
 Glyndŵr University Research Online

Conference Paper

Development of an approach to automatic test generation based on
the graph model of a cache hierarchy

Garashchenko, A.V., Gagarina, L.G., Kyaw Zaw Ye, Dorogova, E. and Kochneva, M.

This is a paper presented at the 2020 IEEE Conf. of Russian Young Researchers in Electrical
and Electronic Engineering, Moscow, Russia, 27-30 Jan. 2020

Copyright of the author(s). Reproduced here with their permission and the permission of the
conference organisers.

Recommended citation:

Garashchenko, A.V., Gagarina, L.G., Kyaw Zaw Ye, Dorogova, E. and Kochneva, M. (2020)
‘Development of an approach to automatic test generation based on the graph model of a cache
hierarchy’. In: Proc. 2020 IEEE Conf. of Russian Young Researchers in Electrical and Electronic
Engineering, Moscow, Russia, 27-30 Jan. 2020, pp. 1940-1944. doi:
10.1109/EIConRus49466.2020.9039334

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/323052757?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 978-1-7281-5761-0/20/$31.00 ©2020 IEEE

Development of an Approach to Automatic Test
Generation Based on the Graph Model of a Cache

Hierarchy

Anton V. Garashchenko1, Larisa G. Gagarina2,
Kyaw Zaw Ye, Ekaterina Dorogova

National Research University of Electronic Technology
Moscow, Russia

1ant.gar1@mail.ru; 2gagar@bk.ru

Maria Kochneva
Faculty of Art, Science and Technology

Wrexham Glyndwr University
Plas Coch, Mold Road, Wrexham, LL11 2AW, UK

Abstract—Verification of the cache hierarchy in modern SoCs
due to the large state space requires a huge amount of complex
tests. To cover the entire state space of the cache memory
hierarchy graph model is proposed. The generation of tests based
on this model, whose vertices (V) are the set of states (tags,
values, etc.) of each cache and the edges (E) are the many
transitions between states (instructions for reading, writing).
Thus a graph model is constructed that describes all the states of
the cache memory hierarchy. Each edge in the graph is a
separate verification sequence. Vector-block operation with
memory is provided. The approach described in the paper
showed a good result when checking the hierarchy of the multi-
port cache memory of the developed kernel with the new vector
VLIW DSP architecture, revealing several architectural and
functional errors. Further, this approach will be applied to test
other processor cores and their blocks.

Keywords—automatic test generation; testing of the processor's
cache; verification of heterogeneous system-on-chip; cache
verification

I. INTRODUCTION

One of the most important trends in the development of
modern microelectronics due to a decrease in the technological
process of semiconductor production and an increase in the
degree of integration of microcircuits is an increase in the
performance of computer systems by increasing heterogeneity
which has led to the emergence of new classes of processors,
such as networks and systems (SoC) on a chip. Multicore
heterogeneous computing systems on a chip consist of general-
purpose cores and specialized computing cores with different
architectures. This is due primarily to the well-known
advantages of using different types of processors to perform
individual classes of tasks [1]-[3].

One of the decisive factors affecting the performance of
computing systems is the required time to complete one
memory access operation [4] since the processor clock speed is
an order of magnitude higher than the memory frequency. It
should also be borne in mind that the time of interaction with
memory is subject to the influence of other access operations,
is limited by the capacity of the signal bandwidth, and is
determined by the volume and architecture of the memory
subsystem.

The cache replacement policy or caching algorithm is the
main design parameter of any memory hierarchy. The
effectiveness of the replacement policy affects both the
frequency of access and the delay in access to the cache
system. The higher the associativity of the cache, the more
important the cache algorithm becomes. There are a large
number of replacement policies, and each of them represents a
compromise between the frequency of calls, cost (in terms of
the required hardware resources) and performance: least used
(LRU), most recently used (MRU), PseudoLRU, least used
(LFU) and many others. The following are the details of the
LRU policy since the case study presented in Chapter 2 uses a
cache that implements this replacement policy. The LRU cache
algorithm is aimed at reducing the cache loss rate in
associative-multiple caches by replacing a block that has not
been used for the longest when cache loss occurs. The
replacement logic should also update the correct ordering
among the elements of the block on each cache access based on
their time in the cache, regardless of access to the cache causes
a hit or miss.

Currently, in highly computing systems, which include
SoCs, a hierarchical memory consisting of several levels is
used to organize the most effective, in terms of time, access to
memory; these are most often registers, instruction and data
cache memory, temporary buffers for address translation,
RAM, virtual and hard drives [5]. The hierarchy is formed
according to the principle - the higher the level, the faster the
speed of access to it, and the memory size is less, since high-
speed memory is quite expensive, in terms of hardware costs is
space on the chip, so its volume cannot be large. This approach
becomes effective if the data is stored in a memory hierarchy in
order of frequency of their use.

