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Abstract—Verification of the cache hierarchy in modern SoCs 
due to the large state space requires a huge amount of complex 
tests. To cover the entire state space of the cache memory 
hierarchy graph model is proposed. The generation of tests based 
on this model, whose vertices (V) are the set of states (tags, 
values, etc.) of each cache and the edges (E) are the many 
transitions between states (instructions for reading, writing). 
Thus a graph model is constructed that describes all the states of 
the cache memory hierarchy. Each edge in the graph is a 
separate verification sequence. Vector-block operation with 
memory is provided. The approach described in the paper 
showed a good result when checking the hierarchy of the multi-
port cache memory of the developed kernel with the new vector 
VLIW DSP architecture, revealing several architectural and 
functional errors. Further, this approach will be applied to test 
other processor cores and their blocks. 

Keywords—automatic test generation; testing of the processor's 
cache; verification of heterogeneous system-on-chip; cache 
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I. INTRODUCTION 

One of the most important trends in the development of 
modern microelectronics due to a decrease in the technological 
process of semiconductor production and an increase in the 
degree of integration of microcircuits is an increase in the 
performance of computer systems by increasing heterogeneity 
which has led to the emergence of new classes of processors, 
such as networks and systems (SoC) on a chip. Multicore 
heterogeneous computing systems on a chip consist of general-
purpose cores and specialized computing cores with different 
architectures. This is due primarily to the well-known 
advantages of using different types of processors to perform 
individual classes of tasks [1]-[3]. 

One of the decisive factors affecting the performance of 
computing systems is the required time to complete one 
memory access operation [4] since the processor clock speed is 
an order of magnitude higher than the memory frequency. It 
should also be borne in mind that the time of interaction with 
memory is subject to the influence of other access operations, 
is limited by the capacity of the signal bandwidth, and is 
determined by the volume and architecture of the memory 
subsystem. 

The cache replacement policy or caching algorithm is the 
main design parameter of any memory hierarchy. The 
effectiveness of the replacement policy affects both the 
frequency of access and the delay in access to the cache 
system. The higher the associativity of the cache, the more 
important the cache algorithm becomes. There are a large 
number of replacement policies, and each of them represents a 
compromise between the frequency of calls, cost (in terms of 
the required hardware resources) and performance: least used 
(LRU), most recently used (MRU), PseudoLRU, least used 
(LFU) and many others. The following are the details of the 
LRU policy since the case study presented in Chapter 2 uses a 
cache that implements this replacement policy. The LRU cache 
algorithm is aimed at reducing the cache loss rate in 
associative-multiple caches by replacing a block that has not 
been used for the longest when cache loss occurs. The 
replacement logic should also update the correct ordering 
among the elements of the block on each cache access based on 
their time in the cache, regardless of access to the cache causes 
a hit or miss. 

Currently, in highly computing systems, which include 
SoCs, a hierarchical memory consisting of several levels is 
used to organize the most effective, in terms of time, access to 
memory; these are most often registers, instruction and data 
cache memory, temporary buffers for address translation, 
RAM, virtual and hard drives [5]. The hierarchy is formed 
according to the principle - the higher the level, the faster the 
speed of access to it, and the memory size is less, since high-
speed memory is quite expensive, in terms of hardware costs is 
space on the chip, so its volume cannot be large. This approach 
becomes effective if the data is stored in a memory hierarchy in 
order of frequency of their use. 

At the current stage of development of microelectronics, 
product design takes place at the level of RTL-description of 
SF blocks. Design is a multi-stage process. Due to the 
architectural complexity of modern multi-core processors used 
in developing systems on a chip, more than sixty percent of 
design resources are spent on their verification. This is due to 
the high combinatorial complexity of verifying the correct 
operation of both individual cores and the system as a whole, 



 
 

so functional verification becomes one of the most important 
stages in the design of SoCs. 

