34.8485 50.0
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Figure 4.9: Figures comparing the results at different dynamic levels of (a)
guitar samples (Table 4.31) and (b) piano samples (Table 4.32)
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Discussion

5.1 Comparison with MIREX 2018 results

Figure 5.1 compares the results of the OnsetDetector with the results from

the ten algorithms tested for the 2018 MIREX onset detection challenge.1

Although these tests use a different data set, comparing them can provide

a benchmark for how well the OnsetDetector performs on different types of

instrument.

Of the various sample categories designated by MIREX, five were de-

termined to be sufficiently similar to those used to generate the results in

Chapter 4: arco strings, pizzicato strings, brass, woodwind and percussion.

MIREX has two percussion categories: solo bars and bells and solo drums.

The former is used here and compared with the results for single note per-

cussion samples.

All the results used in this comparison are those found when the ‘last-

first’ criterion was enabled. As will be discussed in full in Section 5.2.1,

this feature suppresses detections that occur when a detector is already

responding, so the (true positive) results correspond to note onsets, not

1MIREX was introduced in Chapter 1, Section 1.4.2. The onset detection results
from 2018 are available at https://nema.lis.illinois.edu/nema_out/mirex2018/results/
aod/index.html.
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intra-note events. This is also the reason for using not including rolls in the

percussion samples, as these samples comprise repeated strikes of the same

note in quick succession, so require the version of the OnsetDetector that

does not suppress these events in order to produce meaningful results.

Table 5.1 lists the MIREX categories and their equivalents in the data

set used here, along with the table numbers where the results used in this

comparison can be found.

The OnsetDetector consistently performs at least as well as the various

algorithms tested by MIREX, with results for arco strings and brass samples

comparing particularly favourably. Table 5.2 gives the mean and standard

deviation of the F-measures of the algorithms tested by MIREX, along with

the F-measures returned by the OnsetDetector at both damping levels. The

OnsetDetector results for arco strings and brass are higher than the mean

of the corresponding MIREX algorithms by one and two standard devia-

tions, respectively. The pizzicato strings and woodwind results are below

the mean, within one standard deviation. Although the OnsetDetector per-

formed well on the percussion samples, second only to the results from the

brass samples, the F-measures are up to three standard deviations below

the MIREX mean.

The rest of this chapter analyses the results to identify the strengths and

weaknesses of the OnsetDetector algorithm or shortcomings in the data set

(Section 5.2) and suggests various improvements that could be made to the

OnsetDetector, as well as how to integrate it into a NoteDetector capable of

detecting both time and frequency data from an audio signal (Section 5.3).
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Table 5.1: MIREX sample classes and the corresponding sample categories
and tables for which results are compared.

MIREX class Category Tables
Solo Bars And Bells Percussion (single note) 4.5, 4.21

Solo Brass Brass 4.3, 4.19
Solo Plucked Strings Pizzicato strings 4.9, 4.25

Solo Sustained Strings Arco strings 4.9, 4.25
Solo Winds Woodwind 4.3, 4.19

Table 5.2: The MIREX mean and standard deviation (SD) of the F-measure
for each sample category and the low and high damping F-measures from
the corresponding OnsetDetector tests (KM1 and KM2, respectively).

Category Mean % SD % KM1 % KM2 %
Percussion 94.2717 3.90792 88.6268 85.9016

Brass 78.8079 10.2869 91.7073 93.7198
Pizzicato strings 86.8107 6.40698 80.4097 83.25

Arco strings 58.3916 17.3406 69.9663 69.958
Woodwind 65.758 20.52 49.6524 54.0284
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Figure 5.1: Comparing MIREX onset detection F-measures with those pre-
sented here. The first ten bars (blue) are the results of the algorithms tested
by MIREX. The keys refer to the algorithm makers and are explained on
their website. Bars ‘KM1’ and ‘KM2’ (orange) represent the low and high
damping results returned by the OnsetDetector and presented in Chapter 4.
The tables which provide the ‘KM1’ and ‘KM2’ results are listed in Table 5.1.
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5.2 Analysis of results

5.2.1 Intra-note event detection

It can be seen from a number of tables in Chapter 4 — for example Tables 4.2

and 4.18, which present the results for the whole data set — that results

calculated with the ‘last-first’ criterion enabled have higher precision values

than those without, but there is often a corresponding drop in recall.

A low recall value occurs when many onsets are missed by the OnsetDe-

tector; a high precision occurs when there are very few false positives. In

both cases, this means there are fewer detections overall. Therefore, we can

say that the ‘last-first’ criterion does indeed suppress detections for both

damping factors tested.

When this setting is disabled, there are many more false positives re-

turned whilst the note is still sounding. As has been stated many times

throughout this thesis, detections within a note are not necessarily incor-

rect: we simply have limited data against which to check them.

One area where we do have relevant data is the percussion samples con-

taining rolls. Comparing Table 4.3 with 4.4 and Table 4.19 with 4.20 shows

that the recall values (i.e. the number of onsets successfully found) for most

categories of instrument are unaffected, as there is only one note onset in

each audio file and hence not much opportunity for false negatives. The

percussion recall is much improved by disabling this setting, but this comes

at the expense of precision. On this basis, we would expect the best results

to be obtained for individual notes when the ‘last-first’ criterion enabled and

when it is disabled for rolls.

This is borne out by the data in Tables 4.5 and 4.21, which break down

the percussion results by those that comprise rolls and those that comprise

single notes. The F-measures in the scenarios described above are 88.6%

(single notes, enabled) and 69.0% (rolls, disabled) when the damping factor
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is 1 · 10−4, and 85.9% and 75.7% when the damping factor is raised to

5 · 10−4. All of these values are higher than the F-measures found when the

percussion samples are not split into these categories (see Tables 4.3, 4.4,

4.19 and 4.20).

This increase in recall and drop in precision and F-measure is also seen

in Tables 4.2 and 4.18, and illustrated in Figures 4.4 and 4.7 which plot

the precision, recall and F-measure for the whole data set in both scenarios.

Although the recall of other instrument categories is unaffected by enabling

or disabling the ‘last-first’ condition, the percussion rolls represent such a

large proportion of the onsets (per Table 4.1) that the change in percussion

results has a highly visible effect on the values for all samples.

Tables 4.6, 4.7, 4.22 and 4.23 present the precision, recall and F-measure

for each group of samples that contain rolls — marimba, and xylophone

played with rubber or rosewood mallets — at both damping factors. Once

again, it can be seen that disabling this feature leads to better results for

rolls, with F-measures ranging from 66.1% to 86.6%. When enabled, the

precision drops from being in the high nineties or even 100% to being in the

range of 57.6–79.4%. Whilst not ideal, the higher end of this range is still

a reasonable value for precision and is comparable with some of the onset

detection methods evaluated in the most recent MIREX tests.

Consideration of all this suggests that an implementation of the Onset-

Detector without the ‘last-first’ condition may yield promising results when

tested on a data set which contains information about intra-note events.

This may raise recall values without the consequent drop in precision and

therefore improve the F-measure across the board.

5.2.2 Instrument category

Analysis of results for the remaining instrument categories will proceed by

considering only the results generated when the ‘last-first’ criterion was en-
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abled (presented in Tables 4.3 and 4.19), for the reasons discussed above:

namely, that disabling it has no effect on the recall and a highly deleterious

effect on the precision and F-measure (as can be seen in Tables 4.4 and 4.20).

For most of the categories of instrument tested — the brass, string and

woodwind instruments, as well as the piano — changing the damping factor

did not have a significant effect on the results, as can be seen by comparing

Tables 4.3 and 4.19. Only the percussion recall and guitar precision mea-

surements vary. Differences which occur when the damping factor is changed

will be discussed in Section 5.2.4; this section will focus on changes within

an instrument category that can be seen at both damping factors tested.

Percussion

The percussion samples returned generally good results, with the majority of

F-measures greater than 85%, and a number of instruments with F-measures

of 100%, as can be seen in Tables 4.8 and 4.24, which present the results

for each percussion sample that contains a single onset. This includes the

xylophone glissandi.

For the reasons discussed in Section 5.2.1, the OnsetDetector in the form

used to analyse these samples does not perform well on rolls. The results for

rolls can be found in Tables 4.6, 4.7, 4.22 and 4.23. Tables 4.5 and 4.21 split

the percussion results by sample content. The “Single note, Enabled” rows

provide total results for the samples that will be discussed in this section.

The precision, recall and F-measure values in this case range from 84.6% to

92.6%.

One may expect onset detection in percussive instruments to be simpler

task than for other types of instrument, as the onsets of notes sounded by

striking an instrument are quite clearly defined: there is one instantaneous

excitation event, which leads to a short attack.2 All the percussion samples

2ADSR — attack, decay, sustain, release — envelopes were introduced in Section 1.2.1.
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Figure 5.2: An A4 played on a vibraphone, (a) by striking (then damping)
the note and (b) by bowing. When simply striking the note, the attack is
very short, but when bowed, it is drawn out over approximately two seconds.
This is longer than the entire duration of the sample in (a).

are played in this manner, apart from one set of vibraphone samples, in

which the notes were bowed. In these samples, the bow scrapes across the

bar, resulting in an extended attack. A longer attack period may lead to

uncertainty when determining the onset time, both for an algorithm and

when marking up an audio file by hand, as there are more samples which

could potentially represent the onset. Figure 5.2 shows an A4 from both

struck and bowed vibraphone data sets. In Figure 5.2a, the note is simply

struck with a mallet; in Figure 5.2b, the vibraphone is bowed. The difference

in attack characteristics is clear: in Figure 5.2b, the amplitude of the note

envelope increases very slowly. In fact, the attack lasts for longer than the

entire note in Figure 5.2a.

