
Durham E-Theses

Evolutionary computation based on nanocomposite

training: application to data classi�cation

VISSOL-GAUDIN, ELEONORE,GABRIELLE,BLANCH

How to cite:

VISSOL-GAUDIN, ELEONORE,GABRIELLE,BLANCH (2020) Evolutionary computation based on

nanocomposite training: application to data classi�cation, Durham theses, Durham University. Available at
Durham E-Theses Online: http://etheses.dur.ac.uk/13563/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

http://www.dur.ac.uk
http://etheses.dur.ac.uk/13563/
 http://etheses.dur.ac.uk/13563/ 
htt://etheses.dur.ac.uk/policies/


Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

2

http://etheses.dur.ac.uk


Evolutionary computation based on

nanocomposite training: application to

data classification

Eleonore Gabrielle Blanche Vissol-Gaudin

A Thesis submitted in fulfillment of

requirements for the degree of Doctor of Philosophy

Advanced Materials, Electronics and Communications Research Challenge

Department of Engineering

Faculty of Science

Durham University

March 2020

https://www.dur.ac.uk/research/directory/staff/?mode=staff&id=14732
http://www.dur.ac.uk/engineering/research/groups/ngmm
http://www.dur.ac.uk/engineering/
https://www.dur.ac.uk/science.faculty/
http://www.dur.ac.uk


i

Dedicated to Richard Wainwright (1940-2019)



ii

Evolutionary computation based on

nanocomposite training: application to

data classification

Eléonore Gabrielle Blanche Vissol-Gaudin

Submitted in fulfillment of requirements for the degree of

Doctor of Philosophy

Abstract

Research into novel materials and computation frameworks by-passing the limitations

of the current paradigm, has been identified as crucial for the development of the next

generation of computing technology. Within this context, evolution in materio (EiM)

proposes an approach where evolutionary algorithms (EAs) are used to explore and ex-

ploit the properties of un-configured materials until they reach a state where they can

perform a computational task. Following an EiM approach, this thesis demonstrates the

ability of EAs to evolve dynamic nanocomposites into data classifiers. Material-based

computation is treated as an optimisation problem with a hybrid search space consisting

of configuration voltages creating an electric field applied to the material, and the infinite

space of possible states the material can reach in response to this field. In a first set of

investigations, two different algorithms, differential evolution (DE) and particle swarm

optimisation (PSO), are used to evolve single-walled carbon nanotube (SWCNT) / liquid

crystal (LC) composites capable of classifying artificial, two-dimensional, binary linear

and non-linear separable and merged datasets at low SWCNT concentrations. The dif-

ference in search behaviour between the two algorithms is found to affect differently

the composite’ state during training, which in turn affects the accuracy, consistency and

generalisation of evolved solutions. SWCNT/LC processors are also able to scale to

complex, real-life classification problems. Crucially, results suggest that problem com-

plexity influences the properties of the processors. For more complex problems, net-

works of SWCNT structures tend to form within the composite, creating stable devices

requiring no configuration voltages to classify data, and with computational capabilities

that can be recovered more than several hours after training. A method of programming

the dynamic composites is demonstrated, based on the re-application of sequences of

configuration voltages which have produced good quality SWCNT/LC classifiers. A

second set of investigations aims at exploiting the properties presented by the dynamic

nanocomposites, whilst also providing a means for evolved device encapsulation, mak-

ing their use easier in out-of-the lab applications. Novel composites based on SWCNTs

dispersed in one-part UV-cure epoxies are introduced. Results obtained with these com-

posites support their choice for use in subsequent EiM research. A final discussion is

concerned with evolving an electro-biological processor and a memristive processor.

Overall, the work reported in the thesis suggests that dynamic nanocomposites present

a number of unexpected, potentially attractive properties not found in other materials

investigated in the context of EiM.
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Introduction
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Evolution in materio (EiM) is a field of research within the context of unconventional

computing (UC), where evolutionary algorithms (EAs) are used to explore and exploit

the properties of materials, with the aim of solving computational problems. EiM has

demonstrated the ability to solve a number of computational problems of varying com-

plexity following a different approach to that followed using conventional computers.

Since most EiM research has been based on experimental implementations rather than

models, only few algorithm / material combinations have been studied extensively. The

work presented here introduces new materials and algorithms, based on the hypothesis

that a better understanding of the impact of the latter on the former might provide means

for optimising EiM, or lead to the discovery of advantages of EiM over conventional

computing techniques. In all experiments reported, materials were evolved with the aim

of transforming them into devices able to classify data.

1.1 Context

The question of how to create a machine able to compute raises a number of addi-

tional questions such as what is computation, to what level is a machine computing,

and whether computation implemented in machines can represent, or are a good repre-

sentation of, the processes occurring in the brain. The first modern attempts at solving

these questions include work by Babbage, Lovelace [1], Zuse [2] and Turing [3]. In each

case, both a means of representing problems and a machine in which to implement the

solver of this problem were proposed. In other words, these early works aimed at au-

tomating computation by means of machines, with the aim of replicating the process of
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thought. Turing’s abstract model of computation first presented in Computable Numbers

[4, 5], had three main advantages. It is universal, ie: any Turing computable problem can

be solved by a Turing machine. It is material-independent, i.e. it can be realised in any

medium presenting two well-defined distinct states, in other words, acting as a transistor.

Finally, the computational power of Turing machines (their ability to solve a problem)

is, ideally, only limited by the time is takes to flip between the two distinct states and

to transfer information between each transistor, if more than one is involved. The com-

putational power is therefore dependent on the size of the hardware and the ability of

the user of a Turing machine to transform a problem into its simplest Turing-computable

form. This theory of computation and implementation, along with the work undertaken

by Von Neumann [6], has enabled the development of the technology that has become

ubiquitous in the XXIst century.

The current impact of this technology (personal computers, smartphones, etc) on

society can be assessed in terms of global use of computing technologies. It has been es-

timated in 2017 that across the globe, 46.9% of households have a computer and 48.6%

individuals use the internet [7, 8]. In addition to personal use, the number and scale of

applications requiring advanced computing technology is ever increasing. A large area

of research is focusing on the automation of medical data analysis [9, 10]. Other areas

include security [11], smart cities [12–14] and autonomous vehicles [15]. These devel-

opments have been made possible by constant increases in computer speed, accuracy

and efficiency, resulting primarily from reductions in the size, at constant cost, of the

computer’s basic element: the silicon-based transistors [16]. As predicted by Moore’s

‘law’ [17] in the 1970s, the last 40 years have seen a near exponential growth in the

number of transistors that can be built on a chip, for the same or reduced cost. This

has led to important improvements in conventional electronic technologies. The latest

metal-oxide-semiconductor-field-effect-transistors (MOSFET), building block of most

conventional electronic circuits, have reached 14 nm gate length [18, 19] allowing chips

to contain 1.3 billion transistors. Recent publications also reported the successful pro-

duction of 10 nm [20] and 7 nm [21] technology.

Moore’s law however, is generally accepted to be reaching its limits. The density of

transistors on a chip is now generally accepted to double every 2.5 years whilst the cost

of production is consistently increasing. In addition, the top-down discrete approach
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to computation is currently unable to solve efficiently (at relatively low computational

cost) certain classes of problems such as those involving large non-linear datasets. Fur-

ther developments are constrained by the Turing model’s three main limitations: whilst a

reduction in transistor size increases operational frequency of MOSFETs, and therefore

their speed, it also increases power dissipation, which is a direct relation of the number

of transistors and the power they consume, thereby limiting the number of transistors

than can feasibly be contained within one chip [22]; the fact that the model is mate-

rial independent means that it does not take into account characteristics specific to the

material, resulting in potential loss in efficiency and complexity [23]; finally, a Turing

machine can solve any Turing-computable problem, but some problems might not be

Turing-computable [24, 25].

In order to identify the areas of research that could by-pass these limitations or pro-

vide alternatives to the current technology, international bodies combining academia

and industry have been set up. The international technology roadmap for semicon-

ductors (ITRS), which ran from 1998 to 2015, enabled the development of new tech-

nology such as Fin-field effect transistors (FinFET) [26] and gate-all-around (GAA)

nanowire/nanosheet structures [27] which can replace typical planar silicon transistor

to reach 10 nm and 5 nm scales. In this case, a conventional approach was followed in

the sense that the aim was to obtain devices with optimised performances but with min-

imal changes to the production process and high integration in current technology. The

international roadmap for devices and systems (IRDS) [28], set up in 2017, follows on

the work done by the ITRS but has expanded the focus to include computing frameworks

and systems that deviate from the current conventional paradigm of computation.

1.2 Unconventional Computing and Evolution in Materio

A field of research which focuses on unconventional approaches to the finding of alterna-

tives to the current computing framework and technology is unconventional computing

(UC). It has been defined as a field that “deals with computing and information process-

ing derived from or implemented in physical, chemical and biological systems ”[29].

Neuromorphic, analogue and quantum computing are examples of interesting av-

enues of research within UC. Reviews of the state of the fields and the associated tech-

nology can be found in [30–32]. It must be noted that [30] and [32] date from 2013 and

3



Chapter 1. Introduction

2010, respectively, and might not, therefore present the latest developments. However,

these three areas of research do not constitute the core subject of this Thesis and are only

discussed briefly. On the other hand evolvable hardware (EH) and evolution in materio

(EiM) are described in greater length as they are directly relevant to the investigations.

UC is a relatively new and inter-disciplinary area of research. Consequently, specific

terms employed to describe and define UC concepts in literature vary from author to

author. The terminology employed here is the one found to be the most appropriate and

relevant to the paradigm discussed by the author of this thesis.

1.2.1 Example of Unconventional Computing

Neuromorphic computing is an example of UC which is currently inspired by, rather than

implemented in, biological systems. This alternative framework is based on the current

knowledge of information processing performed in the brain. It has already been used

to solve technological and industrial problems, but remains in the sphere of research.

Neuromorphic operations have been modelled in conventional computers. However,

based on the argument that neuromorphic computing could benefit from running on a

different type of system architecture, the SpiNNaker project [33] has shown that highly

parallel spiking transistors are better suited than conventional transistors for the purpose

of running this type of processes. Other examples of computer architecture developed

specifically for neuromorphic computing and based on silicon technology are the True

North chip [34] and the Loihi research chip [35] developed by IBM and Intel, respec-

tively. Non silicon-based materials have also been proposed as more natural choices to

run neuromorphic operations, such as memristors [36, 37]. Indeed, they present the spik-

ing behaviour characteristic to biological neurons. The main advantage of neuromorphic

computers is that memory and computation are located in the same place. As a result,

the number of components required to perform a given operation is lower, potentially

reducing errors arising from data transfer. However, this is done at the expense of speed.

Analogue computing is another example of UC. In this case, a given physical system

is modelled using a different physical system. This analogue of the original system

follows the same basic working principles (is defined by the same set of equations), but is

easier and/or less costly to implement. Problems in the original system can therefore be

solved by solving their equivalent system analogue [38]. Analogue computing must not
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be confused with analogue electronics, which consists in the use of components such as

linear resistors or capacitors. Whilst the latter can be used to model complex dynamical

systems [39], they are not the only hardware used in this framework. For example, at

the time of the first digital computers, an optical analogue computer was proposed [40].

In this case, the light intensity was considered as a signal analogue, and the response

of a photosensitive substract to this intensity was used to ‘compute’ the two dimension

Fourier transform of a function. More recently, a case of optical analogue computing was

made in [41], where it is argued that some problems with an optical analogue have the

potential of being solved much faster using this paradigm than by simulation in a digital

computer. The fact that analogue computing tends to be material dependent can have

the advantage of use of all available resources provided by the hardware [31]. However,

analogue computers tend to be task-specific and suffer from a lack of consistency or

accuracy in the solution obtained, mainly due to noise [31, 41].

Quantum computing is a well-known example of UC which is inspired by, and im-

plemented in, physical systems. The aim is to exploit the quantum mechanical prop-

erties inherent in materials at small scales, in order to solve computational problems.

This required the development of a new theory of computation, quantum computation,

in addition to new devices that can implement this theory. It is difficult to find a proven

numerical estimate of the percentage increase in speed and efficiency provided by the use

of a quantum computer over a digital one. However, a combination of theoretical proof

and experimental results reported in [42] suggest a clear advantage. Quantum comput-

ers [43] have been simulated in digital computers [44], but quantum computing-specific

hardware has also been successfully developed [45, 46]. Research is still on-going, how-

ever, preliminary results suggest that the potential for errors in reading of the quantum

bit (qubit) increases exponentially with the number of qubit, thereby constituting this

framework’s main limitation [32].

1.2.2 Evolvable Hardware

Evolvable hardware (EH) is another example of UC. EH is concerned with using evolu-

tionary algorithms (EAs) to produce circuit designs in flexible hardware architectures.

EAs are generally population-based heuristic search algorithms [47, 48] which fol-

low the working principles of natural systems. They are also iterative and can involve
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a degree of stochasticity. Well-known EAs include genetic algorithm (GA), for which

a basic iteration is presented in Figure 1.1, evolutionary computing (EC) and differen-

tial evolution (DE). Other algorithms include particle swarm optimisation (PSO) and ant

colony (AC), which belong to swarm intelligence (SI). All have been studied, developed

and applied successfully to varied problems such as travelling salesman, power system

efficiency increase, or financial risk [49–51].

FIGURE 1.1: Simple schematics of the work-flow of a genetic algorithm, with a population of

possible solutions to a computation problem, and the fitness-biassed selection, cross-over and

mutation operations resulting in a new individual in the population

The concept of EH was first proposed by Thompson following a series of experi-

ments reported in [52–54]. In [52], Thompson attempted to create a tone discriminator

circuit out of a field-programmable-gate-array (FPGA) using a genetic algorithm (GA)

[54]. Connections between the FPGA’s components were controlled by the algorithm

which was run for a number of iterations free of constraints such a clock frequency, spe-

cific waveforms, etc. It was observed that the resulting circuit was very different from

one carefully designed using a conventional approach. In addition, it was observed that

the solution selected by the algorithms utilised the components typically considered dig-

ital in an analogue manner. In [54], it was suggested that the feedback provided by the

iterative nature of the stochastic optimisation interacting with the material allowed the

identification of solutions based on the specific FPGA’s properties that were unaccounted

for during the board’s design. In other words, the evolved circuit topologies were influ-

enced by the material making up the hardware components used [23]. The properties of

this hardware were explored by the EAs, making it an experiment in intrinsic evolution

of materials.
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Two EH approaches can be used to tune reconfigurable hardware circuit to perform

specific functions [55]. The extrinsic approach uses a model of the hardware and of

the properties assigned by design to its components to simulate its behaviour during

evolution. The solution obtained is then implemented in the physical device previously

modelled. On the other hand, in the intrinsic approach, evolution is performed directly in

the material that constitues the hardware. The resulting circuit is obtained by exploiting

the physical richness of the materials that compose the electronic components of the

flexible hardware.

Different types of hardware have been used or modelled in EH investigations. Many

are based on the same principle as the FPGA but with variations on the basic compo-

nent, such as field-programmable-transistor-arrays (FPTA), field-programmable-analog-

arrays (FPAAs) or the POEtic device [56]. Interesting applications of EH include the

design of passive filters [57], fault-tolerant systems [58] and data compression [59].

EH has the ability to overcome some limitations of conventional computing such

as fault-tolerance, adaptability and automation of novel design production [52, 59, 60].

However, overcoming these limitations has generally been achieved to the detriment of

speed and simplicity. As for EAs, the main limitation of EH’s is scalability. Investi-

gations have focused on solving this problem (potential solutions have been reported in

[61, 62]), but without making EH competitive compared to conventional techniques. In

addition, whilst the main objective behind EH was to exploit the ability of EAs to make

use of random or potentially unknown properties of hardware, the components used in

the different types of FPGAs were produced, assembled and run in a way that minimises

variations in behaviour. This is a requirement of the conventional computing framework.

However, it constrains the amount of unknown for the EAs to explore.

1.2.3 Evolution in Materio

Arising from the latter discussion, and the results and observations reported by Thomp-

son regarding the intrinsic evolution of FPGAs, a relatively new field has emerged. This

field is referred to as evolution in materio (EiM) after Miller and Downing [63], where

they presented a new kind of flexible hardware architecture, the field programmable

matter array (FPMA) based on a liquid crystal display.
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EiM is a field of UC which aims to bring un-configured physically rich materials to

a computation-inducing state by exploiting their underlying properties. Contrary to tra-

ditional computing with MOSFET technology, where everything is designed, produced

and programmed very carefully, EiM uses a bottom up approach where computation is

performed by the material without having explicit knowledge of its internal properties.

The main difference with EH is that flexible hardware such as FPGAs are replaced by

un-configured material systems, favouring exploitation of their physical properties by

the search algorithms, more specifically evolutionary algorithms (EAs).

EAs perform an iterative search where the material is configured until it reaches a

state where a pre-specified scheme of interaction is uniquely translated as a computation

input/output relationship. Configuration of the material is induced by a combination of

incident signals which are either controlled by an EA through a combination of hardware

and software or independently through the influence of the environment. The physical

implementation of EiM is illustrated in Figure 1.2.

FIGURE 1.2: EiM

A concept similar to EiM can be found in early work of G. Pask [64] concerned

with growing an electrochemical ear. Pask began experiments aiming to create a ma-

chine able to make use of changes in the material during computation, in order to be

more autonomous and flexible. A ferrous sulfate (FeSO2) material was used to create

a problem solving circuit, using a reward driven mechanism not unlike some EAs used

today [64, 65]. Although the aims were to allow the machines to be self-wiring, self-

building and adaptive, the conclusion of the experiment was rather pessimistic, with Pask
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describing the process as “lengthy and inefficient, not unlike natural selection”. The ex-

periments where abandoned. However, natural selection, and more precisely the process

of evolution has been able to create organisms, “biological machines” with a level of

complexity far beyond any conventional computing machine created by humans [63].

Contrary to the FeSO4 experiments, EiM has benefited from the developments of

digital computers and EAs. In [66], Harding and Miller demonstrated a tone discrimi-

nator in liquid crystal (LC), evolved using a genetic algorithm. The same concept was

subsequently applied to evolve logic gates [67] and a robot controller [68]. It was ob-

served that the solutions were not very stable, i.e. deteriorating over time, motivating

search for the identification of other materials that could be more suited for EiM.

The choice of material was not the only consideration. EiM has broad scope, is inter-

disciplinary and can be divided in five inter-dependant dimensions visualised in Figure

1.3: (a) the choice of material used (including the physical properties manipulated for

obtaining a computation), (b) the hardware or electronics used, (c) the computational

problem itself, (d) the formulation of the training problem and (e) optimisation algorithm

used for solving it.

FIGURE 1.3: EiM delineated along five main areas of research

In order to address the different dimensions, a collaboration between five universi-

ties was set up, under the name of the NASCENCE project and funded under the Euro-

pean Union’s seventh Framework Programme for research (FP7). This project resulted

in investigations into different materials, including solid single-walled-carbon-nanotube

(SWCNT) / polymer composites [69–71] and dispersions of metallic nanoparticles [72]
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as well as different computational problems[69, 70] and different algorithms [69]. Re-

search aiming at gaining an understanding of the process was also undertaken [73–75],

along with the development of a hardware platform for EiM: mecobo [76]. Each dimen-

sion of EiM still requires further investigation before it can become widely used as an

alternative, or a complement, to conventional computing/electronic technology.

In the most common version of EiM [77], the iterative process is called material

training, or evolution, and the post training tests which reuse the optimal evolved so-

lution is called verification. This is a relatively common scheme in learning problems

where measurement of generalisation of the solution to new or unseen data is necessary.

Training and verification require the selection of two distinct finite sets of data. Both

consist of known input/output pairs from the computational problem’s domain of defini-

tion and range, respectively. The training process requires the repetitive application of

inputs sent to the material and measurement of the corresponding response. Measured

responses are translated into computation outputs and this allows the definition of an

objective function. Specific physical properties of the material are measured for a given

EiM implementation. The interpretation scheme of the material’s response used for

translating these properties into a computation output is pre-specified and fully known

before the training process starts.

There are two types of incident signals on the material: computation inputs, which

are used to represent the arguments of a computation, and configuration inputs, which

are used for changing the material’s properties. Modulation of the incident signals is

controlled by an optimisation algorithm, which explores the problem’s search space.

The search space itself is a hybrid of the material’s physical state, the hardware used and

the subspace spanned by the independent configuration inputs. Hence, the optimisation

algorithm aims at configuring the material to a particular state by finding the optimal

configuration inputs producing that material state, the response of which can be uniquely

translated into a computation.

Following the classical EiM approach, different algorithms have been used to solve

a variety of computational problems in a number of materials. The tone discriminator

[66], logic gates [67] and evolving robot controllers [68] were evolved in LCs following

this approach. In [69, 78, 79] dry composites of SWCNT/ polymer were implemented
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as the computational material and its electrical conductance was selected as the manipu-

lated property for solving the problem of calculating Boolean functions with a threshold

interpretation scheme; the same material is used in [71] and [80] for solving optimisation

problems. In [81–84] the material investigated, along with its ability to solve classifica-

tion problems, is a SWCNT/LC composite which is in liquid rather than solid state. A

sample of this material is presented in Figure 1.4(a) and the classification error that can

be obtained with this material on a two-dimensional, binary dataset is illustrated in Fig-

ure 1.4(b). Both correspond to the last iteration of the evolutionary process performed

during an EiM experiment, when the material is able to successfully classify the major-

ity of the instances from a dataset. The yellow datapoints have an error of 1, i.e. they

are incorrectly classified, whilst the black dataspoints have an error of 0, i.e. they are

correctly classified. The material and dataset illustrated in the two figures will be further

described in the following chapters. They are provided here to give a visual idea of the

material → error distribution mapping for a classification problem, and to introduce the

images that will be present in the headers and footers from the following chapter. By

flipping through the Thesis, the reader shall be able to visualise the evolution process

(from iteration 0 to 199) in terms of material and error expected during experiments.

iteration 198 error
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FIGURE 1.4: For the final step of an EiM process, a microscope photograph of a sample of

single-walled-carbon-nanotube / liquid crystal composite used in EiM experiments is presented

in (a) and (b) illustrates the resulting sample’s classification of instances from a binary dataset.

A current issue with the classical EiM approach has been the difficulty in solving

complex computational problems and providing competitive solutions compared with
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algorithms run on conventional computers. Each of EiM’s dimensions can be investi-

gated to address this issue. Modifying the problem formulation (fig. 1.3 (d)) is one of

the possible avenue. An example is the combination of the reservoir computing (RC)

framework and EiM [85, 86].

RC was first developed to process outputs of recurrent neural networks (RNN) [87].

Investigations in the field of RC suggest that it is well suited to process outputs from

many dynamical systems [88, 89]. The framework has therefore been implemented in

various real and simulated media [90, 91] Motivations behind the reservoir computing

in materio (RCiM) approach stem from the similarities between EiM and RC’s training

process [88, 92, 93]. They also stem from the fact that both the typical systems contained

in reservoirs and the materials evolved in EiM are complex dynamical systems. Results

reported in [94–96] suggest that the RCiM framework can be more suited for the solving

of computational problems in solid carbon nanotube-based composites than the classical

EiM implementation and in some cases compete with algorithms implemented in silico.

The type of material used in EiM remains another subject for further investigations

[96]. Without the full understanding of the interactions occurring within the materi-

als during training, it is difficult to prove that one material would be better than an-

other within the context of EiM. This leaves the possibility that a material other than

SWCNT/polymer sample, could lead to better computational performance [97]. The

field of EiM could also benefit from exploring the impact of processes underlying the

evolution of the materials into devices able to compute information.

1.3 Research Hypothesis and Thesis Structure

The research hypothesis is that a dynamic state in SWCNT-based composites can pro-

vide an extra layer of complexity as compared to solid SWCNT-based composites and

that this complexity can induce unforeseen advantages to the evolved devices. Investi-

gations aim at furthering the current understanding of the interaction between training

implementation and material within the context of evolution in materio. If an under-

standing is gained, it becomes possible to find new properties in liquid devices evolved

with EiM: reconfigurability, material programming and material memory.

In order to verify the hypothesis, and follow the aim of the investigations, the Thesis

is structured as follows:
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Chapter 2, discusses the different materials proposed as potentially attractive for EiM

and details the process used to fabricate those chosen in the investigations, along with

their electrical characteristics.

Chapter 3 presents a detailed mathematical formulation of the material training and

verification problem, along with a description of the EAs used in experiments and the

hardware implementation.

Chapter 4 reports the first results obtained when training liquid SWCNT/LC compos-

ites to solve synthetic binary computational problems, along with a discussion regarding

the importance of the SWCNTs in the composite and whether an optimal concentration

of nanotube exists. Different EAs are compared and the impact of their search behaviour

on the material state is reported. Finally, implementation parameters are varied in order

to study the dependence of the solutions on the choice of their value.

Chapter 5 reports a discussion regarding the concepts of reproducibility, memory,

programmability and material retraining of the nanotube / liquid-crystal based compos-

ites. A new measure of result confidence is also introduced.

Chapter 6 reports the investigations undertaken in SWCNT-epoxy composites. The

focus lies on the potential advantages presented by this material both liquid (dynamic)

and solid (static) SWCNT-based composites due to the possibility of finding solutions

when the material is in a liquid state, before curing it, effectively encapsulating the

solution. Solution stability and deterioration due to the curing process are reported. As

for other nanotube-based materials, the effect of concentration is discussed.

Chapter 7 introduces more complex classification problems. Comparisons between

results obtained with SWCNT/LCs are compared with those obtained with solid SWCNT-

based devices and in silico classifiers, i.e. classifiers obtained by algorithms running on

silicon-based technology.

Chapter 8 reports preliminary results obtained with microtubules trained to perform

data classification and memristors trained to solve Boolean functions.

Finally, Chapter 9 summarises the work presented in this Thesis, from which con-

clusions are drawn and avenues for future research proposed.
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2.1 General Characteristics

Evolution in materio (EiM) is a field of unconventional computing (UC) where Evolu-

tionary Algorithms (EAs) are used to explore and exploit the properties of materials, with

the aim of transforming them into computing devices. The principles of, and motivations

behind, EiM investigations have been outlined in Chapter 1. This field of research pro-

vides an attractive framework to study the potential for materials other than silicon to be

used in future electronic systems. But which material to choose? Pancomputationalism

argues that any physical system is computing [1], leading to very interesting debates

regarding whether all systems compute, and if so, how [2, 3].

However, testing all existing materials would be impractical, as not all physical sys-

tems can easily be modelled or directly transformed into useful computational devices.

Thus, with the aim of narrowing down investigations, a number of characteristics have

been identified to select attractive materials for EiM. Since EiM is a field inherently

based on experimental research, where implementation constraints must be taken into

consideration, it is argued in [4] that the most necessary requirement directing the choice

of material used in EiM experiments is an ability to transform input signals into measur-

able outputs.
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Further discussion [5], based on Thompson’s field-programmable-gate-array (FPGA)

experiments [6] (Chapter 1), suggests materials need not be configured, such as conven-

tional electronic components, to be used in EiM. It is also suggested that EAs might be

able to explore and exploit unconfigured materials better than conventional electronic

components, as the properties of the materials have not been constrained to perform

specific tasks, thereby potentially reducing the available search space.

Finally, it is suggested that materials presenting a non-linear relationship between

inputs and outputs are good candidates for EiM investigations [4, 7]. This feature in-

creases the space of possible solutions that an algorithm can explore in the search for an

optimum result to computational problems. The level of complexity required for mate-

rials to be used effectively in EiM experiments is discussed in [8] with the conclusion

that it might not be necessary for the material to present highly complex electrical and

mechanical characteristics for complex problems to be solved. Instead, the suitability of

a material, and the level of configuration they need in order to find an optimal solution,

will depend on the in materio computation it is trained to perform.

A number of investigations have focused on formulating a framework to identify

best suited materials for EiM [9] and understanding what happens at the physical level

[10–13]. However, the understanding of the relationship between material properties and

algorithm’s efficiency requires further study. Here, the efficiency is defined in terms of

the size of the population used by the algorithm and the number of iterations required be-

fore a solution is achieved during training, compared to the accuracy obtained as a result

of this training, i.e. closeness to an optimal solution. In the absence of the information

that the understanding of the relationship between material properties and algorithm’s

efficiency would provide, the choice of material was based on empirical results and the

materials were treated as black boxes.

Biological and non-biological materials have been used in EiM and related studies.

Examples of biological materials include bacterial consortia [14] and slime moulds [15].

These materials can be tuned to solve specific problems, such as in [16], where a physar-

ium polycephalum was grown into a model of the Tokyo railway network, with the aim

of demonstrating the ability of the method to solve transport network design optimi-

sation problems. These two types of biological materials can be viewed as dynamical
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systems, with continuous and stochastic non-linear input/output behaviour. This char-

acteristic gives them the potential to be evolved using the EiM framework in order to

produce alternatives to conventional computing hardware. The main limitation to us-

ing biological media for EiM is discussed in [17], where it is argued that the natural

evolution (as opposed to artificial) to which they have been subjected, results in a bias

towards performing tasks that may be unknown or ill-understood. Subsequent evolution

using artificial methods to modify the media’s behaviour would therefore be less likely

to compute information efficiently and accurately.

On the other hand, non-biological media are generally better understood. They

present varying degrees of complexity and have not been tuned by natural evolution

to perform specific tasks. Liquid crystals (LCs) are an example of non-biological media

studied within the EiM framework. LCs from a display screen have been used as the ma-

terial part of EiM for evolving a robot controller [18], a tone discrimination device [19]

and logic gates [20]. In [21–23] a solid composite of Single-Walled Carbon Nanotubes

(SWCNT) dispersed in a polymer was used as the computational material; its electrical

conductivity was used as the manipulated property for solving the problem of calculating

Boolean functions using a threshold interpretation scheme; the same material is used in

[24] and [25] for solving optimisation problems.

This chapter first describes the apparatus used to characterise the properties of the

materials used in the investigations reported in this work. Four are non-biological, three

of which are carbon nanotube composites and the fourth is a memristive device. A bi-

ological substrate, microtubules extracted from bovine brains, has also been used. The

rationale behind the use of the three different SWCNT-based composites and a resistor

array designed as a control sample are detailed in the subsequent discussion, along with

the preparation procedure and characteristics. Discussions related to the preparation and

the electrical characteristics of the memristive device and the microtubules will be pro-

vided in a latter chapter, along with the results regarding their computational response.

A summary of the characteristics the SWCNT-based composites selected is presented in

the last section of this chapter.
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2.2 Gold Micro-Electrode Arrays

2.2.1 Design

Three different electrode designs have been used, depending on the material and whether

it is to be characterised or evolved. These are part of the designs developed during the

NASCENCE project and discussed in [4, 26].

The first design, presented in Figure 2.1(a), is a microelectrode array consisting of

sixteen electrodes patterned on a glass microscope slide. The external contacts’ dimen-

sions are constrained by the edge connectors used in the experimental set up. Each of

these contacts are 2.5 mm wide with 1.5 mm separation in between. In the center of

the slide, the material contacts are 50 µm with 100 µm pitch. The main function of

this electrode array is to provide a means of interacting with the material during EiM

experiments. The number of electrodes is a constraint that directs the choice of tasks to

be investigated as well as the algorithms’ parameters. For example, if a problem is de-

fined by a number of attributes larger than, or very close to, the number of electrodes, it

will not be possible to assign one attribute, configuration input, and output per electrode.

This will make the problem more difficult to solve than if the number of attributes allows

at least one configuration input and one output to each be assigned to an electrode. The

design therefore attempts to maximise the number of electrodes, whilst fitting physical

constraints presented by experimental hardware and material.

The two other designs of electrode arrays, presented in Figure 2.1(b) have been pro-

duced in order to measure the electrical characteristics of the different materials. One

array consists in a pair of electrodes 1 mm wide, separated by a 25 µm gap and de-

posited on 50.8 mm (2 inches) glass wafers. The second consists of four electrodes of 5

µm width and 50 µm central gap deposited on silicon wafers, with a 90◦ angle between

each other.

2.2.2 Fabrication

Wafers and microscope slides were first cleaned with propane-2-ol, acetone, Decon 90

and water following a process detailed in Appendix A. Each electrode array was subse-

quently patterned upon the respective wafer or slide, using etch-back photolithography,

as described below.
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Chapter 2. Materials

(a) (b)

FIGURE 2.1: Electrode pattern for (a) Evolution in Materio experiments and (b) top and bottom,

in-plane electrical characterisation of materials for EiM (not to scale).

Thermal evaporation was used to deposit 10 nm chromium (Cr) layer, followed by a

100 nm gold (Au) uniform layers on the slides or wafers’ surface. The evaporation was

performed by Edwards 306 thermal evaporator in a high vacuum environment (<105

mbar). An Edwards RV12 rotary pump backing an Edwards E04K diffusion pump was

used to achieve the high vacuum. A quartz crystal microbalance was connected to an

Edwards film thickness monitor (FTM7) to monitor deposition rate and film thickness.

Slides and wafers were then spin-coated with a layer of SPR350 photoresist and subse-

quently heated on a hot plate. The spin-coater used for the thin-film deposition was a

Laurell Technologies WS-400A-6NPP-LITE.

Following the spin-coating, a mask of the microelectrode array pattern was posi-

tioned upon the slides/wafers, which were exposed to a high intensity UV light. An

EVG620 Mask Aligner was used in this part of the fabrication to achieve the high ac-

curacy patterning. Following their exposure, samples were left in developing solutions,

before being etched to remove Au, Cr and the remaining photoresist.

Each microscope slide can be patterned with two of the micro-electrode arrays pre-

sented in Figure 2.1(a), each having sixteen terminals. Up to eight slides can be placed

in the thermal evaporator. This means that, assuming perfectly uniform deposition of

Cr and Au in the evaporator, up to sixteen microelectrode arrays can be produced in the

same batch, all having Cr/Au layers with the same characteristics.

In the case of the electrodes used for electrical characterisation of the materials,

seventeen of the two-terminal arrays (Figure 2.1(b) top) can be patterned on each wafer.

This number is reduced to seven per wafer for the four terminal arrays (Figure 2.1(b)
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Chapter 2. Materials

FIGURE 2.2: Observable defects on an electrode array prior to experimental use.

bottom) as they cover more surface. Only one wafer at a time can be placed in the

thermal evaporator. Each array is used to test only one sample of material. Since they

are not cleaned between tests, they are not affected by the cleaning process or possible

left-over material as can be the case for the sixteen terminal micro-electrode array. The

electrodes are therefore tested for defects once, at the end of the fabrication procedure.

Irrespective of the design, once arrays have been produced, they are placed under

a microscope to identify any potential micro-scale defects that could affect the applied

voltages or current measurements during experiments. Examples of defects observed on

the sixteen terminal microelectrode array prior to use are illustrated in Figure 2.2. Some

of the observable defects will clearly affect experiments (fig.2.2(c)), and the electrode is

therefore marked as unusable (represented with a cross in the figure). However, other

defects might have negligible impact on the experiments, despite being observable at

micro-scale. In the case where no defects are observable at micro-scale, or where the

defects can potentially have a negligible effect on the conductivity of the electrodes

(fig.2.2(a) and (b)), a multimeter was used to test current flow across the contacts, and

subsequently measure the electrode’s resistance. It must be noted that only the larger

part of the electrodes, furthest away from the material’s contacts could be tested in this

manner, leaving the possibility for unidentified defects prior to the start of experiments.

In the case of the sixteen-terminal arrays, the electrodes tend to degrade with time.

This is due in part to chipping of the gold at the contacts with the edge connectors (when

the array is removed and replaced a number of time), and in another part to the cleaning
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Chapter 2. Materials

FIGURE 2.3: Observable nanotube left-overs and defects on two electrode arrays after they have

been cleaned to remove material drop-cast in the previous experiment.

process. When dynamic materials are used, they are generally removed between exper-

iments, and the slides are cleaned in an ultrasonic bath using propane-2-ol. Residues

of composites are sometimes impossible to remove, whilst other times repeated clean-

ing removes both material and parts of the gold layer. In both cases, the quality of the

electrode array is affected. Figure 2.3(a) and (b) present examples of bulk of SWCNTs

left-over from the cleaning process and an array chipped due to cleaning, respectively.

As for the post-fabrication tests, optical tests are followed by electrical tests, in case

defects are not visible at micro-scale. Prior to drop-casting the material on a cleaned

slide, a multimeter is therefore used to test whether current flows across electrodes that

should not be in contact, and the resistance across each electrode is subsequently mea-

sured. The lifespan of a sixteen terminal microelectrode array, in the sense that enough

electrodes are still intact for an experiment to be undertaken, was found to be approxi-

mately twenty uses.

2.3 Apparatus

2.3.1 Electrical Characterisation

The I-V characteristics of the materials used in the EiM experiments were measured

using a Keithley 2400 digital source meter. During the characterisation process, samples

were kept in a screen metal chamber. This chamber was connected to a mechanical rotary

vane vacuum pump. The pump was turned on for the solid samples, keeping them in

constant 10−1 mbar conditions, and turned off for samples in liquid state, leaving them
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Chapter 2. Materials

in air. Output currents were measured across samples in steps. The applied voltage,

or bias, was changed by 0.1 V each step, with a 1 s interval in-between. Since the

board used in EiM experiments allows voltage levels between 0 V and 8.048 V, most

characterisation tests had a lower and upper voltage limit of 0 V and 10 V, respectively.

2.3.2 Preparation

Solution storage

SWCNT-based composites were prepared and stored in glass vials with a capacity of ≈

7.63 ml. Each vial was filled up to two third of its capacity during preparation and ≈ 20

µl of composite was used during each experiments. It was therefore possible to have

samples extracted from the same original solution for about three months - given four

experiments per day, five days a week, for one material, which is an over-estimate.

Since SWCNTs dispersed in a liquid matrix tend to aggregate over time [27], new

composites needed to be produced frequently (approx. every 2 months) in order to ensure

that all samples used in experiments presented similar electrical characteristics and level

of dispersion. This justified the small dimensions of the vials, which helped limiting

the amount of composite being wasted. It must be noted, however, that the process of

renewing samples could result in differences in SWCNT concentrations, but these were

too small to produce more than a negligible effect on the sample’s electrical behaviour.

In the case of the other two materials, the memristors and the microtubules, it was

observed that they tended to keep their electrical characteristics for a longer length of

time if kept under vacuum. They were therefore stored in a screen metal chamber at

constant 10−1 mbar conditions.

Electronic balance

An Ohaus Explorer Pro analytical balance was used to weigh the different components

involved in the preparation of the majority of composites. This scale has a precision of

0.1 mg and it was placed in a negative pressure glove box. Considering the size of the

vial used and the amount of material required, the high sensitivity of the scale was not

sufficient to allow very low concentration of SWCNT-based composites to be prepared

directly. Instead, ‘mother solutions’ of high SWCNT concentration were prepared first,
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Chapter 2. Materials

and subsequently diluted when low concentrations were required. A typical weight of

50mg of SWCNTs was used in the mother solutions.

Stirrer

A Cole Parmer 750 (W) ultrasonic processor with threaded probe and tapered microtip

was used to stir the SWCNT-based composites. Tip sonication was chosen as it is faster

than ultrasonic bath, and better for initial SWCNT dispersion than magnetic stirring [27],

since the latter does not provide enough power to break the strong Van der Walls forces

at the origin of SWCNT aggregation [28]. It must be noted, however, that the ultrasonic

processor has the disadvantage of potentially damaging the SWCNTs if the intensity is

too high [29]. In order to limit the damage to the SWCNTs, the processor was set at 20%

intensity, with 5 s interval between stirrings. The potential introduction of impurities

due to an unclean microtip, another disadvantage of tip sonication, was not seen as a

major concern in the experiments undertaken. The SWCNTs used were not purified, and

therefore impurities potentially modifying the behaviour of the composite were already

present in the samples. In addition, the experimental set-up did not require the material

to have electrical properties specific to purified SWCNT-based composites, since the

identification of optimum properties for EiM materials remains under investigation.

The quality of the SWCNT dispersion was assessed visually. It was observed to

vary depending on the concentration of SWCNTs and the choice of the matrix used. A

longer sonication time was found necessary to disperse composites with higher SWCNT

concentrations. This is consistent with the results reported in [27], although the exact

formulation of the SWCNT-based composites differ. Once the initial dispersion was

finished, a magnetic bead was added to the composites, and the glass vials were stored

on a magnetic stirrer. This prevented early aggregation of the SWCNTs due to high

concentrations or potentially poor initial dispersion, as suggested in [27]. Whilst some

bundling of the SWCNTs is useful for the EiM experiments, as discussed in [30], the

overall level of SWCNT dispersion should ideally be the same or similar in all samples

investigated. The exact length of time the SWCNTs remained near-uniformly distributed

in the composites was not investigated here. However, following this dispersion and

storage method, large SWCNT aggregates appeared in micrographs after 1-4 months.
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Chapter 2. Materials

UV exposure

An Eprom Eraser UV141 was used to solidify SWCNT/epoxy composites. This eraser

has a UV wavelength of 256.7 nm and light intensity of 5 mW/cm2. The time taken to

solidify the different SWCNT/epoxy samples using the Eprom Eraser varies according

to the type of epoxy used and the SWCNT concentration. This is discussed later in the

chapter.