At the current stage of development of microelectronics,
product design takes place at the level of RTL-description of
SF blocks. Design is a multi-stage process. Due to the
architectural complexity of modern multi-core processors used
in developing systems on a chip, more than sixty percent of
design resources are spent on their verification. This is due to
the high combinatorial complexity of verifying the correct
operation of both individual cores and the system as a whole,

so functional verification becomes one of the most important
stages in the design of SoCs.

In modern SoCs, including heterogeneous ones, the cache
hierarchy is one of the most architecturally complex blocks in
the memory subsystem due to the huge number of its functional
state states. It is necessary to develop a huge number of
verification sequences, sort through a large number of states to
perform a full functional check of such complexity units.
Modern formal verification algorithms have an exponential
dependence on the complexity of their development on the size
and complexity of the subsystems and blocks to which they are
applied. Formal algorithms are usually applied to small blocks
or subsystems (ALU, MMU, or TLB) or to individual
computational properties of the kernel, which are easy to
localize [6]. In addition, in order to develop a complete set of
all kinds of tests, it is necessary to spend large time resources,
which is impossible within the framework of the modern
design route. Therefore, it is necessary to automate the
development of formal tests, which is a non-trivial task. Thus,
dynamic verification is still one of the main methods for
checking any processor unit, including the cache hierarchy of
computing cores. However, the task of automating the creation
of verification sequences for a full check of the processor core
and the creation of new tools for verifying the correct operation
of multinuclear structures remains relevant.

Test generators have long served as the main tool for
covering computational cores with tests [7]-[9]. The
development of modern generators of verification sequences
with the generation of edge and critical situations for the cache
requires a lot of time since the size of the space of functional
states of the hierarchy of the multiport cache is about 1016.
Different architecture and coherence protocols make it difficult
to transfer developed generators and tools to new projects.
Another limiting factor is the time required to run the test
sequences, as the modeling of modern SoCs is growing.
Therefore, the verification test generator to achieve the
required coverage should consist of a sequence of a minimum
number of simulation instructions. When generating, it is also
necessary to take into account the global space of functional
states of the entire system, i.e., it is necessary to create
situations that are rudimentary for working with all the blocks
and subsystems of the processor. An example of such a
functional state can be the execution of a given combination of
program control commands in parallel with the execution of
cache access instructions that conflict with each other when
accessing the cache line. A random stream of simulation
instructions constructs such a state over the years of simulation.
Directional manual tests may not reach the boundary state at
all, since the verifier may not put such an algorithm into the
patterns of their behavior.

The verification of the cache hierarchy and coherence
protocols, including the development of effective algorithms
and methods for generating tests, is considered in many
scientific papers [3]-[6]. These works are devoted to a deep
study of individual methods for generating stressful situations
for cache memory, which indicates the need for research in this
direction.

The proposed methods for constructing a graph model of a
multi-port cache hierarchy for generating test sequences, within
the framework of the current study, will improve technical and
economic indicators about systems already developed on the
market [6], [7], [9].

The technical and economic characteristics of the
verification process depend on the quality and efficiency of the
test generation algorithms. Therefore, the urgent problem is the
need to increase the completeness of the test coverage and
speed up the verification process of the cache hierarchy of
heterogeneous multicore structures.

II. RELATED WORK

The cache memory of heterogeneous SoC is an
intermediate fast buffer with the most frequently used data
from less high-speed types of memory. In this part of paper
verification sequences with the generation of edge and critical
situations generating based on the graph model of the hierarchy
of the multiport cache memory is described.

To cover all states from functional space of the hierarchy of
the multiport cache, a graph model building according to the
following rules is suggested:

• G is the directed graph model (Fig. 1), G = (V, E)
(classic definition);

• V = {v1, v2, … vn} – is the set of vertices – hierarchy
of the multiport cache functional state (level, tags,
values of the ways, etc.);

• |V| depends on the configuration of the memory
subsystem;

• E = {e1, e2, … en} – is the set of edges – instructions of
cache memory hierarchy accessing for writing and
reading;

• |E| depends on the configuration of the memory
subsystem (in described model |E| = 5);

• V ∩ E = �. f : vi � f(vi), vi+1 = f(vi), where f ∈ E.

Graph model (G) built according to the rules above for one
level of cache hierarchy with only one channel, 4 ways, LRU
policy and |E| = 2 consists of about 108 vertices.

Now we need to define a Labeled Transition System (LTS)
is a state/transition graph. States in this graph model don’t
provide information except for the changes in states. The
information is represented in the labels (actions or transitions).
Theoretically, we use an LTS for generating verification
sequences of metalanguage instructions.