Onset detection of the bowed vibraphone samples returned an F-measure

of about 40%, far lower than the other vibraphone categories, which had F-

measures ranging from 90–100%. The extended attack period may be the

source of the poor results for the bowed vibraphone for one of two reasons:

either the OnsetDetector could not reliably determine the onset times or

there was a high degree of human error when marking up the audio files.

Figure 5.3 shows both the audio waveform and the mean log of the first



5.2. ANALYSIS OF RESULTS 183

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Time (s)

3

2

1

0

1

2

3
Am

pl
itu

de
1e 3

(a)

0 50 100 150 200 250 300 350
Time (ms)

15

14

13

12

11

10

9

8

M
ea

n 
lo

g

(b)

Detected onset
Hand-annotated onset

Figure 5.3: (a) audio and (b) mean log of each 20 ms segment of the first
400 ms of the bowed vibraphone A4 sample. The damping factor used is
5 · 10−4. The light purple dashed line marked the time returned by the
OnsetDetector, 152 ms before the time found when manually marking up
the audio (marked with the dark purple line).
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Figure 5.4: Tone generated at 440 Hz, fs = 48 kHz, with an envelope shape
mimicking Figure 5.2b. The tone here starts to sound after one second.

400 ms of the bowed vibraphone A4 sample. The time returned by the

OnsetDetector is 22 ms, far earlier than the hand-annotated time of 174 ms.

The mean log shown here was calculated with a damping factor of 5 · 10−4

and is very similar to the that generated by a lower damping factor. The

onset was manually found by listening to the audio, slowing it down and

zooming in on the waveform in both time and amplitude. Comparison of

Figure 5.3a with Figure 5.2b shows that the amplitude at the beginning of

the waveform is less than 1.5% of its eventual maximum. Consequently,

the exact location of the onset was difficult to ascertain, either aurally or

visually.

In order to test the likelihood of human error in the markup process,

sine tones were generated at all fundamental frequencies from 27.5 Hz (A0)

to 4186 Hz (C8), then faded in and out to mimic the envelope seen in Fig-

ure 5.2b. One second of silence was inserted at the beginning. Therefore,

the exact onset time of the tone is known.

The waveform generated at 440 Hz can be seen in Figure 5.4. Although
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the shape of the attack does not exactly match that of the bowed vibraphone

samples, in the first 400 ms of the tone, the amplitude reaches approximately

1.5% of its maximum value, like the bowed vibraphone sample shown above.

Figure 5.5 shows the waveform and mean log for this 400 ms window.

The shapes of both plots are broadly similar to those seen in Figure 5.3.

At both damping factors (1 · 10−4 and 5 · 10−4), for all fundamental

frequencies from 27.5 Hz (A0) to 4186 Hz (C8), the OnsetDetector returned

times which were 20–30 ms after the onset of the tone. These delays represent

the time taken for the mean log to go from zero to its minimum and, as none

was more than 30 ms, all detections are within the window of times that can

be considered true positives. Therefore, these tests suggest that the low

precision, recall and F-measure for bowed vibraphone samples are due to

human error when marking up the audio files, rather than algorithmic error.

The xylophone samples have 100% precision in all categories, except the

glissandi at high damping. There are only two glissandi, therefore only two

onsets, so a single false positive has a large effect on the precision here.

The xylophone was recorded using two different beater materials, rose-

wood and rubber, both of which returned sub-optimal recall values (27.3 and

61.4% at the lower damping factor, respectively, and 22.7 and 61.4% at the

higher), although the precision in all cases was 100%.3 These recall values

seem incongruous, especially when compared with the marimba, as these

instruments are very similar: both comprise tuned wooden blocks which

are struck with a mallet. However, the marimba results were significantly

better, with recall values that never sank below 96.7%.

The main difference between the marimba and xylophone samples —

and indeed between xylophone samples played with rosewood mallets, as

opposed to rubber — is the onset times of the notes. The onsets of all
3Only single note samples are under consideration here, as the rolls were discussed in

Section 5.2.1. Although, even for rolls on the xylophone, the precision was 100% across
the board. As one would expect, recall is where they rate poorly, due to the large number
of false negatives, as intra-note detections are being suppressed.
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Figure 5.5: (a) audio and (b) segment mean log (with high damping level)
of the 400 ms after the 440 Hz tone begins to sound. The dark purple line
marks the time at which the tone begins; the light purple dashed line shows
the time returned by the OnsetDetector, 20 ms after the onset of the tone.
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44 rosewood xylophone notes are within the first 7 ms of the audio files.

Those that are within the first 3 ms represent all the false negatives at both

damping factors, although when d = 1 · 10−4, two onsets in this window are

successfully found. The rubber samples contain fewer onsets quite so early.

17 onsets fall within the first 3 ms, accounting for all the false negatives at

both damping factors. The remaining 27 fall outwith this time, appearing

up to 27 ms into the audio files, and are all detected successfully.

During the OnsetDetector development, Zero padding was introduced in

order to ensure there were enough samples available for effective backtrack-

ing, even when an onset occurs within the first 100 ms of an audio file. This

was clearly successful, as early onsets are indeed detected, but these results

suggest that, in order to detect events in the first 3 ms, the OnsetDetector

must be improved.

Strings

As can be seen in Tables 4.9 and 4.25, the string instruments yielded better

results when played pizzicato than arco. This is to be expected, for the

same reasons that we would expect generally good results for percussive

sounds. However, in this case the difference is not huge, as can be seen from

the radar charts in Figures 4.5a and 4.8a. The F-measures for all pizzicato

samples were 80.4% and 83.3% for the lower and higher damping factors,

respectively. These are only 10–13 percentage points higher than the arco

F-measures, which were 70% in both cases.

The overall recall does not change much between the two playing tech-

niques, but the precision is much higher for pizzicato samples. This suggests

that technique had little effect on missed detections (i.e. false negatives),

but false positives were more likely for arco strings.

Tables 4.10, 4.11, 4.26 and 4.27 break down the results for each of the four

string instruments tested: bass, cello, viola and violin. The most dramatic
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Figure 5.6: A false negative at 136 ms, and a false positive 54 ms before it,
shown in the segment mean log. These occurred when analysing the C5 on
a cello A string. A ‘false positive–false negative’ pair like this is typical of
the cello and violin results.

changes between arco and pizzicato are seen in the cello and viola results,

with F-measures jumping up by 24 percentage points, on average. These

jumps are due to increases in both precision and recall by an average of 32

and 12 percentage points, respectively.

The bass and violin results are relatively stable, with F-measures con-

sistently in the range from 78–86%. Somewhat unexpectedly, for a lower

damping factor, the violin had a better F-measure when played arco than

pizzicato. This is because the recall was much higher (96.7%, rather than

71.4%), although the precision was higher for when played pizzicato, indi-

cating that there are still more false positives when analysing arco samples.

The reason for the large difference in results for each instrument played

arco cannot be due to performance at high or low frequencies, as the bass

and violin occupy the lowest and highest extents of the range.
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Table 5.3: The mean difference between the hand-annotated time and the
automatic time for true positives in the string instrument results, at both
damping factors.

d = 1 · 10−4,
Mean difference

d = 5 · 10−4,
Mean difference

Bass −32 ms −27.4 ms
Cello −33 ms −40.75 ms
Viola −23.86 ms −34.43 ms
Violin −2.9 ms −0.5 ms

Unlike the bowed vibraphone discussed above, the onset times of the

notes in these samples are not ambiguous, so the false negatives are not due

to human error. From inspection of its state at these points, it seems that

the OnsetDetector is often backtracking too far, resulting in a false positive

more than 50 ms before the a corresponding false negative. An example of

this is shown in Figure 5.6, which plots the segment mean log of a cello note,

the hand-annotated onset at 136 ms which was missed by the OnsetDetector

and the erroneous detection at 82 ms. The time difference between these two

values is 54 ms.

The true positives in the string results are, on average, approximately

9 ms earlier than the hand annotated onsets, compared with less than half a

millisecond for the data set as a whole. The mean differences for each string

instrument are given in Table 5.3. This shows that there is a clear tendency

for even the correct results (i.e. those that were detected within 50 ms) to

be early, with the exception of the violin samples, which were much closer

to the manually found time.

One possible explanation for this is a particular interaction between a

bow and string, first documented by Helmholtz (1885), in which the bow

alternates between clinging to the string and becoming detached, then cling-

ing again. This stick-slip pattern repeats at the same rate as the vibration

of the string; i.e. when an A4 is played, the string vibrates at 440 Hz, and

the bow is sticking to the string, then slipping, 440 times per second. This
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has become known as “Helmholtz motion”. Much research into the me-

chanics of bowed strings has been carried out since then. Percival (2013)

provides a summary of this, including work into the attack of bowed notes

and Helmholtz motion. The situation in which Helmholtz motion is estab-

lished immediately is described as a “perfect attack”. This is estimated to

occur in 20–50% of notes played by professional musicians. In the case that

a perfect attack is not achieved, the note will still be perceived as acceptable

if Helmholtz motion begins within 50 ms.