2.4 Single-Walled-Carbon-Nanotube Composites

2.4.1 Carbon-Nanotubes

Carbon nanotubes (CNTs) are made of sp2-hybridised carbon atoms arranged in hol-

low cylindrical structures [31]. CNTs can be single-walled (SWCNTs) or multi-walled

(MWCNTs), according to the number of concentric cylinders they comprise. CNTs are

closely related to graphene, as they are formed of the same hexagonal lattice of sp2-

hybridised carbon atoms. In the case of graphene, however, the lattice is flat rather than

tubular. Figure 2.4 presents examples of a graphene sheet, a SWCNT and a MWCNT.

(a) (b)

FIGURE 2.4: (a) The different ways of folding a graphene sheet to produce SWCNT with differ-

ent electrical characteristics (zigzag, armchair, chiral) and (b) from left to right: graphene sheet,

single-walled and multi-walled CNTs

CNTs are considered 1-dimensional due to their high aspect ratio; lengths are of the

order of a few micrometers whilst their diameter is of the order of tens of nanometers.

The scale and electrical properties of CNTs vary according to the number of walls, their

production method and the way they are folded [32]. MWCNTs are generally metallic,

whilst SWCNT can be either metallic or semi-conducting, depending on the value of the

chiral vector ( ~Ch in Fig. 2.4(a)) along which they have been folded.
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Chapter 2. Materials

SWCNTs have unique thermal, mechanical and electrical properties that make them

attractive in a number of fields, from structural engineering [33] to microelectronics

[34, 35]. They have a charge carrier mobility up to 79, 000 cm2/Vs, high current density

capacity above 1013 A/m2 and conductivity up to 5.1× 105 S/cm [32]. These electronic

properties make them an attractive candidate for EiM, specifically when mixed with

polymers, epoxies or LCs: SWCNT-based composites can present complex non-linear

input/output relationships, thereby providing a rich search space which can be explored

and exploited using search algorithms.

SWCNTs in dry powder form were used in EiM experiments. They were purchased

from Carbon Nanotechnologies Inc. (Houston,TX, USA). The powder contains carbon

nanotubes which are 1/3 metallic and 2/3 semiconducting, with approximately 15% im-

purities. These are the specifications reported by the manufacturer and are typical of

commercially available SWCNTs. No sorting or doping was undertaken before mixing

the SWCNTs with other components to form the different composites. The differences

in conductivity and the presence of impurities is likely to have an impact on the com-

posites’ electrical and physical characteristics [27]. However this impact on the results

obtained during EiM experiments has not been investigated and all composites were pre-

pared using the same SWCNTs, which is consistent with EiM literature [21, 36–38]. All

SWCNT composites were prepared in a glove box due to their high aspect ratio.

2.4.2 Single-Walled-Carbon-NanoTubes in Polymer Matrix

The first nanotube-based composite investigated in EiM was a mixture of SWCNTs and

poly (methylmethacrylate) (SWCNT/PMMA) [25, 39]. However, PMMA with a glass

transition temperature at 105 ◦C is solid at room temperature. The electrical and compu-

tational behaviour of a SWCNT/PMMA composite is therefore only affected by changes

in its bulk conductance. A different polymer, poly (buthylmethacrylate) (PBMA), was

chosen subsequently as it presents a glass transition temperature at 20-25 ◦C, offering

the potential for SWCNTs to move within the bulk matrix under an applied electric

field. In addition, SWCNT/PMMA dispersions were found to be less stable than those

of SWCNT/PBMA. It is suggested in [22] that this difference relates to the length of the

polymer chains. The longer chains of the PBMA make it more hydrophobic, and there-

fore easier to mix with the SWCNTs, themselves highly hydrophobic. Figure 2.5 shows
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Chapter 2. Materials

the chemical structure of the repeat unit of these two organic molecules, together with

the structure of an anisole molecule, used as the solvent in the composite’s preparation.

FIGURE 2.5: (a) poly(metyl metacrylate) (PMMA) ([C5H8O2]n), (b) poly(butyl metacrylate)

(PBMA) ([C8H14O2]n) and (c) anisole (methoxybenzene, C7H8O)

Preparation

The method used to produce SWCNT/PBMA composites follows that originally devel-

oped for the SWCNT/PMMA mixtures. The PBMA was purchased from Merck, Japan.

Preparation began with adding SWCNT in powder form to a glass vial placed on the

analytical balance. The polymer in dry crystal form was subsequently added to the

SWCNTs. Finally, the solvent (anisole) was drop-cast into the vial. When crystals were

visibly dissolved, the solution was sonicated for 5− 10 min using the ultra-sonic probe,

depending on the composite concentration, as discussed previously.

After the solution cooled down, a sample was extracted with a micro-pipette and

drop-cast on an electrode array. The sample was left to dry, leaving a solid SWCNT /

polymer layer on an electrode array. It must be noted that the solution in its liquid form

was a mixture of SWCNT, polymer and anisole, with the weight % of SWCNT relating

to the added weight of these three components. When a sample was deposited and the

anisole evaporated, the weight % (wt %) became:

wt % =
SWCNT (g)

SWCNT (g) + PBMA(g)
× 100(%) (2.1)

Characteristics of SWCNT/PBMA composites

The properties of SWCNT/PBMA composites have been investigated and reported in

[22]. PBMA by itself possesses a very low electrical conductivity, as can be observed in

Figure 2.6(a) where the current / voltage (I/V) curves of non-coated and PBMA covered

eletrodes are compared. Their respective responses to the voltage sweep, from 0 to 5
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V and back to 0V, are almost undistinguishable. The negative current levels observed

in the graph are due to an offset in the source meter. However, the level of the currents

without this offset remains below 1.5 × 10−4 µA, which is too low to be picked up by

the equipment used in the EiM experiments.

The role of the PBMA in SWCNT/polymer thin films is to introduce insulating areas

between the nanotubes, as well as provide a matrix to define the morphology and keep

the CNTs in place. This induces complex conduction mechanisms in the composite [22]

and a non-linear I/V relationship depending on the SWCNT concentration. Figure 2.6

(b) and (c) show that composites with low SWCNT concentration present non-linear re-

lationship between voltage and current, whilst past a 1 wt % SWCNT/PBMA threshold,

the relationship becomes linear. It can also be seen in both sub-figures that the current

increases with the SWCNT concentration.

The computational capabilities of SWCNT/PBMA samples have been tested for a

variety of problems such as Boolean logic and even-parity [22, 41], with reproducible

results. Composites with a concentration of ≈ 1 wt % SWCNT/PBMA were easiest to

evolve, i.e. less time required to achieve the same or better computational results. This

was found to be consistent with the composite’s percolation threshold [23]. The latter

corresponds to the minimum SWCNT concentration required for at least one conductive

network to form, allowing a flow of charge carriers between electrodes.

Above the composite’s percolation threshold, the conductivity of the mixture sees

a rapid increase. It has been observed that computational results obtained around this

threshold are optimum, irrespective of the problem or framework implemented [22, 42,

43]. However, it was observed in [26] that it can take more time to evolve samples with

higher concentration as compared to those with the critical 1 wt % SWCNT/PBMA con-

centration. It must be noted that whilst PBMA has been chosen due to its low glass

transition temperature compared to PMMA, no visible movement of SWCNTs during

the evolution process has been reported. SWCNT/PBMA composites are therefore con-

sidered solid (static) in this work.
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(a)

(b)

(c)

FIGURE 2.6: I/V characteristics of (a) non-coated (empty) electrodes and PBMA-only, (b) low

and (c) high SWCNT/PBMA concentrations respectively ([40]).
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Chapter 2. Materials

2.4.3 Single-Walled-Carbon-NanoTubes in Liquid Crystals

LCs exist in a transition state between solid (anisotropic and ordered) and liquid (isotropic

and disordered) called the mesomorphic state (mesophase). LCs generally present a de-

gree of orientational order, but little translational order, as illustrated in Figure 2.7. They

are first differentiated according to the way they reached the mesophase, either due to

a temperature change or a change in concentration, resulting in thermotropic LCs or

lyotropic LCs, respectively. Both types are divided in sub-categories characterised by

the degree of order in molecule orientation, translation, and general geometry along

which the singular molecules assemble [32]. Only lyotropic, rod-shaped nematic liquid-

crystals are illustrated in Figure 2.7 whilst the others are reported by name.

LCs were chosen in the first EiM experiments due to their potential for transforming

input signals into measurable output signals, but also for being reconfigurable and for

working at a molecular level. These experiments were performed using a LC display

(LCD) to evolve a tone discriminator [19]. Further investigations suggested that it was

possible to perform other tasks such as Boolean logic and robot control [18, 20]. How-

ever, investigations of solutions evolved in the LCD highlighted that this material was

unable to produce results that were consistent across tests and stable over long periods

of time [9]. It was also unclear how much the LCD’s electronics influenced the results.

Instead of LC arrays, the research presented here focused on an E7 nematic LC

FIGURE 2.7: Transition of materials from solid to liquid crystalline to liquid, as affected by

changes in temperature or concentration.
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within which SWCNTS are dispersed. This results in a electrically conductive and phys-

ically dynamic blend which can be drop-cast on a micro-electrode array in the same way

as SWCNT/polymer composites. Figure 2.8(a) illustrates the different molecules con-

tained in this LC blend, whilst Figure 2.8(b) is a simplistic illustration of the structure of

the SWCNT/LC composite before it has been subjected to an electric field.

(a) (b)

FIGURE 2.8: (a) Chemical structure of the E7 nematic liquid crystal (LC) molecules purchased

fom Merk Japan and (b) simple schematic representation of the SWCNT/LC blend.

Preparation

The concentration of nanotubes in SWCNT/LC composites was quantified using weight

%. Preparation began with adding SWCNTs powder to a glass vial placed on an analyti-

cal balance. The LC was drop-cast on the nanotubes using a micro-pipette up to a given

weight. The solution was subsequently sonicated for 30-60 seconds until the dispersion

appeared homogeneous to the naked eye.

About 20 µl of SWCNT/LC composite was extracted from the glass vial with a

micropipette and drop-cast within a nylon washer of 2.5 mm internal diameter. The

washer was previously fixed on the electrode array using a two part epoxy resin. The

disadvantage of using a washer is that the thickness of the SWCNT/LC film is thicker

than when no washer is used, and consequently, it was more difficult to record precise

images of the material using simple light microscopy imaging. However, using a washer

to contain the liquid samples during experiments, allowed changes in the morphology to

be linked to variations in the electric field to which the samples were subjected, rather

than variation in the sample’s bulk geometry.
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Examples of photographs taken with and without a washer are presented in Figure

2.9(a) and (b) respectively. In both cases the photographs were taken within 60s of the

sample being drop-cast, and before any electric field had been applied. It can be noticed

from Figure 2.9(b) that when the sample is not contained within a washer, a layer of low

SWCNT concentration forms on the edge of the sample.

(a) (b)

FIGURE 2.9: Microscope photographs of 0.05 wt % SWCNT/LC drop-cast on a micro-electrode

array (a) within a 2.5 mm nylon washer and (b) directly on the array.

Electrical characteristics of SWCNT/LC composites

Testing the I/V characteristics of LC-only samples drop-cast on the two terminal elec-

trode arrays showed that the E7 blend had a conductivity similar to that of bare electrodes

[30]. In subsequent experiments, the I/V characteristics of different SWCNT/LC con-

centrations were measured using the same equipment and electrode design. The current

outputs collected across a 0.05 wt % SWCNT/LC sample subjected to ten consecutive

voltage sweeps from 0V to 10V are plotted in Figure 2.10 (a), whilst Figure 2.10 (b)

presents the results of five consecutive sweeps on a 0.5 wt % SWCNT/LC sample.

Comparing the two graphs, it can be observed that the maximum output current is

higher with the higher SWCNT concentration. On the other hand, the I/V relationship is

more non-linear for the lower SWCNT concentration. In both cases, an anti-clockwise

hysteresis can be observed, with currents being lower when the voltages are increased to

10V than when they go back to 0V , as illustrated by arrows in Figure 2.10. This suggests

the presence of a charge trapping mechanism in the samples, and more specifically, the

trapping of negatively charged particles, i.e. electrons. Whilst this mechanism has not
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Chapter 2. Materials

been further investigated here, it shows a difference in terms of electrical behaviour

between SWCNT/LC composites and SWCNT/PBMA composites (Fig.2.6), and can

therefore be ascribed to the liquid matrix. In addition, under the influence of the same

voltage level, SWCNT/LC samples produced higher currents than solid SWCNT/PBMA

samples for lower SWCNT concentrations.

This suggests that the percolation threshold is lower for ordered CNTs in the liquid

material, which can be explained by the fact that SWCNTs in LCs tend to bundle under

an applied electric field, establishing percolation paths between electrodes [30]. Apply-

ing an electric field to a SWCNT/LC sample can modify the arrangement of SWCNTs

(a)

(b)

Figure 2.10: I/V characteristics of (a) 0.05 wt % and (b) 0.5 wt % SWCNT/E7 nematic LC

samples ([40]).
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Chapter 2. Materials

in the matrix allowing them to form conductive pathways between electrodes that might

not have been present when the sample was drop-cast on the electrode array. This is

not possible in SWCNT/PBMA composites, where the physical connections between

nanotubes cannot be modified once the material has solidified. The electrical charac-

teristics of the latter material are therefore dependant on its physical state post anisole

evaporation, and the solution space remains unchanged throughout training.

Whilst LC molecules are able to orient single nanotubes, it is suggested in [30] that

this is no longer possible when a SWCNT/LC sample is subjected to an electric field, due

to the greater length of the SWCNT bundles created as compared to the LC molecules.

However, the LC matrix enables the SWCNTs to form complex networks which can vary

depending on the applied electric field. This adds an extra dimension to the EiM problem

compared to the case where SWCNT-based composites are in a solid state [21, 22]. The

purpose of the LC matrix is therefore to: 1) create insulating areas in the composite, in

the same way as PBMA, and 2) provide a matrix within which the SWCNTs for complex

and reconfigurable networks under an applied electric field.

In summary, when SWCNT/LC composites are used, not only the material’s electri-

cal properties but also its morphology can be changed using specific signals [44]. Pre-

liminary results characterising the computational capabilities of SWCNT/LC samples to

solve computation problems using EiM were reported in [37].

2.4.4 Single-Walled-Carbon-Nanotubes in Epoxy Matrix

Samples of SWCNT/epoxy composites have been investigated here for the first time in

the context of EiM, owing to their capacity to solidify, combining advantages of liquid

and solid SWCNT-based mixtures. The main components of epoxy resins are epoxide

groups (at least two in any formulation) and a hardener or curing agent (which is often

an amine molecule) [45, 46]. An example of the structure formed when two of these

molecules react together is illustrated in Figure 2.11.

In two-part epoxies, a specific ratio of the two molecules must be mixed together for

them to harden. This curing process is not ideal for training as, once mixed, the two-part

epoxy solidifies, leaving only a specific time span during which experiments can take

advantage of the liquid nature of the samples. In addition, it is difficult to determine
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Chapter 2. Materials

FIGURE 2.11: Chemical structure of epoxy components [47]

the influence of the curing process on the final solution when curing and algorithm-

controlled evolution occur simultaneously.

In one part epoxies, the epoxide group and the hardener are already mixed. The

binding of the two molecules is initiated by an external stimulus. Such a stimulus can be

UV light. One-part epoxies with thermosetting properties for example can be cured via

irradiation. Once exposed to UV light, the epoxy group opens and allows cross-linking

with the hardener, changing the mixture irreversibly into infusible, insoluble polymers.

Results reported in [48] show that it is possible to align carbon nanotubes dispersed

in a one-part epoxy matrix using an electric field. Moreover, this manipulation results

in modified electrical properties of the composite. This suggests that it should be possi-

ble to evolve liquid SWCNT/epoxy samples using the same experimental set-up as for

SWCNT/LC composites and subsequently cure them, resulting in computing devices

that can be physically manipulated.

Experiments reported here were undertaken using two different one-part UV cure

epoxies as component of nanotube based composites. First attempts were based on a

katiobond LP655 UV-cure epoxy purchased from Delo Adhesives. It has a viscosity

of 12000 cps at room temperature (≈ 23◦C) and recommended irradiation time of 20s,

using 400 nm LED with an of intensity 200 mW cm−2, with a curing time of 24 h

post irradiation to reach final strength [49]. The choice of the second epoxy, NO81,

was directed by the results obtained with the first, and specifically the need for a less

viscous and faster cure material. The NO81 epoxy was purchased from Norland products

incorporated. It has a viscosity of 300 cps at 25◦C and recommended irradiation time is

on average 15 s using a 365 nm LED with an intensity of 2 W cm−2 [50, 51].

40

iteration 20 error

0 1 2 3 4 5 6 7 8 9 10

Computation input V
in

1 (Volts)

0

1

2

3

4

5

6

7

8

9

10

C
o
m

p
u
ta

ti
o
n
 i
n
p
u
t 
V

in
2
 (

V
o
lt
s
)

 0

 0.2

 0.4

 0.6

 0.8

 1



Chapter 2. Materials

Preparation

SWCNTs were less easily dispersed in the epoxies than in the LC or PBMA/anisole

solutions. To aid with dispersion, half of the epoxy used in the preparation was first

drop-cast into a glass vial. The total weight of SWCNTs in dry powder form was then

added to the vial before drop-casting the second half of the epoxy.

When the more viscous LP655 epoxy was used, sonication was performed in two

sets of 10 min, with a 5 min interval where the mixture was left to cool down. Using the

less viscous NO81 epoxy, sonication was performed in two sets of 3 minutes.

In both cases, dispersions were drop-cast within washers fixed on the electrodes and

either left liquid, or cured using the Eprom Eraser with a power of 5 mWcm−2 and

253.7 nm UV wavelength. It must be noted that the curing time was observed to depend

on the SWCNT concentration. As the SWCNT concentration increased, so did the UV

exposure time required for the composite to solidify. This will be discussed in Chapter

6. The micrographs of 0.05 wt% SWCNT/epoxy samples are presented in Figure 2.12,

where (a) and (b) are in liquid form and (c) is taken after (b) has been cured.

Figure 2.12: Liquid samples of 0.05 wt % (a) SWCNT/LP655 and (b) SWCNT/NO81 drop-cast

on two micro-electrode arrays and (c) cured version of the SWCNT/NO81 sample.

Electrical characteristics of SWCNT/epoxy composites

The set of results presented in Figure 2.13(a) illustrate the I/V characteristics of a LP655

sample dropcast on a two terminal electrode array and subjected to voltage sweeps from

0 to 200 V and back. A set of empty electrodes was used as a reference, and is labelled

as such on the graph. It presents a non-zero, but negligible, conduction, a behaviour

previously observed in Fig.2.6(a) and discussed Sec.2.4.2. Within the voltage levels of

interest for experiments, i.e. within 0 V and 10 V, it can be observed that the LP655
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Chapter 2. Materials

sample in both liquid (non-cured) and solid (cured) state presented current outputs lower

that 1 ×10−8A. This is below the sensitivity threshold of the EiM hardware motherboard

and similar to the output levels of the reference, as observed in Figure 2.13(a). The

sample’s conductivity for these voltages can therefore be considered negligible. It must

be noted that the current outputs measured across the LP655 sample in liquid state were

always higher than post-curing. This suggests that charges tend to move more easily

across the LP655 prior to curing.

When SWCNTs were added to LP655 samples in liquid state, their conductivity

tended to increase with increasing SWCNT concentration. However, in Figure 2.13(b),

the liquid composites with a concentration of 0.05 wt % SWCNT/LP655 presented the

(a)

(b)

Figure 2.13: I/V characteristics of (a) LP655 pre and post-curing under UV light and (b) multiple

concentrations of SWCNT/LP655 in liquid state (pre-curing) ([52]).
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Chapter 2. Materials

same I/V characteristics as the liquid LP655 sample from Fig.2.13(a). A minimum

amount of added SWCNTs appears to be required for the composite to have an elec-

trical behaviour different from pure liquid LP655, at least prior to EiM training.

Over all concentrations, results presented in Figure 2.13(b) suggest that, for the

same applied voltage, SWCNT/LP655 composites were not as conductive as either solid

SWCNT/PBMA (Fig. 2.6) and liquid SWCNT/LC (Fig. 2.10) composites. For ex-

ample, the current output of a 0.5 wt % SWCNT/LP655 sample under a 10V bias

was 1.5×10−8A (15nA), whilst 1.1×10−6A (1.1µA) and 2.55×10−3A (2.55mA) were

recorded across the 0.5 wt % SWCNT/PBMA (Fig. 2.6(c)) and 0.5 wt % SWCNT/LC

samples (Fig. 2.10(b)) under the same applied voltage, respectively. However, past

0.5 wt % SWCNT/LP655, it was possible to achieve current outputs above the mother-

board’s sensitivity threshold when the bias was between 0 and 10V, thus satisfying the

necessary requirement for the use of the SWCNT/LP655 in EiM experiments.

Beyond satisfying the measurability requirement, the electrical behaviours reported

in Fig.2.13(b), added to the liquid state of the material, confirmed the potential for repro-

ducing results obtained with the SWCNT/LC composites using liquid SWCNT/LP655.

As for samples of SWCNT/LC material, the I/V curves obtained with the non-cured

SWCNT/LP655 samples were non-linear for all concentrations, and an anti-clockwise

hysteresis could be observed above 0.05 wt %. The same behaviours were observed after

the samples had been cured under UV-light, but output current levels were reduced by

up to one order of magnitude for each concentration. This is similar to the observations

made with pure LP655, and suggests that despite the presence of the SWCNTs, the abil-

ity of percolation paths to form across the electrodes changes after cross-linking of the

epoxy group with the hardener, potentially affecting solutions evolved during EiM.

The NO81 epoxy was chosen as a replacement for the LP655 following observations

made during EiM experiments undertaken with SWCNT/ LP655 composites. The elec-

trical characteristics of the liquid and solid SWCNT/NO81 were not measured on two

terminal devices in the same way as the other materials, and are therefore not presented

here. However, currents were measured across the samples used during the course of

the EiM experiments. These measurements showed that the NO81 composites presented

higher current outputs compared to the SWCNT/LP655 for the same concentrations. In

fact, 0.05 wt% liquid SWCNT/NO81 composites were able to obtain currents similar to

43

iteration 23 error

0 1 2 3 4 5 6 7 8 9 10

Computation input V
in

1 (Volts)

0

1

2

3

4

5

6

7

8

9

10

C
o
m

p
u
ta

ti
o
n
 i
n
p
u
t 
V

in
2
 (

V
o
lt
s
)

 0

 0.2

 0.4

 0.6

 0.8

 1
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those obtained with 0.05 wt% SWCNT/LC composites under the same voltage levels.

This suggests that percolation paths were easier to form in the lower viscosity matrix

of the NO81 epoxy . In addition, compared to the SWCNT/LP655 samples, curing the

SWCNT/NO81 samples did not result in a reduction of the current output levels to one

order of magnitude. This last observation is to be taken with care, however, as the mea-

surements performed post-curing were taken across evolved SWCNT/NO81 composites,

where SWCNT structures had been modified continuously through repeated application

of algorithm-controlled voltages, which was not the case for the SWCNT/LP655 mea-

surements reported here.

2.5 Linear Resistors Array

An array of resistors was designed as a reference device, with I/V characteristics aiming

to match the range of current outputs produced by the SWCNT-based composites. The

Ohmic resistors making up this array are sometimes referred to as linear resistors in this

work, as they present the linear I/V relationship characteristic of such components. The

rationale behind the fabrication and use of this array is to test whether or not the different

materials investigated bring an advantage over a more conventional device.

Preparation

The resistor array was fabricated on a microscope slide using etch-back photolithogra-

phy, following the same procedure as described in Section 2.2.2 when producing the

different electrode arrays. A second array with the same characteristics was fabricated

using 4.7 kΩ resistors soldered on a vero board. Figure 2.14 presents the circuit dia-

gram for this array, as well as photographs of the mask used when exposing the positive

photoresists during the photolithography process and the array fabricated on the vero

board.

Electrical characteristics of linear resistor array

The array presents a linear I/V relationship. The electrode pairs (A, B and C in Figure

2.15) consisted of two electrodes of the device presented in Figure 2.14, and randomly

selected out of all possible electrode combinations. The current outputs are dependent on
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Chapter 2. Materials

Figure 2.14: Resistor array (a) circuit diagram, (b) mask for etch-back photolithography and (c)

fabricated on a vero board using resistors.

the pair across which they are measured, which also depends on the distance and num-

ber of resistors between the pair selected. The resistor array was originally fabricated

to present similar output current levels to the SWCNT/polymer composites. However,

when comparing Figure 2.15 to Figures 2.6 and 2.10, it can be seen that the range of

currents produced by the array under a voltage sweep from 0 to 10 V matches better the

current levels collected from the SWCNT/LC composites of 0.05 wt % to 0.5 wt %. The

resistor array is thus well suited as a reference device for the unconventional materials

proposed here, and especially for the SWCNT/LC samples.

FIGURE 2.15: I/V characteristics of an array of linear resistors ([40]).
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Chapter 2. Materials

2.6 Summary of the Characteristics and Suitability of Chosen

Materials

The materials described in this Chapter were selected according to three main factors:

1) they do not involve silicon, 2) they are the subject of numerous investigations within

the fields of electronics and unconventional computing, yet work remains to be done

before they can be integrated within the current technology or compete with it and 3)

they present a potential for being evolved using the EiM framework.

Carbon Nanotubes (CNTs) have been suggested as an alternative to silicon since

their discovery [31]. The first CNT-based computer was reported in 2013 [53] and im-

portant advances have been made since [54, 55]. However, to the author’s knowledge,

fully integrated circuits based on CNTs and rivalling current silicon technology have not

yet been reported. This motivates investigations into unconventional approaches which,

as suggested in [17, 56] might provide a cheap and efficient framework to produce CNT-

based devices.

The array of linear resistors was designed to be used as a control device in order

to assess the potential of the various materials, and specifically the SWCNT-based com-

posites.

The main characteristics of the different materials used are presented in Table 2.1.

The aim of this table is to provide a quick overview of material characteristics, such as

the linearity (L) or non-linearity (NL) of the current (I)/ voltage (V) curve, identified as

crucial for a material’s use in the EiM framework. In conclusion, all materials, except

the resistor array, present relatively complex electrical characteristics (non-linear and in

some cases hysteretic I / V curves). The amorphous state of the liquid composites adds

to this complexity as compared to solid samples. Overall, a complex behaviour allows

a diversity of response under a given input that has the potential to be exploited by an

TABLE 2.1: Summary of the characteristics of materials for evolution in materio.

material electrical characteristics state substrate origin

SWCNT/PBMA NL I/V 0.5%<[]<1.5% Solid non-bio

SWCNT/LC NL I/V, 0.05%<[]<1% Liquid non-bio

SWCNT/epoxy NL I/V, 0.05%<[]<2% liquid/solid non-bio

resistor array L I/V Solid non-bio
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BIBLIOGRAPHY

algorithm in the search for the solution to a computational problem. On the other hand,

this complexity in behaviour makes it difficult to model the materials, and to use deter-

ministic algorithms to find solutions to computational problems. The EiM framework

allows materials to be treated as black boxes which properties can be exploited by non-

deterministic algorithm, with only a knowledge of the boxes’ inputs and outputs. The

next chapter, Chapter 3, details the software and hardware implementation that allows

computer-controlled evolution to transform materials into computational devices.
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3.1 General Overview

This chapter provides a formal definition, in mathematical terms, of the classical evolu-

tion in materio (EiM) framework implemented in experiments, along with a description

of the computational problems and evolutionary algorithms (EAs) used to solve them in

materio. The hardware used to interface with the materials discussed in Chapter 2 is also

presented.

Models are commonly used in experimental investigations. They can provide un-

derstanding of a system’s mechanisms, whilst remaining inexpensive in terms of time,

energy and cost. For example, deterministic models of memristive behaviour have been

used to solve various computational tasks, either analytically [1] or through their integra-

tion into artificial neural networks (ANN) [2–4]. Using EAs to train a model of material

is referred to as extrinsic evolution, or evolution in silico, as opposed to intrinsic evolu-

tion, or evolution in materio, where the material itself is trained. An example of extrinsic

evolution was reported in [5]. In this case, a network of gold nanoparticles was modelled

using an ANN obtained via empirical measurements. The fact that the model was based

on experimental data, suggested that using the material itself would yield similar results

[5, 6].
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Chapter 3. Problem Formulation and Hardware Platform

However, models are not always accurate. In order to avoid the potential loss of

information that would result from inaccuracies, it was decided not to use models in this

work. Instead, intrinsic evolution was performed. This is consistent with EiM’s aim to

enable EAs to explore potentially unknown, or indeed unknowable, properties of mate-

rials. In addition, to the author’s knowledge, there is currently no model of the specific

liquid SWCNT-based composites which are a primary subject of this thesis’ investiga-

tions. It must also be noted that compared to areas of research where experiments are

very expensive, time consuming and/or dangerous to run, EiM, as implemented here was

not prohibitive in terms of cost, time and risk.

Artificial learning (AL) was used in order to solve the problem of transforming ma-

terials into devices capable of processing information. The choice of AL was motivated

by its ability to solve problems that are not well defined, or for which no known solu-

tions exist [7]. Discussions regarding the definitions and applications of the different AL

approaches which are beyond the scope of this thesis are reported in [8–10]. Here, the

EiM problem was solved using supervised learning, to modify EA-controlled inputs ap-

plied to the material and resulting in changes in the latter’s electrical state. A simplistic

representation of the implementation is presented in Figure 3.1.

FIGURE 3.1: Basic implementation of EiM experiment. Signals produced by an EA are applied

to a hardware platform where they are transformed into analogue signals applied to the material.

The material’s state is measured and the resulting signals are sent back to the EA.

This chapter is organised in two main parts; the first details the mathematical im-

plementation of the classical EiM framework used in experiments, including problem

formulation, computation problems and algorithms, the second presents the hardware

used to interface with the material. A summary of the experimental implementation is

provided in the last section.
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Chapter 3. Problem Formulation and Hardware Platform

Important notation and definitions

Tables 3.1 and 3.2 present the notation and definition of the most important parameters,

variables, indexes and results that will be introduced in this chapter and used subse-

quently. The aim of these two tables is to simplifying the reading of this chapter, since

it is notation heavy. Exhaustive definitions are found in the text.

TABLE 3.1: Important parameters and variables of the problem formulation.

notation definition parameter variable

n1 number of computation input X

n2 number of configuration input X

n3 number of output measurements X

n4 number of additional problem variables X

V
C vector of computation inputs X

C() computation outcome, i.e. known class of inputs X

x vector defining the state of a device
X X

material dependent

V vector of configuration inputs X

M material state
X X

material dependent

R vector of additional problem variables X

x
′ only the well defined quantities of x, i.e. not M X

Y(M) output measurements X

CM () computation outcome based on output measurements X

SC interpretation scheme (‘translates’ Y(M) into CM ()) X

T1 and T2 error threshold used in the termination criteria X

K number of input pair (attribute/class) in a dataset X

Λ maximum number of iterations X

Q maximum number of verification tests X

N population size of the EA(s) X

D number of EA-controlled dimensions (= n2 + n4) X
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Chapter 3. Problem Formulation and Hardware Platform

TABLE 3.2: Index definitions and important notations.

notation definition

λ iteration index

l individual index

k computation input/class pair (instance) index

t indicates a belonging to the training dataset

v indicates a belonging to the verification dataset

i verification test index

∗ indicates the best result achieved

indicates an average

Kt number of training input/class pairs (instances)

Kv number of verification input/class pairs (instances)

Φt
e training error averaged over Kt

Φv,i
e verification error averaged over Kv , for one test i

Φt,∗
e best error obtained during training (over all λ ≤ Λ)

Φv,∗
e best error obtained during verification tests (over all i ≤ Q)

Φv
e error obtained during verification tests averaged over Q

3.2 EiM as Optimisation Problem

The process of evolving the characteristics of a material such that it becomes able to

solve a computational problem can be formulated as an optimisation problem. Find-

ing the correct solution that produces a problem solving state in the material becomes

the optimisation problem’s objective. Different types of optimisation algorithms can be

used to achieve this objective through a manipulation of the material’s state. The use

of optimisation as a way of implementing EiM is consistent across EiM investigations.

However, the exact formulation of the optimisation problem varies according to the com-

putational problem, materials and algorithms studied. The following subsections detail,

in mathematical terms, the formulation used here.

3.2.1 Computation and Configuration Inputs

Two types of input signals exist in our implementation, computation and configuration.

Due to the choice of material, both come in the form of direct current (DC) voltages

applied on the material at selected electrodes.

54

iteration 34 error

0 1 2 3 4 5 6 7 8 9 10

Computation input V
in

1 (Volts)

0

1

2

3

4

5

6

7

8

9

10

C
o
m

p
u
ta

ti
o
n
 i
n
p
u
t 
V

in
2
 (

V
o
lt
s
)

 0

 0.2

 0.4

 0.6

 0.8

 1



Chapter 3. Problem Formulation and Hardware Platform

Computation inputs: A simple definition of computation as a mapping C from a domain

of definition A to a range of values D, is adopted, which reads

C : A → D. (3.1)

C receives n1 ∈ N
+ computation inputs which are uniquely mapped to a point in D. The

computation inputs are organised into vector

V
C ∈ A ⊂ R

n1 (3.2)

and the unique computation outcome is

C
(

V
C
)

∈ D (3.3)

Since the property modified during training is a material’s electrical input/output rela-

tionship, it was decided to apply the computation inputs as voltages to the material. They

are therefore referred to as computation input voltages. When the computation inputs are

converted into the computation input voltages they will need to be scaled to fit hardware

and material constraints. For example, a computation input V C
1 = 90 cannot simply be

converted into an analogue voltage level with an amplitude of 90 V if the hardware has

an input voltage limit at 20 V. In this hypothetical case, all computation inputs have to

be scaled down such that the maximum computation input voltage is below 20 V. The

domain of definition A effectively becomes a box defined by the inequalities

A =
{

V
C ∈ R

n1 : V C
i,min ≤ V C

i ≤ V C
i,max, i = 1, . . . , n1

}

(3.4)

where V C
i,min and V C

i,max are the minimum and maximum allowed values of the compu-

tation input voltages.

Configuration inputs: In order to change the material state in some desirable way, con-

figuration inputs are realised as voltages when they are applied to the material through

selected electrodes. They are therefore referred to as configuration voltages. These are

independent from the computation inputs and their number n2 ∈ N
+ depends on the

problem formulation and hardware capabilities. These variables govern the material’s

electrical and morphological evolution and constitute part of the training optimisation
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Chapter 3. Problem Formulation and Hardware Platform

problem’s decision variables. They are organised into vector

V ∈ B ⊂ R
n2 (3.5)

where B is the box defined by the inequalities

B =
{

V ∈ R
n2 : Vi,min ≤ Vi ≤ Vi,max, i = 1, . . . , n2

}

(3.6)

where Vi,min and Vi,max are the minimum and maximum allowed values of the con-

figuration inputs and are known problem parameters whose level is constrained by the

hardware.

3.2.2 Performing a Computation

EiM’s objective is to bring a material sample to a state M such that when computation

inputs VC are applied to it, its response can be interpreted as a pre-defined computation.

This response has the form of n3 ∈ N
+ measurements selected from a range of possible

physical quantities characterising the material, and organised into vector Y (M) ∈ R
n3 .

Let SC be an interpretation scheme used for converting the material’s response into

a computation C. When SC is used for a particular set of computation inputs VC applied

on the material in state M, resulting in response Y (M), while configuration inputs V

are applied, the outcome is a unique value

SC

(

V
C ,V,Y (M) ,R

)

∈ D (3.7)

where R ∈ R
n4 is an n4-dimensional vector of problem dependent quantities, included

in the analytical functional expression of SC . R can be treated as:

(a) a set of parameters with a priori known values, or

(b) independent decision variables of the optimisation problem, or

(c) quantities with a pre-specified functional dependence G on the configuration

input, i.e. as R = G (V).

In case R is considered a vector of decision variables, such that R = [R1 . . . Rn4 ]
T ,

it is bounded bounded within a box

R =
{

R ∈ R
n4 : Ri,min ≤ Ri ≤ Ri,max, i = 1, . . . , n4

}

(3.8)
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Chapter 3. Problem Formulation and Hardware Platform

where Ri,min and Ri,max are lower and upper bounds of each decision variable Ri, re-

spectively.

The dependence of SC on M cannot be considered explicitly due to the complexity

of the random material morphology. It is considered implicitly through the measure-

ment vector Y (M). M is changed over time by the combined effect of the repeated

application of computation and configuration inputs. It is a function of the trajectories of

V
C

(λ,ℓ) ∈ A and V(λ,ℓ) ∈ B, where λ is the iteration index of an evolutionary population-

based optimisation algorithm and ℓ the index of the individuals in that population. The

calculation of the error for ℓ involves the application of the configuration inputs V(λ,ℓ)

as well as the application of all the computation inputs in the training dataset.

The training problem in EiM is to modify the material state so that the application

of SC for the whole range of possible computation inputs from A yields the correct

calculation according to specifications (3.1)–(3.3).

3.2.3 EiM Training Problem Formulation

In order to bring the material into a computation inducing state, its electrical input/output

relationship is modified within an optimisation loop that aims at minimising a measure

of the computation error. Since the material is effectively treated as a black box, and

the exact material behaviour is unknown, a supervised learning approach is followed

[11, 12]. An experiment is split into a training phase where a solution to the training

problem is produced, and a verification phase, where the solution is tested against new

data.

Let VC
t be the training dataset used for computation problem C consisting of Kt

pairs

(

V
C
t (k), C

(

V
C
t (k)

)

)

, k = 1, . . . ,Kt, satisfying (3.1)–(3.3), where t denotes

belonging to the training phase. According to (3.7), the application of computation

input V
C
t (k), along with a set of configuration inputs V, leads to the computation

SC

(

V
C
t (k),V,Y (M) (k),R

)

∈ D. The resulting value can be compared to the

C
(

V
C
t (k)

)

corresponding to the specific V
C
t (k) applied to the material. This com-

parison allows the definition of a training measure of error.

Now, let us define the device state x as the vector that contains the information

regarding the configuration input V, the material state M and the auxiliary quantities

R. Depending on the policy followed for R, three different state vectors can be defined

57

iteration 37 error

0 1 2 3 4 5 6 7 8 9 10

Computation input V
in

1 (Volts)

0

1

2

3

4

5

6

7

8

9

10

C
o
m

p
u
ta

ti
o
n
 i
n
p
u
t 
V

in
2
 (

V
o
lt
s
)

 0

 0.2

 0.4

 0.6

 0.8

 1



Chapter 3. Problem Formulation and Hardware Platform

with R excluded, explicitly included, or implicitly included, corresponding to options

(a),(b),(c) outlined in section 3.2.2. For the sake of brevity and consistency, x is defined

as

x = [V R M]T . (3.9)

V and R are well defined quantities in B and R, respectively. M, as previously dis-

cussed, is not well-defined since it consists of all possible states of the material. Thus, x

is split into two corresponding components, x =
[

x
′
M

]T
with x

′ = [V R]T .

In the case of SWCNT-based composites, M reflects the arrangements of all nan-

otubes within the matrix in which they are dispersed, forming percolation paths of vari-

able electrical conductivity. In dynamic SWCNT-based composites, M belongs to the

intractable search space of possible SWCNT network realisations in three dimensions, in

the confined space of the container, where the material is drop-cast. In the solid compos-

ites, M does not belong to the set of decision variable but is instead a problem parameter.

In this case, M is specific to the sample used, since the network of SWCNTs, achieved

when the material has solidified, remains the same throughout experiments.

Because of the dependence of M on consecutive applications of computation and

configuration inputs, the feedback mechanism based on Y (M) and SC allows the def-

inition of an optimisation problem with x as the vector of decision variables and the

hardware within the loop. The objective function during the material’s training phase is

a measure of the total error over VC
t .

The device’s computation error ǫx when it is in state x and the training computation

input vector VC
t (k) is applied, along with V, is

ǫx

(

V
C
t (k)

)

= g

{

SC

(

V
C
t (k),V,Y(k),R

)

, C
(

V
C
t (k)

)

}

(3.10)

where g is a suitably pre-selected error function. For the sake of simplicity, this equation

does not report the dependence of Y on M as it is implicit. Thus, the mean training

error over VC
t for device state x is

Φe

(

x,VC
t ,Kt

)

=
1

Kt

Kt
∑

k=1

ǫx

(

V
C
t (k)

)

= Φt
e (3.11)
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Chapter 3. Problem Formulation and Hardware Platform

and the EiM training optimisation problem is expressed as

min
x

Φe

(

x,VC
t ,Kt

)

(3.12)

subject to

V ∈ B (3.13)

R ∈ R (3.14)

M is a feasible material state. (3.15)

An EA solving optimisation problem (3.12)–(3.15) cannot directly assign a material

configuration defining M. Instead, it can iteratively drive the material towards forming

internal structures (liquid samples), or find existing ones (solid samples), both cases

favouring minimisation of the computation error by manipulating V and R.