Theoretical definition an LTS is the directed graph model G
= (V, E, T, v0), where:

• V = {v1, v2, ... vn} – is the set of vertices – hierarchy of
the multiport cache functional state (level, tags, values
of the ways, etc.);

• |V| depends on the configuration of the memory
subsystem;

• E = {e1, e2, … en} – is the set of edges – instructions of
cache memory hierarchy accessing for writing and
reading;

• |E| depends on the configuration of the memory
subsystem (in described model |E| = 5);

• T ⊆ V × E × V – is the conversion relations set;

• v0 ∈ V is the initial state, v0 ∈ V;

• V ∩ E = ∅ . f : vi ↦ f(vi), vi+1 = f(vi), where f ∈ E.

• T – transitions set;

• ti - ⟨ vi, ej, vi + 1⟨ , ti ∈ T;

• fi(vi) → vi + 1) means that the graph model has
transitioned from state vi to state vi+1 by applying the
edge ei;

• L = {L1, L2, L3}, where Li – level in cache memory
hierarchy;

• C = {c1, c2 ... cn} – value from cache line (used for
comparing);

• H = {G0 ∪ G1 ∪ ... ∪ Gn}, where n = count (L), the
subgraphs (hi) of which are the graphs G of each cache
level;

• S = {s1, s2 ... sn}, where si = {ei, ek, ej}, ei, ek, ej ∈ E
is the set of transition sequences;

• P = {p1, p2 ... pn} – set of the cache extrusion
strategies;

• updated(H, si): vi↦ updated(vi), vi + 1 = updated(vi),
where si ∈ S is the transition function of the entire
cache hierarchy to the next state.

Fig. 1. Graph example.

Fig. 1 shows an example of an LTS graph model for a
cache hierarchy consisting of one level containing 1 row with

LRU policy and 4 ways, where | E | = 2 (memory access
instructions for reading and writing).

The graph model for two levels of the cache hierarchy with
the LRU (4 ways and one channel) substitution policy contains
about 108 vertices.

The cache hierarchy of modern heterogeneous structures
consists of several levels (usually of the order of 2-4). The Li
cache buffers access the Li + 1 cache. The last level cache is
the largest, and the data comes from RAM (Random Access
Memory). Depending on the inclusiveness of the cache, data
can be located immediately at all levels of the hierarchy, or
only in one - these types of cache are called inclusive and
exclusive. When accessing RAM, the processor checks
whether the required data is in the buffer (without taking into
account coherence in multi-core structures); if the data is in the
buffer (getting into the cache), it is taken from the cache.
Otherwise (lack of cache), one of the data blocks (depending
on the preemptive policy) contained in the buffer is replaced
with other data from RAM.

Fig. 2. Algorithm for constructing a graph model of the cache hierarchy.

In order to cover the entire space of functional states of the
cache hierarchy, in the proposed paper, we construct the graph
model H (H = G0 ∪ G1 ∪ ... ∪ Gn), where n = count(Li), the
subgraphs (hi) of which is the set of graphs (hj = Gj , where Gj
= {g1, g2, ... gn}) of each cache level and directed edges E is a
set of transitions (memory access operations for writing and
reading) between the states of the cache hierarchy.

When a channel is selected at the cache level from the
hierarchy, even without taking into account the inclusiveness, a
non-deterministic situation arises. It will not be possible to
solve such situations at the level of the graph model, since the
choice of the channel depends on many situations, including
memory access from other devices that are not considered in
the framework of the graph model. Therefore, it is proposed to
generate a transition in a graph model, i.e., create a separate
gi ∈ G subgraph for each channel. When comparing the results
of the RTL model and the alphabet model, check which
channel was selected and select the appropriate transition, if the
state of the cache hierarchy after the non-deterministic
transition ti ∈ T does not correspond to any vertex in
subgraphs G, it is concluded that the cache memory does not
work correctly, that is, ∃ gi , ti, where ti ∈ T, gi ⊆ G. The error
criterion, in this case, is the state that does not correspond to

the state in {g0, g1, ..., gn}, where n is the number of channels
at the corresponding level of the cache hierarchy.

A test generation technique based on a graph model of the
cache hierarchy of a multi-core structure with minimal time
spent on generating test sequences, which allows simulating all
possible functional states of the memory subsystem is shown in
Fig. 3. Fig. 2 shows the graph model construction algorithm.
Each test sequence is a transition (edge) in the graph model (for
example red edge on Fig. 1) of the cache hierarchy of the
multi-core structure H. Accordingly, to generate verification
sequences, the graph model of the cache hierarchy G is
bypassed - enumeration of all edges of the graph H.