It may be that Helmholtz motion is established relatively late in the

viola and cello samples, and to a lesser extent in the bass, but not in the

violin. This may mean that for a significant time at the beginning, the string

is essentially being driven by white noise, rather than a coupled resonant

system, and therefore the amplitude of vibration is low, perhaps impercep-

tible to humans, but enough to trigger a response from the corresponding

detector.

This hypothesis is backed up by Figure 5.6, where it is clear that the

OnsetDetector has backtracked to the approximate point at which the mean

log begins to increase, although the actual note onset — the time of which

was derived from visual and aural inspection of the waveform — occurs

during the period when the mean log is increasing.

Additional false positives may be due to the performer’s intonation chang-

ing over the course of the note. The ‘last-first’ criterion was disabled for

these tests, so false positives resulting from changes like this are less likely

to occur, but are still possible. While the bow is pulling against the string,

the intonation can change due to movement in the finger stopping the string

or changes in string tensions arising from bowing. Figure 5.7 plots the re-

sponses of each detector in the critical band to a cello D4. The damping

factor here is 5 · 10−4, so the detector frequencies in the band are 4.86 Hz

apart, per the investigations in Chapter 2, Section 2.2.7. The note onset,



5.2. ANALYSIS OF RESULTS 191

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

|z|

Detector frequencies
283.945 Hz
288.805 Hz
293.665 Hz
298.525 Hz
303.385 Hz

True positive
False positive

Figure 5.7: Responses of the critical band around D4 (293.665 Hz), when
the damping factor is 5 · 10−4. The input is the cello D4 sample, played on
the A string. The bright green line marks the correctly found onset; the
dashed light purple line marks additional, false positive, results from the
OnsetDetector. Although these do not mark the onset of the note, it can
be seen that each false detection correspond to changes in magnitude of the
responses the band.
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successfully found by the OnsetDetector, is marked by the lime green line,

and the dashed light purple lines show the additional times returned by the

OnsetDetector. Although these are false positives, it can be seen that they

correspond to clear changes in the responses.

Brass

The brass instruments returned good results (see Tables 4.12 and 4.28). The

lowest F-measures are given by the bass trombone: 79.2% and 72.3% for low

and high damping factors, respectively. In both cases, this is due to a low

recall value (70.4% and 63.0%); the bass trombone precision is in line with

the other instruments, at 85–100%.

The tenor trombone achieves an F-measure of 100% at both damping

factors. The remaining brass instruments have F-measures of 88–100%,

indicating that there are very few false positives or negatives in this category.

The trumpet was recorded both with and without vibrato; the results

with vibrato are very similar to those without. For the higher damping fac-

tor, all three measures — precision, recall and F-measure — are all 100%

when played with vibrato. This is higher than when played without, al-

though only by a few percentage points: the F-measure without vibrato and

with a high damping factor is 95.9%. This suggests that the profiles of the

trumpet with and without vibrato do not vary greatly. This can be seen

in Figure 5.8, which shows the responses to trumpet A4s, both with and

without vibrato. The overall shape of the responses is quite similar in both

cases, although there is more oscillation in the responses with vibrato.

Woodwind

The woodwind results, given in Tables 4.13 and 4.29 are much more varied

than the brass. The bassoon and oboe both achieve F-measures of 100%,

but the results for the other instruments are not as promising.
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Figure 5.8: A4 trumpet responses, (a) without and (b) with vibrato. The
damping factor was set to 5 · 10−4. Both onsets were successfully found,
with no false positives.
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For all samples, except the alto flute with vibrato, the precision and

recall are very similar, i.e. false positives and false negatives appear at

roughly the same rate. From inspection of the results, it seems that when

onset detection was not successful, we have a pair of false results: a false

negative at the onset time and a false positive detected more than 50 ms

before this. This pattern was previously seen in the arco cello and viola

samples of the Strings section, and a significant delay in the establishment

of Helmholtz motion was hypothesised as the cause. A similar process may

be occurring here, as vibration of the reed couples to the vibration of air in

the instrument, like the slip-stick rate of the bow couples to the vibration of

a string. Therefore, a delay between the onset of the reed being blown and

the appearance of resonant vibration may result in a period of time where

the note is barely, if at all, audible, yet the DetectorBank is reacting.

At the higher damping factor, the soprano saxophone results were the

same with and without vibrato. However, for all other woodwind instru-

ments for which we have samples both with and without vibrato, and at

both damping factors tested, F-measures for samples without vibrato were

between four and 24 percentage points higher.

Tables 4.14 and 4.30 compare the results for all brass and woodwind

instruments, where the presence or absence of vibrato is known. In both

tables, the F-measure is approximately twice as high when no vibrato was

used. This is due to the woodwind samples, as the results for the trumpet

samples did not change significantly when vibrato was used, with F-measures

between 90 and 100%.

Piano

As the dynamic level is raised, the changes in the piano results are consistent

for both damping factors, which can be seen by comparing the shapes of the

radar plots in Figures 4.6b and 4.9b and the values in Tables 4.16 and 4.32.
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The precision is 100% for all three dynamic levels at the lower damping

factor, i.e. there are no false positives. At the higher damping factor, it is

greater than 90% for pp and mf samples, but drops to 71.7% at ff .

There is more variation in the recall values. The quietest piano samples

had the lowest recall. Going up to the next dynamic level, the recall increases

by 37 and 29 percentage points for the lower and higher damping factors,

respectively. These increase to 81.8% and 92.0% at the loudest dynamic

level. It may be that false negatives are more likely to occur in quieter

samples because the segment mean log is not reaching the threshold, which

was held constant for all tests at the same damping factor. Conversely, the

loudest samples return more false positives (at the higher damping factor),

perhaps because the responses are hovering around the threshold level, so

can easily tip over and trigger a new detection.

The low recall values for pp samples reduces the F-measure at this level;

however, for samples mf and louder, the recall and precision are sufficiently

high to yield an F-measure of approximately 80–90%.

The idea of adaptive thresholding will be discussed in Section 5.3.1.

This feature may help to improve consistency of results at different dynamic

levels.

5.2.3 Octaves

At both damping factors, 0% of the onsets in octave 0 were found (see

Tables 4.17 and 4.33). This may be because, as shown in Figure 4.2, the

data set has very few recordings in this octave; just those of the lowest three

notes on a piano — A0, B♭0 and B0 — which have fundamental frequencies

from 27.5 to 30.9 Hz. Only the ff piano samples have all three of these

notes; the mf samples begin at B0 and pp at B♭0. This means there are

only six samples in octave 0. Having so few samples makes it difficult to

draw conclusions about the performance at these frequencies. However,
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we can study the OnsetDetector state to ascertain whether there may be

deficiencies in the algorithm.

Chapter 2 investigated the DetectorBank response to audio input com-

prising sine tones at various frequencies. Figure 2.8a showed the Detector-

Bank output when driven by consecutively increasing tones, at the funda-

mental frequencies corresponding to the notes from A0 to A1. This, along

with Figure 2.2a, show that the responses to tones generated at the lower

end of the spectrum are not significantly different from those higher up the

scale.

However, one of the test audio extracts used in Chapter 3, Swan Lake

extract 1, comprised notes at the low end of the scale and consistently had

the worst results during OnsetDetector development. Section 3.4.2, More

true positives, suggested that improvements needed to be made to more

reliable detect low frequencies. Clearly, responses at low frequencies merit

further investigation.

Figure 5.9 shows the segment mean logs for ‘A’s played on the piano

in successive octaves. The samples at the highest dynamic level are used

here; the mf and pp samples follow a similar pattern. The threshold, which

was constant for all samples, is marked with a dashed green line. It can be

seen that at the lowest octave, A0 (Figure 5.9a), the response at the onset

misses the threshold by a whisker: the threshold = ln(0.0005) = −7.60

and the maximum segment mean log is −7.77. In octave 1, the mean log

just exceeds the threshold. In octaves 2–6, the threshold is well exceeded;

however, in the highest octave, the mean log values drop again.

Adjusting the threshold for OnsetDetectors operating at the highest and

lowest frequencies may solve this problem.

At both damping factors, octave 1 yielded the highest recall and F-

measure and octave 7 the highest precision. Tables 5.4 and 5.5 show that,

when calculated over octaves 1–7, the mean values of the recall and F-
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(g) A6, 1760 Hz
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(h) A7, 3520 Hz

Figure 5.9: Segment mean logs for piano notes increasing by octave, with
the threshold marked by a dashed green line.
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Table 5.4: Mean and standard deviation of results, calculated from octaves
1–7. Low damping factor.

Precision % Recall % F-measure %
Mean 79.934 26.358 38.354

SD 5.271 10.309 11.73

Table 5.5: Mean and standard deviation of results, calculated from octaves
1–7. High damping factor.

Precision % Recall % F-measure %
Mean 75.011 40.594 52.209

SD 12.66 5.980 5.748

measure are higher, and the corresponding standard deviations lower, at

d = 5 · 10−4. The opposite is true for the precision. At every octave in this

range, the recall and F-measure values are higher at the higher damping

factor. The precision values are either lower or very similar.

Table 4.17 gives the results broken down by octave at the lower damping

factor. Comparison with Table 4.33 shows that the recall varies more from

octave to octave at low damping than high, as would be expected from the

standard deviations in Tables 5.4 and 5.5.