In modern SoCs, including heterogeneous ones, the cache 
hierarchy is one of the most architecturally complex blocks in 
the memory subsystem due to the huge number of its functional 
state states. It is necessary to develop a huge number of 
verification sequences, sort through a large number of states to 
perform a full functional check of such complexity units. 
Modern formal verification algorithms have an exponential 
dependence on the complexity of their development on the size 
and complexity of the subsystems and blocks to which they are 
applied. Formal algorithms are usually applied to small blocks 
or subsystems (ALU, MMU, or TLB) or to individual 
computational properties of the kernel, which are easy to 
localize [6]. In addition, in order to develop a complete set of 
all kinds of tests, it is necessary to spend large time resources, 
which is impossible within the framework of the modern 
design route. Therefore, it is necessary to automate the 
development of formal tests, which is a non-trivial task. Thus, 
dynamic verification is still one of the main methods for 
checking any processor unit, including the cache hierarchy of 
computing cores. However, the task of automating the creation 
of verification sequences for a full check of the processor core 
and the creation of new tools for verifying the correct operation 
of multinuclear structures remains relevant. 

Test generators have long served as the main tool for 
covering computational cores with tests [7]-[9]. The 
development of modern generators of verification sequences 
with the generation of edge and critical situations for the cache 
requires a lot of time since the size of the space of functional 
states of the hierarchy of the multiport cache is about 1016. 
Different architecture and coherence protocols make it difficult 
to transfer developed generators and tools to new projects. 
Another limiting factor is the time required to run the test 
sequences, as the modeling of modern SoCs is growing. 
Therefore, the verification test generator to achieve the 
required coverage should consist of a sequence of a minimum 
number of simulation instructions. When generating, it is also 
necessary to take into account the global space of functional 
states of the entire system, i.e., it is necessary to create 
situations that are rudimentary for working with all the blocks 
and subsystems of the processor. An example of such a 
functional state can be the execution of a given combination of 
program control commands in parallel with the execution of 
cache access instructions that conflict with each other when 
accessing the cache line. A random stream of simulation 
instructions constructs such a state over the years of simulation. 
Directional manual tests may not reach the boundary state at 
all, since the verifier may not put such an algorithm into the 
patterns of their behavior. 

The verification of the cache hierarchy and coherence 
protocols, including the development of effective algorithms 
and methods for generating tests, is considered in many 
scientific papers [3]-[6]. These works are devoted to a deep 
study of individual methods for generating stressful situations 
for cache memory, which indicates the need for research in this 
direction. 

The proposed methods for constructing a graph model of a 
multi-port cache hierarchy for generating test sequences, within 
the framework of the current study, will improve technical and 
economic indicators about systems already developed on the 
market [6], [7], [9]. 

The technical and economic characteristics of the 
verification process depend on the quality and efficiency of the 
test generation algorithms. Therefore, the urgent problem is the 
need to increase the completeness of the test coverage and 
speed up the verification process of the cache hierarchy of 
heterogeneous multicore structures. 

II. RELATED WORK 

The cache memory of heterogeneous SoC is an 
intermediate fast buffer with the most frequently used data 
from less high-speed types of memory. In this part of paper 
verification sequences with the generation of edge and critical 
situations generating based on the graph model of the hierarchy 
of the multiport cache memory is described. 

To cover all states from functional space of the hierarchy of 
the multiport cache, a graph model building according to the 
following rules is suggested:  

• G is the directed graph model (Fig. 1), G = (V, E) 
(classic definition); 

• V = {v1, v2, … vn} – is the set of vertices – hierarchy 
of the multiport cache functional state (level, tags, 
values of the ways, etc.); 

• |V| depends on the configuration of the memory 
subsystem;  

• E = {e1, e2, … en} – is the set of edges – instructions of 
cache memory hierarchy accessing for writing and 
reading; 

• |E| depends on the configuration of the memory 
subsystem (in described model |E| = 5); 

• V ∩ E = �. f : vi � f(vi), vi+1 = f(vi), where f ∈ E. 

Graph model (G) built according to the rules above for one 
level of cache hierarchy with only one channel, 4 ways, LRU 
policy and |E| = 2 consists of about 108 vertices. 