M is a representation of the real material and since it can only assume feasible

states in the hardware implementation, constraint (3.15) can be neglected. A computer-

based simulation of the material behaviour replacing the physical matter would require a

mechanism for the explicit consideration of (3.15) for assuring feasibility. The training

optimisation problem (3.12)–(3.14) is solved using an EA that converges to an optimal

point x∗ = [V∗
R

∗
M

∗]T .

Defining termination conditions for this algorithm is difficult because even if V and

R are trapped within a basin of attraction, M will still be changing due to the repeated

application of VC
t and V. Assuming no charge trapping mechanism in the solid mate-

rials, these changes only apply to the liquids materials. In the latter case, it is possible

that changes produced by the application of the computation and configuration inputs

are irreversible. A material drifting effect is therefore inevitable. However, even in this

case, a notion of material convergence can be observed, in the sense that if the training

is successful, the progressive build-up of internal structures is robust enough to result in

the desired computation inducing state.

In order to define termination conditions, let Λ denote the maximum number of

iterations. Considering a population based algorithm with population size N , used for

solving problem (3.12)–(3.14), let Φ
t,(λ,ℓ)
e be the value of the objective function (3.11)
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Chapter 3. Problem Formulation and Hardware Platform

of individual ℓ ∈ N at iteration λ. The average iteration error is

Φt,λ
e =

1

N

N
∑

ℓ=1

Φt,(λ,ℓ)
e (3.16)

and (λ, ℓ∗) is the individual achieving the minimum error at iteration λ, i.e.

(

λ, ℓ∗
)

= argmin

ℓ ∈ 1, . . . , N

Φt,(λ,ℓ)
e . (3.17)

The algorithm terminates when

condition 1: λ = Λ or (3.18)

condition 2: Φt,(λ,ℓ∗)
e ≤ T1 ∧

(

Φt,λ
e − Φt,(λ,ℓ∗)

e

)

≤ T2 (3.19)

where T1 and T2 are preselected error threshold values. The rationale behind the use of

these two termination conditions differs depending on whether the material is solid or

liquid.

In the case of a solid material, it is time-consuming to let the process continue if a

solution within the error threshold values has been found. Irrespective of the termination

condition, differences in classification error between training and verification will be an

indication of the quality of the solution x
′∗, and its ability to induce a computing state

in the material given M. Condition 2 is therefore preferable to condition 1 as it ensures

that a good solution is always found before termination of the training phase. This

can result in reduced training time, but it can also result in the reverse. If no solution

satisfying condition 2 exists in the material, then training will run forever. This is why

both condition 1 and condition 2 are used in the problem formulation.

In the case of the liquid samples, it is also expected that if the training has resulted to

a material state that performs well, then sufficiently small minimum and average iteration

errors are good indications of material convergence. In this case however, it is possible

that the solution where the best result was achieved cannot be fully recovered at the end

of the training phase, due to material drift. The nature of the solution selected to be used

for the verification phase therefore depends on which of the two termination conditions

was fulfilled.

If the algorithm ended due to termination condition 1, the optimal solution x
∗ =
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Chapter 3. Problem Formulation and Hardware Platform

[

x
′∗

M
∗
]T

is selected from the recorded history of all points x(λ,ℓ) visited by the algo-

rithm and the corresponding error value Φ
t,(λ,ℓ)
e . The x

′∗ part of the solution is selected

from iteration λ∗ and individual ℓ∗, which yielded the minimum error Φ
t,(λ∗,ℓ∗)
e , simpli-

fied to Φt,∗
e , and is given from

(

λ∗, ℓ∗
)

= argmin

(λ, ℓ)

λ = 1, . . . ,Λ , ℓ = 1, . . . , N

Φt,(λ,ℓ)
e . (3.20)

The M
∗ part of the solution used, however, is M

(Λ,N), i.e. the material state after the

last evaluation of the objective function from the population’s final individual. M(Λ,N)

and M
∗ can coincide if x∗ was achieved when λ∗ = Λ and ℓ∗ = N . If this is not the

case, M(Λ,N) is probably different from M
∗, which means that the Φt,∗

e is no longer

representative of the quality of the evolved device subjected to x
′∗.

If the algorithm terminated due to condition 2, then

(

λ∗, ℓ∗
)

=
(

λ, ℓ∗
)

(3.21)

and M
∗ = M

(λ∗,N), i.e. the material state following the last objective function from the

population’s final individual at the iteration where condition 2 was satisfied. Termination

due to condition 2 is preferable to condition 1, as for solid materials, but in this case it is

due to the fact that condition 2 reduces the number of function evaluations and therefore

irreversible changes in the material after a good enough solution has been found. In case

of condition 1, this number is
[

N − ℓ∗ +N(Λ− λ∗)
]

whereas in case of condition 2

it is (N − ℓ∗). The fewer function evaluations from λ∗ to the algorithm’s termination,

the better the quality of the solution used in the verification phase. Both conditions are

used, however, since it is possible that no solution satisfying condition 2 is found within

a reasonable time-frame, justifying the need for condition 1.

3.2.4 EiM Solution Verification

The quality of x∗ is evaluated by considering a verification dataset VC
v , which consists

of Kv > Kt pairs

(

V
C
v (k), C

(

V
C
v (k)

)

)

, with

∣

∣

∣
VC
t ∩ VC

v

∣

∣

∣
small if not zero.
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Chapter 3. Problem Formulation and Hardware Platform

By applying the optimal configuration inputs V∗, to a material brought to the optimal

state M
∗ and using the optimal parameter set R∗, all computation inputs of VC

v are sent

to the material and the corresponding responses Y(k) are recorded. Based on these

recordings, the interpretation scheme (3.7) is applied and the verification error calculated

is Φe

(

x
∗,VC

v ,Kv

)

.

In view of the material drift effect, a good training solution should result in a rel-

atively robust material structure retaining the good properties of M∗ when x
∗ was ob-

tained. A single calculation of Φ
v,(λ∗,ℓ∗)
e is actually the mean value of Q repeated verifi-

cation tests using VC
v in Q separate runs on the trained material, i.e.

Φv
e

(

x
∗,VC

v ,Kv

)

=
1

Q

Q
∑

i=1

Φv,i
e

(

x
∗,VC

v ,Kv

)

(3.22)

where Φv,i
e

(

x
∗,VC

v ,Kv

)

is the error of verification trial i of the same solution and

material immediately after training.

3.3 Computational Problems for EiM

A number of computational problems have been considered for EiM investigations. A

comprehensive list is presented in [13]. This list is based on observations reported in

[14–16]. The suitability of each problem is assessed in terms of its general interest

for the community, such as whether it is it hard to solve using conventional methods,

and in terms of the potential for EiM to solve it. From this list, data classification and

the Exclusive-OR (XOR) logic gate were chosen for the investigations presented here.

Classification is described in the following sections, whilst the XOR problem will be

detailed in Chapter 8 where it is implemented in experiments.

3.3.1 Data Classification

Why choose classification as a problem for EiM? Classification is a tool commonly used

in data analysis and decision making, where data is categorised according to common

features or other pre-defined discriminating conditions. A perfect classifier can be con-

structed given complete knowledge of the relationship between available data and its

class. However, this knowledge is not always available, for example when a dataset’s
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scale and complexity are high. With the rise in data availability and interest for its anal-

ysis, finding ways of producing fast and accurate classifiers has become the focus of

number of investigations within both conventional and unconventional computing com-

munities.

Supervised learning is one of the methods studied for solving complex classifica-

tion problems [10]. Classifiers produced using this method to train artificial machines

running in silico such as ANNs have been successfully applied to a variety of problems

[9]. However, it has been observed that a very large number of training data is generally

necessary to obtain good solutions, and the resulting classifiers have a tendency to over-

fit, i.e. they do not classify well new or unseen data instances. This poses problems, as

large training datasets are not always available and in critical cases, such as medical and

engineering applications, over-fitting can have disastrous consequences. Other methods

are being developed successfully, however, room for improvement remains, motivating

the study of classification problems for EiM.

In addition to the interest of classification within the computing community and the

number of fields it can be applied to, this type of problem has already been investigated

with solid SWCNT/polymer samples. SWCNT/poly(methyl meta-acrylate) (PMMA)

and SWCNT/poly(buthyl meta-acrylate) (PBMA) classifiers have been evolved using

both the classical EiM [17, 18] and the RCiM frameworks [19]. In general, the classifi-

cation problems, such as Lenses [20] or Iris [21], were retrieved from the UCI repository

[22]. In the case of the Iris dataset, it was observed that the RCiM produced solutions

that were consistently more accurate than those obtained with EiM, but slightly worst

than cartesian genetic program (CGP) or ANN run in silico.

These observations suggest that 1) classification problems have the potential to be

solved using EiM, 2) modifying the implementation can improve results and 3) investi-

gations are still needed to establish whether EiM-produced classifiers can be competi-

tive alternatives to silicon-based ones. Finally, the previous EiM investigations provide

means for comparison with the implementation used here.

Data classification problem description

In the simple definition of a computation as a top level input/output process, the input is

the vector of characteristic features and the output is the classification result. In this case,
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n1 is the number of characteristic features of a particular dataset organised in V
C . They

can be continuous, discrete or even qualitative. Two basic approaches for addressing

classification problems exist: generative and discriminative [23].

Generative methods model the joint probability distributions of the data source in-

puts and outputs, allowing synthetic data to be generated. Hence, there is an inference

problem concerned with the calculation of the probability that a VC belongs to class Ai,

and a decision problem that assigns it to one of the possible classes based on a decision

theoretic approach.

Discriminative methods do not consider these probabilities, but instead try to iden-

tify a discriminant function f
(

V
C

)

, which maps directly V
C to one of the classes Ai,

[23]. In this sense, the EiM approach replaces the explicit definition of a classification

discriminant function with a material sample. This sample is trained such that when

incident signals V
C are applied to it, the response measured is interpreted as a unique

class assignment.

A classification problem with a number L of classes has D = {1, . . . , L}. In

this case, A, consists of L subspaces Ai, i = 1, . . . , L which correspond to classes

1, . . . L, with A1 ∪ A2, . . . ,AL−1 ∪ AL = A. In the case of fully separable classes

A1∩A2, . . . ,∩AL = ∅, whereas for partially overlapping classes, at least Ai∩Aj 6= ∅,

where i 6= j. The classifier is given computation inputs VC ∈ A and assigns them to a

class i. In this sense the computation to be performed by the evolved classifier is

C
(

V
C
)

= i if V
C ∈ Ai . (3.23)

3.4 Evolutionary Algorithms

3.4.1 General Characteristics

When following the EiM implementation presented so far, training algorithms have two

ways of solving the optimisation problem, thereby providing a solution to the computa-

tion problem. If the solid materials (memristor, SWCNT/PBMA, resistor) are used, the

search space explored by the algorithm consists in the set of configuration inputs influ-

encing the state of these materials. On the other hand, when liquid samples (SWCNT/LC,

SWCNT/epoxy, microtubules) are used, the algorithm searches a hybrid space of solu-

tions, which consists of 1) a subspace spanned by the configuration inputs or stimuli
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influencing the material state and 2) a subspace formed by a network of SWCNT bun-

dles (or microtubules) within the liquid matrix [24–26]. With liquid samples, the space

of possible network configurations and associated percolation paths is infinite dimen-

sional and dynamic, as it can change at every step. With solid samples, the space of

network configurations is finite and dependent on the structures resulting from the ma-

terial’s preparation.

In both cases, the search algorithm has only implicit access to the space and the

subspaces through the configuration inputs. The lack of an analytical model of the mate-

rial’s electrical behaviour, added to the non-linear, dynamic and near-chaotic [27] nature

of the search space, directed the choice of algorithms towards stochastic and derivative-

free optimisation algorithms. EAs present such characteristics, and have demonstrated

their capacity to find solutions in this type of search space, motivating their use as search

algorithms.

EAs used in EiM investigations include genetic algorithms (GA), used to solve vari-

ous computational problems in liquid crystal (LC) [15, 28–31] and solid SWCNT/polymer

composites [32–36]. The composites were also evolved using evolutionary strategies

(ES) [17, 37–39], Nelder-Mead (NM) [40], differential evolution (DE), and particle

swarm optimisation (PSO) [18, 41]. Other algorithms were proposed in [42] for the

Nascence project but have not been used in published results.

Investigations into the effect of different EA characteristics on experimental re-

sults have compared NM with DE [43]. The problem was that of performing Boolean

logic in solid SWCNT/polymer samples. It was observed that NM was less consis-

tent than DE with respect to accuracy. Other investigations include comparison be-

tween DE and PSO’s search in SWCNT/LC samples [44, 45]. However, a more ex-

haustive comparative study would be needed before a learned suggestion of optimal

algorithm/material/problem combinations can be reported.

Investigations reported here were primarily undertaken with DE and PSO. Both al-

gorithms have been applied successfully to solve a variety of computational problems

and have been the subject of extensive theoretical [46, 47] and experimental research

[48, 49]. As a result, a large reference library providing potential variants on their basic

implementations exists. In addition, DE and PSO have often been compared in terms

of results, convergence rate, computational efficiency [50]. DE tends to have a slower
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convergence, but is generally more robust and less prone to getting stuck in local min-

ima. PSO search tends to focus on exploration rather than exploitation, enabling it to

converge faster to potential optima.

Both algorithms have also been used in the context of EiM, to solve a variety of

computational problems in SWCNT/PBMA, with results comparable to genetic algo-

rithm (GA) and evolution strategies (ES) [18]. However, DE and PSO have not been

implemented as much as GA and ES, or used in many other materials, leaving avenue

for research and discovery. Finally, DE and PSO are very versatile, in the sense that

their parameters and structure can easily be customised to suit a particular problem. For

the sake of simplicity, the notation used in this work to denote the same concepts, such

as population or individual, will be kept the same for both algorithms, despite potential

differences in the names used in literature to denote these concepts.

3.4.2 Differential Evolution

DE is a heuristic search algorithm proposed by Storn and Price in 1996 [51]. It is able to

solve optimisation problems with non-differentiable and non-linear objective functions.

In this algorithm, at each iteration λ ∈ Λ, a population contains N individuals x(λ,ℓ), ℓ =

1, . . . , N . Each individual corresponds to a vector of decision variables with dimension

d ∈ D. A decision variable is denoted x
(λ,ℓ)
d , d = 1, . . . , D.

Individuals represent potential solutions to an optimisation problem where an ob-

jective, or fitness function, Φt
e must be optimised. The problem’s solution is optimal

vector x∗ producing Φ∗ = Φt
e(x

∗) which is the problem’s (known) optimum. In order

to find x∗, all individuals are updated for a number of iterations. At a given iteration

λ, an individual is subjected to a sequence of mutations and cross-overs to produce a

test vector xt. The objective function is used to evaluate the original Φ(x(λ,ℓ)) and test

vector Φ(xt). A selection rule based on their respective fitness, i.e. how close they are

to the optimum Φ∗ is then applied to choose which vector will be part of the population

at iteration λ+ 1. Algorithm 1 illustrates this evolutionary process.

Whilst the algorithm’s structure is similar to the GA, the main operations: mutation,

cross-over and selection differ in their form. At every iteration λ (or generation in GA

terms), three vectors, x(λ,a), x(λ,b), x(λ,c) are randomly drawn from the population, such
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Algorithm 1 Differential Evolution (DE)

1: initialise parameters

2: iteration λ = 0
3: for each vectors (individuals) x(λ,ℓ), ℓ = 1, ...N do

4: for all dimensions d ∈ D do

5: initialise x
(λ,ℓ)
d ∼ U(xd,max − xd,min)

6: evaluate vector using objective function, Φ(x(λ,ℓ))
7: if Φ(x(λ,ℓ)) = Φ∗ then

8: solution has been reached, stop algorithm

9: while termination conditions not reached do

10: for each x
(λ,ℓ), ℓ = 1, ...N do

11: produce test vector xt using mutation and cross-over

12: if Φ(xt) = Φ∗ then

13: solution has been reached, stop algorithm

14: else

15: vector selected is passed on to next generation, x(λ+1,ℓ)

16: iteration = λ+ 1

that x(λ,a) 6= x(λ,b) 6= x(λ,c) 6= x(λ,ℓ) . The three vectors are then used to create a

temporary test vector xt
′

following the mutation operation,

xt
′

= x(λ,a) + F (x(λ,b) − x(λ,c)) (3.24)

where F is the mutation parameter which controls the exploration of DE through the

search space [52]. For each dimension, d, the cross-over operation is applied between

xt
′

created using eq. (3.24) and the original vector x(λ,ℓ),

xtd =











xt
′

d if d = D or rd < CR

x
(λ,ℓ)
d otherwise.

(3.25)

where CR is the cross-over operator influencing the diversity of DE [52]. Greedy selec-

tion is then used, meaning that the vector best solving the problem is always chosen to

be part of the next generation of solutions. In the case of a minimisation problem, given

in eq.(3.15), the best solutions translate into lowest objective function:

x(λ+1) =











xt if Φ(xt) ≤ Φ(x(λ,ℓ))

x(λ,ℓ) if Φ(xt) > Φ(x(λ,ℓ))
(3.26)

Figure 3.2 illustrates the update of one individual x(λ,ℓ), ℓ = 1, ..., N from the pop-

ulation at iteration λ ∈ Λ, described in Algorithm 1 and following the rules presented in

eqs. (3.24)-(3.26). For clarity, the number of dimensions is limited to two, i.e. D = 2.
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FIGURE 3.2: Update of an individual x(λ,l) in a 2D search space using mutation and cross-over

operations. The fitness of the test individual, Φ(xt), evaluated using the objective function, is

worst than that of the original individual. The latter is therefore added to the next generation

population.

DE variants generally present modified versions of at least one of the three opera-

tions used to update the population. A variant enabling more diversity in the population

was first proposed in [51]. This variant uses four vectors in the weighted differential,

which is added to the best individual, rather than a random one, to create the test vector.

However, the benefits arise only for large populations, which would be impractical for

the experiments undertaken with the liquid and solid SWCNT-based composites, where

the time taken to evaluate the objective function is non negligible.

A review of other variants is presented in [53]. However, it is highlighted that little

theoretical study regarding the convergence of these variants exist. Most observations

are based on empirical studies and thus are implementation and problem dependent. A

similar observation is made in [54] where it is added that variants tend to complicate the

formulation, justifying this investigation’s focus on parameter value instead.

As a result, the original version of DE was implemented here. In order to test the

quality of the DE code developed for the EiM experiments, it was first implemented with

the parameters suggested in [54] and tested against three benchmark optimisation func-

tions: Rosenbrock, Rastrigin and Ackley. The results are presented in Appendix B, and

were comparable to those obtained in [54]. This shows that the DE used in experiments

compares with other DEs found in literature. However, due to the time taken for each

solution evaluation in the case of EiM, the population size is S = 8, which is smaller

than in most implementations found in literature. In addition, the choice of values for the

differential weight F = 0.814 and cross-over operator CR = 0.7026, originally based
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on [54] were modified following empirical investigations to fit the specificities of prob-

lem and implementation at hand. These DE parameters were used in all experiments,

except otherwise stated.

3.4.3 Particle Swarm Optimisation

The concept and implementation of the particle swarm optimisation (PSO) algorithm

was first discussed by Kennedy and Eberhart in 1995 [55]. PSO is classified as a swarm

intelligence algorithm (SIA), which is sometimes distinguished from EAs. However,

in this work, the term EA is used in its broadest sense: as a derivative-free iterative

optimisation algorithm where solutions to optimisation problems are found by subjecting

a population of solutions (which can be of one or more) to a series of modifications

before selecting solutions for the next iteration, following a given selection rule. The

term EA is therefore used to refer to both the DE algorithm and the PSO algorithm.

PSO is population-based, stochastic and derivative-free. It takes inspiration from the

study of bird flocking behaviour. When implemented artificially, each bird becomes a

particle and the flock is a group of N potential solutions. At iteration λ, a particle x(λ,ℓ),

ℓ = 1, . . . , N is defined by its current position x
(λ,ℓ), ie: the vector of decision variables,

following notation from section 3.2. It is also defined by its velocity ζ(λ,ℓ) and the past

position which has achieved best fitness when evaluated using the objective function,

the personal best: x
b,(λ,ℓ). Each particle’s behaviour depends on the way information

regarding itself and others in the swarm is exchanged. Algorithm 2 details the update of

a swarm of particles where information is exchanged globally [56].

For the global PSO (GPSO) [57, 58] presented in Algorithm 2, over a number of di-

mensions D, the simplest update for a particle’s velocity ζ
(λ,ℓ)
d , d = 1, . . . D at iteration

λ is

ζ
(λ+1,ℓ)
d = ζ

(λ,ℓ)
d + c1r1(x

b,(λ,ℓ)
d − x

(λ,ℓ)
d ) + c2r2(x

g,(λ)
d − x

(λ,ℓ)
d ) (3.27)

and the position x
(λ,ℓ)
d is given by

xλ+1,ℓ
d = xλ,ℓd + ζλ+1,ℓ

d (3.28)

where x
g,(λ) = [x

g,(λ)
1 , ..., x

g,(λ)
D ]T is the best vector of decision variables achieved by
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the algorithm so far and evaluated over the whole swarm. The constant coefficients

c1, c2 affect the size of the steps taken by the particle at every iteration and r1, r2 are

factors adding stochasticity to the process. In the original paper [55], c1 = c2 = 2 and

r1, r2 ∼ U(0, 1).

Algorithm 2 Global Particle Swarm Optimisation (GPSO)

1: initialise parameters

2: iteration λ = 0
3: for each particle x

(λ,ℓ), ℓ = 1, . . . N do

4: for all dimensions d ∈ D do

5: initialise x
(λ,ℓ)
d ∼ U(xd,max − xd,min)

6: personal best xb,(λ,ℓ) = x
(λ,ℓ)

7: evaluate particle using objective function, Φ(x(λ,ℓ))
8: global best xg,(λ) = argmin

ℓ∈N

(Φ(x(λ,ℓ))

9: if Φ(x(λ,ℓ)) = Φ∗ then

10: solution has been reached, stop algorithm

11: while termination condition(s) not reached do

12: for each x
(λ,ℓ), ℓ = 1, . . . N do

13: update particle’s velocity ζ(λ+1,ℓ)

14: update particle’s position x
(λ+1,ℓ)

15: evaluate updated particle Φ(x(λ+1,ℓ))
16: if Φ(xλ+1,ℓ)) = Φ∗ then

17: solution has been reached, stop algorithm

18: else if Φ(x(λ+1,ℓ)) ≤ Φ(x(λ,ℓ)) then

19: update personal best xb,(λ,ℓ) = x
(λ+1,ℓ)

20: for each x
(λ,ℓ), ℓ = 1, . . . N do

21: if Φ(x(λ+1,ℓ)) ≤ Φ(xg,(λ)) then

22: update global best xg,(λ+1) = x
(λ+1,ℓ)

23: else x
g,(λ+1) = x

g,(λ)

24: iteration = λ+ 1

The most common implementation of the GPSO algorithm also includes an inertia

weight ω which prevents the particles converging to a local optimum and helps to explore

a larger search space. The revised velocity update is

ζ
(λ+1),ℓ
d = ωζ

(λ,ℓ)
d + c1r1(x

b,(λ,ℓ)
d − x

(λ,ℓ)
d ) + c2r2(x

g,(λ,ℓ)
d − x

(λ,ℓ)
d ). (3.29)

Figure 3.3 illustrates how the velocity and position of a particle is updated in a

GPSO. The search space is explored and exploited according to a knowledge of a parti-

cle’s best position and the overall best achieved by the swarm. The updated particle is

then evaluated as a potential solution to a problem using the objective function Φ. The

curves in both spaces were drawn at random and do not represent any specific problem.
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Chapter 3. Problem Formulation and Hardware Platform

FIGURE 3.3: Update of a particle belonging to the PSO according to its past best and the overall

best solution obtained within the swarm.

Research has shown that variations in the constants’ values influence the efficiency

of the algorithm [59]. In their original paper, Eberhart and Kennedy recommend that

c1 = c2 = 2 [55] and the weight ω = 0.76. In subsequent implementations, c1 6= c2 =

2, or in some cases the constants become variables, reducing over time. This type of

implementation is introduced when the aim is for the swarm to first explore the search

space, and subsequently exploit solutions found [60]. Indeed, small values of c1, c2,

and ω result in a smaller velocity, and thus a position update within the vicinity of the

previous solution. In other cases, the aim can be to increase the influence of the personal,

local or global best, with the constants modified accordingly.

The PSO can also vary in terms of how information is shared across the swarm. An

alternative to GPSO is the local PSO (LPSO) [61], for which the best position value is

shared either through social or geographical neighbourhood [62]. In [63], LPSO shows a

faster and better convergence towards a solution to a majority of problems. It is also one

of the few adaptation of the PSO that remains very simple. In the same paper, three other

PSO variants were tested, all based on adaptive PSO (APSO). Whilst they demonstrate

better results than non-PSO algorithms with which they are compared, they are not as

effective as GPSO or LPSO. The main issue with most PSO variants is that they exhibit

little improvement compared to the simple PSO, but often lose their simplicity [64].

Following this discussion, it was decided to implement only GPSO, in the investi-

gations presented in this work, as for DE in Sec. 3.4.2. The GPSO code used in ex-

periments, implemented with the parameters suggested in [65] was tested against three

benchmark optimisation functions: Rosenbrock, Rastrigin and Ackley, before being used

in EiM experiments. The results are presented in Appendix B, and were comparable to
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Chapter 3. Problem Formulation and Hardware Platform

those obtained in [65]. This shows that the GPSO used in experiments compares with

other GPSOs found in literature. However, given that the implementation parameters

used to solve the three test functions have been optimised for these functions specifi-

cally, it does not mean that they are optimal for the EiM problem. Different values for

the population (swarm) size, inertia weight and constant coefficients were used when

PSO was used for in materio optimisation. These values were chosen based first on

those reported in [65], and subsequently modified based on preliminary results obtained

with the materials. It is therefore possible that if the implementation used for the EiM

problem was to be tested against benchmark optimisation test functions, results would

not be as comparable.

3.5 Hardware Implementation

3.5.1 General Characteristics

Two distinct pieces of hardware are currently necessary to conduct EiM experiments:

a computer and a hardware interface. The computer is used to run the algorithms de-

scribed in Section 3.4. The main purpose of the hardware interface is to translate signals

produced by the algorithms such that they are able to manipulate the material.

It can be left to either the computer or the hardware interface to interpret output from

the material under evolution. The mapping can be either analogue or digital depending

on the implementation [66]. The type of input/output signals sent are also implementa-

tion dependent. They will differ according to the material used. In experiments where

the electrical properties of the material are explored and exploited by the algorithms, as

is the case for SWCNT-based composites and the other materials described in Chapter 2,

the hardware interface translates the signals sent by the computer into electrical signals.

The final element of the set up is the material itself, which can be seen either as

distinct from the hardware interface, or part of it. It must be noted that the hardware

interface and computer can have an impact on the solution produced in an experiment as

they are included in the optimisation loop. The combination of hardware and material

is thus generally considered a black box, but it is important that the properties of the

interface be known, in order to make sure that the material is being used and not just

the noise produced by the hardware. Other devices such as the microscope light used in
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Chapter 3. Problem Formulation and Hardware Platform

part of the investigations might also have an impact on the material, thus affecting the

algorithm’s search.

3.5.2 Hardware Interface

Since the field programmable matter array (FPMA) reported in [15, 28], three other

hardware interfaces, also referred to as evolvable motherboard (EM) have been con-

structed. A motherboard must enable the ‘translation’ of signals from the computer into

signals that can be applied to the material. The platform also needs to be designed to

obtain a sufficiently large signal-to-noise ratio, such that potentially good solutions are

not missed, or noise mis-interpreted as a material output.

It has also been identified as important for EMs to provide a degree of flexibility in

terms of the number, type and level of signal that can be sent to and received from the

material [32, 66]. This flexibility increases the number of variables that can be used to

manipulate the material.

Considering that different materials respond differently to different stimuli, custom-

built hardware can be necessary for the purpose of providing the best platform of inter-

action with a given media and exploiting its properties. Examples of custom-built EMs

for biological media are described in [67, 68] and often involve imaging as a method of

measuring the material’s state under specific stimuli.

Within the context of the Nascence project [31], a versatile EM called mecobo was

designed and realised in printed circuit board (PCB), with the aim of enabling exchange

of information between any computer and any material which properties can be con-

trolled using electrical signals. Mecobo has been used to investigate which computa-

tional problems can be solved through EiM [69], what types of signals should be used in

EiM [66], or to compare algorithms’ performance [18].

3.5.3 Custom-Built Evolvable Motherboard

The motherboard used to conduct experiments is an updated version of that proposed in

[70]. It was originally designed and produced by Dr. M.K. Massey [71] to test materi-

als before they would be sent to other groups from the Nascence project. However, it

provided sufficient speed and accuracy to explore the various materials, algorithms and
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Chapter 3. Problem Formulation and Hardware Platform

computational problems used here. In addition, the simple circuit design and compo-

nents made it easy to repair and improve throughout the course of the investigations,

which is why it was chosen over the Mecobo board. The photograph of the EM is pre-

sented in Figure 3.4.

FIGURE 3.4: Photograph of evolable motherboard realised on a breadboard.

The circuit’s main components are an mbed microcontroller, an SD card and a set

of digital-to-analogue converters (DAC). Signals sent from the computer correspond to

different variables used to configure the material into a computing device. These include

voltage levels and information about where they should be applied [40, 44]. The signals

are translated by the mbed and voltages are sent to specific locations on the material

sample via DACs. The DACs are connected to the material depending upon the type of

electrode array used (see Chapter 2).

Input signals are analogue, and direct currents are collected from the material’s out-

puts. Constraints on the variables used to configure the sample are due to the limited

flexibility of the EM. In order to reduce noise in the breadboard implementation of the

hardware interface (Fig.3.4) and make the whole circuit more resistant to movement and

shock, it was later realised in a printed circuit board (PCB), following the design and

specifications found in Appendix C. The resulting EM is presented in Figure 3.5.
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Chapter 3. Problem Formulation and Hardware Platform

FIGURE 3.5: Photograph of evolvable motherboard realised in PCB.

3.6 Experimental Implementation Summary

This chapter has reported the problem formulation used to perform intrinsic, rather than

extrinsic, evolution of the materials described in Chapter 2. These materials are treated

as black boxes in the formulation. The modification of the input/output relationship of a

given material to achieve a specific state which favours the solving of the computational

problem was formulated as an optimisation problem. Since no model of the material

was used it was not possible to solve the optimisation problems analytically or use an

explicit algorithm. Instead, a supervised learning approach was used to find solutions to

the optimisation problem, and derivative-free algorithms were used. More specifically,

two derivative-free, population-based, stochastic algorithms were: differential evolution

(DE) and particle swarm optimisation (PSO). The problem formulation and hardware

implementation were designed to allow these algorithms to control configuration signals

applied to the material, with the aim of finding a solution to the optimisation problem.

Here, both DE and PSO have been referred to as evolutionary algorithms (EAs).

Experimentally, the supervised learning approach detailed in this chapter was imple-

mented using the following steps:

1. Split data defining a computational problem into a training and a verification set.
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Chapter 3. Problem Formulation and Hardware Platform

2. Initialise the EA-controlled set of decision variables (inc. configuration inputs)a.

3. Training (repeated until termination criterion reached)

• apply simultaneously computation (training) and configuration inputs to the

material via the electrode array’s terminalsb.

• measure resulting current across the materialc.

• translate current outputs into a training error.

• transfer the error to the computer for evaluation by the EA.

– if termination criterion reached → terminate training.

– if termination criterion not reached → update decision variables.

4. No voltages are applied to, or currents measured across, the material for 5 minutesd.

5. Solution Verification (repeated 10 times)

• apply simultaneously computation (verification set) and optimum configura-

tion inputs to the material.

• measure resulting current across the material.

• translate outputs into a verification error.

a applying training or verification computation data to the material before training should

not result in a current response which minimises the objective function, i.e. the untrained

material is, in principles, unable to solve the computational problem at hand.

b both configuration and computation inputs are converted into analogue DC voltages

using a set of digital-to-analogue converters (DACs) before being applied to the material.

c for each training data instance and configuration input applied to the material, the

current output is measured three times and the average is used to produce the error. This

number balances time per experiment with the effect of potential measurement noise.

d a sense of the solution stability is loosely given by this waiting time.

It must be noted that the optimum configuration voltages are part of the optimum

solution produced by the algorithm during training, ie: where the minimum error was

achieved. Depending on the material used, two types of solution are possible. If it

consists in an optimum set of signals producing a material state favouring the solving of

the computational problem, it is said that the material has been optimised. On the other
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hand, if training has modified the morphology of the material, producing structures that,

in combination with an optimal set of signals, represent the solution, the material has

been evolved [72]. Whether optimisation or evolution was performed by the algorithm,

it can be said that the material was trained by having its state changed for solving a

particular problem, rather than by being able to execute a number of discrete algorithmic

steps.

At the start of this chapter, a very general overview of the implementation was pre-

sented (fig. 3.1), including the three main hardware components used in EiM: a com-

puter, an evolvable motherboard (EM) and a material. Figure 3.6 presents a more de-

tailed version of the EiM implementation, taking into account the notation proposed

for the problem formulation, algorithms and custom-built EM discussed in this chapter.

The figure also illustrates one execution of step 3 described above, i.e. one iteration of

material training.

FIGURE 3.6: Implementation of EiM using custom-build hardware and computer
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4.1 General Overview

The first question this chapters addresses is whether solutions to computation problems

can be found through training, or evolution, of the single-walled-carbon-nanotube / liq-

uid crystal (SWCNT/LC) composites described in Chapter 2, using the implementation

detailed in Chapter 3. The computation problems consist of five synthetic binary classi-

fication problems (BCPs) of increasing complexity.

BCPs have been used in investigations where the capacity of evolution in materio

(EiM) and reservoir computing in materio (RCiM) to transform solid SWCNT/polymer

composites into linear and non-linear classifiers has been demonstrated. Results obtained

with these two frameworks have been good proof-of-concept [1] or comparable with

state-of-the-art algorithms [2] or optimal [3]. The differences in results were partly

attributed to the framework used and the different BCPs’ complexity. However, it was

also observed that a number of implementation parameters (SWCNT concentration [4],

electrode number, applied waveform,...) had an impact on the training efficiency of

SWCNT/polymer classifiers, in terms of training speed and solution accuracy.
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Chapter 4. Solving Synthetic Binary Classification Problems with Carbon-Nanotube /

Liquid Crystal Composites

The second question addressed in this chapter is therefore concerned with the pa-

rameters of the EiM implementation. After proof-of-concept results have been obtained

for the SWCNT/LC composite, and if the results are not optimal, the impact of:

• SWCNT concentrations,

• evolutionary algorithms (EAs),

• and problem formulation parameters,

on the training speed and solution accuracy obtained during experiments with SWCNT/LC

composites are investigated.

The field of EiM being fairly new, a number of implementation parameters are cho-

sen ansatz or arbitrarily in all EiM-related investigations. It is also the case here. How-

ever, the aim of the second set of experiments is to produce empirical justifications for

some of the implementation choices and find an optimum combination of concentra-

tion/EA/problem formulation for the solving of the BCPs in SWCNT/LC composites.

This chapter is organised in two parts. The four BCPs along with the formulation

used to solve them in materio are presented in the first part (Sec. 4.2-4.4), along with a

description of two methods used for result analysis. The second part is concerned with

the presentation and analysis of results obtained in experiments. Control experiments

are introduced along with proof-of-concept results. This is followed by a comparison of

results between varying SWCNT concentrations, algorithms and problem formulation.

Finally a summary of results and analysis concludes this chapter.

4.2 Binary Classification Problems (BCPs)

A BCP is a type of classification problems commonly used to test new machine learning

algorithms or computing frameworks. This use is motivated by the relative simplicity

of some BCPs compared to multi-class classification problems, combined with the wide

range of applications for the fast and accurate solving of BCPs, from medicine [5–7]

to meteorology [5, 8, 9]. The same motivations justified the choice of BCPs in the

investigations presented here. The possibility to solve BCPs using EiM has already been

demonstrated using solid SWCNT/polymer composites [1, 3]. Therefore the potential

advantages of evolved SWCNT/LC classifiers over solid SWCNT/polymer classifiers

are explored on the one hand, and on the other the impact of the training process on the

SWCNT/LC composite.

84

iteration 64 error

0 1 2 3 4 5 6 7 8 9 10

Computation input V
in

1 (Volts)

0

1

2

3

4

5

6

7

8

9

10

C
o
m

p
u
ta

ti
o
n
 i
n
p
u
t 
V

in
2
 (

V
o
lt
s
)

 0

 0.2

 0.4

 0.6

 0.8

 1



Chapter 4. Solving Synthetic Binary Classification Problems with Carbon-Nanotube /

Liquid Crystal Composites

The BCPs used here were generated by a source, structuring data into two differ-

ent classes, instead of being obtained from a repository. They are therefore referred to

as synthetic as they do not represent real-life problems. The synthetic BCPs belong to

a finite dimensional space spanned by the number of distinctive characteristic features

measured or observed as the process generates them. The task at hand is to design clas-

sifiers that assign each newly generated datum to one of the two possible classes. Mea-

surement ambiguity, complex decision boundaries and subclass structures all contribute

to the problem’s difficulty [10].

4.2.1 Characteristics of the Synthetic BCPs

Parameters

A typical training and verification approach is followed for assessing a material’s capac-

ity to act as a classifier. Five synthetic BCPs with n1 = 2 attributes were created. In total

Ktot = 4800 points, or instances, were randomly generated. The training sets contain

Kt = 800 points and the verification sets Kv = 4000 points. The total number of data

instances and ratio of training to verification instances were chosen arbitrarily, whilst the

shape of the class’ boundaries were chosen to represent different levels of complexity.

A data point is defined by the pair of coordinates (V C
1 , V C

2 ) belonging to either class

1, in which case C
[

(V C
1 , V C

2 )
]

= 1, or class 2, in which case C
[

(V C
1 , V C

2 )
]

= 2. The

synthetic problems’ classes are illustrated in Figure 4.1. Training and verification data

are generated independently and distributed randomly within each class’s boundary. The

five datasets are called SC, V1C, NLC, NNLC and MC. They are differentiated by the

distance between their classes and the shape of the separating boundary.

In the simplest BCP, referred to as the SC problem, the two classes are fully sepa-

rable and arranged in rectangular-shaped regions defined here. Both training and verifi-

cation dataset defining SC are illustrated in Fig.4.1(a) and (b) respectively. The other

three problems are separable in two dimensions. However, their classes overlap if

only one dimension is considered, i.e. V C
1 or V C

2 rather than both. The V1C prob-

lem’s two triangular-shaped classes are separated by a diagonal boundary, as illustrated

in Fig.4.1(c) whilst Fig.4.1(d) shows that the NLC problem’s classes are separated by

a hyperbolic curve. The classes of the NNLC problem are separated by an S-shaped

boundary (Fig.4.1(e)).
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Chapter 4. Solving Synthetic Binary Classification Problems with Carbon-Nanotube /

Liquid Crystal Composites

In the last BCP, referred to as MC, the classes are partially merged. Fig.4.1(f) illus-

trates the MC problem training dataset, including the area, containing 6.6% of all data

points, where the two classes overlap. Instances distributed within this overlapping area

are effectively indistinguishable in either or both dimensions.
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FIGURE 4.1: (a) Training dataset for SC and verification datasets for (b) SC, (c) V1C , (d) NLC,

(e) NNLC and (f) MC.

Across the five problems, both training and verification datasets are balanced datasets,

in the sense that the total number of instances is split equally between class 1 and class

2. As a result, if instances are assigned randomly to a class the classification error will

be around 50%. This is the % of error expected at the start of an experiment, when a

material is in its initial state, i.e. in a state that does not favour the classification of data.
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Chapter 4. Solving Synthetic Binary Classification Problems with Carbon-Nanotube /

Liquid Crystal Composites

A solution resulting in 50% error is therefore the worst possible solution, as it ef-

fectively demonstrates no improvement of the classifier from its original untrained state,

and the material is effectively performing a random coin toss or assigning all instances

to one class. On the other hand, a solution inducing the correct classification of all in-

stances from the separable datasets, thereby resulting in 0% error, is optimum. For all

the BCPs of Fig. 4.2, if the error is 100%, a solution to a maximisation rather than a

minimisation problem has been found, i.e. the classes have been inverted. However, the

resulting classifier has identified the correct separating boundary between classes and

the solution can be considered good.

The optimum for the linearly and non-linearly separable datasets is different from

the MC dataset’s optimum. In the latter case, it is not possible to classify instances con-

tained in the area where classes merge. The minimum error for this problem is therefore

one where all instances outside of the overlap are correctly classified and the 6.6% of

instances within the overlap are classified at random, resulting in 3.3% error.