Although the recall is higher at the higher damping factor, the precision

is lower. To put this another way: there are both more true positives and

more false positives. This suggests the inconsistency between damping fac-

tors may be due to thresholding: at high damping, there were simply more

detections. The whole data set comprises 8326 onsets. At a damping factor

of 5 · 10−4, there were 4717 detections, of which 3326 were true positives; at

d = 1 · 10−4, there were only 2902 detections, of which 2231 were correct.

5.2.4 Results at different damping factors

The results returned by the OnsetDetector for the string, brass, woodwind

and piano samples were consistent at both damping factors. However, there
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are some situations in which was not the case, including across octaves, as

discussed above, the guitar samples and in some of the percussion results.

In almost all cases investigated in Chapter 4, when results for different

damping factors varied, even by a small margin, the lower damping factor

yielded a better precision, i.e. fewer false positives, and the higher a better

recall, i.e. fewer false negatives, which often resulted in a higher F-measure

as well. As mentioned above, the tests with a higher damping factor returned

more detections, which ultimately meant more true and false positives. In

part, this may be due lack of threshold optimisation, particularly when

d = 1 · 10−4. The low damping tests took approximately 4.5 times longer to

run, which meant small tweaks to parameters like the threshold were more

expensive, and consequently the threshold for the higher damping level was

more finely tuned.

One exception to this is the guitar, the overall results for which can be

found in Tables 4.3 and 4.19. The recall did not change much with damping

factor (82.4 and 83.2%), but at d = 1 · 10−4, the precision was more than

twice that at d = 5 · 10−4, which in turn raised the F-measure to 80%, as

opposed to 44.6%.

Tables 4.15 and 4.31 present the guitar results for the three dynamic

levels. Unlike the piano samples, the guitar results were very dissimilar at

each damping factor. At the lower damping factor, the precision, recall and,

therefore, F-measure increase with the damping level in a fairly uniform

manner (see Figure 4.6a). However, Figure 4.9a shows that, at the higher

damping factor, although the recall increases in much the same fashion,

the precision is static at around 30%, less than half the lowest precision

found in Table 4.15. This limited precision affects the F-measure, which is

approximately 45% at every dynamic level tested.

Inspection of the guitar audio files, for example the C3 given in Fig-

ure 5.10, shows that there are large DC offsets occurring throughout. These
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Figure 5.10: Waveform of a C3, played on a guitar A string. The onset of
the note occurs at in the first few milliseconds and the note is allowed to
ring out for almost 14 seconds. Large variations in amplitude are visible,
but not audible, in this period.

may have arisen due to poorly applied normalisation, which attempted to

remove a DC offset, but inadvertently added one instead. At the lower

damping factor, these peaks are mostly below the threshold level, but not

at the higher damping factor. Figure 5.11 shows the segment mean logs in

both cases, along with the threshold and locations of true and false positives

returned.4 From this, it seems that the poor OnsetDetector results for the

guitar samples are due to artefacts in the original recordings, rather than

any deficiency in the software.

From Tables 4.3 and 4.19, we can see that the percussion results followed

the opposite pattern to the guitar: the change in precision was negligible, but

the recall and F-measure were more than twice as high at the higher damping

4In these graphs, a sudden increase in mean log can be seen at the very end of the
sample. These occur because the DetectorCache always returns full segments of values. If
samples are requested after the end of the input buffer, the DetectorBank returns zeros.
This can result in the final segment largely consisting of zeros. As mentioned when Zero
padding was introduced, in this case, the OnsetDetector regards log(0) as equal to 0. If
a segment is largely zero, this will drag the mean value up. As this only affects the final
segment, it will not cause erroneous detections.
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(a) Damping factor: 1 · 10−4; threshold: ln(3 · 10−4)
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(b) Damping factor: 5 · 10−4; threshold: ln(5 · 10−4)

True positive
False positive

Figure 5.11: Segment mean logs for the guitar C3 shown in Figure 5.10 at
both damping factors tested, with the thresholds in each case marked by the
dashed green line. The onset at 43 ms is successfully found in both cases,
but the analysis at the higher damping factor also returns a number of false
positives. In (a) the peaks in the mean log due to the DC offset are lower
than the threshold; in (b) several of them are not, and are identified by the
OnsetDetector.
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factor. Tables 4.8 and 4.24 show the results for each percussion instrument,

most of which were consistent across the damping factors. We will not

consider the rolls here; Section 5.2.1 discussed the ‘last-first’ criterion, which

is the main factor determining the rate of correct detections.

The percussion instrument for which the results varied notably were

the crotales — a set of small tuned cymbals — which saw a huge drop

in precision, from 84.6% to 40.7% when the damping factor was raised.

Inspection of the waveforms revealed a large amount of beating in these

samples, which is then picked up by the OnsetDetector. Beating arises

when there are two similar modes of vibration occurring simultaneously

and interfering with each other. The amplitude of the resultant waveform

oscillates at a rate of the difference between the two frequencies. Figure 5.12

shows both the waveform and segment mean log for one of the samples. Here,

the beating is particularly pronounced, and many of the beats are identified

by the OnsetDetector. In fact, this sample alone accounts for almost half

of all the false positives in the crotale results at the higher damping factor

and all four false positives at the lower. Once again, the disparity in results

seems like an issue which is largely caused by the choice of threshold at each

damping level.

5.3 Further work

5.3.1 OnsetDetector improvements

Many of the problems discussed throughout Section 5.2 arise because of

thresholding. Therefore, a method for automatically deriving the threshold

— and adjusting it as necessary throughout the process of onset detection

— may drastically improve the OnsetDetector results. There is also a great

deal of variation in the threshold values used to test the OnsetDetector in

Chapters 3 and 4. Determining a suitable threshold for any given audio
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Figure 5.12: A B7 crotale sounding, beating at a rate of approximately
11.5 Hz. In (a) the waveform is shown, and (b) plots the mean log at the
higher damping factor, in which a number of false positives are identified.
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file is not a task that should be left to the user; it should be an internal

parameter of the OnsetDetector.

In image processing, thresholding is often used to separate an object

from the background. In this field, uniform thresholding works in a simi-

lar way to thresholding as used in this project: pixels above, below or in a

given range of values are selected (Nixon & Aguado 2012). It also encoun-

ters similar problems: an appropriate value must be known a priori and it

does not account for differing levels of intensity — for example, due to light-

ing — across an image. Adaptive thresholding algorithms were developed

to help solve these problems. These often work by analysing probability

distributions or splitting the image into smaller parts and regarding each

independently (Dey et al. 2014).

Applying a threshold to DetectorBank output is a different problem.

We are not trying to separate foreground and background objects, rather

to determine if a response is strong enough to merit further investigation.

Backtracking is quite an intensive process, as it requires multiple operations

to be carried out at every sample of interest, so we wish to do so only when

strictly necessary.

In the switch from a global, uniform threshold to an adaptive one, setting

a threshold for each band that can be set and varied as required, rather than

one threshold used by every OnsetDetector in the NoteDetector, may also

improve the results. Adjusting the threshold for detectors at the lowest

frequencies in the musical range was suggested when discussing the results

at different Octaves, as the magnitude of the responses to the very lowest

frequencies — and sometimes very highest — was often just missing the

threshold.

Although it will be a difficult task, developing a better thresholding

technique may be the most effective way of reducing the number of false

negatives and positives in the OnsetDetector results.
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Figure 5.13: Band of responses to an E5, played on a flute. The band
consists of 43 detectors around 659.255 Hz; for clarity, only those responses
which exceed a magnitude of 0.4 are listed in the legend.

5.3.2 PitchTracker

The concept of critical bands, a key feature of the OnsetDetector, also lends

itself to pitch tracking, as the responses in the band are tuned to different

frequencies, so changes throughout the note can be seen.

For example, Figure 5.13 shows the responses to an E5 played on a flute.

The damping factor used here is 1 · 10−4 and minimum bandwidth detectors

are requested, therefore 43 detectors are created at 0.922 Hz increments,

centred around 659.255 Hz, as this is the fundamental frequency obtained

from the mathematical expression relating a reference frequency (440 Hz)

to the size of a semitone (21/12). In reality, the frequencies produced by a

flute depend on both the performer and the instrument itself. It can be seen

in Figure 5.13 that several detectors are responding. The detectors cover
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the range 656.489 to 662.021 Hz, but only those for which the responses

are of significant amplitude are listed in the legend. It can be seen that,

at the beginning of the note, the responses at the higher end of this range

dominate.

The 660.177 Hz response reaches its peak at approximately 800 ms. After

this, the detector at the centre frequency has the largest response. Then,

the detectors immediately below this respond most strongly from about 2

seconds until the end of the note. The pitch descends over the course of the

note, although only by a few Hertz; to a listener, it does not sound like the

note is getting flatter, although a certain amount of vibrato can be heard,

especially towards the end.

The relative strength of these responses, and the frequencies they a re-

sponding to, could be used to determine an overall frequency at each sample.

There are a number of ways this could be achieved. One possibility is to use

a weighted average of the frequencies, with the amplitudes of each detector

at the current sample set as the weights. This can be refined by using a

subset of detectors, rather than the whole band: at every sample, detectors

are selected if their characteristic frequency is close to the average frequency

calculated at the last sample.

This method cannot be used to calculate the first average frequency

value, as there are no previous samples. In this case, the average frequency

is found by taking the weighted mean of all detectors in the band. One more

improvement can be made to this algorithm: rather than simply setting the

weights as the value of the corresponding detector response at the current

sample, this value is squared.