Now we need to define a Labeled Transition System (LTS) 
is a state/transition graph. States in this graph model don’t 
provide information except for the changes in states. The 
information is represented in the labels (actions or transitions). 
Theoretically, we use an LTS for generating verification 
sequences of metalanguage instructions. 

Theoretical definition an LTS is the directed graph model G 
= (V, E, T, v0), where: 

• V = {v1, v2, ... vn} – is the set of vertices – hierarchy of 
the multiport cache functional state (level, tags, values 
of the ways, etc.); 

• |V| depends on the configuration of the memory 
subsystem;  



 
 

• E = {e1, e2, … en} – is the set of edges – instructions of 
cache memory hierarchy accessing for writing and 
reading; 

• |E| depends on the configuration of the memory 
subsystem (in described model |E| = 5); 

• T ⊆ V × E × V – is the conversion relations set; 

• v0 ∈ V is the initial state, v0 ∈ V; 

• V ∩ E = ∅ . f : vi ↦  f(vi), vi+1 = f(vi), where f ∈ E. 

• T – transitions set; 

• ti - ⟨ vi, ej, vi + 1⟨ , ti ∈ T; 

• fi(vi) → vi + 1) means that the graph model has 
transitioned from state vi to state vi+1 by applying the 
edge ei; 

• L = {L1, L2, L3}, where Li – level in cache memory 
hierarchy; 

• C = {c1, c2 ... cn} – value from cache line (used for 
comparing); 

• H = {G0 ∪ G1 ∪ ... ∪ Gn}, where n = count (L), the 
subgraphs (hi) of which are the graphs G of each cache 
level; 

• S = {s1, s2 ... sn}, where si = {ei, ek, ej}, ei, ek, ej ∈ E 
is the set of transition sequences; 

• P = {p1, p2 ... pn} – set of the cache extrusion 
strategies; 

• updated(H, si): vi↦  updated(vi), vi + 1 = updated(vi), 
where si ∈ S is the transition function of the entire 
cache hierarchy to the next state. 

 
Fig. 1.  Graph example. 

Fig. 1 shows an example of an LTS graph model for a 
cache hierarchy consisting of one level containing 1 row with 

LRU policy and 4 ways, where | E | = 2 (memory access 
instructions for reading and writing). 

The graph model for two levels of the cache hierarchy with 
the LRU (4 ways and one channel) substitution policy contains 
about 108 vertices. 

The cache hierarchy of modern heterogeneous structures 
consists of several levels (usually of the order of 2-4). The Li 
cache buffers access the Li + 1 cache. The last level cache is 
the largest, and the data comes from RAM (Random Access 
Memory). Depending on the inclusiveness of the cache, data 
can be located immediately at all levels of the hierarchy, or 
only in one - these types of cache are called inclusive and 
exclusive. When accessing RAM, the processor checks 
whether the required data is in the buffer (without taking into 
account coherence in multi-core structures); if the data is in the 
buffer (getting into the cache), it is taken from the cache. 
Otherwise (lack of cache), one of the data blocks (depending 
on the preemptive policy) contained in the buffer is replaced 
with other data from RAM. 

 
Fig. 2. Algorithm for constructing a graph model of the cache hierarchy. 

In order to cover the entire space of functional states of the 
cache hierarchy, in the proposed paper, we construct the graph 
model H (H = G0 ∪ G1 ∪ ... ∪ Gn), where n = count(Li), the 
subgraphs (hi) of which is the set of graphs (hj = Gj , where Gj 
= {g1, g2, ... gn}) of each cache level and directed edges E is a 
set of transitions (memory access operations for writing and 
reading) between the states of the cache hierarchy. 