Complexity

In terms of eq. (3.1) from Chapter 3, Section 3.2.1, describing the domain definition, A,

of the computation inputs,

A = [0, 8]× [0, 8] = [0, 8]2 ⊂ R
2 with D = {1, 2} , (4.1)

where 0 and 8 define the minimum and maximum. These values were chosen based on

hardware limitations, which only allows positive voltages up to 8 Volts to be applied to

the material.

For an arbitrary BCP, a common measure of complexity is the Fisher complexity

measure, which evaluates the level of separation between classes in a dataset. For each

feature j of a dataset, Fj is the Fisher criterion, [10, 11], defined as

Fj =

(

µ1,j − µ2,j

)2

σ2
1,j + σ2

2,j

(4.2)

where µi,j and σi,j are the mean and standard deviation of feature j for class i = 1 or 2.

Typically, a problem’s Fisher complexity measure is taken as the maximum of all

Fj , [10]. However, within the framework of EiM, the material must be trained to be able
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to discern the data along all features simultaneously without explicit preference to those

features with high Fj . Hence, the Fisher complexity for a BCP is taken as the sum of the

feature complexities Fj , i.e.

F =

n1
∑

j=1

Fj = F1 + F2, (4.3)

and a high value of F corresponds to a low problem complexity.

The four problems are reported in ascending order of complexity in Table 4.1, along

with the number of features n1 and the total number of training and verification in-

stances. It must be noted that F is effectively a measure of the classes’ separability in

terms of distance from and spread around their centre of mass. However, it does not

take into account linearity of the boundary separating the classes, which also contributes

to the problem’s complexity [10]. This explains why the NNLC problem has a higher

Fisher criterion than the NLC problem, despite having a more non-linear boundary which

makes it more complex, and in theory, more difficult to solve.

TABLE 4.1: Synthetic BCPs and their parameters, arranged in ascending order of complexity.

BCP n1 Kt +Kv F1 F2 F

SC 2 4, 800 8.842 7.402 16.244
V1C 2 4, 800 2.15E − 5 9.198 9.198
MC 2 4, 800 3.617 2.862 6.479
NLC 2 4, 800 0.097 2.220 2.317
NNLC 2 4, 800 0.342 2.491 2.833

The SC, V1C and MC problems were designed to assess the ability of the EiM

framework to evolve the material into different linear classifiers. The NLC and NNLC

problems were designed subsequently, as a more complex task, that of evolving the

material into a non-linear data classifier. The evaluation of the different classifiers’ com-

plexity, however, is based on complexity analysis applied to the conventional computing

framework and devices, it might not reflect the complexity of the in materio classifiers,

i.e. it might be more ‘natural’ for the SWCNT/LC device to solve non-linear BCPs than

linear ones.
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4.2.2 Formulation of the EiM Training Problem for the BCP

The BCP EiM training optimisation problem, is based on the general formulation pre-

sented in eqs. (3.12)–(3.14) of Chapter 3. When used for the BCP, the interpretation

scheme SC which translates the current measured across the material into a class (eq.

(3.7)), takes the form of the following threshold rule:

SC

(

V
C ,V,Y(M),R

)

=











1 if h
(

V
C ,V,Y(M), p

)

≤ R1

2 if h
(

V
C ,V,Y(M), p

)

> R1

(4.4)

where h is a problem dependent real valued function. The continuous decision variable,

R1 acts as a threshold in SC . p is used to choose the electrode assignment for the input

voltages. Both are components of the vector of auxiliary quantities R, which, for EiM

problem formulation used to solve the BCP is

R = [R1 p]
T . (4.5)

The combination of R and the vector of configuration inputs V = [V1 . . . V10]
T

form

part of the vector of configuration variables x
′ controlled directly by the optimisation

algorithms. As previously mentioned, the full vector, x, also includes the material state

M which is indirectly controlled by the algorithm through R and V.

In order for (4.4) to be applied using the evolvable motherboard (EM) described in

Chapter 3, the vector of measured responses Y(M) consists of two direct current mea-

surements I1(M) and I2(M) (Amp) taken from two terminal electrodes. The locations

of these terminals remain the same and does not change during training, as this is a hard

wired feature of the motherboard. Thus,

Y(M) =
[

I1(M) I2(M)
]T

. (4.6)

In the most basic interpretation scheme used for the BCPs of subsection 4.2.1, the

function h in eqn. (4.4) takes the form

h(1)
(

V
C ,V,Y

)

= h(1) (Y) =
I1
I2

(4.7)

where the dependence on M and p are dropped for the sake of clarity.
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Chapter 4. Solving Synthetic Binary Classification Problems with Carbon-Nanotube /
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Since little is known regarding the impact of the interpretation scheme on a material’s

ability to solve a computational problem, the simple form of h(1) presented in (4.7)

was chosen as a starting point for investigations relating to the interpretation scheme.

The aim was to make the dependence on the material as direct as possible through the

measured outputs, in order to prevent the algorithms from by-passing the material.

It must be noted that it remains possible for the material to be by-passed. For exam-

ple, in the case of a hardware failure, the values of I1 and I2 could be artificially created

by the faulty components and thereby independent of the material state. In order to en-

sure that this is not the case, preliminary tests were performed before the start of each

experiment. A voltage level was applied to the material through all the input electrodes.

The current output recorded by the EM was compared to that recorded using a multime-

ter. If the difference between the two current values was large, the experiment was not

carried out until the source of failure had been addressed.

Equations (4.4) and (4.7) allow the definition of the error function (3.10), given in

Chapter 3, for an arbitrary computation input VC as

ǫx

(

V
C
)

=











0 if SC

(

V
C ,V,Y,R

)

= C
(

V
C

)

1 if SC

(

V
C ,V,Y,R

)

6= C
(

V
C

)

.
(4.8)

The objective function evaluation for the optimisation problem (3.12)–(3.14) in Chapter

3 is constructed by averaging the error defined in (4.8) over all points in the training

dataset during the SWCNT/LC training. Similarly, (4.8) is used for assessing the solu-

tions’ quality against the verification datasets, resulting in the verification error of (3.22).

Preliminary investigations suggested that allowing the EAs to select where to ap-

ply the input signals on the material during training enabled them to find better so-

lutions to the BCPs. This is consistent with the discussion reported in [3, 12] for

SWCNT/poly(butyl meta-acrylate) (PBMA) devices. The ability to switch the loca-

tion (electrode terminal of the glass slide) where V
C and V are applied was therefore

identified as important.

In order to allow algorithms to chose the set of electrodes to which computation and

configuration voltages are applied, a continuous decision variable p in (4.4) was intro-

duced. Since the number of all possible assignments of terminals to computation and

configuration inputs is very large, the value of the variable p represents only a possible
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pair of glass slide terminals where the components of VC are to be applied. According

to this scheme, there are 14P2 = 182 possible connection assignments, and p is defined

over the interval [1, 182]. At every function evaluation λ, the variable p is rounded to

the nearest integer, corresponding to a unique feasible assignment. The configuration

and computation inputs are then applied to the material following this assignment.

An example is illustrated in Fig. 4.2 where an array schematic with sixteen elec-

trodes is used along with three BCPs of two computation inputs each. The two output

measurements I1 and I2 are collected from the two fixed locations (indicated by a cross)

1 and 9 (clockwise numbering of terminals starting from the bottom left corner). The

position of these electrodes is determined before training and cannot be changed by the

optimisation search algorithm due to hardware constraints. This leaves fourteen termi-

nals free for the application of the problems’ n1 = 2 computation and the n2 = 12

possible configuration inputs.

The most common solution for the three BCPs, in terms of configuration input loca-

tions, is shown in Fig. 4.2. In the case of V1C, V C
1 is assigned to electrode 1, i.e. V C

1 → 1

and V C
2 → 2 this directly results to the following assignment for the configuration inputs

(indicated by black bullets): V1 → 3, V2 → 4, V3 → 5 V4 → 6, V5 → 7, V6 → 10,

V7 → 11, V8 → 12, V9 → 13, V10 → 14, V11 → 15 and V12 → 16. In practice not

all terminals are used at all time, either because it is not necessary or because it is not

possible (e.g: manufacturing faults).

FIGURE 4.2: Example of computation inputs and outputs assignments for various BCPs.
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4.3 Statistical Tools for Results Evaluation

In order to study the efficiency of the EiM training, a number of W experiments are

conducted for each set of investigations which, except if otherwise stated, start from

different and initially untrained material samples. In each experiment j = 1, . . . ,W ,

both training and verification are performed yielding the best training error Φt,∗
e,j at itera-

tion λ∗
j , and the corresponding verification error Φv

e,j , obtained after training has ended.

These errors are calculated according to eq.(3.22) from Chapter 3

Based on these experimental results, the following efficiency metrics are used

Φt,∗
e = 1

W

∑W
j=1Φ

t,∗
e,j , Φv,∗

e = minj=1,...,W Φv
e,j

Φv
e = 1

W

∑W
j=1Φ

v
e,j and σΦv

e
,

(4.9)

Φv
e in conjunction with the standard deviation σΦv

e
provide a measure of the results’

reproducibility on different material samples. Added to the best iteration averaged over

experiments λ∗
e =

1
W

∑W
j=1 λ

∗
e,j , these metrics provide information regarding the speed,

accuracy and reproducibility of the training process. EiM training is considered efficient

if the errors averaged across experiments are close to the problem’s optimum (0% for all

separable classes, 3.3% for the merged classes problem) and the standard deviation in

verification error is zero. In addition, an efficient implementation is expected to achieve

the lowest possible error and standard deviation as fast as possible, i.e. with the smallest

possible λ∗
e. It must be noted, however, that a λ∗

e = 0 would not be a good indicator of

EiM training efficiency, as it suggests that the material is in a state favouring good (=

accurate) classification of data pre-training, or alternatively, it might suggest issues with

the hardware or software.

Another notion of EiM training efficiency is given by how well a solution gener-

alises, i.e. how low is the difference between the optimum training and verification

errors. For each experiment, |Φt,∗
e,j − Φv,∗

e,j | is the absolute difference between the best

training error obtained in the experiment and the best verification error obtained accross

the verification tests. The average of this difference over the W experiments becomes

dΦ =
1

W

W
∑

j=1

|Φt,∗
e,j − Φv,∗

e,j |, (4.10)
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and if dΦ = 0, the solution obtained during training has generalised perfectly to un-

seen data over all W experiments. It must be noted that for each EiM experiment, the

verification tests from which Φv,∗
e,j is taken, and Φv

e,j computed, are performed post-

training. They ideally consist in testing the best solution evolved during training x
∗

against instances from the verification dataset which are different from those of the train-

ing dataset. In practice, the partial solution x
′,∗ = [VpR]T is applied to a material which

may or may not be in the best state M
∗. The verification tests are repeated ten times.

Further discussion relating to the verification tests were reported in Chapter 3.

Between W = 5 and W = 20 experiments were undertaken, depending on the

investigation. The number of experiments was limited by the time required to perform

each one of them. For example, training one sample of material to solve a problem, with

Kt = 800, for two hundred iterations (Λ = 200) and an algorithm with a population

of ten individuals (i.e. ten potential solutions to the optimisation problem to be tested),

took 3 hours and 30 minutes, in addition to the time required to prepare the sample.

When a relatively small number of experiments is undertaken, comparing means, or

even medians, can be misleading, especially if the set of results contains outliers. For

example, two sets of results might have very different means over three experiments,

but over twenty experiments, this difference becomes negligible. Where possible, com-

parisons between results obtained with different experimental implementations of EiM

were therefore complemented by statistical significance tests, in order to give a reason-

able indication of the statistical significance that can be allocated to the comparison, i.e.

whether the differences observed are representative or due to under sampling.

The two-tailed Mann-Whitney U-test, a non-parametric statistical significance test,

was used in result analysis [13], due to the small sample size, and the fact that result data

did not follow a normal distribution. In order to implement this test, the sets of results

compared must be independent. The test verifies whether two samples of results belong

to the same distribution, i.e. if the samples’ mean and standard deviation would be the

same were the number of results infinite. A p-value < 0.05 indicates that the differences

between two sets of results are statistically significant, whilst they are not if p ≥ 0.05.

This is consistent with other work in the field of EiM [14, 15].
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4.4 Evaluating the Rate of Change in Material Morphology

The SWCNT/LC composite morphology varies under an applied electric field. This is

reported in [16] where it is observed that the bundling and alignment of SWCNTs within

the LC matrix can be linked to electrical characteristics of the material. In addition, im-

portant differences in rate of change in material morphology at different parts of the

training process were reported in [17]. These observations suggest that changes in ma-

terial morphology induced by EA-controlled voltages applied during training have an

impact on the capacity of the composite to be evolved into a computing device. In or-

der to provide more information regarding this impact, a measure of change in material

morphology is introduced here. The aim is to quantify this phenomenon, allowing it to

be compared to the quantitative data assessing the material’s computational capabilities.

The mean-squared error (MSE) between images, from iteration to iteration, would

be one way to estimate the change in material morphology. The MSE between two

images is a measure of the difference in the intensity of each pixel in one image with

the intensity of the corresponding pixel in the other image. This can reflect changes in

luminosity, contrast or structure. However, using the MSE, large differences in contrast

or luminosity between two images will result in a large mean-squared difference, even if

there was no changes in the images’ structure. Thus, changes in lighting, or unexpecting

blurring of the microscope lens during an experiment would affect the results.

Instead, the structural similarity index measure (SSIM), developed in [18] was used

here. This system compares images over three metrics: luminosity, contrast and struc-

ture. The SSIM is formulated as:

SSIM(π1, π2) =

(

2µπ1µπ2 + c1
)

−
(

2σπ1π2 + c2
)

(

2µ2
π1

+ µ2
π2

+ c1
) (

2σ2
π1

+ σ2
π2

+ c2
) (4.11)

where π1 and π2 correspond to two non-negative signals from two images Π1 and Π2

which are being compared. These signals are generally pixel data from the same portion

of each image. The two constants c1 and c2 are used to avoid instability that might arise

due to little luminosity or contrast within the image portions analysed. The SSIM is

defined between -1 and 1. A value of 0 indicates no structural similarity between two

images, whilst a SSIM=1 or -1 indicates two identical images.

In theory, comparisons of the three metrics can be obtained separately. However,
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since changes in luminosity and contrast can be due to changes in the LC’s orientation

and not just to variations in the environment, equation (4.11) allocates the same impor-

tance to all. Further details regarding this formulation are presented in [18].

During experiments, one photograph was taken half-way through each iteration. The

SSIM between each photograph thus reflects the impact of ten sets of configuration volt-

ages applied sequentially on the material, rather than the difference between two solu-

tions. Over the whole training process, the changes in SSIM value form a rate of change

(RoC) in material morphology which can be compared to the convergence in the ob-

jective function, the configuration voltage trajectories or the changes in current outputs

collected across the material.

4.5 Control Experiments

4.5.1 Motivation

The control experiments were undertaken with the aim of providing a basis of compar-

ison for all subsequent experiments. The potential bias produced by the EM’s compo-

nents or the micro-electrode array was investigated using a bare array as ‘evolvable’

material. In this case, the algorithms evolve an open circuit. LC-only samples, drop-cast

on the micro-electrode array, were used to determine whether the SWCNT/LC compos-

ites’ ability to solve computational problems was dependent on the presence of SWC-

NTs. Finally, the benefit gained, in terms of classification accuracy, from using SWCNT-

based samples over more conventional components was evaluated. In this case, the usual

micro-electrode array and material were replaced by a linear resistor array. All results

were compared with 0.05 wt % SWCNT/LC samples used as proof-of-concept for the

liquid composite.

4.5.2 Experimental Implementation

The characteristics of the three materials and the experimental process followed are de-

tailed in Chapter 2 and 3, respectively. All implementation parameters (number of con-

figuration voltages, interpretation scheme, etc) used were kept constant across the control

experiments. Important algorithms and search parameters are presented in Table 4.2.
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TABLE 4.2: Algorithms and Search Parameters.

Parameter Value

D
E

cross-over operator (CR) 0.7026

differential weight (F) 0.814

P
S

O

constriction coefficient (ω) 0.0729, 0.729

coefficients (c1, c2) 0.08, 0.9

velocity [ζmin, ζmax] [0, 1], [1, 4]

information exchange global

S
ea

rc
h

iteration size (Λ) 150-300

population size PSO (N) 10

population size DE (N) 8

[Vmin, Vmax] (Volts) [0, 4]

[Rmin, Rmax] [0.05, 15]

[pmin, pmax] [1, 182]

scheme h(1)

Both DE and PSO were used in the control experiments. The parameters of DE

presented in the first row of Table 4.2 are those discussed in Chapter 3. On the other

hand, the parameters of PSO presented in the second row are specific to this set of

investigations, and therefore included here for the first time. The coefficients (ω, c1, c2)

used in the global-PSO took two distinct values, depending on the configuration variable

to update. For the configuration voltages and threshold, which can vary between [0, 4]

Volts and [0.05, 15] respectively, the coefficient values used were ω = 0.0729, c1 =

c2 = 0.08 and ζ ∈ [0.0000001, 1]. On the other hand, p can vary between [1, 182]

and the coefficient values were therefore increased (ω = 0.729, c1 = c2 = 0.9 and

ζ ∈ [1, 4]), allowing particles to take larger steps. This choice of values was based on

results obtained during preliminary empirical investigations with SWCNT/LC. The data

collected during these investigations is not included here.

The number of control experiments varied across the different combinations of ma-

terial/EA/BCP, since for each control material, negligible variations in results were ob-

served depending on the EA/BCP used. The discussion focuses on the SC problem,

which was the most thoroughly investigated, with a minimum of three experiments per

combination material/EA.

4.5.3 Results

For each material, representative examples of objective (error) function behaviour during

training by DE and PSO are illustrated in Figure 4.3 (a) and (b), respectively. It can be
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observed that neither algorithm was capable of finding a solution resulting in a perfect

classification of all instances from the SC training dataset, i.e. an optimum of 0% error.

In the case of the empty micro-electrode array, i.e. no added material, the objec-

tive function remained around 50% for both EAs, which the worst possible solution for

both BCPs, as it indicates a classifier unable to differentiate between classes in any other

ways than by performing a random coin toss. The same level of error was observed dur-

ing verification. Training did not modify the empty array’s ability to classify instances

from the SC dataset. Instead, they continued to be randomly classified throughout the

experiment. This is coherent with the fact that, in the absence of added material between

electrode terminals, the resistance is infinite. Measured currents should remain at 0A,

irrespective of the inputs.

In practice, however, currents in the order of the pico-Amps were recorded by the

mbed during training. They were found to be a measure of noise across the EM rather

than the result of changes in conductivity across the empty array. The fact that the error
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FIGURE 4.3: Convergence of the objective function, averaged per iteration, for three different

control materials trained using the (a) DE and (b) PSO algorithms to solve the SC problem.
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remained 50% suggests that the implementation does not create artificial solutions, i.e.

a material allowing the algorithm to modify the current outputs needs to be present for

solutions to be found.

Drop-casting LCs across the array lowered the resistance between the terminals, but

as discussed in [16], the currents remained negligible. The algorithms were unable to

modify the classification error as can be observed in Fig. 4.3 (a) and (b) which show that

the objective function remained around 50% throughout training. These results supports

the suggestion that the system cannot find optimal solutions to the BCPs without an

appropriate material (cf. Chapter 2). Moreover, it justifies the addition of SWCNTs

to the LCs and the latter’s contribution to the search space as a matrix allowing the

SWCNTs to form conductive paths between electrodes [17].

Unlike the other control materials, the array of linear resistors enabled the finding of

solutions minimising the classification error for the SC problem. It can be observed in

Fig. 4.3 (a) and (b) that the objective function converges from 50% to around 35% error.

When tested against unseen SC verification instances, the best possible solution found

during training produced verification errors that remained around 35% (±3%) for all ten

verification tests. These observations are consistent with [19], where results reported

showed that an array of the same model could be exploited by the RCiM framework

to solve computation problems. Here, however, despite the simplicity of the dataset,

the error was far from the problem’s minimum. The algorithms were not capable of

finding the optimum, or even a good solution to the BCP when training the array of

linear resistors.

Finally, a convergence towards 0% error was observed in Fig. 4.3(a) for the SWCNT

/ LC sample. Replacing the control materials with SWCNT/LCs allowed DE to find an

optimal solution to the training problem, which generalised well to the unseen data (1%

verification error). Similarly, solutions classifying SC training and verification instances,

with 0% and 1% error respectively, were found using PSO. This is not illustrated in Fig.

4.3(b), as large variations in the objective function during PSO’s search, resulted in a

disparity between average error per iteration (plotted in the figure) and the minimum

error achieved per iteration. Differences based on the choice of algorithm are discussed

in Section 4.7.

In summary, the ability of DE and PSO to solve the simple BCP was increased by
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the use of SWCNT/LC samples. Using the same experimental implementation, optimal

solutions could not be found with the resistor array, and the framework did not allow

the algorithms to construct solutions from noise or negligible current levels. However,

noise constitutes a bias which is part of the overall search space, and therefore part of

any solutions obtained with SWCNT-based composites.
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4.6 Comparing SWCNT concentrations

4.6.1 Motivations

Investigations reported in [12, 15] identified a critical 1 wt % SWCNT/PBMA concentra-

tion, for which search performances were better than for any other concentration inves-

tigated. It was observed that this concentration coincided with the percolation threshold

of SWCNT/PBMA composites reported in [4].

The following experiments first investigate whether the SWCNT concentration is a

factor affecting training performance in SWCNT/LC composites. The aim is to identify,

if it exists, an optimal concentration, or range of concentrations, for which the overall

training performance results are best. The relation between this potential computation-

ally optimum SWCNT concentration and the material’s percolation threshold is also

discussed.

4.6.2 Experimental Implementation

Since similar relations between SWCNT concentration and computability were observed

in preliminary experiments where DE and PSO were compared, only DE was used in the

more extensive investigations presented here. Four different concentrations: 0.02, 0.05,

0.2 and 1 wt % SWCNT/LC were investigated, along with two BCPs. The 0.0025 wt

% SWCNT/LC composite used in [17] was not included, as the classification errors

obtained with this concentration were consistently higher than those obtained in the in-

vestigations reported here. The fully separable SC dataset and the partially merged MC

dataset were chosen as they present different characteristics and complexity. For each

combination of problem and concentration, five experiments were undertaken, using the

implementation and the DE parameters presented in Table 4.2 of Section 4.5.2.

4.6.3 Results

Table 4.3 presents the best training error Φt,∗
e and iteration λ∗

e at which it is reached, along

with the difference between minimum training and verification dΦ, the verification error

Φv
e and the standard deviation, σΦv

e
, which measures the variance in verification error

across these experiments, i.e. the reproducibility of the process. Each metric is averaged

over five experiments, and the best results are reported in bold. In addition, the spread of
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verification error across experiments for the four different SWCNT/LC concentrations

and the two BCPs is illustrated in Figure 4.4. The median, interquartile range and outliers

for Φv
e,j are reported in a box plot format.

Overall, results show that EiM training was most efficient when implemented in 0.05

wt % SWCNT/LC samples. Whilst this concentration was second best in terms of train-

ing error and speed of convergence for the SC problem, it performed better than the

other concentrations in all other efficiency metrics reported, for both BCPs. In terms of

verification errors, optimum values were achieved in at least one of the experiments, as

illustrated by the lower bound of the interquartile range in Figure 4.4. On average, the

verification error was close to 0% in the case of SC and 3.3% in the case of MC, which

are these problems’ respective optimums. Finally, compared to the other concentrations,

solutions found with the 0.05 wt % SWCNT/LC samples generalised better overall and

produced consistently low verification error. These two observations are illustrated by

the fact that the lowest values of dΦ and σΦv
e
, respectively, were achieved by this com-

posite. The size of the interquartile range and number of outliers reported in Figure 4.4

also give an indication of the reproducibility of the training. It can be observed that the

TABLE 4.3: Training and verification errors for different SWCNT/LC concentrations.

SC MC

wt % 0.02 0.05 0.2 1 0.02 0.05 0.2 1

Φt,∗
e (%) 0.000 0.780 4.460 17.120 5.760 4.42 6.820 15.025

λ∗
e 21.6 136.8 274.4 252 285.5 182.8 183.4 261.6

dΦ(%) 3.455 0.235 1.455 3.030 10.175 0.995 14.795 1.981

Φv
e (%) 4.773 1.241 7.660 21.803 17.448 5.686 22.415 15.841

σΦv
e

1.257 1.022 5.367 12.347 7.317 1.819 16.803 8.667

FIGURE 4.4: SC and MC verification error for the four different SWCNT concentrations, in

terms of minimum and maximum values, inter-quartile range and median.
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0.05 wt % SWCNT/LC solutions have the smallest interquartile range, and over the five

experiments, no outliers were obtained.

Across both BCPs, the higher concentration composites, 0.2% and 1%, tended to be

better at generalising than the 0.02% composite, but the training and verification errors

were high and the spread of verification error across the mean important. On the other

hand, the lowest concentration tended to find good solutions during training, resulting

in low training error, and the verification results were relatively reproducible. However,

the solutions did not generalise well. In other words, a low training error did not always

coincide with low generalisation. For example, in the case of the MC problem, the

0.02 wt % SWCNT/LC samples had Φt,∗
e = 5.760 whilst the 1% samples averaged

Φt,∗
e = 15.025%, but the difference between best training and best verification errors

were dΦ = 10.175% and dΦ = 1.981, respectively.

These observations suggest that SWCNT concentration has an impact on both classi-

fication accuracy and result reproducibility. The photographs taken throughout training

suggest an effect of the concentration on the change in morphology induced in the ma-

terial throughout training. A large amount of variations were observed in the 0.02 wt %

SWCNT/LC composite, from iteration to iteration, whilst next to none were observed

in the composites with 0.2 and 1 wt % SWCNT concentration. Figure 4.5 shows rep-

resentative examples of photographs taken in the different concentrations, one during

the first iteration, and one during the last iteration of training for the MC problem. The

SSIM reported in this figure is between these two iterations only, i.e. it indicates the

overall change in the observable morphology of the samples, rather than the RoC they

experienced throughout training.

The differences in the level of change in morphology can partly explain the differ-

ences in classifier performance across concentrations. SWCNTs tend to aggregate under

the influence of Van der Waals forces. At lower SWCNT concentrations, the percola-

tion paths, formed by the SWCNT aggregating into bundles across the composite, are

more likely to vary throughout training, due to the higher movement observed across the

material. This allows solutions to be found irrespectively of the composite’s initial state

(unlike solid SWCNT/polymer composites), as illustrated by the lower average verifi-

cation error across experiments reported in Table 4.3. However, it also means that the

evolved percolation paths forming part of the optimum solution found during training
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have a high chance of being modified by subsequent voltage application, material drift

or external factors. In other words, around 0.02 wt % SWCNTs, solutions produced with

SWCNT/LC samples were not stable.

FIGURE 4.5: Photographs of the SWCNT/LC composites’ surface taken at the start (λ = 1) and

the end (λ = Λ) of training performed by the differential evolution algorithm to solve the MC

classification problem. The photographs are arranged vertically by increasing SWCNT concen-

tration. A high SSIM value means small amount of perceptible change in material morphology

first and last iteration of training. The SSIM is seen to increase with SWCNT concentration.
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Following this line of reasoning, results obtained at higher concentration can be ex-

plained by the fact that it is harder to modify SWCNT bundles formed in the samples

prior to training. Experimental results were therefore more dependent on the material’s

initial state and whether or not it favoured the finding of good solutions to the clas-

sification problems. The optimum concentration, where solutions were able to gener-

alise better and classify instances more accurately combined a viscosity that allowed

the SWCNTs to move under an applied electric field, but not so much as to destroy an

evolved problem-solving material state (M∗).

In summary, optimum training speed and classification accuracy were obtained for

both BCPs when SWCNT/LC composites had concentrations of 0.05 wt % SWCNTs.

In addition, evaluation of the RoC throughout training supported the hypothesis that the

EA’s search had an effect on the material morphology. The photographs taken with the

microscope were clearer for 0.05 wt % SWCNT/LC samples than with the two higher

concentrations, enabling optical changes in the material to contribute to the analysis of

results, along with classification errors, and electrical input/output variations. It must be

noted, however, that for all concentrations, the photographs only captured movements

from the samples’ top surface, and at the micrometer level. The hypothesis formulated

here would be better supported using higher resolution microscopes or microscopes col-

lecting data across three dimensions.

4.7 Comparing Evolutionary Algorithms’ Performance

4.7.1 Motivations

Within the field of EiM, genetic algorithms (GA) and evolutionary strategies (ES) have

been the favoured choice of EA, but no investigations into their relative performance

has been reported. On the other hand, the Nelder-Mead (NM) and DE algorithms have

been compared in [20], along with PSO in [3]. Non-negligible differences in search be-

haviour and result accuracy were reported in both, showing a non-negligible dependence

of results on the choice of algorithm. These observations motivated the investigations

presented in this section, especially since both the material and the problems used dif-

fer from the solid SWCNT/polymer composites used in previous discussions, allowing

potentially different conclusions to be drawn.
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4.7.2 Experimental Implementation

The performance of DE and PSO algorithms were compared using samples of 0.05 wt

% SWCNT/LC composite. The algorithm and search parameters are the same as those

presented in the table 4.2 of section 4.5.

The comparisons focus on the search performance of the EAs resulting from their

training of the SWCNT/LC composite to solving the SC, MC, V1C and NLC problems.

The search terminates either if an error within 0.5 % of the problem’s optimum has been

obtained repeatedly over two iterations, resulting in a variance in training error < 0.5%,

or if the search has reached the maximum number of iterations Λ = 350.

For each problem and algorithm, a minimum of W = 5 experiments were under-

taken. As part of each experiment, ten verification tests were used to verify the accuracy

of the SWCNT/LC classifier subjected to DE or PSO training. Verification tests started

300s after training ended. For each test, the same set of verification instances was ap-

plied to the material along with the optimum set of decision variables obtained during

training. Observable changes in the samples’ SWCNT structures were recorded during

training using a camera fixed to a microscope.

4.7.3 Results

The first column of Table 4.4 presents the minimum error Φ
t,(λ∗,ℓ∗)
e achieved during

training, which corresponds to the error produced by the solutions x
∗, by individual

ℓ∗ at iteration λ∗. The notation Φt,∗
e is for the averaged error over the W experiments

undertaken. The other four columns of Table 4.4 refer to results of the verification tests:

Φv,∗
e is the minimum verification error, Φv,w

e the worst, Φ
v

e the average and σΦv
e

the

standard deviation from this average across experiments. The latter gives an idea of the

stability of the solution, rather than the reproducibility of the results obtained with one

or the other algorithm.

It must be noted that due to the state of the material, if the optimum solution x
∗

producing the minimum error was achieved on the last iteration (λ∗ = Λ), then the first

verification test, t1, is applied to M
∗, i.e. the optimum solution x

∗ = [V∗
R

∗
M

∗]T

is tested against unseen data. All subsequent tests are applied on a material which is

no longer in the exact state M
∗. However, if x

∗ was obtained earlier in the training

sequence, none of the tests are applied on a material in the exact state M
∗. In that case,
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the verification tests are used to assess 1) the stability of M∗ or 2) the robustness of the

part of the solution x
′∗ = [V∗

R
∗]T , i.e. their ability to set the material in a problem

solving state, irrespective of physical changes in M
∗.

The difference between training and verification errors, excluding the outliers, re-

mains |Φt,∗
e − Φv,∗

e | < 2.125% across the different problems and algorithms. This in-

dicates that the material’s behaviour is consistent and generalises well as a classifier. A

poor generalisation would see the difference between training and verification increase

towards 50%. Solutions obtained during training using DE can be better than those of

PSO, especially for the SC and V1C datasets. However, PSO outperforms DE with

respect to consistency across experiments and generalisation of the solution. This can

be observed for the MC dataset where DE obtains both smallest and largest error for

verification (Φv,∗
e = 3.975% and 18.25% respectively) whilst PSO’s variance over veri-

fication tests is lower.

Figure 4.6 illustrates the convergence of the error during training in terms of average

and minimum per iteration, for DE and PSO and based on the four BCPs, SC, V1C,

MC and NLC. The convergence patterns observed are representative of the experiments

in Table 4.4, irrespective of the experiment undertaken. In addition, the objective func-

tion produced during one of the control experiments is illustrated in the figure, for the

sake of comparison. The control material consists in the LCs drop-cast on the electrode

array and the values reported in each graph corresponds to the values obtained when

this control material is trained using the same combination of problem and algorithm as

TABLE 4.4: Training and verification errors for SC, MC, V1C and NLC problems.

SC Experiments Φt,∗
e (%) Φv,∗

e (%) Φv,w
e (%) Φv

e (%) σΦe,v

PSO 1.400 1.925 2.667 2.385 0.071
DE 4.233 6.350 7.558 6.995 0.154

MC Experiments Φt,∗
e (%) Φv,∗

e (%) Φv,w
e (%) Φv

e (%) σΦe,v

PSO 5.567 6.917 8.300 7.712 0.261
DE 5.167 3.975 18.250 10.454 0.117

V1C Experiments Φt,∗
e (%) Φv,∗

e (%) Φv,w
e (%) Φv

e (%) σΦe,v

PSO 2.7 3.975 5.175 4.653 0.1318
DE 1.3 2.325 2.725 2.498 0.016

NLC Experiments Φt,∗
e (%) Φv,∗

e (%) Φv,w
e (%) Φv

e (%) σΦe,v

PSO 0.06 4.275 7.325 6.060 0.845
DE 1.40 23.175 23.825 23.513 0.0384
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the SWCNT/LC sample it is compared against in the plot, i.e. in Figure 4.6 (a), both

SWCNT/LC and LC-only samples are trained using DE to solve the SC problem.

0

10

20

30

40

50

60

70

80

90

100

 0  20  40  60  80  100  120  140

o
b

je
c
ti
v
e

 f
u

n
c
ti
o

n
 (

%
)

iteration (λ)

DE algorithm, SC problem

LC-only average error per iteration
LC-only minimum error per iteration

SWCNT/LC average error per iteration
SWCNT/LC minimum error per iteration

overall best=0.0%, λ=60

0

10

20

30

40

50

60

70

80

90

100

 0  50  100  150  200  250

o
b

je
c
ti
v
e

 f
u

n
c
ti
o

n
 (

%
)

iteration (λ)

PSO algorithm, SC problem

LC-only average error per iteration
LC-only minimum error per iteration

SWCNT/LC average error per iteration
SWCNT/LC minimum error per iteration

overall best=1.5%, λ=197

(a) DE SC (b) PSO SC

0

10

20

30

40

50

60

70

80

90

100

 0  50  100  150  200  250

o
b

je
c
ti
v
e

 f
u

n
c
ti
o

n
 (

%
)

iteration (λ)

DE algorithm, V1C problem

LC-only average error per iteration
LC-only minimum error per iteration

SWCNT/LC average error per iteration
SWCNT/LC minimum error per iteration

overall best=0.6%, λ=83

0

10

20

30

40

50

60

70

80

90

100

 0  50  100  150  200  250  300  350

o
b

je
c
ti
v
e

 f
u

n
c
ti
o

n
 (

%
)

iteration (λ)

PSO algorithm, V1C problem

LC-only average error per iteration
LC-only minimum error per iteration

SWCNT/LC average error per iteration
SWCNT/LC minimum error per iteration

overall best=1.2%, λ=283

(c) DE V1C (d) PSO V1C

0

10

20

30

40

50

60

70

80

90

100

 0  50  100  150  200  250

o
b

je
c
ti
v
e

 f
u

n
c
ti
o

n
 (

%
)

iteration (λ)

DE algorithm, MC problem

LC-only average error per iteration
LC-only minimum error per iteration

SWCNT/LC average error per iteration
SWCNT/LC minimum error per iteration

overall best=6.8%, λ=215

0

10

20

30

40

50

60

70

80

90

100

 0  50  100  150  200  250  300  350

o
b

je
c
ti
v
e

 f
u

n
c
ti
o

n
 (

%
)

iteration (λ)

PSO algorithm, MC problem

LC-only average error per iteration
LC-only minimum error per iteration

SWCNT/LC average error per iteration
SWCNT/LC minimum error per iteration

overall best=7.8%, λ=347

(e) DE MC (f) PSO MC

0

10

20

30

40

50

60

70

80

90

100

 0  50  100  150  200  250

o
b

je
c
ti
v
e

 f
u

n
c
ti
o

n
 (

%
)

iteration (λ)

DE algorithm, NLC problem

LC-only average per iteration
LC-only minimum per iteration

SWCNT/LC average error per iteration
SWCNT/LC minimum error per iteration

overall best=0.9%, λ=188

0

10

20

30

40

50

60

70

80

90

100

 0  20  40  60  80  100  120  140

o
b

je
c
ti
v
e

 f
u

n
c
ti
o

n
 (

%
)

iteration (λ)

PSO algorithm, NLC problem

LC-only average error per iteration
LC-only minimum error per iteration

SWCNT/LC average error per iteration
SWCNT/LC minimum error per iteration

overall best=0.9%, λ=148

(g) DE NLC (h) PSO NLC

FIGURE 4.6: Convergence of the objective function produced by DE and PSO during represen-

tative trainings of SWCNT/LC samples for all the synthetic binary classification problems.
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It can be observed from the plots presenting the average and minimum values of the

objective function per iteration throughout training in Figure 4.6 (a), (c), (e) and (g),

that the SWCNT/LC sample adapts within few iterations when DE is used. Once an

optimum solution, resulting in a % of error close to the problem’s minimum, has been

reached, the algorithm spends the subsequent iterations exploiting solutions around this

optimum. This results in a convergence of the average and minimum errors towards the

same value, around which they revolve until the last iteration, or a suitable termination

criterion has been reached. On the other hand, the PSO algorithm reaches errors close

to the problems’ optimum towards the end of the training process, exploring the overall

search space. This is suggested by the large difference between average and minimum

error averaged per iteration observed in Figure 4.6 (b), (d), (f) and (h), i.e. all the right

hand graphs, which present the convergence of the objective function obtained with the

PSO algorithm for the four BCPs.

Following the training phase, verification tests were performed on the evolved de-

vices. Two examples of the resulting distribution of misclassified verification instances,

obtained from devices where DE and PSO converged to solutions producing the same

minimum training error Φ∗
e = 5.7%, are presented in Figures 4.7 (a) and (b). Results

are for one of the ten verification tests only. In both plots, the overlapping area between

the two classes contains the majority of the misclassified instances. However, outside

the overlap, less instances are misclassified by the PSO-trained device than by the one

trained using DE. The percentage of verification error presented in Figures 4.7 (a) and

(b) were 18.475% and 7.825 %, respectively. Despite both algorithms achieving the

same training error, DE misclassified 426 instances more than PSO.

Figures 4.7 (c) and (d) show the distinctive difference between the two algorithm’s

configuration voltages’ trajectories, averaged over S, per iteration. The search performed

by DE is more noisy even when the algorithm aims to exploit a minimum. On the other

hand, PSO’s exploration of the search space is based on smoother inputs. This is the

expected behaviour of particle trajectories for the PSO algorithm [21]. This difference

has been proposed in [22, 23] as a possible explanation for the fact that over a number

of experiments, DE is less consistent in its performance, whilst exploration of the search

space by the PSO algorithm tends to produce devices with a classifying state that can be

recovered post-training, and which generalises well to new data . It is possible that the
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FIGURE 4.7: Visualisation of the classification error achieved during verification for (a) DE and

(b) PSO, followed by the configuration voltage trajectories produced by (c) DE and (d) PSO.

PSO algorithm’s smoother trajectories of Vj allow stable SWCNT structures reinforcing

responses minimising the classification error to be built inside the material. The noisy

Vj applied by DE would make the formation of such structures more difficult.

It must be noted, however, that the differences reported are based on bulk composite

measurements. Another interpretation based on the same measurements could suggest

that the generalisation property depends on the overall level of the electric field applied

to the samples. DE-controlled voltages tend to converge towards low values early in the

search, whilst PSO’s remain close to half of the maximum voltage allowed until later in

the search. Knowing the exact changes in the SWCNT-distribution across the LC matrix

throughout training would provide more information regarding the impact of the two

different algorithms on the material, and perhaps support one or the other hypothesis. It

is an area that remains to be explored beyond the scope of this thesis.

Figure 4.8 (a) depicts the convergence trajectory of p all experiments where DE and

PSO are used to train 0.05 wt % SWCNT/LC samples into solving the MC problem.

Convergence is not towards the same value of p, but resulting input electrode location
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are similar for both algorithms. Figure 4.8 (b) presents the corresponding mapping of

p with regard to input location on the micro-electrode array for the optimal solutions of

the three problems. Experiments resulting to errors between 4-10% for Φt,∗
e and Φv,∗

e

tend to have a p corresponding to the most favoured locations shown in Figure 4.8 (b). It

must be noted that two close values of p might not correspond to two adjacent electrode

positions. The convergence is therefore towards a target set of electrodes, but each small

variation from the value of p resulting in this target or specific electrode assignment

might result in a large change in electrode location for the problem’s inputs and the

algorithm’s configuration voltages.
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FIGURE 4.8: (a) Visualisation of the evolution of p controlled by DE and by PSO to solve the

MC problem. In (b), the value of p∗ obtained in these experiments is translated into the most

common electrode positions.