This algorithm is used to generate the average frequency of the flute

note, shown in Figure 5.14. In this case, the subset of detectors was selected

by finding those within a tenth of a semitone above or below the previous

sample’s average frequency. It follows the expected pitch trajectory, starting
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Figure 5.14: Average frequency of responses in Figure 5.13. At each sample,
a subset of detectors are used: their frequencies are averages using their |z|
values as weights.

above the centre frequency and ending below it.

There is a problem with this technique as described so far: a detector

begins to respond when its frequency appears in the input, but it takes

time for the response to reach its maximum. This means the weight for

this frequency will initially be low, leading to a lag between the frequency

appearing and the average frequency arriving at this value.

This can be seen when running this algorithm on a chirp signal. Fig-

ures 5.15 and 5.16 show the DetectorBank responses and average frequency,

respectively, generated for an input signal which begins at 440 Hz and in-

creases to 466.164 Hz, the fundamentals of an A4 and B♭4, one semitone

up. Figure 5.16 also marks the expected frequency, linearly increasing from

the start to stop values. The average frequency is mostly lower than the

expected, because lower frequency detectors are in relaxation at a higher

amplitude when the next detector starts reacting.

It also illustrates another problem: at the first sample, all the detectors

are used to calculate the average and the responses amplitudes are all very
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Figure 5.15: DetectorBank responses to a chirp signal, which starts at 440 Hz
and ends at 466.164 Hz. Again, only the responses with significantly large
amplitude are given the legend.
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Figure 5.16: Average frequency, and the frequency that would be expected
at every sample, calculated using the responses in Figure 5.15.

low. In the case of the data shown in Figure 5.16, the first average frequency

value is 447.837 Hz.5 Disregarding frequency values calculated when the

average amplitude is very low may be one way to fix this problem.

The issue of how to calculate the frequency without the time lag will

be harder to solve, but will be required for a full implementation of the

PitchTracker.

Another potential pitfall is resource usage. It may be possible to design

the PitchTracker in such a way that limits the number of samples to be

analysed to only those values following a result from the band’s OnsetDe-

tector, rather than every sample from the DetectorBank, i.e. only when a

note is present in the band. This should keep additional resource require-

ment to a minimum. Implementing this may require the OnsetDetector to

5To adequately cover this chirp, 30 detectors were placed at 0.922 Hz increments from
half a semitone below 440 Hz to half a semitone above 466.164 Hz. When all weights are
equal, this results in an average of 447.837 Hz.
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be extended to also return note offsets; however, these do not have to be

exact, so could potentially be determined on the segment level in order to

avoid any more intensive sample-by-sample analysis in the OnsetDetector.

It would also need the OnsetDetector to pass detections to the EventDetec-

tor as and when it found them, so the EventDetector can start and stop the

PitchTracker as required.

5.3.3 NoteDetector

Once the PitchTracker is implemented — and improvements made to the

OnsetDetector — they can be combined to make a NoteDetector, in the

manner shown in the UML diagram in Figure 3.19 at the end of Chapter 3.

This design features an object called the EventDetector, which is created to

manage the OnsetDetector and PitchTracker for a given band. A NoteDe-

tector searching for n frequencies will therefore consist of n EventDetectors.

It will then be the NoteDetector’s responsibility to anlayse the events

returned by the EventDetectors and classify them as note onsets, intra-note

events or false positives. The NoteDetector will have information from all

bands available to it simultaneously — unlike the EventDetectors and their

components, which are independent from each other — so will be able to

contextualise an event by comparing it with information from other bands

at the same time.

This should mean the NoteDetector can analyse polyphonic audio files,

as each band’s data is independent from the others.

The classification process could be implemented using statistical meth-

ods like hidden Markov models (Ghahramani 2001), which have been used

before in musicological analysis (Devaney et al. 2011). HMMs can take

into consideration information about expected note-to-note changes (from

melody trajectories or harmonic and rhythmic sequences) or intra-note changes

(like expected pitch changes due to vibrato). Data concerning expected
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melodic or rhythmic patterns has been presented in Huron (2006).

If a sufficiently large data set could be accessed, containing both note

onsets and information about intra-note events, it may possible to use ma-

chine learning to classify events. However, creating such a data set would

be a huge undertaking.

5.4 Summary

This project was established with the aim of developing software which is

capable of simultaneous time-frequency discrimination. This could have

applications in many areas of engineering, but the specific task this software

is developed for is the detection of the onset times of notes in musical audio.

Current algorithms attempting to do this use general signal process-

ing techniques, like looking at spectral changes, and are often implemented

using short-term Fourier (or similar) transforms, with the result that the

time and frequency resolution are constrained by the uncertainty relation,

∆t∆f ≥ 0.5.

However, the auditory system knows no such bounds. Humans are ca-

pable of resolving pitch in millisecond pulses. The just-noticeable difference

for changes in frequency is a fraction of one percent. The loudest tolerable

sounds are a million times louder than the softest detectable ones. These

phenomena occur because of nonlinearities in the auditory system. Small

cells in the cochlea — the outer hair cells — have been found to tune, com-

press and sharpen the response of the auditory system. The mathematical

system which describes the response of the outer hair cells — the Hopf

bifurcation — was chosen as the engine for the software presented here.

The DetectorBank, a bank of nonlinear tuned resonators in software,

each operating at a Hopf bifurcation, succeeded in performing time–frequency

analysis to a better resolution than uncertainty principle would suggest is

possible, as the output signal does not need to be measured simultane-
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ously in both domains. For example, in discussion of the DetectorBank

behaviour at Low frequencies, it was seen that a frequency difference of

1.6 Hz was discriminated in as little as 230 ms. This is 82.5 ms faster than

the minimum time resolution given by the uncertainty relation. In this

case, ∆t∆f = 0.375. This was achieved at the highest sample rate tested,

192 kHz, but investigations of the DetectorBank generally focussed on a

lower sample rate, 48 kHz. At this value, the simultaneous frequency and

time resolutions still exceed the limit, with 1.6 Hz discriminated in 265 ms,

therefore ∆t∆f = 0.433. Again, these values do not contract the uncertainty

principle, as they are not obtained from observing the same signal.

The DetectorBank was then used as the basis for an OnsetDetector. The

basic idea was to do onset detection in two stages: the first should identify

points where a note may have occurred and the second should then analyse

the responses at a greater level of detail to verify or reject the detection.

Several different approaches to stage one were prototyped. The proto-

types were judged not only by the accuracy of results, but by the resources

required. The vast majority of samples in the input do not correspond to

note onsets; we want to determine whether a time period is worth investi-

gating in more detail, without wasting resources.

Once again, a phenomenon from the auditory system was adopted in the

design of the software. In audiology, the basilar membrane can be modelled

as a series of overlapping filters, known as critical bands. This idea was

modified for use here. Given a centre frequency, an OnsetDetector constructs

a band of detectors up to half a semitone above and below this, with the

spacing between each determined by the detector bandwidth.

The method chosen for stage one of onset detection regards the Detec-

torBank output in short segments. By taking the mean of the log of each

detector’s output at every sample, a block containing 20 ms of samples from

k detectors can be reduced to a single number. The pattern of these values
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(‘segment mean logs’) is then analysed, using two simple rules: (i) has the

mean log been increasing for at least N consecutive segments? and (ii) is

the end of this increasing run greater than a given threshold? If both of

these are true, stage two of the OnsetDetector can then be started.

Stage two involves backtracking to find the point at which the detectors

began to respond. This is done by comparing the a value with the mean log

of the N preceding values, and iterating backwards throughout the samples

until the point at which the response began to rise has been found.

This was then honed, to increase the accuracy of the results returned. In

doing so, one more condition was added to stage one of the OnsetDetector:

the requirement that the run of values has increased by a significant amount.

This condition reduced the number of false positive detections that occur

within a note. However, these detections are only classed as errors because

there is no data against which to check them. With this condition removed,

the OnsetDetector may perform well on a data set that contains information

about the changes within notes, as well as their onset times.

The OnsetDetector was tested using a repository of samples of individual

notes recorded on a variety of instruments. Although this uses a different

data set, these results can be compared with the current state-of-the-art

algorithms tested by MIREX. The OnsetDetector results were broadly con-

sistent with the other algorithms across various instrument classes, with the

results for brass and arco strings comparing particularly well.

The results of the tests using the University of Iowa repository of musical

instrument samples are promising, but more work is needed to improve the

onset detection. It may also be the case that new recordings are required

for the guitar samples — which exhibited large DC offsets — and the string

and woodwind instruments, where it was hypothesised that there may be a

significant delay in the establishment of sympathetic resonance between the

bow or reed and string or air in the instrument, resulting in low amplitude
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vibration which is inaudible to listeners, but could be picked up by the

DetectorBank.

Additionally, expanding data set to include information about intra-note

events would be required to test the OnsetDetector thoroughly.

Apart from using a more comprehensive data set, improving the thresh-

olding technique may be the most effective way of reducing both false neg-

atives and false positives in the OnsetDetector results.

It may also be possible to create a PitchTracker which operates on the

same data as the OnsetDetector, using the method outlined in Section 5.3.2

above.

These two objects — the OnsetDetector and the PitchTracker — can

then be brought together to create a NoteDetector capable of detecting not

only the onset time and pitch of a note, but continuous pitch data and

multiple event times of notes sounding simultaneously at different pitches,

at a resolution impossible for algorithms that rely on Fourier transforms or

similar techniques.
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Code extract syntax

The code extracts in this thesis are written in Python. Python is a high-level

language, which — when augmented with comments — should be human-

readable. However, for any readers unaware of basic programming syntax,

a brief explanation is given here.