When a channel is selected at the cache level from the 
hierarchy, even without taking into account the inclusiveness, a 
non-deterministic situation arises. It will not be possible to 
solve such situations at the level of the graph model, since the 
choice of the channel depends on many situations, including 
memory access from other devices that are not considered in 
the framework of the graph model. Therefore, it is proposed to 
generate a transition in a graph model, i.e., create a separate 
gi ∈ G subgraph for each channel. When comparing the results 
of the RTL model and the alphabet model, check which 
channel was selected and select the appropriate transition, if the 
state of the cache hierarchy after the non-deterministic 
transition ti ∈ T does not correspond to any vertex in 
subgraphs G, it is concluded that the cache memory does not 
work correctly, that is, ∃ gi , ti, where ti ∈ T, gi ⊆ G. The error 
criterion, in this case, is the state that does not correspond to 



 
 

the state in {g0, g1, ..., gn}, where n is the number of channels 
at the corresponding level of the cache hierarchy. 

A test generation technique based on a graph model of the 
cache hierarchy of a multi-core structure with minimal time 
spent on generating test sequences, which allows simulating all 
possible functional states of the memory subsystem is shown in 
Fig. 3. Fig. 2 shows the graph model construction algorithm. 
Each test sequence is a transition (edge) in the graph model (for 
example red edge on Fig. 1) of the cache hierarchy of the 
multi-core structure H. Accordingly, to generate verification 
sequences, the graph model of the cache hierarchy G is 
bypassed - enumeration of all edges of the graph H. 

The methodology for generating verification tests consists 
of generating corresponding meta-language instructions in a 
graph model. First, a standard sequence is generated, consisting 
of a metalanguage instruction that transfers the memory 
subsystem to the necessary state (without making all the 
transitions in the graph model to save time during modeling). 
Next, a sequence is created consisting of instructions 
corresponding to the checked transition in the graph model. 
The instructions that correspond to the edges in the set E are 
written in conditional metalanguage to go to a higher level of 
abstraction, which allows you to untie the generation of 
verification tests from a specific processor architecture or 
structure. It is only necessary to implement a translator of 
metalanguage to a specific assembler or environment 
commands. Such an approach provides the possibility of 
transferring the generator developed as part of this work to 
other projects, including those with a completely different 
architecture of computing cores. 

 
Fig. 3. Test generation technique. 

The metalanguage contains two instructions for working 
with memory - read (read) and write (write). If necessary, 
within the framework of the architecture being tested, you can 
implement a translator in assembler or test environment 
commands with support for vector memory accesses. As was 
done as part of the current work to check the hierarchy of the 
cache memory of a multiprocessor SoC, consisting of several 
ARM, MIPS cores, and its implementation of VLIW DSP with 
a new architecture, it is a translator with support for no more 
than 16 vector memory accesses. 

III. CONCLUSION 

The approach, using the developed methods and algorithms 
for verifying the hierarchy of multi-port memory caches, 
allows increasing the completeness of the test coverage of the 
code of RTL models with minimal time spent on generating 
test sequences, as well as to model all possible functional states 
of the memory subsystem. Fig. 4 shows test coverage 
comparing with other approaches.  

The reliability of the methods and algorithms developed as 
part of the study is confirmed by evaluation criteria, theoretical 
calculations and their good convergence with computer 
modeling using verified models of the cache hierarchy, as well 
as experimental results obtained using the test generation 
system for verifying the vector VLIW DSP processor with the 
new architecture. 

 
Fig. 4. Comparing with other approaches. 

 
Fig. 5. Test coverage. 

As a quality metric, a metric developed by Cadence was 
chosen, which is based on measuring the test coverage of code, 
blocks, expressions, and signals of the RTL model (Fig. 5). 

The created software tool allowed: 

• identify 12 architectural and functional errors in 
verifying the cache link of the developed vector VLIW 
DSP core with the new architecture, as well as find 



 
 

errors in the core itself and stand-alone cache memory 
environments; 

• 30% reduction in the time needed to verify autonomous 
cache environments; 

• significantly reduce the time of formation of test 
sequences, as well as quantities; 

• reach 90% of the test coverage of the RTL model code. 

In the future, it is planned to apply this approach to verify 
other processor cores. 
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