4.8 Comparing Problem Formulation Parameters

4.8.1 Motivations

Similarly to the choice of algorithm, the choice of problem formulation has been ob-

served to have an impact on the material’s ability to solve the BCPs [19]. Since the

origin of this impact in not currently known, problem formulation parameters tend to

be chosen arbitrarily, or ansatz. This is the case for the simple function, h(1) from eq.

(4.7), used in the interpretation scheme and developed to solve simplest classification

problems. The aim here is therefore to investigate whether better results can be obtained

from variations in search parameters and problem formulation for the SWCNT/LC com-

posite and the algorithms previously described. A discussion based on robust statistical
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analysis of the data collected would provide a basis for the choice of search parameters,

enabling subsequent investigations into the solving of more complex datasets.

4.8.2 Experimental Implementation

Varying search parameters and variables

Investigating the impact of the search parameters and variables on the computational

results focused mainly on an analysis of the variable p, but experiments also involved:

• varying the maximum and minimum values of the threshold used in the interpre-

tation scheme, i.e. Rmax between 5 to 30, and Rmin from 0 to 0.05

• varying the maximum configuration voltages level, Vmax, between 2V and 8V.

Varying the function used in the interpretation scheme

A detailed description of the problem formulation used to transform an un-configured

material into a classifier is given in Chapter 3. Errors obtained when training SWCNT/LC

samples using four different problem formulations are compared in this section.

The first form of the function h used in the problem formulation was h(1), presented

in section 4.2.2 and yielding interpretation scheme S
(1)
C

. A variation on this function

involved multiplying the output currents collected across the material by the computation

voltages defining the instances to be classified, resulting in h(2) of the form:

h(2)
(

V
C ,V,Y(M)

)

= h(2)
(

V
C ,Y(M)

)

= I1V
C
1 + I2V

C
2 (4.12)

yielding interpretation scheme S
(2)
C

. The S
(2)
C

combines information collected from both

the material and the observable data generating source. In principle, a different h de-

pending explicitly on V can also be used, as is the case in [20]. Instead, the depen-

dence in (4.12) is implicit through the physical quantities recorded across the material,

Y(M) = [I1(M), I2(M)]T , which are measures of the configuration voltages, in addi-

tion to the material state and computation voltages.

A second variant to the original function involved the same multiplication between

inputs and outputs used in h2, but in this case the currents I1 and I2 were raised to the

third power such that

h(3)
(

V
C ,V,Y

)

= h(3)
(

V
C ,Y

)

= (I1)
3V C

1 + (I2)
3V C

2 (4.13)
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is the function used in the cubic scheme S
(3)
C

.

The last variant involved a logistic function, or sigmoid, which is a common type

of activation functions used to regulate the output of a neuron within an artificial neural

network (ANN). In the ANN case, the sigmoid can be used in the hidden layers of the

network as well as within the output layer, for example to infer a class from the set of

inputs sent to the network when the ANN is trained to behave as a data classifier [24].

Here, similar to the latter use, the class of a data-point is inferred from the material’s

outputs using a sigmoid of the form

h(4)
(

V
C ,V,Y

)

= h(4)
(

V
C ,Y

)

=
1

1 + e−A
, (4.14)

where A is a function of the output currents measured across the material and two

decision variables, R1 and R2, such that

A = R1I1(k) +R2I2(k). (4.15)

In this case, h(4) was compared to 0.5 rather than to an algorithm controlled variable,

resulting in the S
(4)
C

scheme:

S
(4)
C

(

V
C ,V,Y,R

)

=











1 if h(4)
(

V
C ,V,Y

)

≤ 0.5

2 if h(4)
(

V
C ,V,Y

)

> 0.5
(4.16)

There are alternatives to building the objective function by simple addition of the

number of misclassified datapoints. One such alternative is to use false positives (FP),

false negatives (FN), true positives (TP) and true negatives (TN) to build the error func-

tion. This scheme is commonly used when evolving classifiers to solve multi-class prob-

lems, or binary-class problems with class imbalance, as it gives a better indication of the

classifier’s true accuracy. For example, if 80% of a problem’s instances belong to one

class and 20% to another, a 80% training accuracy actually means that the classifier is

randomly classifying data. Such a false sense of accuracy is prevented by the confusion

matrix constructed from the FP, FN, TP and TN values. The use of confusion matrix

in the scheme can also be useful when medical datasets are studied, as it provides fur-

ther indication regarding the instance’s class assignment: one might want to focus on

maximising the number of true positives, for obvious reasons, but it is also useful to
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minimise the amount of false positives, as being wrongly diagnosed with a disease can

create unwanted level of stress. In the field of EiM, the scheme has been implemented

when investigating the ability of training data classifiers [1, 15], frequency classifiers

[25] or even parity problem solver [26] based on solid SWCNT/polymer composites.

Following this work, the FP, FN, TP and TN are evaluated for each k instance of the

training or verification dataset as

TP (k + 1) = TP (k) + 1, TN(k + 1) = TN(k) + 1 if CM (Vin(k),x) = C(Vin(k))

FP (k + 1) = FP (k) + 1, FN(k + 1) = FN(k) + 1 if otherwise.

(4.17)

The mean total error in this case is given by

Φ(TP )
e (x) =

Kt
∑

k=1

(TP (k)TN(k))

(TP (k) + FP (k))(TN(k) + FN(k))
. (4.18)

and the optimisation problem for this scheme, S
(5)
C

, becomes

min
x

− Φ(TP )
e

(

x,VC
t ,Kt

)

(4.19)

subject to (3.13) − (3.15)

4.8.3 Results

Varying search parameters and variables

Different values of the search parameters were tested in preliminary investigations, mean-

ing that the number of experiments undertaken with different values is too small to be

reported in a table (generally below 3 experiment per parameter value). However, some

cases showed important variations between the few experiments undertaken, and led to

the following observations and choice of values:

• Better training and verification results, i.e. combination of smallest errors and

fastest algorithm convergence, were achieved for Ri,max = 15 rather than for any

other of the tested values. Ri,min, i = 1, . . . n2 was first set to 0. In this case, the

voltages controlled by the EAs tended to go to 0 after a few iterations, whether

or not error had reached an optimum value. This was no longer the case when all

Ri,min = 0.05.
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• Vi,max = 4V tended to result in the best solutions. It was observed that below

this level, no change in the morphology of the SWCNT/LC samples during train-

ing tended to occur, whilst above 4V, these changes tended to be very important

throughout evolution of the device.

It was also observed experimentally that the input voltage location variable, p, is

important to the solution. Over a majority of experiments, the error function converges

rapidly to an optimum once p has settled to a specific value. The voltages around that

iteration will also settle and start to explore the search space around given values. In ad-

dition, the preferred choice of input location on the electrode array, over 20 experiments,

varies according to the problem at hand, which means it is not random.

Varying the function used in the interpretation scheme

The first scheme, S
(1)
C

, depends only on the measured material responses. This proved

sufficient for SC and MC, leading to the use of this variant in subsequent experiments.

However, as the problem complexity increased, an increase in training and verification

errors suggested the need for a more complex threshold function. The second scheme,

S
(2)
C

based on the function variant h(2) demonstrated significant improvements in the

ability of DE and PSO-trained SWCNT/LC to solve the V1C and NLC problems.

The most complex of the BCPs, NNLC, could not be solved using either S
(1)
C

or

S
(2)
C

, directing investigations where S
(3)
C

, S
(4)
C

were used instead. Training and verifica-

tion results used to compare the different schemes are presented in Table 4.5. Results

obtained with the objective function variant defined in eqs. (4.17)-(4.19), yielding S
(5)
C

,

are also reported for comparison with the other alternatives.

TABLE 4.5: Training and verification errors for NNLC problems using different schemes.

Scheme Φt,∗
e (%) dΦ Φv

e(%) σΦv
e

S
(1)
C

7.90 13.05 21.26 7.108

S
(2)
C

5.9 1.63 8.14 0.091

S
(3)
C

6.4 7.05 19.85 2.623

S
(4)
C

15.37 11.11 26.99 11.767

S
(5)
C

14.55 9.8125 19.92 7.703
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Best results for this problem were obtained with the S
(2)
C

schemes. However, it can

be seen in Figure 4.9 (a) that the optimum solution obtained at the end of the evolution for

the NNLC’s verification datasets is separating the classes with a straight line. In the case

of the S
(3)
C

scheme, the line becomes non-linear, but does not fit the classes’ boundary

(fig. 4.9 (b)). It would be expected that the more sophisticated schemes, S
(4)
C

and S
(5)
C

,

would help produce a better fitting separation curve between the classes. Instead, they

do produce a solution where the data is separated by a straight line far from the classes’

boundary in the case of S
(4)
C

(fig. 4.9 (c)) or a hyperbola in the case of S
(5)
C

(fig. 4.9

(d)). The results are worse than for the simpler S
(2)
C

and S
(3)
C

, with 26.99% and 19.982%

verification error for S
(4)
C

and S
(5)
C

, respectively.

Results for the NNLC dataset were inconclusive, in the sense that, irrespective of the

scheme used to produce the objective function, the DE algorithm was unable to find the
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FIGURE 4.9: Verification results for NNLC dataset using (a) the non-linear scheme S
(2)
C

from

eq. 4.12, (b) the combined cubic scheme S
(3)
C

from eq. 4.13, (c) the sigmoid-based scheme, S
(4)
C

,

from eqs. (4.14)-(4.16) and (d) the TP-scheme, S
(5)
C

from eqs. (4.17)-(4.19)
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problem’s optimum solution. Being fully separable, 0 % error should be obtained, but

the minimum verification error over all experiments, and verification tests, is 7.38%.

It must be noted that due to the characteristics of the datasets used (low number

of dimensions, simple boundaries, etc), even if the combination of SWCNT/LC and

implementation is able to solve the classification problems, it is not in itself an indication

of whether more complex, real-life problems can be solved using this same process.

This is a common problem in unconventional computing, where an ongoing discussion

is concerned with the establishment of correct benchmark function to be used evaluating

new algorithms or computational framework.

4.9 Summary of Results and Conclusions

The chapter reported a collection of experiments aiming at evaluating different param-

eters involved in the EiM implementation. Results from these evaluations support the

implementation choices made in subsequent investigations.

Using the EiM process, it was possible to transform a liquid SWCNT/LC composite

into a classifier stable enough to solve a binary classification problem (BCP). Under

the same implementation, it was not possible to solve a BCP with satisfactory accuracy

using bare electrodes or an array of linear resistors. This supported the hypothesis that

the SWCNT/LC composite was an integral part of the solution minimising the BCP’s

classification error. Furthermore, it was observed that the SWCNTs were a necessary

addition to the LC, since the BCP could not be solved with LC-only samples.

The choice of material concentration affected solution accuracy and training speed.

An optimum concentration range was observed around [0.05, 0.1] wt % SWCNT/LC.

This was attributed to the percolation threshold reported for this material [16], and the

effect of the concentration on the viscosity of the material, and as a result, on the changes

in material morphology produced by the algorithms’ search.

Results reported in the chapter suggest that it is possible to evolve SWCNT/LC com-

posites into binary data classifiers using the implementation detailed in Chapter 3. In ad-

dition, it is observed that for samples in the [0.05, 0.1] wt % SWCNT/LC range, training

efficiency was, on average, better than for other concentrations. This range of concentra-

tions is lower than the [0.7-1] wt % SWCNT/PBMA optimum range observed in [4, 15].
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This is consistent with the percolation threshold, observed at lower SWCNT concentra-

tions in SWCNT/LC [16] compared to solid SWCNT/polymer samples [4], and implies

that less SWCNTs are required to obtain good solutions with the former composite.

Two algorithms were compared using 0.05 wt % SWCNT/LC samples. A trade-off

between result accuracy and consistency was observed. The particle swarm optimisation

(PSO) algorithm tended to produce results that converged slowly to a stable solution that

generalised well. Solutions obtained with differential evolution (DE) also generalised

well, with a classification accuracy that was, on average, higher for three out of four

BCP. However, there was more variability in accuracy across experiments when DE was

used. It was possible to link these observations with both the search behaviour of each

algorithm (focused on exploration or exploitation), illustrated by the configuration volt-

age trajectories recorded during training, and the resulting material behaviour, illustrated

by the rate of change in material morphology during training. The results and discussion

extend those previously reported by the author in [22, 23].

Finally, it was observed that a linear function could be used to translate the SWCNT

/ LC’s outputs into a classification error for the simplest BCPs. For more complex BCPs,

improved training speed and result accuracy were obtained by modifying this basic func-

tion. However, past a given level of problem complexity, no statistically significant dif-

ference in results was observed with further function variations.

Overall, it was observed that although the computation can be considered as ana-

logue in nature, it was the macro-behaviour of the emerging material properties that is

used. The alignment and formation of percolation paths of SWCNT within the LC host

is enforced by the iterative nature of the evolutionary search conducted, until a notion

of computation error is minimised or becomes zero. It must be noted that just as in the

analogue computing case, there was a persistent issue with the computation’s accuracy.

This is a problem which can be addressed by improving the quality of the hardware used

and the efficiency of the training algorithm.
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5.1 General Overview

Results and analysis regarding the solving of binary classification problems (BCPs) have

been outlined in Chapter 4. The main aim of this Chapter is to investigate whether

the use of single-walled-carbon-nanotube (SWCNT)/ liquid crystal (LC) composites can

help in understanding the impact of the evolution in materio (EiM) process on materials,

and whether there is a benefit to using liquid rather than solid samples. Four sets of

investigations are reported, following four research questions:

1. How fast and accurate is the training of the material for evolving binary classifiers,

and can the resulting classifier performance be reproduced using different samples

of the same composite?

2. What is the contribution of the material itself to the system’s behaviour as a binary

classifier and what is the contribution of the configuration inputs?

3. Can a successful training programme for one processor be applied to different,

nominally similar processors, and get the same result? In other words, can two

different samples of the same material, trained using a given sequence of inputs,

solve a classification problem with the same or similar accuracy?
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Chapter 5. Characteristics of Evolved SWCNT/LC Classifying Devices

4. Can SWCNT/LC samples be reconfigured by the evolutionary algorithm to solve

more than one binary classification problem (BCP)? Does the complexity of the

problems’ dataset affect this process?

A novel approach to analyse the performance of the physical SWCNT-based classi-

fiers resulting from the EiM experiments is also reported in this Chapter. It is observed

that a confidence measure associated with the classification accuracy of the evolved

material-based classifier can be calculated. The measure is based exclusively on the

solution produced by the evolutionary algorithm, ie: a combination of the material’s

electrical state and a threshold that belongs to the problem’s set of decision variables.

This is an important contribution in that it allows further investigations to be undertaken

with complex datasets where a high confidence in the result is crucial.

The new measure of classifier confidence for in materio computation is introduced

and discussed in the first section. In the following four sections, the results of investiga-

tions aiming to answer the four research questions are reported and discussed. The final

section summarises results and concludes this Chapter.

5.2 Confidence Measures in Materio

5.2.1 Motivations

Training errors and verification errors, such as have been described in Chapter 3 and

used in Chapter 4, are two common measures of the performance of a classifier produced

through supervised learning [1]. They can be used either to compare classifiers obtained

through different means, or to estimate how well a given classifier will be performing for

a specific task. These measures have the advantage of being generally straight-forward

to obtain. In addition, in the case of BCPs where balanced datasets are available, and

both classes have equal importance, training and verification errors can provide a good

estimate of the error that will be obtained by a classifier when faced with new data. How-

ever, these two errors are not always sufficient, and can sometimes even be misleading

as to the real quality of the classifier they are used to assess, motivating investigations

into additional measures of classifier performance.

A number of classifier performance measures are presented, assessed and compared

in [2] and [3]. Overall, both papers argue that the quality of the information provided by
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Chapter 5. Characteristics of Evolved SWCNT/LC Classifying Devices

a measure will depend on the problem at hand and the type of classifier used, i.e. there is

not one measure which is optimum for all problems/classifiers. Some of these measures

are therefore designed with a specific application in mind, such as the recall rate [2],

which is generally used when dealing with medical datasets. Others, can be based on

statistical analysis, such as the non-parametric statistical tests used to compare classi-

fiers evolved following the reservoir computing in materio (RCiM) approach [4]. Other

still are classifier-dependent. For example, some measures developed for a probabilistic

classifier in [5] are not applicable to an artificial neural network (ANN)-based classifier,

for which other measures are proposed in [6, 7].

In the work presented here, the aim is to investigate whether information regarding

a classifier’s quality can be extracted from measurements collected across evolved de-

vices, that might not be available when using other classifiers, whether it is because they

are realised in a different material, or because they have not been obtained using EiM.

Firstly, a measure of the reliability of the training errors and verification errors obtained

during and post training is reported. It was observed during experiments that training

and verification errors did not always match. This lead to the question of whether it is

possible to predict by how much these two errors will differ, and how much error can

be expected post-verification. In other words, how confident can one be that the train-

ing and verification errors are truly representative of the classifier’s quality. Secondly,

a confidence measure is proposed. Its aim is to provide information about areas of the

dataset where instances correctly classified during training or verification tests are most

likely to be misclassified in subsequent tests, i.e. areas of high uncertainty.

5.2.2 Experimental Implementation

Three out of the five synthetic binary datasets introduced in Chapter 4 were investigated:

V1C, MC and NLC. They represent linearly separable, merged and non-linearly sepa-

rable classification problems, respectively. The V1C and NLC problems have different

complexities associated with the width and shape of their separating boundary, but in

both cases, an optimum solution will produce a 0% error. On the other hand, the MC

dataset presents an overlapping area between the two classes containing 6.6% of all in-

stances. As mentioned previously, this means that the lowest possible error that can be

achieved is 3.3%. The differential evolution (DE) algorithm presented in Chapter 3 is
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Chapter 5. Characteristics of Evolved SWCNT/LC Classifying Devices

used to evolve the composites. In each of the W = 14 experiments undertaken per prob-

lem (except MC, where W = 4, as the variation across experiments was ≈ 0), a different

SWCNT/LC sample has been used.

The performance of the evolved classifier is first assessed using the metrics related

to the percentage of classification error. In each experiment j = 1, . . . ,W , starting

from initially untrained material samples, both training and verification are performed,

yielding the optimal training error Φt,∗
e,j and the corresponding verification error Φv

e,j ,

calculated according to eq.(3.22). Based on these experimental results, the following

metrics are used,

Φt,∗
e = 1

W

∑W
j=1Φ

t,∗
e,j , dΦ = 1

W

∑W
j=1 |Φ

t,∗
e,j − Φv,∗

e,j |

Φv
e = 1

W

∑W
j=1Φ

v
e,j and σΦv

e
,

(5.1)

where dΦ provides an indication of how well the solution evolved during training (and

resulting in Φt,∗
e ) generalises to new data, i.e. whether the classifier has overfit to the

training data. The average verification over experiments, Φv
e , in conjunction with the

standard deviation σΦv
e

evaluating the spread of results across this mean, provide a mea-

sure of the results’ reproducibility on different material samples. For each metric, 0%

indicates optimality, except in the case of the MC problem, where the optimal value of

Φt,∗
e and Φv

e is 3.3%.

The figure of merit (FoM) is the name given to the confidence measure developed

for the in materio classifiers described in this work. When an instance from a dataset is

classified, it is assigned a % FoM, or confidence in the class it has been assigned to, based

on the physical quantities related to the optimal material state and decision variables, i.e.

the solution x∗. Since the class assigned to an instance defined by a set of computation

inputs VC is determined using an interpretation scheme, as first defined by eq.(3.7),

the calculation of the FoM varies according to the choice of classification problem, as

discussed in Chapter 4, Section 4.8. In both formulations of the interpretation scheme

used for the BCPs, the output currents measured across the material are compared to the

best value of the decision variable R∗
1. Based on this comparison, the FoM for the V1C

and NLC datasets is given by

FoM =

∣

∣

∣

∣

∣

I1(k)V
C
1 (k) + I2(k)V

C
2 (k)−R∗

1

maxk {I1(k)V C
1 (k) + I2(k)V C

2 (k)−R∗
1}

∣

∣

∣

∣

∣

× 100 (%) (5.2)
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Chapter 5. Characteristics of Evolved SWCNT/LC Classifying Devices

and for the MC dataset it is

FoM =

∣

∣

∣

∣

∣

(I1(k)/I2(k))−R∗
1

maxk {(I1(k)/I2(k))−R∗
1}

∣

∣

∣

∣

∣

× 100 (%). (5.3)

This is effectively a measure of the difference between the output currents collected

across the material, when it is sent information about an instance, and the optimum con-

figuration variable R∗
1 used in the interpretation scheme. This difference is normalised

using the maximum difference achieved in the dataset. The FoM is given as a percent-

age. Points with 0% FoM can be considered to have been classified at random. A 100%

FoM suggests maximum confidence in the class to a point.

5.2.3 Results

During an experiment, the best iteration, λ∗, is the iteration where the best solution,

x∗ = [x
′∗,M∗]T was produced. The training error, Φt,∗

e,j , resulting from the application

of the decision variables x
′∗ to the material in state M∗, for one experiment j, indicates

the quality of the classifier at this iteration, and thus the level of error expected during

verification tests. The FoM associated with the training instances was calculated at λ∗

for all experiments, in order to determine whether this new measure of classifier perfor-

mance could provide an estimate of the verification error more accurate than that solely

based on the training error.

Figure 5.1(a) presents the FoM obtained for each instance of the V1C training dataset

at iteration λ∗, using x∗, and mapped in the 2D computation input space. Figure 5.1(b)

presents the distribution of misclassified instances during a verification test where x
′∗

was applied to the evolved material along with instances from the V1C verification

dataset. For the sake of clarity, the data plotted in these two figures was collected for one

experiment performed using the DE algorithm to solve the V1C classification problem.

The lighter coloured instances in Figure 5.1(a) have a higher FoM, i.e. the confidence

in the fact that they have been assigned to the correct class is high. On the other hand,

the darker areas are areas of high uncertainty: FoM values are low and so is the confi-

dence in class assignment. The best training error achieved at λ∗ was Φt,∗
e,j = 0.125%,

which means that all but one out of the 800 training instances were correctly classified.

However, areas where instances have an FoM between 0% and 5% can be observed in

the vicinity of the separating boundary between the classes. According to the definition
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Chapter 5. Characteristics of Evolved SWCNT/LC Classifying Devices

FIGURE 5.1: Mapping of (a) the level of confidence in the class assignment of correctly and

incorrectly classified V1C training instances at iteration λ∗, in terms of their FoM values and (b)

instances misclassified during a verification test where the solution x
′
∗ obtained at iteration λ∗

was applied to the evolved material and tested against the V1C verification dataset.

of the new measure introduced in this work, instances contained in these darker areas

are most likely to have been classified at random.

In this experiment, the training error alone suggested a verification error of 0.125%,

which corresponds to 5 misclassified instances from the verification dataset (0.00125×

4000). However, 1.436% of the training instances had an FoM within 5%. This suggests

that about 57 instances from the verification dataset (0.01436× 4000) have the potential

to be randomly assigned to the correct or incorrect class, raising the expected verification

error to 1.436/2 = 0.718%. The 0.125% was not added to the expected error, as the

misclassified training instances’ FoM was below 5%. The verification error, averaged

across the ten verification tests performed post-training for the experiment discussed

was Φv
e,j = 0.515%. For the test presented in Figure 5.1(b), the error was 0.575%. In

this case, the FoM provided a better estimate of the verification error as compared to the

best training error, Φt,∗
e,j alone. In addition, the location of the misclassified verification

instances within classes 1 and 2, as observed in Figure 5.1(b), confirms that the low

confidence regions identified during training are those where misclassification occurs.

Figures 5.2(a), (b) present the FoM associated with the training instances of the NLC

dataset and the distribution of the misclassified instances obtained during verification.

The same data is presented in Figures 5.2(c), (d) for the MC problem. In both cases it

can be observed that identifying the areas within the training datasets where instances

have an associated FoM ∈ [0, 5]%, enables the identification of areas with high concen-

tration of misclassified verification instances. This is irrespective of whether all training

instances within these areas were correctly or incorrectly classified during training. Sim-

ilarly, using the FoM value enables the calculation of an estimate of the verification error
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Chapter 5. Characteristics of Evolved SWCNT/LC Classifying Devices

FIGURE 5.2: Mapping of the confidence in the class assignment, in terms of FoM, of the cor-

rectly and incorrectly classified training instances at iteration λ∗ for the (a) NLC dataset and

(c) MC dataset. Distribution of misclassified verification instances for the (b) NLC and (d) MC

datasets, respectively.

closer to the actual value of the verification error found post-training, as compared to the

estimate provided by the training error.

The optimal training error Φt,∗
e , difference between best training and best verification

dΦ, verification error Φv
e and standard deviation σΦ, are reported in Table 5.1. These met-

rics are averaged over the ten (and four for MC) experiments undertaken for the three

datasets. The FoM values which are also reported in this table correspond to the per-

centage of correctly and incorrectly classified instances from the training or verification

datasets which have an FoM ∈ [0, 5]%. As discussed in relation to Figure 5.1, these

instances have the lowest confidence associated to their class assignment, i.e. they have

a 50/50 chance of being assigned to one class or the other. The percentage is therefore

divided by two, and the final result can be used as an estimate of the evolved classifiers’

ability to deal with new, previously unseen, instances from the relevant dataset.

In the case where incorrectly classified instances had an FoM over 5%, the percent-

age they represent over the training dataset was added to the final FoM value, without

dividing it by two. This choice is justified by the fact that instances with an FoM above
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Chapter 5. Characteristics of Evolved SWCNT/LC Classifying Devices

TABLE 5.1: Performance measures for the V1C, MC and NLC datasets.

Dataset Φt,∗
e (%) dΦ ( %) FoM (%) Φv

e (%) σΦ (%) FoM (%)

V1C 0.121 0.418 0.935 0.694 0.822 0.538

MC 4.831 0.600 5.938 5.648 3.109 17.700

NLC 0.500 4.134 5.103 5.937 8.428 8.745

5% are assumed to be always assigned to the same class by the evolved classifier, and

therefore if this class is incorrect, always misclassified.

Across the three problems, it can be observed from Table 5.1 that low training er-

rors can be achieved by the algorithm, and that the solution evolved during training can

generalise to unseen data. However, the FoM appears to provide a better estimate of the

quality of the solution than the training error. In the case of the V1C and MC problems,

the FoM gives a potential % of error within 0.3% of the error obtained during verifi-

cation. This is lower than the estimate provided by the training error, which was up to

1%. In the case of the NLC, the difference is even more pronounced, with the training

error suggesting evolved devices able to classify instances with 99.5% accuracy, whilst

the FoM suggests an error of 5.103%, which is close to the 5.937% verification error

average actually obtained across experiments.

The data plotted in Figure 5.3 (a), (c) and (e) illustrates the percentage of FoM

obtained during the verification tests performed post-training, for a single experiment

where the verification errors were 0.018%, 3.905% and 0.475% for the V1C, MC and

NLC problems, respectively. The cumulated numbers of correctly classified verification

instances as a function of the % FoM are represented by full lines. The dotted lines

represent the cumulated number of instances that have been incorrectly classified by the

evolved material. It can be observed that the datapoints assigned to the wrong class all

obtained a very low FoM.

In the case of the V1C dataset, it can be observed that the majority of correctly clas-

sified instances had a FoM higher than the misclassified instances. The area of random

class assignment lying within 5% FoM contains 0.5375% of all instances from the V1C

dataset. The distribution of the correctly and incorrectly classified instances, along with

their % FoM is plotted on the 2D map of the dataset within Figure 5.3 (a). In the same

figure, an arrow points towards the location on this map where the incorrectly classified
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Chapter 5. Characteristics of Evolved SWCNT/LC Classifying Devices

instances can be found. As expected, these areas are the darkest, ie: they have the lowest

FoM and therefore the highest probability of being incorrectly classified. Figure 5.3(b)

illustrates in three dimensions the % FoM values per instance on the map of the V1C

dataset. Instances in Class 1 tend to be closer to the threshold than instances from Class

2. This can be explained by the fact that the voltage inputs that characterise instances

from C2 are higher than those from C1. The material is in such a state that the outputs are

higher for C2 instances. Multiplying by the computation voltage level further increases

this difference. The visualisation of the FoM/instance distribution presented in Figure

5.9(b) also provide an idea of how optimal a processor is: the most optimal processors

present the most symmetrical and steepest slopes about the decision line. The average

verification error and FoM for V1C across experiments are reported in Table 5.1.

In the case of the MC dataset, the FoM is computed differently, following the inter-

pretation scheme used for this problem. In addition, compared to the other two BCPs

which are fully separable, MC presents an area of overlap between the two classes, and

its minimum is 3.3% error. This can be observed in Figure 5.3(c), where the misclassi-

fied instances are represented by points on the graph. The arrow points towards the area

on the dataset’s FoM map where instances have the lowest value, and unsurprisingly,

this is situated in the overlap. Similarly to the V1C classifier, however, the majority of

correctly classified instances from the MC verification dataset have a percentage of FoM

higher than 5% FoM, and approximately 80% of the correctly classified instances have

a FoM higher than all those misclassified. On average over all experiments for the MC

problem, 17.7% of instances have a high probability of being randomly classified, as

reported in Table 5.1.

The last two graphs, in Figure 5.3(e) and (f), present the FoM results for the NLC

dataset. The verification error is 0.475%, which is close to optimal. The FoM for NLC is

calculated in the same way as for the V1C dataset since they share the same interpretation

scheme. A noticeable separation in the FoM value between correctly and incorrectly

classified instance was observed. Training has produced a material state all misclassified

instances have an FoM below 3%, which is less than the 5% considered as the threshold

for low confidence in instance classification. In the NLC experiment illustrated in Figure

5.3 (e) and (f), 8.75% correctly classified instances are within the same 5% FoM as the

ones assigned to the wrong class. The performance of the evolved device is not as good
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Chapter 5. Characteristics of Evolved SWCNT/LC Classifying Devices

compared to the V1C problem, both in terms of verification error and FoM, as reported

in Table 5.1, with an average verification error of 5.937% and a high probability for

this error to increase to 8.745% if more tests were undertaken, since this is the value

of the FoM. It can be observed in the Figure 5.3(e) that the highest probability of error

occurring is situated at the classes’ boundaries. When mapped on 2D computation input

space the threshold value is a hyperbola separating the two classes, and similarly to V1C,
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FIGURE 5.3: Distribution of the correctly and incorrectly classified data as a function of their

distance from the threshold R (LHS) and mapping of the verification error with associated confi-

dence measure (% FoM) on the computation input space (RHS) for (a),(b) V1C, (c),(d) MC and

(e),(f) NLC synthetic binary datasets.
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Figure 5.3 (f) shows that a higher confidence tends to be assigned to Class 2.

The measure of confidence was compared with a standard machine learning ap-

proach: logistic regression (LR) classifier. Similar to our approach, given an input sam-

ple, LR assigns a weight to each possible class and then uses a distance-based measure

to perform the classification task. The correlation between the output of the two classi-

fiers is illustrated in Figures 5.4 (a), (b), (c) with 97% Pearson correlation coefficient for

V1C, 98% for MC, 92% for NLC, suggesting a high correlation between the proposed

classifier in this paper and an established classifier in machine learning.

(a) (b)

(c)

FIGURE 5.4: Pearson Correlation between LR normalised confidence and evolved SWCNT/LC

FoM for (a) V1C, (b) MC and (c) NLC

5.3 Efficiency and Reproducibility

Ideally the procedure followed to prepare SWCNT/LC composites aims at creating a

uniform dispersion of SWCNTs, and therefore samples with morphological and elec-

trical properties as close to each other as possible. In practice, however, the dispersion

is not uniform (Chapter 2) and differences in un-configured sample morphology can be
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Chapter 5. Characteristics of Evolved SWCNT/LC Classifying Devices

observed at micro-scale. In addition, DE performs a stochastic search, which means that

even if every sample had exactly the same properties, the sequence of decision variables

produced by the algorithm throughout training could vary from experiment to experi-

ment. The combination of differences between each un-configured samples, i.e. the

initial material part of the search space, and the stochastic exploration and exploitation

performed by DE raises questions of result reproducibility. Furthermore, the version of

DE implemented in Chapter 4 was found to converge to more accurate solutions than

PSO, but DE solutions were not always reproducible or able to generalise well to new

data instances. This section therefore investigates the reproducibility and efficiency, in

terms of accuracy and speed of convergence, of the EiM process implemented with a

DE algorithm, as well as the ability of the evolved 0.05 wt % SWCNT/LC processors to

generalise to new data.

5.3.1 Experimental Implementation

Investigations consist of a set of W = 20 experiments, where a new un-configured sam-

ple is subjected to a training and verification procedure. During training, VC
t

is applied

and a sequence of solutions x, is produced by DE until the error in the classification of

this dataset is minimised. Verification tests are then performed on the evolved sample,

where V
C
v

is used to evaluate the quality of the best solution, x∗, obtained at the end of

training. Each verification test is repeated Q = 10 times, with a 1s delay between each

test. Finally, a new set of ten verification tests is performed with the aim of determin-

ing the contribution of the best material state, M∗, to the solution x
∗. In this case, all

electrodes connected to the material are set to 0V for t = 300 seconds after the first set

of verification tests. Then, using R
∗, the verification dataset is reapplied to the evolved

device, but the electrode where the optimum set of configuration voltages are applied

remain set to 0V .

In order to analyse results obtained in the series of experiments described, the met-

rics previously discussed are used. In each of the twenty experiment, both training and

verification are performed, yielding the optimal training error Φt,∗
e,j and the corresponding
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Chapter 5. Characteristics of Evolved SWCNT/LC Classifying Devices

verification error Φv
e,j . The metrics for j = 1, ...,W are

Φt,∗
e = 1

W

∑W
j=1Φ

t,∗
e,j , dΦ = 1

W

∑W
j=1 |Φ

t,∗
e,j − Φv,∗

e,j |

Φv
e = 1

W

∑W
j=1Φ

v
e,j and σΦv

e
,

(5.4)

where Φt,∗
e indicates the samples’ best training error averaged over all experiments,

which is optimal at 0% for the fully separable datasets, SC, V1C and NLC and 3.3%

for the merged MC dataset. Combining Φt,∗
e and λ∗, the number of iterations required to

obtain the minimum training error, provides a measure of efficiency for the EiM process

implemented. The process is considered efficient when λ∗ and Φt,∗
e are minimal. The

difference between best training and best verification errors, dΦ, averaged over experi-

ments, indicates the capacity of the solution evolved in SWCNT/LC samples to gener-

alise to unseen data. The average verification error over experiments, Φv
e , in conjunction

with the standard deviation σΦv
e
, provide a measure of the results’ reproducibility on

different samples. Finally, Φv
e ,V = 0V is the error obtained when no configuration

voltages are applied, averaged over all experiments. If the EiM process, in modifying

the SWCNT network [8] has created a material state which contributes, or is sufficient

for the device to classify data, the error obtained when no configuration voltages are

applied to the evolved sample should be the same, or similar to the verification error, Φv
e .

5.3.2 Results

A set of preliminary experiments were first undertaken with a number of different algo-

rithm and implementation parameters for DE. The results obtained with each different

implementation are not reported here, but it was observed that increasing the number of

individuals within the DE population from N = 8 to N = 10 improved solution repro-

ducibility and generality, without loss of classification accuracy or speed of convergence.

This can be seen as surprising, since, contrary to PSO, increasing the population size of

DE does not automatically yield better results (cf. Appendix B). In addition, introducing

more individuals in the search will induce more changes in the material between iter-

ations. However, the problem of training a material to perform a computation is very

different from the test functions used to compared implementation parameters of DE in

[9], where it is observed that optimal parameters for this algorithm are, in any case, prob-

lem dependent. The results reported in the following experiments were always obtained
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Chapter 5. Characteristics of Evolved SWCNT/LC Classifying Devices

with this new DE implementation.

Following the procedure described in the previous section, the control samples -

LCs and the array of linear resistors - were tested, and training and verification errors

remained around 50%. A similar value was obtained by the un-configured SWCNT/LC

composite at the start of an experiment. In the latter case, however, the evolutionary

algorithm was subsequently able to minimise this error throughout a number of itera-

tions. Four representative examples of the convergence of the objective function for the

four datasets, from 50% to the optimal, are illustrated in Figure 5.5(a). For each ex-

ample, one out of the eight configuration voltages that modified the material, producing

the objective functions, is presented in the Figure 5.5(b). It can be seen that the average

voltage trajectories, i.e. sequence of V, produced by the algorithm during training, are

different across the datasets. This is also the case across the twenty samples trained to

classify instances from the same dataset, but where the original material state M was

different. Figure 5.5(c) and (d) relate to the variable p, which is part of R. It can be

noticed that at the point where the value of p becomes constant, the objective function

(a) (b)

(c) (d)

FIGURE 5.5: For four samples, each trained to solve one of the four artificial binary datasets (a)

convergence of the average and minimum error (b) representative configuration voltage trajecto-

ries (c) evolution of the p, and (d) most common representation of p on the electrode array
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Chapter 5. Characteristics of Evolved SWCNT/LC Classifying Devices

converges rapidly to an optimum. Over the four datasets, this observation holds for the

majority of experiments, specifically those where the best results were achieved. It re-

inforces the suggestion [10] that p is an important parameter of the search process. The

resulting most common electrodes, over all experiments, chosen by the algorithm as part

of the optimal solution are presented in Figure 5.5(d). No direct correlation between

the location where input voltages are sent and a dataset’s complexity can be drawn from

experimental results.

Results obtained with the SC, V1C, MC and NLC dataset are reported in Table 5.2.

On average over twenty experiments, and for the four problems, DE was able to con-

sistently converge towards a solution that generalises well, in a relatively low number

of iterations. The best training errors were, on average, below 1.5% of each problem’s

optimum, and were obtained within 215 iterations. In other words, it was possible to cre-

ate SWCNT/LC processors capable of correctly classifying more than 99% of instances

from three separable datasets of increasing complexity within approximately three hours.

These processors were then able to generalise to unseen data with less than 3.0% error

increase (maximum for the NLC problem, with dΦ = 2.737%) between training and

verification. A difference between training and verification errors is common in classi-

fiers trained using supervised learning, although the aim is to minimise it. In the case of

SWCNT/PBMA samples trained using PSO, an average difference of 6% was reported

in [11] for datasets similar to the SC dataset. Here, however, the difference can also be

the result of a drift effect on the optimum material state M∗, as previously mentioned in

Chapter 3, Section 3.2.3.

For the V1C and NLC problems, and across all experiments, a strong (0.7075) and

a moderate (0.526) correlation was found between the amount of change in the material

state induced by training and the difference in error between training and verification

bests, dΦ, respectively. Since the material state is affected by the voltages applied to

TABLE 5.2: Reproducibility of experiments over SWCNT/LC samples.

Datasets Φt,∗
e (%) λ∗ dΦ(%) Φv

e(%) σ(%) Φv
e(%),V = 0V

SC 0.255 96.85 0.820 1.534 1.522 47.738

V1C 0.035 73.90 1.096 1.525 1.807 1.178

MC 5.243 168.6 0.493 6.024 3.379 44.815

NLC 0.710 214.95 2.737 4.721 4.743 5.193
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Chapter 5. Characteristics of Evolved SWCNT/LC Classifying Devices

it, a large number of iterations has the potential of creating more important perturba-

tions in the material than a small number of iterations. The change in material state

was therefore estimated as the number of iterations between the best iteration, λ∗, and

the last iteration before the end of training, Λ. Both correlations were significant at the

0.05 confidence level. In other words, for these two problems, if Φt,∗
e was found at the

beginning of the training process, Φv
e was more likely to vary from Φt,∗

e and across ver-

ification tests. This suggests on the one hand that the optimum material state, M∗, had

a non-negligible contribution to the overall best solution x
∗, and on the other hand, that

performing more function evaluations after the optimum was reached induced changes

in the material likely to affect the quality of the evolved classifier. In the case of the SC

and MC problems, the correlations were weak (< 0.3), i.e. the number of iterations be-

tween λ∗ and the end of training did not affect the level of generalisation of the solution

over the experiments performed here. Figure 5.6 (a) and (b) illustrate the difference in

correlation between results obtained with the SC and V1C problems, respectively. The

difference between best training and best verification errors are plotted as a function of

the difference between the best iteration and the last iteration.

The average verification error and standard deviation results reported in Table 5.2

support the suggestion that the DE algorithm can consistently converge towards good

solutions, i.e. solutions that minimise the classification error. As the metrics previously

discussed, Φe,∗
e , λ∗ and dΦ, the verification error and the amount by which this error

varies across experiments are problem dependent, and more specifically appear to in-

crease with increasing problem complexity. However, this is not the case for the results

(a) (b)

FIGURE 5.6: Number of iterations between the best solution resulting in the lowest % training

error was obtained, and the end of training (Λ − λ∗), as a function of the difference in error

between training and verification bests (dΦ) for the (a) SC problem and (b) V1C problem.
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Chapter 5. Characteristics of Evolved SWCNT/LC Classifying Devices

obtained in the second set of verification tests and reported in the last column of Table

5.2. In this case, no configuration voltages were applied, but R∗ was used to determine

the location where the computation voltages should be sent. It can be observed that for

MC and SC datasets, the verification error increases from near optimal to Φv
e ≃ 46%

when V = 0V . The optimum configuration voltages, however, were specific to the

devices. If V∗ and R
∗ were sent to other samples (thus different M∗), Φv

e remained

around 50%. Results obtained over twenty experiments suggest that both the configu-

ration voltages and evolved material state produced by DE training were necessary to

classify instances from the MC and SC datasets accurately. This is also consistent with

correlation results.