Comments

All text that appears after a # in a line is a comment and will be ignored

by the program.

Operators

The operator = assigns a value to a variable: read it as ‘becomes equal to’

rather than ‘is equal to’. To test whether one variable is equal to another,

== is used.

The syntax a += b is a shorthand for a = a + b. Similar shorthand

also exists for subtraction (-=), division (/=) and multiplication (*=).

The operators <, <=, > and >= mean less than, less than or equal to,

greater than and greater than or equal to respectively.

215
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Control flow

for and while loops will execute a portion of code repeatedly. Code ex-

tract A.1 demonstrates a simple while loop: the code inside the loop (the

indented lines) will keep executing until the condition it is given is false —

in this case, when i is no longer less than 10.

1 # create a variable 'i', initially 0
2 i = 0
3 # while i is less than 10...
4 while i < 10:
5 # ...increment i
6 i += 1
7 # display the current value of i
8 print(i)

Code Extract A.1: while loop

This example — simply incrementing a variable until it reaches a given

value — could also have be written using a for loop and the range keyword.

1 for i in range(10):
2 print(i)

Code Extract A.2: for loop

Here, for creates a variable i, which takes a different value every time round

the loop (in this case, every value from zero up to 10).

if and else statements are also used for control flow. If the condition

after if is not met, its contents are not executed; if an else statement is

supplied, that will be executed. elif is a shorthand for else if and is

used when an initial if condition is not met and you want to test another.

1 if a == b:
2 print('a is equal to b')
3 elif a < b:
4 print('a is less than b')
5 else:
6 print('a is greater than b')

Code Extract A.3: if-else statement
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Functions

Lines of code can be grouped together into functions. The syntax for calling

a function is result = func(arg) where arg is an input to the function

func and the output will be assigned to the variable result.

Lists

Square brackets [] are used to create and access lists. New values can be

added to a list with the append method.

1 lst = [] # make an empty list
2 # add values to the end of the list
3 for i in range(5):
4 lst.append(i)
5 first = lst[0] # access the first value
6 last = lst[-1] # access the last value

Code Extract A.4: Lists
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Appendix B

Test audio scores

When testing the OnsetDetector (see Chapter 3), the following short musical

extracts were used. Details of these extracts can be found in Table 3.1,

reproduced here for convenience.

Table B.1: Reproduction of Table 3.1: Test audio details

Title Instrument Note range Freq. range
Dream a Little
Dream of Me Digital piano D4–B4 293.7 Hz–493.8 Hz

Alice Digital piano F3–A♭4 174.6 Hz–415.3 Hz
Swan Lake excerpt 1 Digital piano G1–F♯2 49.0 Hz–92.5 Hz
Swan Lake excerpt 2 Digital piano B2–C♯4 123.5 Hz–277.2 Hz

Before All Things Soprano voice F4–A♭5 349.2 Hz–830.6 Hz

 

Dream a Little Dream of Me

Fabian Andre and Wilbur Schwandt
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Appendix C

Numerical Methods

This chapter presents the two numerical methods provided as options when

using the DetectorBank, as detailed in 2.1.2.

C.1 Foruth order Runge-Kutta

The Runge-Kutta method uses approximations to the gradient of the curve

to find the solution to a first-order differential equation (James 2011).

The first order Runge-Kutta method (which is the same as Euler’s method

and the forward-difference approximation) uses only one approximation of

the slope.

The widely-used fourth order Runge-Kutta uses four approximations of

the curve within a certain step-size (see Figure C.1).

To find the solution to dy/dt = f(y, t), with a known initial condition

223
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y

t0 t+ h
2 t+ ht

yn

yn+1

k0

k1
k2

k3

Figure C.1: Fourth Order Runge-Kutta: the solution of dy/dt can be ap-
proximated by combining the slopes at four points: k0, k1, k2 and k3.

y(t0) = y0, the following slope approximations

k0 = f(y0, t0) (C.1a)

k1 = f

(
y0 + k0

h

2
, t0 + h

2

)
(C.1b)

k2 = f

(
y0 + k1

h

2
, t0 + h

2

)
(C.1c)

k3 = f

(
y0 + k2h, t0 + h

)
(C.1d)

can be combined to find y(t0 + h):

y(t0 + h) = y0 + h

6

(
k0 + 2k1 + 2k2 + k3

)
(C.2)

When calculating f(y, t) in a sampled-time system, the step-size, h, used

to find t values is not the same as that used to find y. For t, the smallest

time increment possible is one sample, so h becomes two samples. For y, h

is the length of time taken for two samples, denoted 2δ.

Therefore, for a discrete-time system with a sampling frequency of 1/δHz,
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Table C.1: Table of variables in Code Extracts C.1 and C.2 and their equiv-
alent physical value.

Variable Quantity
mu Distance from bifurcation point, µ
w0 Detector frequency, ω0
b First Lyapunov coefficient, b
sr Sample rate, fs

d Damping factor

the solution to dy/dt = f(y, t) at sample n is:

k0 = f(yn, n− 2) (C.3a)

k1 = f(yn + k0δ, n− 1) (C.3b)

k2 = f(yn + k1δ, n− 1) (C.3c)

k3 = f(yn + k22δ, n) (C.3d)

∴ yn+1 = yn + δ

3

(
k0 + 2k1 + 2k2 + k3

)
(C.3e)

Code Extract C.1, provides the core of an RK4Detector. The function

dzdt() calculates the output of the Hopf bifurcation, as given in Equa-

tion (1.34), for a given single z value (denoted u), where the forcing is the

input, x, at sample t. dzdt() is called by the process() function, which

takes the input array, x, and returns an array of the resulting z values, z,

according to the procedure in Equation (C.3).

The process() function also introduces the damping factor, d, to the

equation. This — and the sample duration, 1/sr — scale the output. The

effect of this will be discussed in Section 2.2.6.

Table C.1 lists the variables included in this Code Extract with the

mathematical values they represent.

The complete implementation, which can be accessed in the project’s

Git repository, provides RK4Detector as a class, where the values of mu, w0,
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b, sr and d are class members available to the dzdt() method; in Code

Extract C.1 they are assumed to be global variables.

1 def dzdt(u, t):
2 # Implement Hopf equation
3 return (mu+1j*w0) * u + b * abs(u*u) * u + x[t]
4
5 def process(x):
6
7 # Use the NumPy module for Python to make an array
8 # for storing the output, initialised with zeros
9 # This array is be the same size as the input, len(x),

10 # and it will be storing complex numbers
11 z = numpy.zeros(len(x), dtype=complex)
12
13 # Start at index 2 because we need two previous
14 # x and z values to calculate the next
15 # Initially, the previous z values are zero
16 for n in range(2,len(z)):
17
18 # Do the four Runge-Kutta steps
19 u0 = z[n-2]
20 k0 = dzdt(u0, n-2)
21
22 u1 = u0 + k0 * 1/sr
23 k1 = dzdt(u1, n-1)
24
25 u2 = u0 + k1 * 1/sr
26 k2 = dzdt(u2, n-1)
27
28 u3 = u0 + k2 * 2/sr
29 k3 = dzdt(u3, n)
30
31 # Combine the intermediate values to get z
32 z[n] = u0 + (k0+2*k1+2*k2+k3) / (3*sr) * (1-d)
33
34 return z

Code Extract C.1: Skeleton RK4Detector

C.2 Central difference approximation

The backward-, forward- and central-difference approximations can easily be

derived from the Taylor series expansion of a first order derivative (Smith
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1965).

The central-difference approximation

y′(x) = 1
2h

(
y(x+ h) − y(x− h)

)
(C.4)

can be written in discretized form as:

y′(x) = 1
2δ

(
y[n+ 1] − y[n− 1]

)
(C.5)

where δ is the sample time.

Code Extract C.2 provides an implementation of Equation C.5, akin to

Code Extract C.1. The variables used are those listed in Table C.1 and the

function dzdt() is the same in both Code Extracts.

1 def dzdt(u, t):
2 # Implement Hopf equation
3 return (mu+1j*w0) * u + b * abs(u*u) * u + x[t]
4
5 def process(x):
6
7 # Make empty array where output will be stored
8 z = numpy.zeros(len(x), dtype=complex)
9

10 # Again, we start at index 2 because we need 2
11 # previous samples to calculate the next.
12 for n in range(2,len(z)):
13
14 # Get value from Hopf equation
15 dz = dzdt(z[n-1], n-1)
16 # Put into central difference approximation
17 z[n] = (dz * 2/sr + z[n-2]) * (1-d)
18
19 return z

Code Extract C.2: Skeleton CDDetector
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Appendix D

Multiple simultaneous

frequencies

As discussed in Section 1.5.1, residue pitch, combination tones and difference

tones are frequencies that are perceived when multiple tones are presented

simultaneously, despite being absent from the stimulus.

When a series of harmonics are presented without the fundamental, this

missing frequency is often heard by a listener. This is known as a residue

pitch. To test whether the DetectorBank is susceptible to this phenomenon,

a series of tones were generated and overlaid, starting at 500 Hz and increas-

ing in steps of 250 Hz up to a maximum frequency of 2 kHz. A DetectorBank

was constructed with detectors at each of these frequencies, as well as the

missing fundamental frequency, 250 Hz.