The methodology for generating verification tests consists
of generating corresponding meta-language instructions in a
graph model. First, a standard sequence is generated, consisting
of a metalanguage instruction that transfers the memory
subsystem to the necessary state (without making all the
transitions in the graph model to save time during modeling).
Next, a sequence is created consisting of instructions
corresponding to the checked transition in the graph model.
The instructions that correspond to the edges in the set E are
written in conditional metalanguage to go to a higher level of
abstraction, which allows you to untie the generation of
verification tests from a specific processor architecture or
structure. It is only necessary to implement a translator of
metalanguage to a specific assembler or environment
commands. Such an approach provides the possibility of
transferring the generator developed as part of this work to
other projects, including those with a completely different
architecture of computing cores.

Fig. 3. Test generation technique.

The metalanguage contains two instructions for working
with memory - read (read) and write (write). If necessary,
within the framework of the architecture being tested, you can
implement a translator in assembler or test environment
commands with support for vector memory accesses. As was
done as part of the current work to check the hierarchy of the
cache memory of a multiprocessor SoC, consisting of several
ARM, MIPS cores, and its implementation of VLIW DSP with
a new architecture, it is a translator with support for no more
than 16 vector memory accesses.

III. CONCLUSION

The approach, using the developed methods and algorithms
for verifying the hierarchy of multi-port memory caches,
allows increasing the completeness of the test coverage of the
code of RTL models with minimal time spent on generating
test sequences, as well as to model all possible functional states
of the memory subsystem. Fig. 4 shows test coverage
comparing with other approaches.

The reliability of the methods and algorithms developed as
part of the study is confirmed by evaluation criteria, theoretical
calculations and their good convergence with computer
modeling using verified models of the cache hierarchy, as well
as experimental results obtained using the test generation
system for verifying the vector VLIW DSP processor with the
new architecture.

Fig. 4. Comparing with other approaches.

Fig. 5. Test coverage.

As a quality metric, a metric developed by Cadence was
chosen, which is based on measuring the test coverage of code,
blocks, expressions, and signals of the RTL model (Fig. 5).

The created software tool allowed:

• identify 12 architectural and functional errors in
verifying the cache link of the developed vector VLIW
DSP core with the new architecture, as well as find

errors in the core itself and stand-alone cache memory
environments;

• 30% reduction in the time needed to verify autonomous
cache environments;

• significantly reduce the time of formation of test
sequences, as well as quantities;

• reach 90% of the test coverage of the RTL model code.

In the future, it is planned to apply this approach to verify
other processor cores.

REFERENCES
[1] H. Zhao, X. Jia, and T. Watanabe, “Router-integrated cache hierarchy

design for highly parallel computing in efficient CMP systems,”
Electronics, vol. 8, no. 11, arcticle 1363, Nov. 2019.

[2] A. Basak, X. Hu, S. Li, S.M. Oh, and Y. Xie, “Exploring core and cache
hierarchy bottlenecks in graph processing workloads,” IEEE Computer
Architecture Letters, vol. 17, no. 2, pp. 197-200, 2018.

[3] R. Garibotti, L. Ost, A. Butko, R. Reis, A. Gamatie, and G. Sassatelli,
“Exploiting memory allocations in clusterised many-core architectures,”

IET Computers & Digital Techniques, vol. 13, no. 4, pp. 302-311, July
2019.

[4] A. Garashchenko, A. Nikolaev, F. Putrya, S. Sardaryan, “System of
combined specialized test generators for a new generation of VLIW DSP
processors with Elcore50 architecture,” Problems of Developing
Promising Micro- and Nanoelectronic Systems, no. 2, pp. 9-15, 2018.

[5] A. Garashchenko, L. Gagarina, E. Fedotova, A. Vysochkin, and V.
Zaitsev, “Development of a verification test generator for multi-nuclear
structures,” Informatization and Communication, no. 4, pp. 20-25, 2017.

[6] F. Putrya, “The use of random program generators and random
background effects in the functional verification of multicore systems on
a chip,” in Proc. 7th Int. Conf. Computer-aided Design of Discrete
Systems, 16-17 Nov. 2010, Minsk, Belarus, pp. 234-241.

[7] K. Gurin, A. Meshkov, A. Sergin, M. Yakusheva, “Memory architecture
development in the «Elbrus» series computer models,” Radioelectronics
Questions, ser. EVT, no. 3, pp. 62-70, 2010.

[8] L.G. Gagarina, A.V. Garashchenko, A.P. Shiryaev, A.R. Fedorov, and
E.G. Dorogova, “An approach to automatic test generation for
verification of microprocessor cores,” in Proc. 2018 IEEE Conf. of
Russian Young Researchers in Electrical and Electronic Engineering, 29
Jan. – 1 Feb. 2018, Moscow, Russia, pp. 1490-1491.

[9] B. Greene, and M. McDaniel, “The Cortex-A15 verification story,”
DVClub, 7 Dec. 2011, Austin, USA, pp. 1-7.