In the case of the V1C and NLC datasets, there is no photographic evidence that the

SWCNT structures have been retained after the first verification test. Instead, verification

errors are used to quantify the stability of these structures. Without applying the best set

of configuration voltages V∗, samples brought into a state M∗ are able to classify unseen

instances with an error of 0.847% and 4.45% for V1C and NLC, respectively. For V1C,

the error was 0.355% lower than when V
∗ was sent to the trained sample. For NLC, this

error is 1.48% higher as compared to the event where the full solution, x∗, was used.

For the four problems, SC, V1C, MC and NLC, Figure 5.7 illustrates the range of errors

obtained when the full solution is applied to the evolved material (x′∗) and when the

evolved samples are tested against the verification dataset, but all configuration voltages

are set at 0V (V = 0 Volts). Irrespective of outliers, a very large difference between the

FIGURE 5.7: SC, V1C, MC and NLC verification errors obtained with and without the optimum

set of configuration voltages applied to the evolved device in terms of minimum and maximum

values, inter-quartile range and median.
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Chapter 5. Characteristics of Evolved SWCNT/LC Classifying Devices

level of verification error with and without applied configuration voltages is observed for

the SC and MC problems. On the other hand, the level and distribution of error remains

relatively similar in these two cases for the V1C and NLC problems, supporting the

discussion based on the results reported in Table 5.2. From the differences in verification

errors with and without applied configuration voltages observed with V1C and NLC, it

can be suggested that the contribution of the evolved material state is not negligible and

can even yield better results than with the configuration voltages. Further, the percolation

paths have not relaxed to the original un-configured condition.

It is proposed that results are due to the fact that for simple problems, the algorithm

quickly finds an optimal solution, based almost entirely on the electric field created by

the vector of decision variables, without having to modify greatly the materials’ mor-

phology. M
∗ remains very similar to the pre-trained state of the SWCNT/LC sample,

which would explain why verification error is very high when the configuration voltages

are set to 0V, On the other hand, with more complex problems where the solution is

harder to reach, DE will have to explore and exploit more of the material, forming it,

iteration by iteration, into a processing nanotube circuit.

In summary, the process of evolving SWCNT/LC samples into classifiers, using DE,

was reproducible for the four artificial datasets of increasing complexity. Despite vari-

ations in the structure of SWCNT networks across un-configured samples, using the

solution x
∗ at the end of training resulted in mean verification errors within 1% of the

optimum for the linear merged and the linear separable datasets, and 3.85% for the more

complex NLC. For all datasets, the dispersion of results across experiments defined by

the standard deviation σ was lower than 2.62%. The contribution of the evolved mate-

rial state M∗ to the solution was found to be non-negligible for the simplest datasets and

sufficient in itself for the more complex NLC and V1C.

5.4 Training Automation (Material Programming)

It was observed from Figure 5.5(b) that the sequence of configuration voltages V var-

ied across the different datasets. Irrespective of the dataset, this is also the case when

comparing the sequences of V produced by DE when evolving multiple SWCNT/LC

samples to classify instances from the same dataset. This observation can be extended

to the sequences of R, and, according to some visual and electrical evidence, M. This
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Chapter 5. Characteristics of Evolved SWCNT/LC Classifying Devices

phenomenon can be explained by the fact that the search spaces explored and exploited

by the evolutionary algorithm were different, thus resulting in the different sequences.

But what would happen if the trajectories of each individual obtained by the opti-

misation algorithm, when training a particular sample, were to be re-applied on a new

initially untrained one, with similar composition? Successful training of new samples

would indicate the potential of repeating the process without the computational over-

head of running the optimisation algorithm. If so, the complete sequence Vℓ(λ) could

be considered as a set of instructions given to the material forcing the creation of inter-

nal structures leading to the solution of the particular problem in conjunction with R
∗,

which does not need to be recomputed. The research question is effectively whether an

automation of the transformation of amorphous SWCNT/LC samples into classification

devices is possible.

5.4.1 Experimental Procedure and Implementation

In order to investigate the possibility of re-using evolved training sequences, i.e. creat-

ing a program of material training, the following procedure was implemented. A sam-

ple D1 was trained from an un-configured state using the DE algorithm. The best so-

lution obtained during training, combined with the evolved material state, was tested

against the verification dataset. The convergence trajectory x
′
ℓ(λ) for λ = 1, . . . , λ∗

and ℓ = 1, . . . , N produced during the training of sample D1 was recorded and referred

to as Seq(1). Subsequently, three different samples, D2, D3 and D4 of the same 0.05

wt % SWCNT/LC composite were subjected to the configuration voltages Vℓ(λ), in the

same exact sequence as they were calculated and applied during D1’s training, without

undertaking the computation steps of the optimisation algorithm. The resulting evolved

material states of samples D2 −D4 were assessed by calculating the training and verifi-

cation errors after iteration λ∗ using Rℓ∗(λ
∗) of the starting point of training.

5.4.2 Results

Training sequences produced by the DE algorithm to solve the V1C and NLC problems

have the potential for transferability, since it was suggested in Section 5.3 that they tend

to modify the material state such that the solution is a combination of optimum deci-

sion variables and the evolved material state, the latter forming a non-negligible part of
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Chapter 5. Characteristics of Evolved SWCNT/LC Classifying Devices

this solution. Compared to the SC and MC problem, it is therefore more likely that the

training sequences produced to solve the V1C and NLC problems on given SWCNT/LC

samples can be re-applied to new un-configured samples and yield similar results. The

results obtained with the V1C and NLC datasets, following the procedure described in

Section 5.4.1 are therefore reported in Table 5.3. The training and verification errors for

samples D1 −D4 are presented, along with the standard deviation over the ten verifica-

tion tests undertaken at the end of training. The latter value indicates the stability of the

evolved solution for each sample.

The training of D1 resulted to good solutions for V1C, where the training error is

zero and the verification error 0.649%. The quality of the solution for NLC is not the

same as for V1C, since from a zero training error the verification error becomes 9.21%.

Nevertheless, the outcome of the application of D1’s training sequence, Seq(1), to the

other three samples shows that it is transferable and that an untrained material can be

evolved into a classifier performing with similar accuracy. Subsequent application of

the optimum solution to the NLC problem obtained for D1, R∗ and V∗ to the samples

D2−D4 results in a verification error that is on average 0.52% higher than that obtained

with the evolved D1 samples. Whilst the error levels themselves are higher than those

obtained with the Seq(1) produced to solve the V1C, in the case of the NLC problem

the difference between D1 and D2 − D4 evolved using the same training sequence is

lower.

Figure 5.8 illustrates the process where two samples, D1 and D2, are trained using

the same sequence of configuration voltages, produced by the DE algorithm when look-

ing for a solution to the V1C problem with D1. The first graph, on the bottom left hand

side of the figure presents the convergence of the objective function, or training error,

TABLE 5.3: Transferability of a training sequence on three new samples.

Material V1C NLC

Sample Φt,∗
e,j(%) Φv

e,j(%) σ(%) Φt,∗
e,j(%) Φv

e,j(%) σ(%)

D1 0.00 0.649 0.98 0.00 9.21 3.632

D2 0.00 2.040 1.780 0.00 10.225 2.957

D3 0.00 1.070 1.250 0.00 9.945 2.514

D4 0.00 5.400 2.580 0.00 9.143 2.620
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Chapter 5. Characteristics of Evolved SWCNT/LC Classifying Devices

obtained during training for the two samples. The second graph, on the bottom right

hand side of the figure, presents the output currents measured across the two samples

during training. The training error is a function of the outputs, however, the interpreta-

tion scheme defined in eqs. (4.4) and (4.12), and used to translate current outputs into

this error, reduces the differences in outputs between the two samples. This results in

two evolved SWCNT/LC processors with similar classifier performances. The state M

of the SWCNT/LC sample is evaluated in terms of its electrical response under the same

voltage inputs (the output currents measured across the sample in the bottom right plot

of Figure 5.8), along with the morphology of the SWCNT structures, as observed from

the surface of the sample using a microscope.

The images reported in the top left and top right corners of Figure 5.8 were taken at

iteration λ = 59, which is the last iteration reported in the two graphs reproduced at the

bottom of the picture. It can be observed that the morphology of the two materials is dif-

ferent, despite the fact that they have been subjected to the same training sequence, and

FIGURE 5.8: Final material state of the evolved SWCNT/LC D1 (LHS) and D2 (RHS) samples

at the top, along with the average convergence of the training error (LHS) which is a function of

the current outputs collected across the two samples throughout iterations (RHS) at the bottom.
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Chapter 5. Characteristics of Evolved SWCNT/LC Classifying Devices

have resulted in classifiers with similar classification accuracy. Table 5.3 and Fig. 5.8

suggest that a previously successful sequence of configuration voltages can be used to

evolve different un-configured SWCNT/LC samples with low degradation in classifica-

tion accuracy. A reduction of the training time by approximately 50% is the benefit of

using such a sequence.

When applying Seq(1) to different samples, it is possible to create devices able to

classify data with the same accuracy as D1. Thus a single sequence of configuration

variables can produce a number of devices with low variation in accuracy across trained

samples. A run of the DE algorithm to evolve a sample D1 into a data classifier produces

Seq(1), which can be considered as a ‘program’. This ‘program’ can be re-used over

different samples, despite the inherent variations in the SWCNT networks present in the

LC matrix at the start of each experiment. On average, however, the verification error of

samples for which DE produced the training sequence is lower than for those upon which

the Seq(1) is subsequently applied. There is a trade-off between time and accuracy.

Automation of the process makes it faster, i.e. it reductions ∼ 50% of the training time

that was due to collection of current outputs and the evaluation of the objective function).

However, comparing Tables 5.2 and 5.3 it can be observed that resulting devices lose up

to 1.633% accuracy as compared to those trained by DE directly.

5.5 Reconfigurability

Optimisation problem (3.12)–(3.15) refers to a single BCP and the material is trained

for addressing a single problem each time. However, it can be desirable to be able to

train the one sample to address multiple problems. Since training has been observed

to modify the morphology of SWCNT/LC samples, the state of the material at the start

of a subsequent training on the same sample will differ from that of the original un-

configured sample, as drop-cast at the start of an experiment. This has been generally

considered an issue of dynamic samples [12], and EiM investigations have focused on

materials with a reset property. Here, investigations focus on the impact of material

memory on the quality of solutions found by an EA in the SWCNT/LC samples. It is

possible that multiple training is able to destroy structures evolved in a sample during

training, and produce new structures favouring the solving of a new problem. It is also

possible that the evolved structures with a non-negligible contribution to the solution for
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Chapter 5. Characteristics of Evolved SWCNT/LC Classifying Devices

a given problem help the solving of a subsequent one, thereby presenting an advantage

over materials with re-set properties. These possibilities are investigated here.

5.5.1 Experimental Procedure and Implementation

The experiment consists of a set of two consecutive training and verification procedures,

using two different datasets at a time, and one sample. The un-configured sample is drop-

cast onto the micro-electrode array and subjected to a varying electric field produced by

the DE algorithm until it is able to solve the first problem. Following this first training,

the evolved sample is sent the corresponding verification data along with the optimum

set of decision variables, referred to as V∗
1 and R∗

1 obtained during this training. This ver-

ifies that the solution x∗1, combining V∗
1,R∗

1 and material state M∗
1 can generalise. The

second verification test is then performed after 300 seconds during which the configura-

tion voltages are not applied. As seen in Chapter 4, the SC, V1C, MC and NLC datasets

present different complexity, but can be relatively similar in structure. Verification data

for the second problem is therefore sent along with V∗
1 and R∗

1 on the once trained ma-

terial to determine if the solution is common to both problems used, and if any further

training would be redundant. If it is not the case, the SWCNT/LC material is subjected

to a second set of training and verification for the new dataset. The second solution x∗2

is tested against the verification instances of the second dataset, and the latter are then

re-sent with no configuration voltages. Finally, the ability of the doubly trained material

to solve the original problem, with and without configuration voltages is assessed.

5.5.2 Results

A graph outlining the experimental procedure and including the distribution of the mis-

classified verification data for a sequence of tests is presented in Figure 5.9. In this case,

a sample was first trained to solve the V1C problem. The ability of the evolved sample

to solve the NLC dataset was then tested. Since it was not able to solve it with sufficient

accuracy, the sample was retrained using DE to solve the NLC dataset. At the end of the

second training and verification procedure, the ability of the doubly-trained sample to

solve the original problem, i.e. V1C, was tested. Results obtained for the V1C-NLC ex-

periments illustrated in Figure 5.9 are presented in Table 5.4, along with those obtained

for the SC-MC, MC-SC, SC-V1C and NLC-V1C experiments. Values reported in this
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Chapter 5. Characteristics of Evolved SWCNT/LC Classifying Devices

FIGURE 5.9: Simple schematic representation of the reconfiguration process. Results are ob-

tained for one V1C-NLC experiment. First training with the V1C dataset, and second with NLC.

The doubly-trained material is tested against unseen instances from both datasets.

table are averaged over three experiments, which was considered sufficient in sight of

the reproducibility of the EiM process.

The first results reported in row 1 of Table 5.4 were obtained during the SC-MC

experiment. In this case, where the simplest dataset (SC) is used first, the DE algorithm

is able to bring the SWCNT/LC mixture into a state where it is able to correctly assign

100% of the SC training instances. Testing the solution x
∗
1
(SC) against unseen data

results in a verification error of 1.29%. With no signals sent other than V
C
v

(SC), the

error becomes 48.87%, which is consistent with previous results. The solution x
∗
1
(SC)
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Chapter 5. Characteristics of Evolved SWCNT/LC Classifying Devices

TABLE 5.4: Average verification Φ
v

e(%) errors for double training experiments on the same

SWCNT/LC sample.

row Once trained material Twice trained material

SC SC MC MC MC SC SC

x∗1(SC) V = 0 x∗1(SC) x∗2(MC) V
∗ = 0 R∗

1,V∗

1(SC) V = 0

1 1.29 48.87 24.52 8.67 45.83 2.01 48.95
MC MC SC SC SC MC MC

x∗1(MC) V = 0 x∗1(MC) x∗2(SC) V
∗ = 0 R∗

1,V∗

1(MC) V = 0

2 3.69 48.14 17.09 0.02 49.10 3.78 47.04
V1C V1C SC SC SC V1C V1C

x∗
1(V 1C) V = 0 x∗1(V 1C) x∗2(SC) V

∗ = 0 R∗

1,V∗

1(V 1C) V = 0

3 0.29 0.29 51.16 1.32 49.48 5.03 6.73
SC SC V1C V1C V1C SC SC

x∗1(SC) V = 0 x∗1(SC) x∗2(V 1C) V
∗ = 0 R∗

1,V∗

1(SC) V = 0

4 0.69 49.43 31.02 0.37 0.41 21.19 49.45
V1C V1C NLC NLC NLC V1C V1C

x∗
1(V 1C) V = 0 x∗1(V 1C) x∗2(NLC) V

∗ = 0 R∗

1,V∗

1(V 1C) V = 0

5 2.00 2.36 14.54 0.20 21.74 7.85 9.29
NLC NLC V1C V1C V1C NLC NLC

x∗
1(NLC) V = 0 x∗1(NLC) x∗2(V 1C) V

∗ = 0 R∗

1,V∗

1(NLC) V = 0

6 1.19 2.35 10.76 0.00 0.76 3.39 5.78

produced when training for SC was not able, on average, to classify MC’s verification in-

stances with precision, resulting in a 24.52% error. The once-trained sample is subjected

to a second DE training and V
C
t

(MC). The double-trained sample is now able to classify

MC’s verification instances with 8.67% error using the new solution x
∗
2
(MC). This is

5.35% higher than the optimum, but 15.85% lower than with x
∗
1
(SC). This suggests that

the sample has been reconfigured by the algorithm for the new problem (MC). The abil-

ity of the material to retain the memory of the original problem (SC) was subsequently

investigated. The sixth column of row 1, Table 5.4 shows that this is partly the case. The

classification error for the SC problem when the full solution x∗ was applied was 1.29%.

When the partial solution R
∗
1,V

∗
1 is applied to the doubly-trained samples, it becomes

2.01%. Retraining has resulted in an increased of only 0.72% in SC verification error.

In the second set of experiments, for which results are presented in row 2 of Table

5.4, the reverse experiment is considered, i.e. MC-SC. In this case, SWCNT/LC samples

are first trained to classify instances from the slightly more complex MC dataset, and the

problem’s optimum is reached. When tested against the previously unseen instances

from the verification dataset, the error becomes 3.69% which is 0.36% above the prob-

lem’s optimum. The error is 48.14% when no configuration voltages are applied, which

is, once again, consistent with previous results. The solution produced by DE, x∗
1
(MC)

is not good enough to classify both MC and SC unseen instances, resulting in 17.09%
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Chapter 5. Characteristics of Evolved SWCNT/LC Classifying Devices

error. It must be noted that this is lower than when the less complex dataset was used

first. Retraining of the sample by DE produces a new solution x
∗
2
(SC) and verification

error of 0.02%. The sample randomly classifies instances when it is not sent V∗
2
(SC),

but only two out of Kv(SC) = 4000 verification instances have been misclassified when

the full solution is used. In addition, the double-trained sample is still able to solve the

original MC problem, with a loss of 0.1% in accuracy when V
∗
1
(MC) and R

∗
1
(MC) are

used with V
C
v

(MC).

A number of observations can be drawn from the results of the two sequences of

experiments involving the SC and MC datasets. First, DE was able to reconfigure a

SWCNT/LC sample which had been trained to classify instances from one dataset. Re-

training produced a relatively accurate classifier. Secondly, the original solution was

partly retained, despite modifications in the material produced by the DE-controlled

electric field applied during training [8]. This translated in a low increase of the ver-

ification error post-retraining for the first dataset. Finally, the accuracy produced by

the classifier was higher in the sequence of experiments where MC, the more complex

dataset, was sent before SC. Here, a correlation appears between the complexity of the

datasets used and the order in which the samples are trained.

Rows three and four of Table 5.4 present the results obtained using V1C and SC, in

this order and the reverse. Once again these results are averaged over three experiments.

There is more difference in the structure of the two datasets than between SC and MC. In

addition, training with SC is performed using the scheme S
(1)
C

, whilst S
(2)
C

is used with

V1C. The un-configured SWCNT/LC sample trained with V1C data is able to classify

99.93% of the training instances. The solution x
∗
1
(V1C) generalises well, with 0.29%

verification error. The contribution of the material state in this solution is important and

the error remains 0.29% when no V
∗
1
(V1C) is applied. This first solution randomly

classifies the SC verification instances. A second training is thus performed. The recon-

figured sample produces a new solution x
∗
2
(SC) which reduces the verification error to

1.32% for SC. The original material state has been partly destroyed by the second train-

ing, with the V1C error with and without configuration voltages increasing by 4.74%

and 6.44%, respectively.

When SC is used first, training results in a material able to classify the verification

data with 0.69% error. This does not generalise well when no configuration voltages
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Chapter 5. Characteristics of Evolved SWCNT/LC Classifying Devices

are use, or when they are used but with the V1C dataset (31.02%). The latter’s training

instances are used in a subsequent training. A near optimal 0.37% verification error is

achieved using the second solution x
∗
2
(V1C). SWCNT structures have been modified

by DE in such a way that the error increases of only 0.04% when no configuration

voltages are applied. This however, resulted in a change of the material state such that

the original solution was lost and sending V
∗
1
(SC) and R

∗
1
(SC) produced 21.19%s

verification error.

This set of experiments reinforces the observations regarding the SC/MC retraining.

Despite a more important difference between the datasets, and a different implementa-

tion of SC , samples can be reconfigured. The complexity of the dataset has an impact

on the results over both training: when SC is sent first, both SC and V1C’s verification

results are better than when V1C is used for first. However, samples reconfigured to

classify V1C instances were no longer able to solve the SC problem with high accuracy.

This can be explained using the hypothesis proposed earlier and in [13]. The building

of stable SWCNT structures by DE in its search for an optimal solution for V1C, has

destroyed the original state which favoured SC. The search for a solution to SC does not

modify the material state as much, hence a lower loss of accuracy for the post-retraining

V1C verification results.

The last two rows, five and six, compare results obtained when using the most com-

plex artificial dataset, NLC, with the simplest one, V1C. Starting with experiments where

V1C is sent first, the DE algorithm is able, on average, to bring SWCNT/LC mixture into

a state where it is able to correctly assign 100% of V 1C training data. Results presented

in row 5 of Table 5.4 show that using the optimum set of decision variables 98% of ver-

ification can be correctly classified. When V
∗ is set to zero and the verification data are

sent to the trained material, the error increases by only 0.36%. It can be deduced that

the SWCNT structures evolved during training remained stable. The optimal solution

for V1C, x∗1(V 1C), does not generalise to the NLC verification dataset. The error in-

creases by 14.54% compared to an optimum NLC solution. DE is used to subject the

SWCNT/LC to a new training, using the NLC dataset. Results are near optimal, with

Φv
e = 0.2%. The verification error is 21.74% when no configuration voltages are applied

to the doubly trained material. Finally, the results when V1C is reapplied have increased

to become 7.85% and 9.29%. The original solution is not fully recovered. The second
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Chapter 5. Characteristics of Evolved SWCNT/LC Classifying Devices

training affected the material state produced by the first.

Results for the reverse experiment, where the hyperbola-separated dataset was used

first, followed by its diagonally separated counterpart are presented in the last row of

Table 5.4. Verification tests with x∗1(NLC) produce an average of 1.19% error whilst

verification increases to 2.35% when no configuration voltages are used. The first solu-

tion, x∗1(NLC), partly solves the V1C problem, but not well enough for further training

to be redundant. Retraining the SWCNT/LC blend for the less complex V1C dataset

results in 0% training (not shown in the table) and verification errors, with an increase of

0.76% when V
∗ = 0. Re-using NLC instances and the original variable R

∗
1
(NLC) with

and without V∗
1
(NLC) results in 3.39% and 5.78% verification errors, respectively.

Here, training for the simple problem first helped in finding good solutions for the

more complex problem. However, after finding a solution for the more complex problem,

the state had changed in such a way that the original solution had been partly destroyed,

producing verification errors higher by 5.85% and 6.93% with and without configura-

tion voltages, respectively. It was also possible to achieve good solutions for the more

complex problem starting from an un-configured material. The difference in this case

is that the second training had less effect on the original solution, for which the veri-

fication errors increased by 2.2% and 3.43% with and without configuration voltages,

respectively.

Results and discussion from all retraining experiments suggest that:

1) It is possible to reconfigure SWCNT/LC samples from a state where it is able

to classify instances from one dataset into a state where it can do so for another. The

verification error for the reconfigured samples was similar to the average first training

error. In all cases, the untrained material produced Φ
v

e ≃ 50%, whilst the doubly trained

material’s solution achieved, at a maximum, Φ
v

e = 21.19%.

2) The complexity of a dataset affects the DE’s search and the resulting transfor-

mation of samples. Training a sample first with the more complex dataset produced a

material state that favoured the subsequent search for a solution to the simpler problem.

In addition, if the more complex dataset was used first, the doubly-trained device gener-

alised better for both datasets’ instances.

3) The in materio search performed by the algorithm has an impact on the ability of
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Chapter 5. Characteristics of Evolved SWCNT/LC Classifying Devices

reconfigured samples to classify more than one dataset. In MC-SC experiments, sub-

jecting samples to a second training resulted in a minimal loss of classification accuracy.

This loss was more important when using V1C on SC-trained samples. The modifica-

tions induced in the material during DE’s search partly destroyed the original solution,

despite V1C being slightly simpler. On the other hand, in the V1C-NLC experiments the

loss of accuracy post V1C training was less important. It appears that the material state

produced during NLC search was more stable than for SC.

5.6 Stability of Solutions

Using SWCNT/LC samples, tests have been performed to define the length of time the

material can be left - post training - before its problem-solving state is destroyed. Veri-

fication with configuration voltages was performed ten seconds after training, followed

by tests with no configuration voltages, one minute after training ended. The difference

in results between these two runs was 1.7 %. After eight hours, verification was re-

peated with no configuration voltages, resulting in an average increase of 6% error from

the original solution. Approximately 4.3% of the solution’s accuracy has been lost over

8hrs. Further testing over set periods of time would need to be undertaken in order to

provide a good estimate of solution deterioration over time. However, the aim here was

to determine a general maximum time before the solution would be completely dete-

riorated according to the time taken for a SWCNT/epoxy composite to solidify under

UV light. These experiments are reported in the next chapter and are the logical step

following the discussions reported here.

5.7 Summary of Results and Conclusions

Experimental results reported support the conclusion that EiM based on the SWCNT/LC

composite is able to yield a system capable of performing reproducible binary classifica-

tion. It is also observed that the degree of the material contribution to the overall solution,

as complemented by the decision variables (configuration voltages and auxiliary quanti-

ties), depends on the classification problem’s complexity. When this complexity is low,

the optimisation algorithm tends to converge to solutions where the optimum configu-

ration voltages have a dominant role in the classification decision. On the other hand,
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materials trained on the more complex problems see little increase in error when the con-

figuration voltages are not applied. This implies that for more complex problems, the

search for a solution further explores the subspace of nanotube network formations. The

emerging macro behaviour of the material’s conductivity as affected by those networks

can eventually be used for performing the classification task.

Another set of experiments, where a successful training was repeated exactly on dif-

ferent initially unconfigured samples shows that the process can be automated to a high

degree. Successful sequences of applied configuration voltages tend to be more effec-

tive when the solutions obtained are dominated by the material rather than the decision

variables. Their transferability is therefore better for more complex problems.

The last results presented indicate that it is possible to enable one material sample

to solve two different classification problems, using different sets of decision variables.

The effectiveness of the double training depends on the ordering of the problems for

which the sample is trained. Training the material following a descending problem com-

plexity sequence results in better classifier performance. Converging to good minimum

solutions first allows the inclusion within the material structure of information required

for addressing a less complex problem.

In summary, the contribution of this chapter is three-fold: 1) providing a new mea-

sure of confidence for the evolved classifiers, based on electrical characteristics (current

outputs); 2) demonstrating the impact of EiM on training of liquid SWCNT/LC com-

posites in terms of device reproducibility, reconfigurability and memory; and 3) a first

attempt at partially automating the evolution process.
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Chapter 6

Classification in SWCNT / Epoxy

Composites and Device Encapsulation
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6.1 General Overview

In the previous chapters, it has been observed that evolutionary algorithms (EAs) were

capable of evolving samples of a single-walled-carbon nanotube (SWCNT) / liquid crys-

tal (LC) composite, resulting in a material state where the classification of data was pos-

sible. For the specific datasets used, results were better than those obtained with solid

SWCNT/ poly(butyl metaacrylate) (PBMA) composites using exactly the same imple-

mentation, and comparable to those presented in [1]. In the later case, the samples were

nominally the same, but the hardware and algorithms used were different.

Interestingly, it was observed in Chapter 5 that the SWCNT/LC samples’ evolved

state allowed data to be classified without the need for applied configuration voltages.

In other words, the training had evolved a classifying SWCNT/LC device rather than

just optimised a set of voltages making a SWCNT/LC sample behave as a classifier.

In addition, the classifying state of the SWCNT/LC evolved samples was stable for a

number of hours with little deterioration in the classification error. This is different from

the stability of solution observed in other experiments were a dynamic material was

used. In the latter, a high fitness, i.e. low error, obtained by a robot controller evolved in

a liquid crystal display (LCD) [2] could only be reproduced for about thirty seconds.
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Chapter 6. Classification in SWCNT / Epoxy Composites and Device Encapsulation

Results obtained with the SWCNT/LC composite suggested that the ability to clas-

sify data without configuration voltages resulted from the SWCNT structures produced

by the algorithm’s search process. It was observed that this ability tended to depend on

the complexity of the classification problem which the samples were evolved to solve.

The structures are reminiscent of the iron thread grown by Gordon Pask in ferrous sul-

fate (FeSO4) to perform tone discrimination [3], albeit in the case of the SWCNT/LC

composite, the structures are the results of nanotube bundling and rearrangement, rather

than the growth of intertwined metallic wires.

It must be noted that despite an initial solution stability longer than that observed in

any other dynamic material used in evolution in materio (EiM), some deterioration in

the classification error obtained by evolving SWCNT/LC samples was observed after a

number of hours. More importantly, because of the dynamic nature of the LC matrix,

large external tampering, such as shaking or dropping of the sample, resulted in a com-

plete modification of the material’s bulk morphology, or even destruction of the sample.

Based on these considerations, it was decided to produce hybrid liquid/solid SWCNT-

based composites, with the aim of keeping the benefits of the search space offered by the

liquid state whilst mitigating the impact on long term stability, as well as handling and

storage requirements. Such material would be trained when in a liquid state, allowing

the modification of SWCNT-based structures by the EA until a computation inducing

state is reached. The evolved device would then be cured. The curing can be considered

as a process of electronic device encapsulation. The length of curing necessary for these

hybrid composites to reach a solid state would need to be smaller than the time limit

after which the computation error begins to deteriorate.

This chapter presents the first, and preliminary, investigations relating to the evo-

lution of SWCNT/epoxy (LP655 and NO81) composites into computational devices.

Instead of LCs, a two-part UV-cure epoxy resin was used as a matrix for the SWCNT

dispersion. The general ability of this material to be evolved using EiM to solve com-

putational problems is first assessed, and results are compared with those obtained with

the SWCNT/LC and SWCNT/PBMA composites. The possibility for stable SWCNT

structures to be evolved is then discussed along with the deterioration of the solution due

to time and to the curing process. A summary of the results and possible avenues for

further work concludes this chapter.
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Chapter 6. Classification in SWCNT / Epoxy Composites and Device Encapsulation

6.2 Classifying Data with SWCNT/Epoxy Samples in Liquid

State

Two different epoxies, LP655 [4] and NO81 [5] were mixed with SWCNTs. The char-

acteristics of these composites have been discussed in Chapter 2. Their electrical be-

haviour followed the non-linear I/V curve characteristic of devices chosen for EiM and

their current levels were significantly higher than the hardware noise. The viscosity of

both epoxies in liquid state was lower than that of the solidified PBMA, thereby enabling

the SWCNTs to move within the composite under an applied electric field. In addition,

the SWCNT/epoxy composites were able to solidify completely with the added SWCNT

load, up to a given SWCNT concentration.

The first experiments reported were concerned with testing whether the SWCNT/

epoxy samples in liquid state are capable of being evolved to solve computational prob-

lems. Synthetic binary classification problems (BCPs) were chosen as a mean of com-

parison with the nanotube-based materials studied previously.

6.2.1 SWCNT/LP655 Composite

The SWCNT/LP655 composite was used in the first set of experiments. As proof-of-

concept for this new material, the DE algorithm, implemented with the parameters pre-

sented in Chapter 3, was used to find solutions to the simplest binary classification prob-

lem (BCP). In other words DE’s task was to induce a material state favouring the correct

classification of all instances from the SC dataset described in Chapter 4.

Comparing SWCNT/LP655 performance with other nanotube-based samples

Results reported in Table 6.1 are averaged over 3 experiments for the SWCNT/ LP655

and SWCNT/PBMA samples and averaged over 20 experiments for the SWCNT/LC

composite. In these experiments, the SWCNT/LP655 were evolved in their un-cured

state. The optimum training (Φt∗
e ) and average verification errors (Φ

v

e) assess the accu-

racy of evolved samples. The average convergence rate towards a solution is represented

by the number of iterations, λ∗, necessary to achieve Φt∗
e and averaged over experiments.

A measure of the over-fitting of the SWCNT/LC classifier to training data is given by the

absolute difference between the optimum training and verification errors averaged over
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Chapter 6. Classification in SWCNT / Epoxy Composites and Device Encapsulation

experiments (dΦ = |Φt∗
e -Φv∗

e |). In the liquid samples, this difference can also be a mea-

sure of the changes in material morphology since the optimum solution was obtained,

i.e. a measure of the stability of the SWCNT structures evolved during DE’s search.

Since the number of experiments undertaken with SWCNT/PBMA and SWCNT/LP655

was small, differences between the metrics presented in Table 6.1 could be attributed to

under-sampling. In order to provide an additional support for the discussion based on

these differences, the significance of these differences was assessed using the two sided

Mann-Whitney U-test. The qualitative result of this test, i.e. significant/not significant

is reported in Table 6.1 for the SWCNT/LP655 compared to the SWCNT/PBMA on one

hand, and SWCNT/LP655 compared to SWCNT/LC on the other. The significance of

the difference between the average results of the SWCNT/LC and SWCNT/PBMA are

not reported.

It can be seen in Table 6.1 that the optimum solution to the SC problem, result-

ing in 0% error, was not found by the DE algorithm when training SWCNT/LP655

samples. On average, the optimum training error was Φt,∗
e = 2.87%. This is far

from the 50% error that would be obtained if the SC dataset’s instances were classi-

fied randomly, and from the training error generally obtained with the control materi-

als. In addition, the training error was not significantly higher than that obtained with

SWCNT/LC samples (0.26%), whilst significantly lower than the SWCNT/PBMA train-

ing error (18.83%). The number of iterations, λ∗, needed for the best training error to be

obtained by SWCNT/LP655 composite was, on average, nearly the same as SWCNT/LC

samples.

TABLE 6.1: Comparing algorithm performance in solving the SC problem with SWCNT/

PBMA, SWCNT/LP655 and SWCNT/LC.

SC dataset SWCNT/PBMA SWCNT/LP655 SWCNT/LC

Φt∗
e 18.83% 2.87% 0.26%

U-test significant not significant

λ∗ 1021.67 93.67 92.75

U-test not significant not significant

Φ
v

e 36.41% 34.72% 1.30%

U-test not significant significant

dΦ 17.17% 32.13% 0.863%

U-test not significant significant
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Chapter 6. Classification in SWCNT / Epoxy Composites and Device Encapsulation

These first results would suggest un-cured SWCNT/LP655 samples to be a good can-

didate for EiM. However, both in terms of average verification error, and of the difference

between training and verification error which illustrates how well the evolved composites

generalise, results for the SWCNT/LP655 composite were significantly higher than those

obtained with SWCNT/LC. When comparing SWCNT/LP655 with SWCNT/PBMA,

neither average verification error, nor the difference between training and verification

are significantly different. However, for both materials, these measures suggest poor

performance of the evolved classifiers.

It is difficult to determine why results obtained with SWCNT/LP655 samples were

not as good as those obtained with the other two composites. The issue could arise from

the algorithm’s inability to find solutions to the problem at hand in the five experiments

undertaken. However, the analysis of the reproducibility of results using the DE algo-

rithm suggests otherwise. Another possible reason for the poor results obtained with the

SWCNT/LP655 composite would be that the search performed by the algorithm created

important modifications in the samples’ structure between the iteration λ∗, where the

optimum Φt∗
e was achieved and the verification tests when Φv

e was produced.

Rate of change in material morphology and training performance

In order to investigate whether solution deterioration was caused by important changes

in the material under DE’s configuration voltages, the rate of change in morphology

between iterations was computed. It is illustrated in the left graphs of Figure 6.1(a) and

(b) by the variations in the structural similarity index (SSIM) [6]. The SSIM is used to

compare each photograph with the next (one photograph was taken per iteration). The

SSIM value decreases as the level of change increases. The convergence of the objective

function, in terms of average and minimum training error per iteration, as well as the

iteration at which the optimum was achieved is also presented in this figure.

It can be observed from both graphs that the rate of change (RoC) in the morphology

of the SWCNT/LP655 sample during the training presented in Figure 6.1(a) is constant

across iterations, at a level of ≈ 0.93 SSIM. A similar behaviour is observed in the

SWCNT/LC sample in Figure 6.1(b), however, in the latter, the SSIM is constantly ≈

0.83. Figure 6.1(c) illustrates the configuration voltages trajectories for both composites

over 100 iterations, since λ = 84 is the point at which DE search terminated for the
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FIGURE 6.1: Average and minimum classification error per iteration, along with the rate of

change observed from the surface of the material at micro-scale during training for the SC prob-

lem, with (a) a SWCNT/LP655 sample and (b) a SWCNT/LC sample. The configuration voltage

trajectories for the two samples are illustrated in (c)
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Chapter 6. Classification in SWCNT / Epoxy Composites and Device Encapsulation

SWCNT/LC sample. It can be observed that the trajectories of the voltages in each

sample are effectively indistinguishable. This suggests that the difference in SSIM across

iterations between the two samples was due to the higher viscosity of the SWCNT/LP655

rather than a difference in the DE search.

Whilst modifications to the morphology were minimal in both samples (see right

hand side of fig. 6.1(a) and (b)), the SWCNT/LC sample’s morphology changes more

during training than that of SWCNT/LP655. The deterioration in classification error

between training and verification, dΦ, reported in Table 6.1, can therefore be attributed

to the inability of the algorithm to find suitable solutions to the SC problem, rather than

changes that would be induced in the sample between λ = λ∗ and λ = Λ.

Results reported in Table 6.1 and the behaviour observed in Figure 6.1 suggest that

the SWCNT/LP655 did not constitute a suitable material for EiM as implemented here.

6.2.2 SWCNT/NO81 Composite

Results obtained with the SWCNT/LP655 were far from optimum, an issue which has

been attributed to the high viscosity of the samples. A different epoxy, NO81 [5], was

therefore used in the second set of SWCNT/ epoxy experiments. It presents similar

electrical characteristics as the LP655 epoxy, with a lower viscosity. Instead of SC,

the two problems to solve with the SWCNT/NO81 composite were V1C and NLC (see

Chapter 4). The choice of these problems was motivated by the discussion on solution

stability and retraining, reported in Chapter 5.

Comparing SWCNT/NO81 performance with other nanotube-based samples

The metrics used in Table 6.2 for assessing and comparing the quality of DE training

and evolved solution are the same as those used in Table 6.1. Results obtained with

SWCNT/NO81 are compared with those obtained with the SWCNT/LC for the V1C

problem and both SWCNT/LC and SWCNT/PBMA for the NLC problem. In all cases,

the results presented for the SWCNT/NO81 were obtained whilst pre-curing of the ma-

terial.

It can be observed from the first row of Table 6.2 that DE training was capable of

bringing the SWCNT/NO81 composite into a state where an error close to the V1C

problem’s minimum could be found, with consistency across experiments. In one case,
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Chapter 6. Classification in SWCNT / Epoxy Composites and Device Encapsulation

TABLE 6.2: Comparing algorithm performance in solving the V1C and NLC problems with

SWCNT/NO81, SWCNT/LC and SWCNT/PBMA.

V1C dataset NLC dataset

SWCNT/NO81 SWCNT/LC SWCNT/PBMA SWCNT/NO81 SWCNT/LC

Φt,∗
e 2.03% 0.21% 5.23% 8.74% 0.78%

U-test not significant not significant not significant

λ∗ 83.67 82.4 75 122 212

U-test not significant not significant not significant

Φv
e 7.94% 1.31% 19.88% 11.59% 5.79%

U-test not significant not significant not significant

dΦ 6.76% 0.74% 14.13% 1.96% 3.34%

U-test not significant not significant not significant

a 0% training error was achieved, and on average over all experiments, Φt,∗
e = 2.03%.

This is higher than the average training error obtained across experiments in SWCNT/LC

(Φt,∗
e = 0.21%), but not by a significant amount. For both composites, the training

optima were, on average, found after a very similar number of iterations: λ∗ ≃ 83. At

this point, results suggest that the SWCNT/NO81 composite would be a good candidate

for EiM.

The verification results confirm this hypothesis to an extent. Across experiments us-

ing different samples of the SWCNT/NO81 composite, Φt,∗
e = 7.94%. Unlike solutions

found by the DE algorithm with SWCNT/LP655, solutions found with SWCNT/NO81

were able to classify with relative accuracy the unseen instances from the verification

set of V1C. In addition, whilst the verification error was higher than that obtained with

the SWCNT/LC samples, it was not significantly so. The measure of over-fit, dΦ, sug-

gests that the quality of the solutions obtained in SWCNT/NO81 was not as good as that

obtained with SWCNT/LC samples. However, the SWCNT/NO81 did demonstrate the

potential of being able to solve the V1C problem through algorithm training.

The second set of experiments was undertaken with the more complex NLC dataset.

As expected, compared to the less complex V1C problem, solutions found resulted in

a higher percentage of error for all materials. The training results presented in Table

6.2 shows that DE did not, on average, find the optimum solution for the NLC problem.

However, for each material, Φt,∗
e = 0% was achieved in at least one experiment.