Figure D.1 shows the responses. The detectors tuned to 500–2000 Hz

respond; the detector tuned to 250 Hz does not. Therefore, residue pitches

are not detected by the DetectorBank.

When two tones are presented at frequencies f1 and f2, combination

tones can occur at frequencies given by f1 −k(f2 −f1), where k is an integer.

A difference tone, at f1 − f2, may also be heard.

This was tested by generating tones at 1 kHz and 1.5 kHz. Detectors

229
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Figure D.1: Responses to tones generated at 500–2000 Hz and presented
simultaneously. If the DetectorBank detected the residue pitch, we would
expect the detector at 250 Hz to react along with the others. It does not.
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Figure D.2: Responses to tones generated at 1 kHz and 1.5 kHz, with detec-
tors tuned to a range of frequencies found by combining these values. Only
the detectors at 1 kHz and 1.5 kHz respond.
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were tuned to these frequencies, along with the difference frequency 500 Hz

and the combination frequencies for k = [1 . . 5]. The results of this are

plotted in Figure D.2. The detectors tuned to the frequencies present in the

input respond; the others do not.

These tests were carried out using minimum bandwidth detectors; the

same results were seen when the bandwidth was increased.

It is clear from these tests that the nonlinearity of the system does not

give rise to spurious results at frequencies not present in the stimulus.



Appendix E

Frequency shifting

As stated in Section 2.2.3, frequency-shifted versions of the input signal are

generated by creating a double sideband signal and subtracting a version of

the signal which has been phase shifted at all frequencies.

The Hilbert transform shifts a signal by π/2 at all frequencies; there-

fore it is therefore a useful component in signal processing applications

(Van Trees 2001).

This chapter provides a summary of the Hilbert transform theory (Sec-

tion E.1), derivation (Section E.2), and application to frequency shifting

(Section E.3).

E.1 Hilbert transform theory

The spectral characteristics of a real signal are well known: the real part

of the spectrum is symmetrical around zero; the imaginary part is anti-

symmetrical. For complex signals, no such symmetry conditions exist. Com-

plex signals which have no negative part are known as analytic signals.

The Hilbert transform is a fundamental feature of analytic signals, as it

provides the relationship between the real and imaginary parts of the signal:

the imaginary part is the Hilbert transform of the real part.

233



234 APPENDIX E. FREQUENCY SHIFTING

E.2 Hilbert transform derivation

E.2.1 Hilbert transform of a real variable

Following the procedures of Debnath (1995), we can say that the Hilbert

transform of a function f(t) is

fH(x) = 1
π

∮ ∞

−∞

f(t)
t− x

dt (E.1)

where x is real.

By introducing the function

g(x) =
√

2
π

− 1
x


equation (E.1) can be rewritten as

fH(x) = 1
2π

∫ ∞

−∞
f(t)g(x− t) dt (E.2)

The convolution theorem tells us that convolution in the time domain is

equivalent to multiplication in frequency, so applying the Fourier transform

to equation (E.2) yields

FH(ω) = F (ω)G(ω) (E.3)

where G(ω) = j sgn(ω).

E.2.2 Hilbert transform of a complex variable

Section E.2.1 introduced the Hilbert transform of a real variable x. Deriva-

tion of the Hilbert transform in the complex plane follows many of the same
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steps, starting from a complex function f0 of a complex variable z = x+ jy

f0(z) = 1
π

∮ ∞

−∞

f(t)
t− z

dt, y > 0 (E.4)

This can be expressed as a convolution

f0(z) = 1
2π

∫ ∞

−∞
f(t)g(z − t) dt (E.5)

where

g(z) =
√

2
π

− 1
z


Again, the convolution theorem tells us

F0(ω) = F (ω)G(ω) (E.6)

To find G(ω) we must take the Fourier transform of g(z − t)

G(ω) =
√

2
π

∫ ∞

−∞
− 1
x+ jy

e−jωx dx (E.7)

Given F(t− t0) = F (ω)e−jωt0 and F(1/πt) = −j sgn(ω), we can say

G(ω) = j sgn(ω)e−ωy (E.8)

An analytic signal has no negative part, so the desired frequency response

must be

H(ω) =

 0 ω < 0

1 ω > 0
(E.9)

or equivalently

H(ω) = 1 + sgn(ω)
2

(E.10)

Substituting (E.8) and (E.10) into equation (E.6) gives the Fourier trans-
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form of (E.4)

F0(ω) = 2je−ωyH(ω)F (ω) (E.11)

E.3 Frequency shifter implementation

The Hilbert transform can be thought of as a filter with the transfer function

H(jω) =



−j, ω > 0

0, ω = 0

j, ω < 0

(E.12)

Three methods of implementing the Hilbert transform will be discussed

here: Fast Fourier transform (FFT), finite impulse response filter (FIR) and

infinite impulse response filter (IIR).

E.3.1 Fast Fourier transform

As mentioned in Section E.1, an analytic signal is a complex signal with no

negative part. For a given input signal, the analytic signal can be generated

by taking the Fourier transform, removing the negative frequencies, then

taking the inverse Fourier transform. The real part of the resulting (ana-

lytic signal) is the original input signal; the imaginary part is its Hilbert

transform.

For example, using the NumPy module in Python, the Hilbert transform

of a signal can be found thus:

1 h = numpy.fft.fft(signal)
2 h[1:len(signal)//2 + 1] *= 2
3 h[len(signal)//2 + 1:] = 0
4 analytic = numpy.fft.ifft(h)
5 hilbert = analytic.imag

Code Extract E.1: Hilbert transform via FFT
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x[n]
z−1 z−1 z−1

h[0] h[1] h[2] h[3]
y[n]

Figure E.1: Four tap FIR filter

Note that the positive frequencies above DC are scaled up by a factor of

two, to preserve the total energy in the signal.

Due to the problems associated with entropic uncertainty, discussed in

Section 1.4.4 of this thesis, FFT-based implementations are not suitable

for realtime processing or other applications which require short buffers of

samples. FIR or IIR solutions should be used instead.

E.3.2 FIR filters

As seen in Section E.2, equation (E.1) can be rewritten as

fH(x) = 1
2π

∫ ∞

−∞
f(t)g(x− t) dt (E.13)

This is simply a convolution of f(t) and g(t), so can be implemented using

an FIR filter, as shown in Figure E.1, with input signal f(t) and convolution

kernel which follows the shape of g(t). Setting every other value is set to

zero, results in a Type III filter, rather than Type IV (Romero & Dolecek

2012). Figure E.2 shows the kernel generated for an FIR of length 19. A

Blackman window has been applied to the kernel.

Although FIR Hilbert transformers are guaranteed to have linear phase

and to be stable, this implementation is not perfect: the convolution kernel

must be symmetrical around t = 0, so there will be a time shift of half

the kernel length (samples). Given this, it is desirable to use as short a

kernel as possible. Empirical investigation suggests very short kernels give

good results. For example, Figure E.3 shows the output of single sideband
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Figure E.2: FIR kernel

modulation, implemented using FIRs. The sample rate used here is 48 kHz

and results are shown for (a) 13 tap, and (b) 15 tap FIRs, which correspond

to time shifts of 0.15 ms and 0.17 ms respectively. It can be seen that when

the kernel length is 13, the spike at 20 kHz (an artifact of sampling, which

has also been modulated down) reaches a maximum of 50 dB below the

frequencies of interest; raising the kernel length by only two taps eliminates

the spike.

Code extract E.2 provides an implementation of the Hilbert transform

through FIRs.
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(b) 15 tap FIR

Figure E.3: Power spectral density curves showing a signal generated at
12 kHz (blue) and modulated down to 4 kHz (orange), where the FIR Hilbert
transformer is used in the frequency shifter.
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1 from math import cos, pi
2 import numpy as np
3
4 def window(n, N):
5 """ Return nth from a Blackman window of size N """
6 a0 = 0.42
7 a1 = 0.5
8 a2 = 0.08
9 return a0 - a1*cos(2*pi*n/(N-1)) + a2*cos(4*pi*n/(N-1))

10
11
12 def makeKernel(FIRlength):
13 """ Return windowed kernel """
14 N = 2*((FIRlength+1)//4)
15 kernel = [-(cos(n*pi)-1)/(n*pi) * window(m, N)
16 for m, n in enumerate(range(-N+1, N, 2))]
17 return kernel
18
19
20 def hilbert(x, FIRlength):
21 """ Return Hilbert transform of signal x """
22
23 # empty array to be filled
24 h = np.zeros(len(x))
25
26 kernel = makeKernel(FIRlength)
27
28 halfklen = FIRlength//2
29 # Offset kernel one sample if the 0s aren't in the
30 # right place
31 koffset = 1 if halfklen == len(kernel) else 0
32
33 # shift by halfken to start from 0 time
34 for n in range(halfklen, len(x)+halfklen-1):
35
36 # kmin can't be -ve
37 kmin = max(n-(FIRlength-1), 0) + koffset
38 # kmax can't be longer than signal
39 kmax = min(n, len(x)-1) + koffset
40
41 # sum signal and kernel at current sample number
42 for k in range(kmin, kmax-1, 2):
43 h[n-halfklen] += x[k] * kernel[(n-k)//2]
44
45 return h

Code Extract E.2: Python implementation of a Hilbert transformer via an
FIR filter
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E.3.3 Infinite Impulse Response filters

IIR filters can also be used to obtain a Hilbert transform Ansari (1987).