The training error for the NLC problem obtained on average across un-cured SWCNT/

NO81 samples, Φt,∗
e = 8.74% , was higher than the Φt,∗

e = 0.78% and Φt,∗
e = 5.23%
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Chapter 6. Classification in SWCNT / Epoxy Composites and Device Encapsulation

obtained with SWCNT/LC and SWCNT/PBMA samples, respectively. However, the

differences were not statistically significant and neither were the differences in λ∗. On

average the optimum solution to the NLC problem, resulting in Φt,∗
e , was found faster

with SWCNT/NO81 than with the SWCNT/LC, and slower than with SWCNT/PBMA.

These differences can be attributed to the important variations in λ∗ observed across

experiments.

The verification error for the SWCNT/NO81 samples trained to solve the NLC prob-

lem was 11.59%. This is significantly lower than the 50% error obtained in control

experiments and in SWCNT/NO81 samples prior to training. The verification error in

evolved SWCNT/NO81 samples was also significantly lower than that obtained with the

SWCNT/LP655 for the less complex SC problem. This confirms that the NO81 epoxy

was a better choice under the experimental implementation used here. Compared to the

other two materials trained to solve the NLC problem, the SWCNT/NO81 verification

error was almost half that obtained with the solid SWCNT/PBMA composite but it was

almost twice as high as SWCNT/LC’s verification error. Neither difference was statisti-

cally significant however, and a wide spread across the verification errors obtained with

SWCNT/NO81 was observed, suggesting a problem with reproducibility in the experi-

mental implementation used here.

In the SWCNT/PBMA samples, the difference between training and verification er-

rors, dΦ = 14.13% was mainly the result of outliers. The presence of outliers can be

attributed to the algorithm’s inability to consistently find solutions that generalise well.

Potential explanations for the 3.34% obtained with SWCNT/LC have been discussed in

details in previous chapters. In this case, results suggested that if the optimum training

error was achieved in the last iteration, the difference between training and verification

errors could be attributed to the same cause as for SWCNT/PBMA. If λ∗ 6= Λ, it would

be combined with the fact that the evolution of the material did not result in SWCNT

structures stable enough to be unaffected by subsequent training.

Compared to both SWCNT/LC and SWCNT/PBMA, solutions obtained through

evolution of the SWCNT/NO81 samples presented the lowest difference between train-

ing and verification errors, and low variance across experiments. In other words, the ab-

solute difference between optimum training and verification errors, both averaged across

experiments, was lowest in SWCNT/NO81. Since the liquid state of the SWCNT/NO81
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composite was closer to that of SWCNT/LC, it would be easy to suggest that the deterio-

ration in error was due to the large changes in the material morphology across iterations.

The results of these changes would be the destruction of the physical part of the solution

evolved by DE during training. However, without more information, it is not possible to

determine the validity of this hypothesis.

Rate of change in material morphology and training performance

As for the SWCNT/LP655 composite, the rate of change in the morphology observed in

SWCNT/NO81 samples between iterations was computed in order to investigate whether

solution deterioration was caused by important changes in the material under DE’s con-

figuration voltages. It is illustrated in the left graph of Figure 6.2 (a) by the variations in

the SSIM [6], along with the objective function, in terms of average and minimum train-

ing error per iteration. Photographs of the material at different iterations are included

in the right hand side of fig. 6.2 (a). The same information is reported in Figure 6.2

(b) for the SWCNT/LC composite. Figure 6.2 (c) presents three of the configuration

voltage trajectories that, for each material, produced the states resulting in the objective

functions of fig. 6.2 (a) and (b) and the associated changes in morphology observed in

the photographs.

It can be observed from Figure 6.2(a) that the highest changes in morphology were

produced in SWCNT/NO81 sample in the first few iterations. An SSIM of 0.82 was ob-

tained when comparing the photographs taken during the first and second iterations. This

is comparable to the SSIM achieved in SWCNT/LC during training, and lower that the

SSIM observed during SWCNT/LP655 training. At the microscopic scale, changes in

the material between the first and last iterations are more important in the SWCNT/NO81

sample presented in the left hand side of Figure 6.2(a) than in the SWCNT/LP655 sam-

ple from Figure 6.1(a), confirming that the NO81 epoxy allows SWCNTs to move under

an applied electric field, more than the LP655.

The iterations during which the highest changes are observed correspond to those

where the percentage in classification error was highest (≃ 50%, corresponding to ran-

dom classifying of data). Following the first iterations, the rate of change decreases non

linearly. This is illustrated in Figure 6.2(a) by a non-linear increase in SSIM to ≃ 0.98

after λ = 40. The convergence of the average and minimum error functions per iterations
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FIGURE 6.2: Average and minimum classification error per iteration, along with the rate of

change observed from the surface of the material at micro-scale during training for the NLC

problem, with (a) a SWCNT/NO81 sample and (b) a SWCNT/LC sample. The configuration

voltage trajectories for the two samples are illustrated in (c)
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for the SWCNT/NO81 composite is nearly the inverse of the rate of change in material

morphology. Both error functions decreased non-linearly towards 8.5% error and re-

mained within 10% of the NLC problem’s minimum past λ = 40. No better solution,

resulting in a lower error, was found before the end of training. However, the solution

obtained at iteration 83 is the one used in verification, since it produced the lowest er-

ror percentage achieved closer to the end of training. Using the last solution achieving

the experiment’s optimum supposedly ensures the least possible amount of variation in

material state between that tested during verification, and the one which produced the

lowest error.

The high amplitude of the configuration voltage trajectories between iterations λ = 0

to λ = 40, presented in Figure 6.2(c), suggests that a DE search focused exploration to-

wards the start of the training process. The subsequent convergence of the configuration

voltage trajectories towards smaller values suggest that once a solution resulting in an

error within 10% of the problem’s minimum was found, the algorithm exploited the

search space around this solution. However, it appeared to be a local optima, and no

better solution was found before the end of training.

The second graph on the right of Figure 6.2(b) illustrates the behaviour of the objec-

tive function and the rate of change in material morphology for a SWCNT/LC sample. It

can be observed that the convergence of the objective function followed a course similar

to that obtained in SWCNT/NO81 samples. The SSIM also behaved in a similar way:

it was at its lowest during the first iterations, indicating large changes in the material

at microscale when the error was highest and it increased as the algorithms converged

towards better solutions to the NLC problem.

The advantage of the lower voltage levels which can result from a search focused on

exploitation is that they produce the low variations in material morphology illustrated

by a SSIM ≃ 1. Considering that a similar behaviour was observed in all experiments

where SWCNT/NO81 samples were trained to solve the NLC problem, the minimal

loss of accuracy between optimum training can be attributed to the negligible rate of

change in morphology resulting from the algorithm’s exploitation of the search space.

This behaviour is also unfortunately the cause of important variations in error across

experiments, since an algorithm trapped in the vicinity of a local optimum will likely be

incapable of finding the problem’s optimal solution.
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Chapter 6. Classification in SWCNT / Epoxy Composites and Device Encapsulation

In the case of the SWCNT/LC, Figure 6.2(b) shows that the SSIM remained around

0.84 as the algorithm settled into an exploitation phase resulting in lower levels of con-

figuration voltage trajectories. This can be attributed to the fact that the SWCNT/LC

composite has a lower viscosity than the SWCNT/NO81 composite. It is also a possible

reason for the higher differences between training and verification results reported in Ta-

ble 6.2. In this case, a low difference will only be achieved if the algorithm has evolved

structures strong enough to resist the changes occurring between λ∗ and Λ.

Results obtained with the SWCNT/NO81 composite, albeit requiring improvement,

were not significantly different from the results obtained with the SWCNT/LC compos-

ite. This motivated further study into this material’s stability, and its ability to retain

solutions after being subjected to the curing process.

6.3 Stability of Solutions

Results obtained with the SWCNT/LP655 composite are not analysed here since the

level of error in this material was too high for it to be of interest in future experiments.

The previous section demonstrated the possibility to evolve SWCNT/NO81 samples

into devices capable of solving two different classification problems. In addition, it was

observed that the material morphology could be modified by an algorithm-controlled

electric field to a similar extent as SWCNT/LC samples. Despite the fact that the

SWCNT/NO81’s morphology could be affected by DE’s search, unlike SWCNT/PBMA

composites, it was observed that a minimal deterioration in error between training and

verification was generally observed across experiments.

Since the SWCNT/NO81 presents a low viscosity, the stability of the evolved solu-

tion, i.e. its ability to solve a computational problems after a given amount of time with

minimal loss of accuracy, is a concern. A good stability is especially important since the

aim of using this material is to cure evolved solutions. A poor stability would results in

a loss in accuracy before the curing process might have began, and therefore the advan-

tage (see Chapter 5) of the liquid SWCNT/NO81 composite over solid SWCNT/PBMA

samples would be lost.

The stability of solutions evolved in SWCNT/NO81 has therefore been assessed,

through two different means. The first consists in calculating the dispersion in error be-

tween the ten verification tests undertaken at the end of training (the average over these
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Chapter 6. Classification in SWCNT / Epoxy Composites and Device Encapsulation

tests was used in the previous sections). This value of dispersion, i.e. the standard devi-

ation in results across Q tests, averaged over experiments, is reported as σ(φv
e) in Table

6.3. The second consists in testing the solutions after four hours which is reported as

Φv
e(x

∗+4h) in the table. Four hours is more than the minimum time required in order to

cure the SWCNT/NO81 samples at the nanotube concentration used. In addition, it was

the critical time after which solutions obtained with SWCNT/LC had either deteriorated,

or after which the change in error remained with 5%.

Results regarding training and verification errors previously reported are reproduced

in Table 6.3, along with those obtained for three different metrics of solutions stability

in evolved SWCNT/NO81 composite trained to solve the V1C and NLC problem.

TABLE 6.3: Stability of solution in evolved SWCNT/NO81 samples.

Datasets Φt,∗
e (%) Φ

v

e(%) σ(φv
e)(%) Φv

e(x
∗ + 4h)(%)

V1C 2.03 7.94 0.8232 9.823
NLC 8.74 11.59 0.4096 13.46

A low spread of error across the ten verification tests performed 5 minutes after the

end of the training process can be observed for both problems in the table. This is illus-

trated by the standard deviation σ(Φv
e), which is lowest for the NLC dataset, suggesting a

high solution stability, although the verification error, Φ
v

e . was not optimal. With respect

to the verification error a deterioration was observed when testing the evolved classifier

four hours after the end of training, Φ
v

e = 11.59% vs Φv
e(x

∗ + 4h) = 13.46%, although

not to the extent of a complete return to the untrained material state where instances from

the two datasets were classified at random, i.e. 50% error (see Chapter4, section4.2).

6.4 Curing Evolved SWCNT/NO81 Classifiers

The percentage of classification error obtained with SWCNT/LP655 samples was too

high to be of interest and justify curing of the evolved material. On the contrary, the set

of experiments for which results are reported in Table 6.3, suggests that attempting to

cure evolved SWCNT/NO81 classifiers is not a redundant task.

The potential solution deterioration caused by the curing process, where the liquid

composite becomes an insoluble, infusible polymer, is assessed here. Table 6.4 reports

the verification error obtained when evolved liquid SWCNT/NO81 samples have been
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Chapter 6. Classification in SWCNT / Epoxy Composites and Device Encapsulation

TABLE 6.4: Comparison of classifier performance before and after curing of SWCNT/NO81

composites evolved to solve the V1C and NLC problems.

Datasets V1C NLC

State Liquid Solid Liquid Solid

Φt,∗
e (%) 2.03 N/A 8.74 N/A

Φ
v

e (%) 7.94 11.52 11.59 27.77

Φv
e(x

∗ + 4h) (%) 9.82 N/A 13.46 N/A

σ(Φv
e) (%) 0.823 0.444 0.409 0.922

cured under UV light, compared with the error obtained in the same samples, pre-curing,

i.e. when the SWCNT/NO81 sampled were still in a liquid state. These results are also

compared to those obtained after four hours, but where the material has not been cured,

in order to estimate how much of the deterioration is due to curing and how much is

due to changes in the materials occurring whilst it was still in a liquid state. It must be

noted that the cured samples, referred to as ‘solid’ in the table, are not retrained after

curing. Instead, the solution found during training of these samples whilst they were

still un-cured (liquid in the table) is reapplied to the now solid sample. This explains

why the label ‘N/A’ is used for optimum training error in the case of the solid samples.

Results reported in Table 6.4 suggest that solutions evolved in un-cured SWCNT/NO81

are stable enough to be retained whilst the material is cured under UV light. In other

words, the curing process does not appear to destroy completely the solutions evolved

in the samples when they were in a liquid state. For both problems, the deterioration

in error after curing, Φ
v

e (solid), was higher than after leaving samples to rest for four

hours, Φv
e(x

∗+4h). This was especially significant since samples did not require 4hrs to

cure. It is possible that the differences in verification errors are due to chemical changes

in the epoxy resulting from the curing process.

The verification error in devices evolved to solve the V1C problem was on average

11.52%. This was 3.58% more than the original error. The loss of accuracy due to the

curing process was more significant for the NLC dataset. In this case, the post-cure error

was 16.18% higher than the liquid alternative, whilst the deterioration due to time was

less that 2%.

The fact that the NLC dataset solutions appear to be more prone to change due to

curing than those obtained for the V1C dataset was unexpected. If the same reasoning
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Chapter 6. Classification in SWCNT / Epoxy Composites and Device Encapsulation

used with SWCNT/LC samples was followed, the spread of data around the verification

tests errors should be greater for the V1C problem, since it was suggested in Chapter

5 that more complex problems lead the DE algorithm to build more stable SWCNT

structures in the material which would be less prone to variations in morphology induced

by the algorithm-controlled electric field.

It must be noted that experiments involving the training of solidified samples re-

sulted in training and verification errors significantly higher than those obtained with

the same material in liquid state. There was therefore an advantage in using the liquid

SWCNT/NO81 as a base for training, prior to curing.

6.5 Summary of Results and Conclusions

Observations arising from the analysis of the EiM process on SWCNT/LC composites

resulted in investigations into another type composite, where SWCNTs were combined

with epoxies in liquid state. In this chapter, two SWCNT/epoxy (LP655 and NO81)

composites were used to test the possibility of encapsulating devices. The aim was to

allow algorithms to make use of the diversity in input/output behaviour provided by the

SWCNT-based composites in liquid state for in-the-lab experiments and to allow the use

of the resulting devices, in solid state, for out-of-the-lab applications.

The first composite tested, SWCNT/LP655, was subsequently abandoned as it was

not possible to evolve it into an accurate classifier for the BCPs. In addition, at the

SWCNT concentration selected for experiments, the composite viscosity was very high,

and analysis of photographs taken during this training suggested little or no movement

of nanotubes within the LP655 matrix.

The second composite tested, SWCNT/NO81, presented a much lower viscosity

compared to SWCNT/LP655. In this case, it was possible to show that change in mor-

phology within the material subjected to algorithm training was similar to that reported

for the 0.05 wt % SWCNT/LC composite. Using the classical EiM framework and ex-

perimental implementation described in Chapter 3, it was possible to solve both a linear

and non-linear separable classification problem with relative accuracy. Results were not

as good as those obtained with SWCNT/LC samples, but the differences were not statis-

tically significant from those obtained with either SWCNT/LC or SWCNT/PBMA.
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The most interesting result reported in this chapter concerns the impact of the UV

curing process on evolved solutions. It was possible to retain a level of classification

accuracy after the SWCNT/NO81 composite had been cured under UV light. In other

words, the material-based classifier evolved whilst in liquid state could be solidified,

effectively resulting in an encapsulated device able to sustain physical tampering to some

extent. The possibility to combine the benefits of both liquid and solid nanotube-based

composites was suggested here.

However, results also suggested that, whilst the SWCNT/NO81 composite has the

potential to solve computational problem through the EiM framework, a different imple-

mentation might be necessary to obtain more accurate and reproducible results. Indeed,

the parameters used for the new SWCNT-based composites (maximum voltage level,

number of decision variables, etc), had been optimised for the SWCNT/LC composite

and might not be optimal for SWCNT/NO81. Further experiments involving changes in

parameters, algorithm or EiM framework, have the potential to improve results and allow

for more complex problems to be solved. In addition, curing the material resulted in an

increase in verification error which was beyond that resulting from time-bound deterio-

ration, suggesting a non-negligible impact of the curing process on the evolved solution.

It would be interesting to see if a different implementation could result in structures pre-

senting a strength similar to the one allowing SWCNT/LCs to keep memory of a past

problem whilst having been subjected to a new sequence of training, and whether this

strength would affect the ability of the SWCNT/NO81 to retain the accuracy obtained

pre-curing.
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7.1 General Overview

Previous chapters reported solutions to synthetic binary classification problem (BCPs),

obtained through training of single-walled carbon-nanotube (SWCNT)-based compos-

ites. The original motivation behind the use of these BCPs was to provide a proof-of-

concept for a new material, SWCNT/ liquid crystal (LC).

Subsequent investigations with the same problems enabled the understanding of

some of the complex mechanisms at play during the EiM process, such as the build-

ing of SWCNT structures resulting in a material memory and in the potential to learn

from retraining. This understanding led to the suggestion of, and investigation into,

SWCNT/epoxy composites for evolution in materio (EiM), which demonstrated the pos-

sibility to encapsulate solutions evolved in a material in liquid state for potential out-of-

the-lab applications.

Results obtained with the SWCNT-based composites are difficult to compare with

other techniques or even in materio implementations, since the BCPs were only used

in one other study [1]. In addition, the BCPs are synthetic datasets which will not en-

compass all the difficulties that might be presented by real-life problems. Using bench-

mark problems, on the other hand, can give a flavour of how competitive a technique

is compared to another, rather than the ability of the technique to find solutions to any
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Chapter 7. Solving Real-Life Problems with SWCNT/LC Composites

classification problem. The first aim of this chapter is therefore to determine whether

liquid SWCNT/LC samples were capable of solving these more complex problems. The

choice of relevant benchmark problems for testing new frameworks, algorithms or im-

plementations has been the subject of much debate within the unconventional computing

community [2], and the computing and electronics community at large [3]. In this con-

text, the choice of problems was directed by the second aim of this chapter, which is to

compare classifiers evolved in SWCNT/LC with those evolved in solid SWCNT/polymer

and with in silico classifiers.

The Iris classification problem, based on the Iris dataset [4], has been commonly

used to test SWCNT/poly(butyl meta acrylate) (PBMA) and SWCNT/ poly(methyl meta

acrylate) (PMMA) composites as well as both the classical EiM framework [5–7] and

reservoir computing in materio (RCiM) [8]. It is therefore the first problem investigated

with SWCNT/ LCs, a differential evolution (DE) algorithm and the implementation of

Chapter 3. The second set of investigations focused on the training of un-configured

liquid materials for the solving of two medical problems, based on the mammographic

mass dataset and bupa liver disorder referred to as MMC and bupa, respectively. These

have not been used in other EiM-related investigations, but they provide a means of

comparison with in silico classifiers obtained using the DE algorithm. The three datasets

were retrieved from the UC Irvine (UCI) repository [9].

This Chapter is arranged in three sections, one for each problem. The Iris problem

is presented first, along with a discussion of the results. The second and third sections

are concerned with the MMC and bupa problems, respectively. Finally, a summary of

discussion and results concludes this chapter.

7.2 Iris Dataset

The Iris classification problem, which dataset was retrieved from the UCI repository

[9] is commonly used to test new optimisation algorithms [4, 10–12] and as mentioned

previously has been used as a benchmark in EiM investigations involving solid SWCNT-

based composites.

The dataset consists in:

• 3 classes representing 3 types of Iris flowers (virginica, setosa and versicolor),
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Chapter 7. Solving Real-Life Problems with SWCNT/LC Composites

• 150 instances, 50 per class,

• and 4 attributes.

Unlike the type of classification problems investigated in the previous chapter, the Iris

dataset represents a real-life classification problem, in the sense that instances from this

dataset have been collected rather than generated for the purpose of an experiment. In

addition, compared to all other problems investigated here and in previous chapters, the

Iris datasets contains three classes, i.e. it is not binary.

The left hand side of figure 7.1 presents an Iris flower, along with the attributes

which define its type: petal (length and width) and sepal (length and width). The dataset

is represented in four dimensions in the right-hand side graph of Figure 7.1, with V1

and V2 corresponding to the petal measurements, whilst V3 and V4 correspond to the

sepal length and width, respectively. One class, the iris Setosa, is fully separable from

the other two. The Virginica and Versicolor are partially merged over two dimensions,

i.e. attributes.

FIGURE 7.1: Photograph of an Iris versicolor, with the four attributes collected to build the Iris

dataset illustrated four dimension.

7.2.1 Experimental Implementation

The implementation used to solve the Iris problem with SWCNT/LC differed from the

one discussed in Chapter 4, since in the case of Iris, three rather than two classes were

involved. Tests were undertaken to find a suitable function for the Iris problem, referred

to as hiris to be used to translate currents measured across the material into classes in

the interpretation scheme (SC). Two different functions were tested.

In the first case, the evolvable motherboard (EM) used in experiments aiming at

solving the BCPs, and presented in Chapter 3, Section 3.5, was left unchanged. The
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Chapter 7. Solving Real-Life Problems with SWCNT/LC Composites

function therefore had to assign data to three classes using two outputs. Preliminary

results using this scheme proved globally poor, with around 33% error for both training

and verification. This corresponds to a classifier that allows the correct classification of

data belonging to the Setosa class, which is distinct from the other two, but is unable

to distinguish between Versicolor and Virginica. In addition, a large number of itera-

tions were required before the algorithm settled to the solution resulting in the correct

classification of instances belonging to two out of the three classes.

The second scheme tested made use of three current outputs instead of two. The EM

was modified to allow the three outputs to be collected across the material, making the

material response Y(M):

Y(M) =
[

I1(M) I2(M) I3(M)
]T

(7.1)

where M relates to the state of the material, but is not directly measurable.

In this case, each output was compared to the other two. A good solution would

be one that made output I1, I2 or I3 highest in the presence of data belonging to the

corresponding class C1, C2 or C3. The full interpretation scheme, referred to as Siris
C

for the Iris dataset, was therefore as follows:

Siris
C (Y) =



























1 if I1 ≥ I2 and I1 > I3

2 if I2 > I1 and I2 ≥ I3

3 if I3 ≥ I1 and I3 > I2

(7.2)

A list of important implementation parameters is presented in Table 7.1. The param-

eters of the DE algorithm used to evolve SWCNT/LC and SWCNT/PBMA samples into

devices capable of solving the Iris problem are also reported in this table

TABLE 7.1: Experimental Parameters for the Iris Problem.

Parameter Value

D
E

cross-over operator (CR) 0.7026

differential weight (F) 0.814

S
ea

rc
h

iteration size (Λ) 250-1000

population size (N) 10

[Vmin, Vmax] (Volts) [0, 4]

[pmin, pmax] [1, 182]

[Vmin, Vmax] (Volts) [0, 4]

[Rmin, Rmax] [0.05, 15]

[pmin, pmax] [1, 182]

scheme hiris,
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Chapter 7. Solving Real-Life Problems with SWCNT/LC Composites

In order to train the material to solve the Iris problem, the dataset was split into a

training and a verification set, both containing half of all instances, i.e 75 instances each.

A minimum of five experiments was undertaken for each material.

7.2.2 Results

The performance of the EiM process in solving the Iris problem, whilst implemented in

0.05 wt % SWCNT/LC composites and trained using DE, is measured in terms of op-

timum training Φt,∗
e error and average verification errors Φ

v

e . An estimate of the repro-

ducibility of the process is provided by the variance, σ(Φv
e) in verification error across

experiments.

The three measures of performance are reported in Table 7.2. Where available, the

same measures are reported for 0.71% SWCNT/poly (methyl metaacrylate) (PMMA)

samples and 1 wt % SWCNT/PBMA samples. Results for these composites were ob-

tained with the classical EiM [6, 7] and following the reservoir computing in materio

(RCiM) framework [8]. In both cases, (1 + 4) evolutionary strategies (ES) was used as

the algorithm and experiments were run in different versions of the EM. The last means

of comparison was carthesian genetic programming (CGP) [13] mentioned in [8] and

implemented on conventional hardware, i.e. in silico.

TABLE 7.2: Training and verification errors for the Iris problem

Material framework wt % Φt,∗
e (%) Φ

v

e(%) σ(Φv
e)(%)

SWCNT/LC EiM 0.05 13.00 17.5 4.77

SWCNT/PMMA
EiM [6]

0.71
16.3 22.9 N/A

RCiM [8] 4.07 11.97 8.93

SWCNT/PBMA
EiM [7]

1
7.77 12.12 N/A

RCiM [8] 2.86 8.1 5.48

in silico CGP [8] N/A 2.3 6.4 N/A

It must be noted that all the results with which the SWCNT/LC results are compared

were obtained with different hardware platforms, algorithms and problem formulations,

in addition to being obtained with different SWCNT-based composites. It is therefore

difficult to analyse whether the difference in results was due to the material only.
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Chapter 7. Solving Real-Life Problems with SWCNT/LC Composites

Errors obtained with SWCNT/LC samples were 13% and 17.5% for training and

verification respectively. This suggests that DE-controlled evolution has created a device

with the ability to solve more than linear classification problems. If linear classification

was the only possible task that the evolved SWCNT/LC samples could perform, the

verification error would have been around 33%, which is the lowest possible error that a

linear classifier with a single threshold could achieve on the Iris dataset.

Overall, results reported in the table suggest that the framework used to train materi-

als has a greater effect on the training and verification errors than the material used. The

level of these errors obtained with the SWCNT/LC composite were comparable to both

SWCNT/PMMA (EiM), SWCNT/PBMA (EiM), being slightly lower than the first and

higher than the second. However the SWCNT/LC errors were higher than the training

and verification errors obtained through the RCiM framework, irrespective of the mate-

rial, and higher than CGP in silico. It would be interesting to investigate whether RCiM

would benefit, in the sense of more accurate results, faster convergence etc, from using

the dynamic SWCNT/LC composites rather than solid SWCNT/PBMA.

The spread in results across experiments is the only performance measure suggesting

an advantage in using SWCNT/LC, in the current experimental implementation, over the

other material and framework alternatives. The standard deviation across the verification

errors obtained with SWCNT/LC samples was lower than that obtained with the RCiM

framework in both SWCNT/PMMA and SWCNT/PBMA.

This is coherent with the hypothesis formulated in [14] and discussed in [8], i.e. the

finding of a solution in solid SWCNT-based composites is dependent on the SWCNT

structures present during the material’s solidification process. This is a constraint that

is not present in SWCNT/LCs. Results presented here suggest that the latter’s flexible

state, one that can be transformed during training, allows a level of reproducibility in

results which is higher than in the solid samples.

The Iris problem is an important benchmark problem in machine learning and re-

lated research. It was investigated mainly because it provided a mean of comparison

with other EiM implementations and SWCNT-based materials. However, as argued in

[3], the fact that a technique can solve this problem does not mean that it will be able

to do well at other, more complex ones. In order to provide more ground for the anal-

ysis of SWCNT/LC composite performance in dealing with real-life problems, the next

174

iteration 154 error

0 1 2 3 4 5 6 7 8 9 10

Computation input V
in

1 (Volts)

0

1

2

3

4

5

6

7

8

9

10

C
o
m

p
u
ta

ti
o
n
 i
n
p
u
t 
V

in
2
 (

V
o
lt
s
)

 0

 0.2

 0.4

 0.6

 0.8

 1



Chapter 7. Solving Real-Life Problems with SWCNT/LC Composites

two sections investigate this material’s ability to solve problems based on two medical

datasets.

7.3 Mammographic Mass Dataset

The mammographic mass problem (MMC) is characterised by n1 = 4 features of a

breast mass, which is deemed either carcinogenic or benign. Three features follow a dis-

crete qualitative marking scheme (mass margin, shape and density), whereas the fourth

(patient age) is a continuous quantity.

The dataset, retrieved from the UCI repository [9], has a total of 961 instances, split

in a 54:46 ratio between the two classes. In the experiments undertaken here, the 130

instances presenting one or more missing attribute have been removed from the dataset.

This is also the case in the paper presenting the results with which the performance of

the evolved SWCNT/LC classifiers is compared [15]. When the instances with missing

attributes are removed, the split between the two classes becomes close to a 50:50 ratio,

which is conserved in the training and verification datasets.

Figure 7.2 presents mammograms with no mass at all, benign cyst and carcinogenic

mass. The different attributes of the MMC dataset are represented in three dimensions

over two graphs below the mammograms. The two classes correspond to no mass and

carcinogenic mass.

The same two complexity metrics used for the synthetic BCPs are used for rank-

ing the difficulty of each of the MMC problem: the Fisher criterion and the volume of

overlap [17].

The Fisher criterion for an arbitrary BCP, F1,BCP , is defined as

F1,BCP = max
j=1,...,n1







(

µ1,j − µ2,j

)2

σ2
1,j + σ2

2,j







(7.3)

where µi,j and σi,j is the mean and the standard deviation of feature j for class i, respec-

tively. The higher the value of F1,BCP the less complex is the problem and therefore

should be easier to solve.

The volume of overlap metric for an arbitrary BCP, F2,BCP , is defined as

F2,BCP =

n1
∏

j=1

min
{

U1,j , U2,j

}

−max
{

L1,j , L2,j

}

max
{

U1,j , U2,j

}

−min
{

L1,j , L2,j

} (7.4)
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Chapter 7. Solving Real-Life Problems with SWCNT/LC Composites

FIGURE 7.2: Mammographic mass (photo taken from [16]).

where

U1,j = max
{

V C
j : VC ∈ A1

}

, U2,j = max
{

V C
j : VC ∈ A2

}

L1,j = min
{

V C
j : VC ∈ A1

}

, L2,j = min
{

V C
j : VC ∈ A2

}

.
(7.5)

The multiplicative form of F2,BCP indicates that if the two classes are separable in just

one feature, it will take a zero value. The higher the value of F2,BCP the more complex

the problem is and therefore it should be more difficult to solve.

Table 7.3 summarises the parameters describing the four BCP previously considered,

along with the new problem. This provides a better idea of the relative complexity of

each material, and specifically of the MMC problem as compared to the V1C, SC, MC,

and NLC problems previously solved with SWCNT/LC composites. For each problem,

the number of features n1 is given along with the total number of points in the training

and the verification datasets, i.e Kt +Kv; the problems are placed in ascending order of

complexity, as indicated by the values of F1,. and F2,. for each of them.
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Chapter 7. Solving Real-Life Problems with SWCNT/LC Composites

TABLE 7.3: Parameters of the synthetic BCPs and the medical dataset, MMC.

Problem n1 Kt +Kv F1,. F2,.

V1C 2 4800 2.198 0
SC 2 4800 2.075 0
MC 2 4800 1.908 6.6
NLC 2 4800 0.962 0
MMC 4 831 0.809 1.4

7.3.1 Experimental implementation

A simple linear transformation is used to scale all computational inputs to the range of

[0, 4] Volts, irrespective of whether they are continuous or not. Hence,

A = [0, 4]4 (7.6)

with D = {1, 2}, since the problem is binary.

The implementation parameters are presented in table 7.4, along with the parameters

of the DE algorithm used to evolve the samples of SWCNT/LC composites and micro-

tubule solutions into solving the MMC dataset. A minimum of five experiments was

undertaken for each material and material concentration.

TABLE 7.4: Experimental Parameters for the MMC problem.

Parameter Value

D
E

cross-over operator (CR) 0.7026

differential weight (F) 0.814

S
ea

rc
h

iteration size (Λ) 150-300

population size (N) 10

[Vmin, Vmax] (Volts) [0, 4]

[Rmin, Rmax] [0.05, 15]

[pmin, pmax] [1, 182]

scheme h(2)

7.3.2 Results

Effect of concentration

Table 7.5 presents experimental results from investigations related to the range of con-

centrations, [0.015-0.1] wt % SWCNT/LC. If un-configured, a sample classifies the

problem’s data randomly, resulting in 50% error. Φ∗
e and Φ∗

e,v are the optimum error

obtained during training and verification of the sample respectively. Ten tests are per-

formed during the verification procedure. Φe,v is the average and the σ the variance over

these tests.
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Chapter 7. Solving Real-Life Problems with SWCNT/LC Composites

TABLE 7.5: Performance of evolved SWCNT/LC composite, at different concentrations, for the

MMC problem

SWCNT wt % Φ∗
e(%) Φ∗

e,v(%) Φe,v σ(%)

0.015 24.5 49.49 49.49 0.000

0.05 20.5 18.85 20.507 0.5133

0.1 20.3 19.65 20.84 0.5638

It can be observed that materials of 0.015 wt % are unable to generalise well, that

is, classify correctly the previously unseen verification data. On the other hand, increas-

ing the SWCNT concentration to 0.05 wt % and 0.1 wt % yields results demonstrating

improvement from the undiscerning state (for which error is 50%), good generalisation

and good reproducibility, illustrated by the average verification error Φ
v

e and the standard

deviation σ(Φv
e), respectively.

Comparison with in silico classifiers

In order to assess the solutions currently obtained in materio, results to MMC prob-

lem, averaged over five tests, are presented in Table 7.6. They are compared with those

achieved over a range of neural network (NN) implementations running on conventional

computers, i.e. in silico. Results for the MMC problem are reported in [15], where a den-

trite morphological NN (DMNN) is trained using DE. Finally, the SWCNT/LC results

are compared with those obtained from a medical survey [18] where human accuracy on

an equivalent to the MMC problem is investigated. Only two extremes are reported here,

results for fellowship trained radiologists, as defined in [18], who are very good at dis-

cerning correctly carcenogenic masses from mammograms and non-fellowship trained

radiologists. The radiologists only had access to mammograms, however, the specific

mammograms used in this study were different than those used in the UCI repository. In

the table, the diagnosis of the first are reported as best verification error (Φv,∗
v = 12.00%

TABLE 7.6: Different implementation performance in solving the MMC problem.

MMC Material Φ∗
e(%) Φ∗,v

e (%) Φ
v

e (%) σ(Φv
e)(%)

EiM, DE SWCNT/LC 20.5 18.85 20.51 11.097

DMNN, DE [15] in silico 15.8 N/A 10.40 N/A

Human learning [18] brain N/A 12.00 17.00 N/A
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Chapter 7. Solving Real-Life Problems with SWCNT/LC Composites

error) and the diagnosis of the non-fellowship trained radiologists are reported as aver-

age verification error Φ
v

e = 17.00% error. The difference between the two radiologist

diagnosis is detailed in [18]. It can be seen that despite the problem’s complexity, the

SWCNT/LC material can be brought in a state where it is able to classify at best 18.85%

and on average 20.51% of the 631 instances contained in the MMC verification dataset.

This is less than half the error that would be obtained if the material was randomly as-

signing data to one class or another.

As mentioned previously, the MMC dataset was split into Kt = 200 and Kv = 631.

Results for DE-trained DMNN were obtained using a ratio of training to verification

instances nearly inverted, i.e. Kt = 664 and Kv = 167. However, the evolved

SWCNT/LC blend is able to produce a training error which is ‘only’ 4.7% higher, whilst

the average verification error is 10.11% superior to the DE-trained DMNN. The best and

average in materio solutions compare better with the diagnosis of non-fellowship trained

radiologists (Φ
v

e), with an error that is respectively 1.85% and 3.51% higher. The fellow-

ship trained radiologists (Φ∗,v
e ), on the other hand are more accurate in their diagnosis

than both their non-fellowship trained counterpart and the SWCNT/LC.

Due to hardware constraints, DE was implemented with a population of ten individ-

uals, and with ten decision variables, as presented in section 7.3.1. This is lower than the

population size and parameter number used in [15], and in most DE implementations.

Nonetheless, in no more than four hundred iterations, it was possible to produce an

evolved material able to classify a number of instances from the two datasets without the

metal-oxide-semiconductor-field-effect-transistors (MOSFET) components crucial to in

silico implementations.

7.4 Bupa Liver Disorder

The Bupa liver disorder (bupa) problem is characterised by data with n1 = 6 features

describing a patient’s liver condition and is often used as a medical binary classifica-

tion problem to test and compare machine learning methods and algorithms. An EiM

approach to the solving of this problem was investigated by the author of this thesis.

Results obtained with SWCNT/LC samples were published in [20]. However following

the publication of [21] by McDermott and Forsyth (the latter provided the dataset for

the bupa liver disorder problem), it has appeared that most published research involving
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Chapter 7. Solving Real-Life Problems with SWCNT/LC Composites

bupa had misused the dataset from the moment it was deposited on the UCI repository.

It is also the case in the work presented in [20], and in the two publications [15, 19]

reporting the results with which the evolved SWCNT/LC classifiers are compared.

The dataset of the Bupa liver disorder problem, as published in the UCI repository,

does not come with classes to which the data should belong. It is therefore not suitable

for supervised learning. The attribute commonly considered as the dataset’s classes is

instead an indicator of how to split the dataset between training and verification. As a

result, the comparisons presented here do not represent the different classifier’s ability

or inability to discriminate between healthy and cirrhotic liver.

7.5 Summary of Results and Conclusions

This chapter investigated three real-life classification problems retrieved from the UCI

repository [9]. Contrary to the synthetic BCPs used previously, the three real-life prob-

lem’s datasets contain instances that are spread across more than two dimension,s with

non-linear boundaries and overlapping areas. In the case of the medical datasets, they

combine continuous and discrete data.

Investigations into the solving of these problems by means of classical EiM, DE

and SWCNT/LC composites provided comparison with more conventional classification

techniques, but also with other implementations of EiM and different materials.

• Iris: results obtained for the Iris problem suggested that SWCNT/LC compos-

ites provided an advantage over other SWCNT-based materials used for in ma-

terio computation (including both classical EiM and RCiM): classification error

levels were more reproducible in SWCNT/LC samples than in the solid SWCNT-

based samples, irrespective of the framework employed to find the solution. How-

ever, it was also observed that for this problem, the accuracy provided by the

SWCNT/LC was not comparable with that obtained with solid SWCNT/PMMA

and SWCNT/PBMA composites trained using the RCiM framework and a (1+4)

evolutionary strategy algorithm mentioned in Chapter 3. It was noted that a more

elaborate analysis of results could be provided if difference between the exper-

iments were limited to different material. Instead, results presented were ob-

tained in experiments where all implementation parameters differed from those

used when training the SWCNT/LC composite.
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• Medical datasets: The mammographic mass and bupa liver disorder problems.

Results for the MMC dataset were higher than those obtained by neural network

implementations [15, 18] and human diagnostic. The interpretation scheme and

objective function used in the implementation was the same used to solve the

less complex synthetic BCPs and it is very simple. For example, the difference

between true and false positives, an important parameter in medical applications,

was not used in the problem formulation.
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Chapter 8

Alternative Evolutionary Substrates
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8.1 General Overview

The field of evolution in materio (EiM) has been developed within the context of un-

conventional computing (UC), and with the aim of testing the ability of algorithms to

configure different types of materials into devices able to perform a computation. Since

EiM was first proposed in [1], three types of material have been investigated experi-

mentally: liquid crystal displays (LCDs), gold nanoparticle dispersions [2] and single-

walled-carbon-nanotube (SWCNT)-based composites. Investigations relating to the lat-

ter are reported in Chapters 4 - 7.

SWCNT-based composites were chosen mainly for their electrical properties, and

the current interest for nanotube-based technology. This interest has been motivated by

carbon nanotube properties such as high electron mobility, variation in band structure

(metallic/semi-conducting) and large anisotropy. Composites of SWCNTs dispersed in

poly vinyl acrylate (PVA), poly(methyl meta acrylate) (PMMA) and poly(butyl meta

acrylate) (PBMA) were proposed and developed within the context of the Nascence

project, a collaborative effort to further the field of EiM [3–5]. The SWCNT/PMMA

and SWCNT/PBMA, showed the most potential for being evolved into a variety of com-

puting devices using EiM [6–15] and reservoir computing in materio (RCiM) [16, 17]

described in Chapter 1. Other candidate materials, and material properties, have also

been suggested [18, 19], and in some cases investigated [20, 21]. However, the main
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Chapter 8. Alternative Evolutionary Substrates

other type of candidate material investigated, gold nanoparticle particle suspension, is

relatively similar to SWCNT-based composite, and except for [2], it was tested in silico

[20, 21], i.e. using models, rather than in materio. On the other hand, materials such

as bacterial consortia, [22], slime moulds [23] and memristors have been successfully

evolved into devices capable of solving computational problems. Investigations related

to these materials did not follow the EiM framework, but the principles were similar,

suggesting the possibility for materials from biological origins, or with biological-like

characteristics to be used in the field of EiM. This motivates the investigations reported

in this chapter, which is concerned with evolving two new materials: microtubules and

memristors. The motivations behind the two specific materials are discussed, along with

the way they have been produced, their electrical characteristics, and their computational

response.