However, IIR Hilbert transformers perform a phase approximation: exact

linear phase is not guaranteed. The advantage of IIR over FIR filters is

cost: IIRs only require two delay steps and two multipliers to implement in

hardware.

E.3.4 FFT vs FIR Hilbert transformers

The Hilbert transform was used to shift input signals, as discussed in Section

2.2.3. In most circumstances, the FFT and FIR implementations do not

noticeable differ in their outputs. However, when testing shifting of very low

frequencies, the effects of windowing and the FIR length became apparent.

Figure E.4 shows the responses of five 1 Hz-spaced detectors to a 10 Hz

sine wave, generated at 48 kHz and lasting for 1 second. The responses show

small oscillations.

If the signal is modulated up to 110 Hz using the fast Fourier trans-

form (Figure E.5a), the responses are smooth, although the shape of the

neighbouring responses is somewhat distorted. This is very similar to those

obtained when a tone is generated directly at that frequency, which can be

seen in many of the figures shown in Chapter 2.

When the same signal is modulated using an FIR filter, as shown in

Figure E.5b, the shape of the responses remains the same: the oscillations

are still present.

These oscillations are at twice the input frequency, in this case 20 Hz.

1200 samples would be required to represent 20 Hz at sample rate of 48 kHz.

The FIR length used here is 19 samples. This means the FIR has no effect

on these oscillations.



242 APPENDIX E. FREQUENCY SHIFTING

0.0 0.5 1.0 1.5 2.0
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

|z|

Detector freq.
8 Hz
9 Hz
10 Hz
11 Hz
12 Hz

Figure E.4: Unmodulated responses of five 1 Hz-spaced detectors to a 10 Hz
sine wave.
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Figure E.5: Responses generated when the signal used in Figure E.4 is
shifted up by 100 Hz, implemented with (a) FFT, (b) FIR filter.
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Glossary of scientific terms

AbstractDetector Detector base class, derived classes of which provide

different methods of solving the Hopf bifurcation. 52

aggregation Term from UML, describing a relationship where a child class

can exist independently of the parent, in contrast to a composition.

52

band A band in the NoteDetector refers to a set of detectors tuned to

frequencies that would be perceived as the same pitch. As described

in Section 3.1.2, bands were based on the phenomenon of critical bands

in the auditory system, and are sometimes referred to as such in this

thesis. 108, 142, 204, 246

bifurcation Changes in a system’s topology that occur when a parameter

passes through a critical value. 43

cochlea Part of the inner ear in which frequency and time perception oc-

curs. 39, 91

composition Term from UML, describing a relationship where a child class

cannot exist without the parent. 245

critical band In audiology, the basilar membrane is often modelled as a

series of overlapping bandpass filters. A critical band refers to one of

these rectangular filters. This concept was used in the OnsetDetector

245
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development; when the term ‘critical band’ appears in this thesis, it

refers to these OnsetDetector bands, unless otherwise stated. 41, 105,

119, 133, 149, 190, 212, 245

damping factor Damping applied to a detector. 55, 225

detector Object which implements a Hopf bifurcation using either the

Runge-Kutta or central difference methods. 51, 97, 142, 245–247

DetectorBank Object for managing multiple detectors, which all take the

same input and are tuned to different frequencies. Chapter 2 presents

a detailed investigation into the characteristics of the DetectorBank

under different conditions. 18, 51, 97, 149, 211, 246, 247

DetectorCache Object which stores, at most, the N most recent samples

of DetectorBank output in order to keep memory requirement to a

minimum. 53, 98, 149

embarassingly parallel A term for a problem that can easily be split into

parallel tasks. 52, 246

frequency Rate of repetition of a pattern in a signal. 8, 247

Hopf bifurcation Term that describes emergence of periodic solutions as

a parameter passes a critical point. Section 1.5.2 presents the Hopf

bifurcation in detail. 42, 51, 211, 245, 246

multithreading Distributing tasks to be run on multiple CPUs on a pro-

cessor simultaneosly. This can hugely speed up execution time, par-

ticularly if the program is embarassingly parallel. 52, 144

NoteDetector Object for using both an OnsetDetector and a PitchTracker

to identify notes in musical audio. A UML diagram showing the struc-

ture of a NoteDetector and its components is given in Figure 3.19. 97
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Nyquist rate The Nyquist theorem states that to represent a signal of

bandwidth BHz, it must be sampled at a frequency of at least 2BHz.

This minimum sampling frequency is known as the Nyquist rate. 21,

31, 95

OnsetDetector Object for finding the onset times of note and intra-note

events in musical audio, the design and implementation of which is

detailed in Chatper 3. 18, 41, 145, 212, 245, 246

period The duration of one repetition of pattern a signal. For a given

frequency, f , the period is T = 1/f . 12, 43, 60, 250

search normalisation Method of frequency normalisation employed in the

DetectorBank which searches for the input frequency for a given de-

tector’s response is optimal and adjusts the detector’s characteristic

frequency accordingly. 54, 70

support The support of a signal refers to the places at which it is non-zero.

37, 38

topology The study of geometrical properties which are unchanged after

undergoing deformation or distortion. 43, 245

UML The Unified Modelling Language, UML, is a graphical system for

describing the structure, interactions and uses of objects in software.

98, 245, 246

uncertainty principle Discussed briefly in Section 1.4.4, the uncertainty

principle states that it is impossible for a pair of properties of a func-

tion to be simultaneously sharply located. In signal processing, the

pair of properties are time and frequency: increasing the time reso-

lution, ∆t, necessarily reduces the frequency resolution, ∆f , and vice

versa, in accordance with the relation ∆t∆f ≥ 1/2. 51, 95, 211
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Glossary of musical terms

arco Term for playing a string instrument with a bow. 145, 151

attack Initial period in the waveform of a note, in which the amplitude is

increasing rapidly to its maximum. 9, 21, 181

bowed The technique of sounding a note by pulling a bow across the instru-

ment. Most commonly used on string instruments, but vibraphones

and saws can also be bowed. 4, 182, 249, 250

EDO This stands for equal divisions of the ocatve, and refers to a scale in

which the fundamental frequency of each note increases by a constant

factor. In 12 EDO music, this factor is 21/12. 23, 32

glissando Musical technique of sliding from one note to another. 8, 145

intonation A musician’s pitch accuracy. 5, 190

melisma Feature of vocal music where one syllable is sung over several

notes. 13

monophony Monophonic music features no more than one note sounding

at a time and is the opposite of polyphonic. 124, 250

octave Relation between notes that corresponds to the doubling of the

fundamental frequency. Note names, like A4, refer to both the pitch

249
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class and the octave number, where the octave numbers start from

zero. Octave number wrap around at each C. Middle C is C4. 148

ornament Musical technique of ‘decorating’ notes in a melody, for example

trills, mordents and turns. 8

pitch The perception of a note’s position in a scale. 8, 249

pitch class Note name from A, B, C, D, E, F, G. 7, 8, 104, 249

pitched A pitched sound contains periodic elements, so has a perceived

pitch to which an equivalent note name can be assigned. 5

pizzicato Plucked, as opposed to bowed, strings. 145, 151

polyphony Polyphonic music features multiple note sounding simultane-

ously. See also monophonic music. 210, 249

roll Percussion technique of repeating a note quickly to produce a sustained

sound. 145

transient The portion of sound at the beginning of a note, when the signal

is changing rapidly and pitch has not yet been established. 5, 9, 21

unpitched An unpitched sound does not contain periodic elements, so a

pitch cannot be assigned. However, unpitched sounds can still per-

ceived as having a relative pitch ‘height’, i.e. high or low (for example,

the toms in a drum kit). 5

vibrato Musical technique of fluctuating the pitch of a sustained note. 8,

145, 151



Discography

Berio, Luciano (2012), Good Night, with Wim Van Hasselt, trumpet, on On

The Road, Channel, CCSSA31811, CD/digital download.

Dixon, Michael H. (2011), A Hundred Valleys, Stephen Altoft, trumpet,

recorded April 2010, on The Yasser Collection, Microtonal Projects, CD.

Dove, Jonathan (2014), Ariel: No. 2. I boarded the King’s ship, Claire

Booth, soprano, on All You Who Sleep Tonight: Song Cycles, Naxos,

8.573080, CD/digital download.

Grebtschenko, Alexander (2011), Bye Bye, Stephen Altoft, trumpet, recorded

July 2011, on The Yasser Collection, Microtonal Projects, CD.

Hair, Graham (2013), Songs from the Turkish, Frances Morrison-Allen,

soprano, private recordings from session of Music from 3 Continents,

Ravello, RR7877.

Knussen, Oliver (2011), Four Late Poems and an Epigram of Rainer Maria

Rilke, with Lisa Saffer, soprano, on Concerto for Orchestra/Océan de

terre, Virgin Classics, 0963542, CD/digital download.

Ligeti, György (2008), The Big Turtle Fanfare from the South China Sea,

Peter Masseurs, trumpet, on The Ligeti Project, Warner Classics & Jazz,

2564 69673-5, CD.
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Parsons, Michael (2011), Melody in 19-division tuning, Stephen Altoft,

trumpet, recorded April 2008, on The Yasser Collection, Microtonal

Projects, CD.

Reich, Gottfried (1996), Fanfare Abblasen, Chip Davis, trumpet, on Holiday

Musik, American Gramaphone, AG 296-2, CD/digital download.
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