8.2 Electro-Biological EiM Processor: Classifying Data with

Microtubules

8.2.1 Motivations

Microtubules (mTs) are a new type of material considered in EiM research. These tubu-

lar structures are protein lattices present in eukaryiotic cells [24]. MTs, schematically

illustrated in Figure 8.1, are of approximately 25 nm diameter. Their length is dynamic,

but can reach up to a few microns, depending on the specialisation of the cell within

which they are found [25, 26]. MTs are an important element of the cytoskeleton and can

have different functions such as helping with cell division, as tracks for protein transport

or as supporting structures in neuronal cells. Another function, as quantum information

processors involved in memory and consciousness, has been proposed by Penrose and

Hameroff [27–29]. The biological feasibility of this function has been the subject of

controversy, especially in view of recent advances in the understanding of mT forma-

tion and characteristics [30–32]. However, whether or not this model can be proven, the

importance of these structures in information processing within the brain, their electri-

cal properties [33–35], and the fact that they are simpler than the highly evolved slime

moulds or bacterial consortia often used as biological media in UC, makes them an in-

teresting and potentially suitable subject of study within EiM research. It must be noted
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Chapter 8. Alternative Evolutionary Substrates

that very recent work in the field of UC has been concerned with mTs-based systems

and their potential for the development of analogue computing systems [36].

FIGURE 8.1: Schematics of a microtubule structure from [37].

Sample Preparation

The biological samples used in this work were provided by Prof. Horacio Cantiello

[34], formerly of the University of Buenos Aires and now director of the Instituto Mul-

tidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD) in Argentina. They were

extracted from bovine brains and deposited on the 16-terminal electrode arrays in dry

form. Three amounts of mTs were deposited: 4, 8 and 12 microlitres (µL). Tests were

performed on dry and rehydrated samples. Water was used to rehydrate the mT films.

Rehydrated samples have concentrations of 17.23, 34.26 and 51.39 % of mTs, respec-

tively. It can be observed from Figure 8.2(a) that the dry mT deposition covers all

the electrode terminals, but not the overall surface encompassed by the washer. Fig-

ure 8.2(b) shows that the solution obtained when rehydrating the sample can cover the

whole washer circumference.

(a) (b)

Figure 8.2: Microtubules (a) dry and (b) rehydrated films.
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Chapter 8. Alternative Evolutionary Substrates

Electrical characteristics of microtubules

Single mTs subjected to electrical stimulation have been observed to amplify signals,

suggesting that they behave as biomolecular transistors [33]. Similar observations were

reported for mT sheets [34] and mT bundles [35], which, in addition, tend to sponta-

neously generate electrical oscillations. The current / voltage characteristics reported in

these investigations show a linear relationship when voltages between -40 mV to 40 mV

are applied, with an increasing voltage step of 1 mV. However, the mechanism behind

the mTs and mT-based structure’s electrical activity is not yet well understood, and the

range of voltages used in the I/V characterisation [34, 35] is limited, as compared to the

range needed in EiM experiments, as implemented in the work undertaken here. The mT

samples described in the previous section were therefore subjected to a series of voltage

sweeps and their current outputs collected across the micro-electrode array.

The resulting graph, presenting the I/V curve obtained from voltage sweeps between

0 V to 10 V are presented in Figure 8.3. It can be observed that for the higher mT con-

centrations, i.e. 8µL and 12µL, the maximum output current was in the range 10−1µA,

similar to low concentration SWCNT-based composites, and high enough to be recorded

by the EiM hardware. Current outputs of the 4µL are much lower, and was closer to the

values produced by ≤ 0.5 wt % SWCNT/PBMA. All samples presented a linear I/V, with

steep increases in current outputs, especially for the two higher concentrations, which

Figure 8.3: I/V characteristics of bare electrodes, 4µL solution and 4µL, 8µL and 12µL dry

microtubule samples deposited on the micro-electrode arrays.
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Chapter 8. Alternative Evolutionary Substrates

follows the observations reported in [34, 35]. The presence of an anticlockwise hystere-

sis, most important before 2V and suggesting a charge trapping mechanism within the

sample must be noted. It is consistent with the observation reported in [36], despite the

difference in the type of mT used. The I/V of rehydrated samples were not measured,

as the solution tends to evaporate throughout the experimental time. The current output

levels for the two higher mT concentrations satisfy the most necessary requirement of

materials for EiM.

8.2.2 Experimental Implementation

The rehydrated mTs deposited upon the micro-electrode arrays were trained first to solve

the SC problem, as it is the simplest problem for the implementation of EiM developed

here. In the second set of experiments, the material was trained to solve the mam-

mographic mass (MMC) problem, defined in Chapter 7, Section7.3. The aim was to

evaluate this material’s ability to solve a more complex computational problem than the

SC problem. In addition, the dataset defining the MMC problem is available online [38]

rather than custom-build for the purpose of these experiments, allowing comparisons be-

tween the evolved mT processor and other classifiers produced using machine learning.

The SC and MMC problems are therefore used as a proof-of-concept, and a benchmark,

respectively, for the analysis of the EiM-trained electro-biological classifier.

Depending on the dataset, two different functions were used in the interpretation

scheme that transforms the output currents measured across the mTs into an error. When

training the material to solve the SC problem, i.e. with the SC training and verification

datasets, the function h(1) defined in Eq. (4.7) was implemented. On the other hand,

the function h(2) defined in Eq. (4.12) was used for the more complex MMC prob-

lem. This difference in the problem formulation between the two sets of experiments

is motivated by the discussion and results reported in Chapter 4 with the SWCNT/LC

composites. It was observed that h(1) was sufficient to solve the SC problem, but that

solutions producing low errors could not be found for the more complex problems using

this equation. Implementing h(2) yielded better results. These discussions are based on

different material than the one investigated here.

The mTs were trained using the differential evolution algorithm (DE). The algo-

rithm’s and search parameters are reproduced in Table 8.1 for the sake of clarity. The
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Chapter 8. Alternative Evolutionary Substrates

parameters do not differ from those used in the SWCNT/LC experiments undertaken

earlier with the SC and MMC problem.

TABLE 8.1: Experimental Parameters for the MMC problem.

Parameter Value

D
E

cross-over operator (CR) 0.7026

differential weight (F) 0.814

S
ea

rc
h

iteration size (Λ) 150-300

population size (N) 10

[Vmin, Vmax] (Volts) [0, 4]

[Rmin, Rmax] [0.05, 15]

[pmin, pmax] [1, 182]

scheme (SC) h(1)

scheme (MMC) h(2)

8.2.3 Comparison with SWCNT/LC and In Silico Classifiers

The optimum training and verification errors obtained with the microtubules, and aver-

aged over experiments, are reported in Table 8.2. The best verification error obtained

across these experiments is also reported, along with a measure of the spread of repro-

ducibility illustrated by the standard deviation in verification error. The results obtained

with microtubules are compared to those obtained with the SWCNT/LC composites.

Results obtained with the SC dataset suggest that the material has the capacity to be

evolved to a better extent than control samples such as LCs and empty electrodes (for

which the best and average verification errors are always around 50%). The best train-

ing and the best verification errors, averaged across experiments with mTs are 23.9%

and 26.278%, respectively. This suggests a potential for the solutions evolved in mTs

to generalise well to unseen data, since the difference between best training and best

TABLE 8.2: Comparing evolved classifier performance between SWCNT/LC and microtubules

Problem Material Φt,∗
e (%) Φv,∗

e (%) Φ
v

e σΦv
e
(%)

SC
SWCNT/LC 0.255 0.013 1.534 1.522

mT 23.900 26.278 44.178 10.142

MMC
SWCNT/LC 20.51 18.859 31.067 11.785

mT 38.033 47.543 47.881 0.362

188

iteration 168 error

0 1 2 3 4 5 6 7 8 9 10

Computation input V
in

1 (Volts)

0

1

2

3

4

5

6

7

8

9

10

C
o
m

p
u
ta

ti
o
n
 i
n
p
u
t 
V

in
2
 (

V
o
lt
s
)

 0

 0.2

 0.4

 0.6

 0.8

 1



Chapter 8. Alternative Evolutionary Substrates

verification errors was below 3% However, the quality of the solution varied across ex-

periments, as illustrated by the 10.142% standard deviation, and as a result, the average

error obtained with the SC verification dataset was 44.178%.

From the second set of results reported in Table 8.2, it can be observed that it was

not possible to evolve the microtubules to solve the MMC dataset. Both training and

verification errors obtained with this material (Φt,∗
e = 38.033% and Φ

v

e = 47.881%)

were significantly higher than those obtained in SWCNT/LC (Φt,∗
e = 20.51%, Φ

v

e =

31.067%).

A number of tests were undertaken in an attempt to improve the performance of

the material, including changes in maximum configuration voltage, function used in the

interpretation scheme or microtubule concentration, with no difference in results.

It is noted that the water used to rehydrate the samples before training tended to

evaporate before the final iteration was achieved. As a result, the samples’ electrical

properties changed from low current outputs at the start of training, to negligible to-

wards the end. A method was devised to prevent water evaporation during training. A

transparent cap was fixed above the material and sealed using the same two part epoxy

used to fix the washers on the micro-electrode array, as described in Chapter 2. Using

this method, it was possible to keep the mTs rehydrated, whilst also allowing the capture

of photographs monitoring the changes in material morphology, if any, induced by the

training process. However, instead of helping in the finding of solutions to the classifica-

tion problems, the addition of the cap over the material resulted in the deterioration of the

material layer during the algorithm’s search. The water tended to boil under the applica-

tion of the configuration and computation voltages, a layer of bubbles formed along the

electrodes covered by the material. Once experiments ended and the cap was removed,

allowing the water to evaporate, it was observed that the layer of mTs situated above the

electrodes, i.e. where the bubbles had appeared, was peeling off the microscope slide.

The deterioration of the material due to training is illustrated in Figure 8.4.

It is possible that another liquid, such as liquid crystals, could be used instead of

water to disperse the mTs. This combination was tested experimentally against the SC

dataset. Figure 8.4 (c) presents the resulting sample. No evaporation of the LCs was

observed, and the mT layer remained un-damaged throughout training. However, the
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Chapter 8. Alternative Evolutionary Substrates

(a) (b)

(c) (d)

FIGURE 8.4: Microtubules (mT) with H2O, encapsulated to prevent evaporation (a) during

training and (b) after training and mT with LCs (c) before and (d) after training

DE algorithm did not converge towards a good solution and neither training nor verifi-

cation errors were close to the SC problem’s optimum. It must be noted that the mixture

was prepared without taking into consideration the chemical interactions between LCs

and mTs, which might explain the results. Following the discussion reported in [39], a

different preparation would be required to ensure a homogeneous dispersion of the mTs

within the LC host. The low current levels might remain a factor limiting the use of the

mTs in EiM investigations, but this might be remedy to by using samples with higher mT

concentrations. The results obtained with layers of mTs extracted from bovine neurons,

suggest that the EiM implementation used in experiments, combined with the sample

preparation described in this section, resulted in the destruction in the material layer

during training which affected the mT samples’ ability to solve computational problems.

8.3 Evolving XOR Gates in Memristive Devices

8.3.1 Motivations

The memristor was first postulated in [40] and was suggested to be the fourth fundamen-

tal circuit element, linking electric charge and flux linkage in electrical circuits. Figure
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Chapter 8. Alternative Evolutionary Substrates

8.5 illustrates the four fundamental elements (resistor, capacitor, inductor, memristor),

the four fundamental variables (current, voltage, charge, flux) and their relationship. The

theoretical formulation and circuit implementation proposed in [40] showed that mem-

ristors behave as non-linear resistors with a memory, i.e. hysteresis in the device’s I/V

relationship. In 2008, such electrical characteristics were measured across a titanium

dioxide TiO2 device [41]. This is generally considered as the first instance of physical

realisation of a memristor [42]. The curve was non-linear in its OFF state (increasing

voltage) and a sinh-like curve in its ON state (decreasing voltage) [43].

Recent years have seen a large amount of research conducted with the aim of ex-

ploring the properties of memristors and their potential in electronics. The combination

of TiO2 and aluminium electrodes is very common, but other materials have also been

used to produce devices with memristive properties. It must be noted, however, that

the term ‘memristor’, a contraction of memory and resistor, has become relatively loose

and often refers to any device with a non-linear conductance and switching behaviour,

irrespective of its mode of operation [42, 44].

One area of investigation within memristor research is neuromorphic circuit design

[45]. This is due to the resemblance between the spiking behaviour of the device and

that of a synapse. The latter is an element of the neuronal cells present in the brain which

allows the transmission of signals between these cells. Devices presenting memristive

properties have also been used to produce Boolean logic circuits such as logic gates and

half adders [46]. Memristors have not yet been investigated within the EiM framework.

However, models of different types of memristors, based on empirical measurements,

Figure 8.5: Relationship between the four fundamental circuit elements: resistor (R), capacitor

(C), inductor (I), memristor (M) and the four fundamental circuit variables: current (i), voltage

(v), charge (q) and flux (ϕ).
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Chapter 8. Alternative Evolutionary Substrates

have been successfully evolved into robot controllers using EAs [47]. These results,

combined with the electrical characteristics of memristors and their potential as an un-

conventional computing electronic component, make them a material of interest for EiM

research.

Sample preparation

Memristors produced at Durham University consisted in a structure of polyfluorene and

aluminium (Al/PFO/Al). The PFO was purchased from Merck, Sigma-Aldrich. It is a

non-conducting polymer through which wires of Al can form under an applied electric

field. The devices were fabricated on microscope slide. Around 100 nm Al was first

evaporated onto the slide, through a mask, to form the bottom electrodes. A layer of

PFO, 4.5 mg/ml in chloroform, sonicated for 60min, was subsequently spin coated over

the slide surface at 1250 rpm for 60 s. Finally a 100 nm thick set of Al electrodes was

evaporated above the polymer layer [48]. The top and side views of the devices are

illustrated in Figure 8.6, along with the chemical structure of PFO. The bottom and top

electrodes were used as negative and positive terminals respectively.

FIGURE 8.6: Top and side illustration of the memristive devices produced at Durham University

using a polymer (PFO) sandwiched between to sets of aluminium electrodes of opposite polarity.
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Chapter 8. Alternative Evolutionary Substrates

Electrical characteristics of Al/PFO/Al memristors

The electrical characteristic of the PFO-Al memristors were tested under vacuum condi-

tions using the source meter. It was noticed that devices left out of the vacuum between

tests tended to lose their electrical properties after a short time span. More specifically,

they became linear devices with a very high resistance, dropping outputs measured be-

tween 0 and 10 V in the nA range. Figure 8.7 presents the I/V relationship measured

across four different memristors located on the same microscope slide.

FIGURE 8.7: I/V characteristics of Al/PFO/Al memristor presenting a negative differential re-

sistance.

In this case, each positive aluminium electrode effectively acts as an individual mem-

ristor, which means that each slide contains sixteen memristors. It can be observed from

the graph that when the devices are in their OFF state, i.e. when voltages are increased

up to 11 V, the I/V relationship is non-linear and the memristors’ outputs are in the mA

range. When the voltages are decreased to 0 V in steps of 0.1 V, the memristors are

switched to their ON state and a peak current between [0.02, 0.04] A can be observed

around 4 V.

8.3.2 The Boolean Function Problem

Logic gates such as the AND, OR and XOR gates are the basic components used in

boolean logic. Any Turing computable function can be modelled using only these three

gates [49]. It is therefore common when exploring new computing approaches to test

whether the basic logic gates can be realised. The XOR problem has the advantage of
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Chapter 8. Alternative Evolutionary Substrates

having been solved with different EiM implementations [13, 14, 50, 51]. This suggests

that it is possible to solve this problem using EiM, making it a good test of the poten-

tial of a new material or implementation. The widespread use of this problem in EiM

also provides means for comparison within the field, rather than against methods im-

plemented in silico. In addition, results reported in [52] demonstrate the possibility to

produce an XOR gate using a single TiO2 memristor to which a series of DC voltages

have been applied sequentially. The XOR gate was realised using implication logic, a

structured mathematical framework not unlike Turing Logic. This differs from an EiM

approach where the series of DC voltages would be controlled by an evolutionary algo-

rithm. It is observed in [52] that the time taken to perform the Boolean function, i.e.

for the memristor to act as an XOR gate under the application of two inputs, is large as

compared to in silico electronic components. However, it is argued that this time limita-

tion is balanced by the fact that a single memristor was sufficient to produce the output

of an XOR gate, where multiple transistors would be needed.

In the work presented here the problem of evolving a memristor into a device capa-

ble of acting as an XOR gate is preferred to that of evolving this material into a device

capable of classifying data, the type of problem investigated previously. This choice

was mainly motivated by the fact that the ability of memristors to perform this type of

function is not a trivial problem, that it has already been demonstrated in materio using

a different method [52], and so has the ability of the EiM process to transform materials

into XOR-gates. In addition, the fact that in EiM the inputs are translated into voltages

means that evolving a material to behave as an XOR gate is not a trivial task. This is

especially the case because the lowest and highest energy input combination (1,1) need

to be assigned the same state (low, i.e. 0). However, one characteristic of memristive de-

vices is an I/V behaviour exhibiting a negative differencial resistance effect. This means

that past a given input voltage level, the device will present decreasing current outputs

at increasing voltage inputs. This behaviour is thought to make memristors particularly

well suited to perform an XOR function. Here, the aim is to transform the Al/PFO/Al

memristors into XOR gates using the learning power of evolutionary algorithms, com-

bined with the learning power of the memristor itself. This might pose a problem as

the material’s memory is based on the sequential application of electrical input. In other

words, the algorithm implicitly assumes that the substrate is memoryless - which is not
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Chapter 8. Alternative Evolutionary Substrates

true in this case, and only partially so in the dynamic SWCNT-based composites.Poor

solutions tested by the algorithm may create ‘confusion’ in the memristor. The output

currents measured across the memristors as they are being evolved have therefore been

recorded in order to measure the variations in the materials electrical characteristics.

XOR problem description

In the simple definition of a computation as a top level input/output process, the input

of the XOR gate is a vector of n1 = 2 characteristic features, containing the different

combinations of highs and lows (1s and 0s, respectively). The output is the resulting

high or low state which is assigned to the combination sent as input according to Table

8.3. The array of computation voltages is populated by the two voltages representing

input 1 and input 2, VC = [V C
1 , V C

2 ]. The output of evolved memristor-based XOR-gate

is a measure of the material’s state, Y(M), under the influence of the computation inputs

and the set of configuration voltages selected by the algorithm.

TABLE 8.3: XOR gate truth table for a two input vector

Input 1 (V C
1 ) Input 2 (V C

2 ) Output (Y(M))

0 0 0
0 1 1
1 0 1
1 1 0

The supervised learning approach described in Chapter3, Section 3.2 is followed

to solve the optimisation problem. In this case, the XOR computational problem is

effectively treated as a binary classification problem. A discriminative method is used to

produce a discriminant function f
(

V
C

)

mapping directly V
C to one of the states (i.e.

classes) Ai. Similarly to the classification problem, when the EiM approach is used, the

discriminative function is replaced by a material. The material’s state is modified until

it is able to discriminate between a high or a low when an input is applied following the

combination in Table 8.3, i.e. until it responds to these inputs as an XOR logic gate.

The problem is binary, i.e. it has two dimensions, D = {1, 2} and A consists of two

subspaces A1 and A2, corresponding to the low (0) and high (1) states, with A1 ∪A2 =

A. In this sense, the two states are equivalent to two separable classes in the classification

problem, and A1 ∩ A2 = ∅. The resulting binary classifier is given computation inputs
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V
C ∈ A and assigns them to either state 0 or state 1. In this sense the computation

performed is

C
(

V
C
)

=











1 if V
C ∈ A1

2 if V
C ∈ A2,

(8.1)

where C(VC) is the class, or state, 0 or 1 produced when an instance is sent to the

material under the form of two input voltages, V C
1 , V C

2 .

8.3.3 Experimental Implementation

The memristors experiments were implemented using the supervised learning approach,

where input voltages, corresponding to the attributes of instances from the training or

verification datasets, and a number of configuration voltages controlled by an algorithm

are applied to the device. The number of computation voltages was limited to two, i.e a

two input XOR gate, whilst the number of configuration voltages was limited to 4, due

to the available electrodes.

Before each training, memristors were subjected to a voltage sweep, in order to

monitor any potential degradation in its I/V characteristics across experiments. Before

each new iteration, the material was left with no applied voltages for 40 seconds. The

training dataset contained Kt = 50 instances, each defined by two 0’s, two 1’s, or a

combination of 0 and 1. The exact values for the 0’s and 1’s were 0V and 2V in order

to allow for potential noise corrupting the inputs. The verification dataset contained the

same number of instances: Kv = 50, and was applied five minutes after the end of

training, which means that the memory acquired during training had dissipated towards

the end of the process. The optimal solution was then applied to the material, followed

by the verification instances.

Problem formulation

In this case two thresholds, R1, R2 ∈ R were used to separate the data, and one output

was measured across the device, I1. The resulting interpretation scheme was of the form:
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Chapter 8. Alternative Evolutionary Substrates

SXOR
C (Y) =



























0 if I1 ≥ R1

1 if R1 ≤ I1 < R2

0 if I1 ≥ I2

(8.2)

The a basic outline of the implementation and the scheme employed is presented in

Figure 8.8

FIGURE 8.8: Implementation of the interpretation scheme used to evolve Al/PFO/Al memristors

into XOR gates

Algorithms parameters

Both DE and PSO were used here and their parameters are the same as those previously

used in experiments (see Chapter 4, Section4.5). The search parameters selected for

these investigations are reported in Table 8.4. The minimum and maximum values for

the two thresholds, R1 and R2 are based on the data collected during the electrical char-

acterisation of the devices, where the maximum current obtained, during the spike, is

12mA. Similarly, the maximum configuration voltage is increased to 6 V and the input

electrodes are kept the same throughout training.
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Chapter 8. Alternative Evolutionary Substrates

FIGURE 8.9: Comparison of average and minimum training errors per iteration, along with the

overall best training error for the XOR problem between control sample (empty electrodes),

memristor trained with the DE algorithm and memristor trained with the PSO algorithm

8.3.4 Results

First of all, it was observed that the material’s electrical characteristics degraded quickly

when it was trained in the laboratory at a constant temperature of 20◦C. In this case, no

conclusive results were obtained from the evolution of the devices. The EiM experiments

were therefore repeated with the memristor placed with a vacuum chamber at constant

pressure, such that the device’s electrical characteristics would not be affected from its

exposure to the environment throughout training.

The objective function average and minimum per iteration remained within 10% of

the worst error, i.e the 50% error obtained with an unconfigured material. This can be

observed in Figure 8.9 where the convergence of the objective function, in terms of aver-

age and minimum error per iteration, are reported for DE and PSO-trained memristors,

and compared to the case where an empty electrode array has been trained using PSO

for the same problem.

TABLE 8.4: Search Parameters.

Parameter Value

S
ea

rc
h

iteration size (Λ) 300

population size (N) 5

number of configuration voltages (n2) 4

[Vmin, Vmax] (Volts) [0, 6]

[R1,min, R1,max] [8, 12]

[R2,min, R2,max] [0.05, 4]
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Chapter 8. Alternative Evolutionary Substrates

Results for the later tests can be found in Table 8.5. In addition, the electrical char-

acteristics were found to deteriorate under the repeated application of an electric field.

Contrary to results reported in [14] and [53] with SWCNT/PBMA composites, it was

not possible to evolve a memristor into a state where it could behave as an XOR gate

following the EiM implementation used here. The minimum training error, averaged of

the five experiments, was 35.677% for DE and 28% for PSO, which means that in both

cases, more than 20% of the 50 training instances were assigned the incorrect output

value. Errors obtained during verification are around 50%, which means that 50% of the

instances contained in the verification dataset have been process in a way that does not

follow the way an XOR should function. As observed in Figure 8.9 with the training

error, the verification errors obtained with the memristors are the same as those obtained

with the empty electrode array.

TABLE 8.5: Comparing training and verification performance between memristors XOR gate

and SWCNT/PBMA XOR-gates, both evolved through classical EiM

Algorithm Material Φ∗
e(%) Φ∗

e,v(%) Φe,v σ(%)

DE memristor 35.677 55.000 55.000 0.000

PSO memristor 28.000 55.000 55.000 0.000

GA [53] SWCNT/PBMA 0.000 0.000 0.000 N/A

PSO [14] SWCNT/PBMA 0.000 0.000 0.000 N/A

It must be noted that despite having placed the memristors in the vacuum chamber,

results did not improve. In addition, the memristors tended to lose their characteristic

electrical behaviour, as illustrated in Figure 8.10. The current level has gone down after

training, and the voltage spike around 4V can no longer be observed.

Figure 8.11 compares the current/voltage (I/V) characteristics of a memristor as it

is measured by the evolvable motherboard (EM) and the Keithley 2400 digital source

meter. The latter has been used to characterise the electrical behaviour of all materials

investigated here (see Chapter 2, Section 2.3.1). In both cases, the material is under

vacuum. It can be observed that the EM has a lower sensitivity to the memristor and

the current output measured across the device is noisy compared to the measurements

collected with the Keithley source meter. This is an issue in the sense that the outputs,

transformed by the interpretation scheme, will be affected by the noise, and might there-

fore not always reflect the actual state of the material.
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Chapter 8. Alternative Evolutionary Substrates

FIGURE 8.10: Comparison of memristor current / voltage characteristics before and after train-

ing, measured across the evolvable motherboard.

FIGURE 8.11: Comparison of memristor current / voltage characteristics collected by the evolv-

able motherboard before (top gaph) and after (bottom graph) training.

8.4 Summary of Results and Conclusions

This chapter has presented two new avenues for research within the field of evolution in

materio (EiM), based on two materials, microtubules and memristors, which had never

previously been investigated within this context:

Microtubules were chosen as a result of a short-term collaboration with Prof. Ho-

racio Cantello. They present an alternative to silicon with a biological origin, setting

them apart from the other materials used here. Yet, they are simpler structures than the

micro-organisms generally used in biological computing, and importantly their electri-

cal characteristics fit the criteria required for EiM allowing them to be treated similarly

to the non-biological samples.

Memristors have been studied extensively since memristive behaviour [40] was
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found to be an inherent property of materials at nanoscale [41]. More recently, mod-

els and physical devices have been increasingly used in conjunction with artificial neural

networks (ANNs), due to the similarity of their electrical properties to that of switching

synapses. Memristors fit the requirements of EiM, are relatively new and research has

demonstrated their capacity to perform computational tasks [52] and to be integrated

with current technology [54].

The biological substrate, mTs, were the first subject of investigation in this chapter.

Differential evolution (DE) and particle swarm optimisation (PSO) were used to find

solutions to a simple binary classification problem and to a benchmark medical classifi-

cation problem in this biological substrate. Whilst it was not possible to reach optimal

results using the microtubule thin-film, two behaviours were observed: 1) the material

tended to dry throughout training, resulting in samples with next to no output current

and 2) encapsulating the material to prevent the evaporation destroyed the film. These

two observations need to be taken into consideration by anyone interested in using mi-

crotubules as a material for evolution in materio.

The second material, memristor, was trained using the two algorithms to behave as

an Exclusive OR (XOR) gate, i.e. perform a relatively complex Boolean function. The

material’s properties deteriorated in the clean-room environment. Storing the memristive

devices in a vacuum chamber allowed the memristor’s outputs to remain high enough to

be measurable using the evolvable motherboard, a necessary requirement for the material

to be evolved using the EiM framework. However, the training resulted in devices which

were not capable of behaving as XOR-gate. The important variations induced by the

algorithms during training destroyed the memristive properties after some time. It would

be interesting to investigate the use of memristors within the context of EiM, but rather

in an array where algorithms modify the connections between memristors rather than the

level of the input sent to the memristors themselves.
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9.1 Research Hypothesis - Recap

The research hypothesis motivating the investigations presented here is that, within the

context of evolution in materio (EiM), a dynamic state in single-walled-carbon-nanotube

(SWCNT)-based composites can provide an extra layer of complexity as compared to

their solid SWCNT-based counterpart. This complexity can induce unforeseen advan-

tages to the evolved devices.

9.2 Chapters and Contributions Summary

Chapter 4

The ability of the EiM framework to transform SWCNT/LC samples into data classifiers

was first demonstrated using two different evolutionary algorithms (EA): differential

evolution (DE) and particle swarm optimisation (PSO). Both algorithms were able to

evolve at least one sample into a device able to classify data with 100% accuracy.

It was observed that the EA’s ability to transform the composites successfully into

data classifiers depended on the SWCNT concentration. Further investigations suggested

that optimum training, in terms of speed and result accuracy, were obtained with com-

posites of concentration between 0.05 wt % and 0.1 wt % SWCNT/LC. This optimum

range of SWCNT/LC concentrations is lower than the optimum SWCNT concentration

reported for solid SWCNT/polymer composites.
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Chapter 9. Conclusions

The changes in the bulk material morphology observed during the SWCNT/LC sam-

ples’ training suggested that the EAs were not only exploring and exploiting an existing

SWCNT network as they do in solid SWCNT-based composites, but also transforming

this network throughout training, thereby expanding the algorithm’s search space.

Differences in training efficiency, speed, result reproducibility and solution qual-

ity were observed between samples, depending on the algorithm with which they were

evolved. The dependence of training efficiency on the EAs’ search behaviour was there-

fore investigated. The DE algorithm’s search focused mainly on exploitation and re-

sulted in devices classifying data with almost perfect accuracy, but with a lower repro-

ducibility than PSO. The latter evolved devices which were not as accurate, but these

results were highly reproducible. It was suggested that the difference in results accuracy

and reproducibility was the consequence of the difference in the configuration voltage

trajectories applied to the material throughout training.

The DE algorithm produced noisy voltages with sharp changes between iterations,

likely to destroy a SWCNT-structure favouring a good classifying state. On the other

hand, the PSO algorithm produced sinusoidal-like voltage trajectories with minimal

change from iteration to iteration. This behaviour suggested that PSO’s search was less

likely to destroy potentially good solutions. Another hypothesis was that the difference

in results between the two algorithms was based on the level of the electric field applied

throughout training, which was algorithm-dependent. In either case, PSO’s exploration-

focused search seldom resulted in optimal solutions in terms of classifier accuracy. It

was therefore decided to modify implementation constraints to reduce the amplitude of

change in the DE-controlled configuration voltages and increase the number of individ-

uals in the DE population and use mainly this algorithm in subsequent experiments.

The choice of parameters used in the formulation of the EiM training problem also

affected the experimental results. However, it was not possible to link changes in param-

eters with changes in material behaviour during training.

Chapter 5

Interestingly, it was observed that using the DE algorithm, the SWCNT/LC samples’

evolved state allowed data to be classified without the need for an applied electric field,
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Chapter 9. Conclusions

other than that provided by the data itself. In other words, the training had evolved a clas-

sifying SWCNT/LC device rather than optimised a set of voltages making a SWCNT/LC

sample behave as a classifier. In addition, whilst solution stability was an issue in liq-

uid crystal display (LCD) experiments, as discussed in [1], the classifying state of the

SWCNT/LC evolved samples was stable for a number of hours with little deterioration

in the classification error.

Results obtained with the SWCNT/LC composite suggested that the stability of the

state resulted from the SWCNT structures produced by the algorithm’s search process. It

was observed that this stability tended to depend on the complexity of the classification

problem which the samples were evolved to solve. More training, i.e. more changes

in the SWCNT structures via the repeated application of EA-controlled voltages, was

required to bring the composites into a state able to solve the more complex problems.

In return, the classifying state was more stable in those composites, as compared to

those evolved to solve the less complex problems. Similarly, the ability to classify data

without configuration voltages was only possible in devices trained to solve the more

complex problems. The structures are reminiscent of the iron thread grown by Gordon

Pask in ferrous sulfate (FeSO4) to perform tone discrimination [2], albeit in the case

of the SWCNT/LC composite, the structures are the results of nanotube bundling and

rearrangement, rather than the growth of intertwined metallic wires.

It was noted that the classification error obtained by evolving SWCNT/LC samples

using evolution in materio (EiM) deteriorated with time, as the material relaxed to its

original state, and despite the stability suggested by the presence of the evolved SWCNT-

structures. In addition to time, shaking the sample, dropping it, etc, resulted in partial or

complete loss of the solution, i.e. a return of the classification error to that obtained in

the samples pre-training.

Chapter 6

The conclusions of the SWCNT/LC experiments lead to a series of investigations into

new SWCNT composites capable of being evolved whilst liquid, and subsequently so-

lidified in order to encapsulate the evolved SWCNT structure. Results obtained with

SWCNT/epoxy devices, a material used for the first time in EiM investigations were

promising. It was observed that one of the liquid composites presented the same rate
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Chapter 9. Conclusions

of change in morphology as SWCNT/LC composites evolved for the same classification

problem. In the case of that composite, it was also possible to minimise the classification

error during training, and produce devices capable of classifying unseen data with rela-

tively high accuracy. The solidification, or curing, process resulted in low deterioration

of the classifiers’ accuracy, suggesting that the method is viable. If it was compared to

the SWCNT/polymer devices, these hybrid composites would be able to compute data,

once evolved and solidified, without the need for an optimum set of configuration volt-

ages. The end device would therefore be more energy efficient. However, the training

and verification errors obtained with the SWCNT/epoxy samples were not as good as

those obtained with SWCNT/LC samples. In addition, at this stage, the reproducibility

of results was low.

Chapter 7

Following the results presented and discussed in Chapters 4-6, the next logical step in

the investigations was to verify whether liquid SWCNT-based samples were capable

of being evolved to solve real-life problems. Datasets defining three different real-life

problems were retrieved from the UCI repository: Iris and mammographic mass. Since

the results obtained with SWCNT/epoxy composites were not yet as accurate as those

obtained with SWCNT/LC samples, it was decided to use the latter in the real-life dataset

investigations.

It was observed that DE-trained SWCNT/LC classifiers were able to classify data

from the Iris dataset an accuracy comparable with that obtained with the SWCNT/PBMA

classifiers produced with following the classical EiM process, but implemented in the

Mecobo board and using a different algorithm and problem formulation.

It was not possible to obtain a better accuracy that the reservoir computing in materio

(RCiM) implementation or algorithms run on conventional computers (in silico). Results

obtained for the mammographic dataset were compared with in silico training of differ-

ent types of neural networks (NN) using the DE algorithm, as well as the diagnostics

formulated by human radiologists.

The evolved SWCNT/LC classifiers were able to classify mammographic masses

with an error % slightly larger than non-fellowship trained radiologists. However, the

classification accuracy was worst that for fellowship-trained radiologists and other NN
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Chapter 9. Conclusions

implementations. Overall, it was possible to produce devices capable of classifying

complex real-life data with a relative accuracy, but the combination of EiM/EA/material

was not comparable with state-of-the art algorithms.

Chapter 8

Two other new materials for EiM were investigated. The first was based on microtubules

extracted from bovine neurons were used to solve first the simplest artificial data classi-

fication problem, then one of the complex real-life problems. The idea of investigating

this new type of material, of biological origin was proposed by Prof. Horacio Cantiello.

The choice of material was justified by the fact that they present a similar aspect ratio to

SWCNTs, viable electrical conductivity and have been found to play an essential part in

information transmission within the cells.

Results obtained with this material were very poor, irrespective of the complexity

of the classification problem, the EA used or the microtubule concentration. Multiple

attempts at improving the general training efficiency were unsuccessful. EiM training of

the rehydrated microtubule films drop-cast on a micro-electrode array tended to destroy

the material irreversibly.

The other material explored was the memristor, which has recently seen a rise in

popularity amongst computer scientists and engineers. In this case, the DE algorithm

was used to evolve an XOR gate out of a memristor using the same implementation used

for the SWCNT-based composite and the microtubule. However, this implementation

was not well suited to the memristor. It was not possible to evolve it into XOR gate, and

in addition, a device lost its memristive properties after one experiment.

9.3 Further Work

9.3.1 EA Library and their Associated Impact on Dynamic Composites

It was observed in Chapter 3 that the EA search behaviour had an important impact

on the reproducibility and solution quality of evolved SWCNT/LC classifiers. Results

suggested that this impact was caused by the way the EA search affected the SWCNT/LC

composite’s morphology throughout training. Two EAs were compared in this work. It is

possible that algorithms with different search strategies would produce devices with new
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Chapter 9. Conclusions

and interesting characteristics, or optimise existing ones. In order to test this hypothesis,

the impact of different algorithms on the liquid composites’ morphology, but also on

the evolved devices’ physical memory, result stability and capacity to learn from past

training should be tested.

9.3.2 High Resolution Microscopy for Analysis

The microscopy set-up used in this work enabled the analysis of changes induced in the

materials’ morphology due to training. Images recorded on the material’s surface with

resolution were sufficient to link the rate of change in material morphology to the evo-

lution the material’s ability to process information. The question of whether an optimal

solution have a specific structure remains open. In other words, is it possible to identify a

path, either found, or evolved during training, which corresponds to the optimal solution

to the computational problem at hand?

Using a thermal camera to record areas of heat within the material is a possible

option. However a high resolution in necessary, as preliminary recordings have shown

that it is difficult to distinguish a specific area of heat out of the overall change in the

material’s temperature. Other options are SEM of AFM imaging. However, these types

of imaging require for the material to be in a solid state. It would not therefore be

possible to compare the evolved SWCNT network with the pre-trained network. The

area covered by the composite is also very large and it would only be possible to capture

a fraction of the overall SWCNT structure.

A possible contender would be the high resolution ambient 3D microscopes with

index-matched lenses used in biology. This would require minimal changes in the hard-

ware set-up such as thinner microscope slides and composite films, but they would allow

a high resolution 3D visualisation of the SWCNT network prior and post training. If a

specific SWCNT-structure favouring optimal solutions was to be found using this mi-

croscopy technique, the morphology of the material could be recorded at each iteration

(as is the case now) and fed back into the computer and used in the objective function to

optimise training.
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Chapter 9. Conclusions

9.3.3 Analysis of SWCNT / Epoxy Composites Classifiers

The ability of evolved liquid SWCNT/epoxy classifiers to be solidified (cured) with neg-

ligible loss in classification accuracy was demonstrated in Chapter 6. Whilst this sug-

gests that it will be possible for devices to benefit from the advantages of both the liquid

and solid SWCNT-based composites, it also leads to further work. First of all, it would

be interesting to verify whether the material in its liquid state presents all the charac-

teristics of the SWCNT/LC composites: physical memory, retraining etc. In a second

time, it would be interesting to test whether a schedule of training similar to that de-

veloped for algorithms run in conventional computers, could make possible the solving

of very complex problems. Knowing the maximum number of solutions which the ma-

terial can ‘memorise’could also be the subject of investigations. Finally, different EiM

frameworks could be tested against this material to determine if the accuracy issue is

material-dependent or implementation-dependent.

9.3.4 Training Dynamic SWCNT-Based Composites with the RCiM Frame-

work

Research presented in Chapter 5 suggested that training SWCNT/LC samples into sim-

ple binary data classifiers was a reproducible process. However, when tested against

more complex problems such as the Iris and mammographic mass datasets, the solution

quality deteriorated, with less reproducible results and classification accuracies lower

than those obtain with state-of-the art machine learning implementations. Similarly,

an issue with classification accuracy was observed in the evolved SWCNT/epoxy sam-

ples. In both cases, it would be interesting to investigate whether these materials could

be trained using the RCiM framework. More importantly, the question is whether the

use of this framework would improve classification accuracy, whilst producing devices

with the characteristics observed in devices evolved with the classical EiM framework.

A combination of high accuracy, low energy (no need for configuration voltages) and

adaptive learning properties would make the evolved devices competitive with current

technology. However, it is not certain that the structure-building process induced by

RCiM training would result in those advantageous properties.
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9.3.5 Replacing SWCNTs with Nanowires in Epoxy Matrix

The main motivations behind the use of SWCNTs in the composites investigated were

this material’s interest in the field of electronics, combined with the recordable non-

linear current / voltage behaviour it presented when dispersed in different polymers,

LCs and epoxies. The impact on the computational capabilities of the SWCNT-baed

composites of having both metallic and semi-conducting SWCNTs present in samples

has not been investigated in EiM experiments. The semi-conducting nanotubes increase

the resistivity of the composite, but it is unsure whether that has an impact on the so-

lutions. Gold nanoparticle networks have been investigated in [3], demonstrating the

capacity of composites with metallic only inclusions to be evolved via EiM. However,

future work focusing on replacing the SWCNTs with other nanostructures such as Zinc

Oxide or Gallium Arsenide nanowires would provide means of comparison between

composites that include just metallic just semi-conducting or both metallic and semi-

conductive wire-like structures. This has the potential of giving an indication regarding

the contribution of the semi-conducting behaviour in the computational capabilities of

composites for EiM. There is also the possibility that for the nanowire-based devices to

be evolved to present more than one functionality.

9.3.6 Exploring New Applications and Computational Problems

Classification and boolean logic problems have now been explored extensively within

the field of EiM, irrespective of the framework, implementation or material used. Other

problems have been suggested as more attractive for EiM investigations, such as natural

language processing. However, other applications exist on the periphery of the typi-

cal computing problems used for machine learning in silico. The use of EiM to evolve

devices able to identify volatile organic compounds could be envisaged. EiM training

could also be used to produce devices capable of encrypting data. Preliminary investi-

gations have demonstrated the potential for SWCNT-based devices to perform this latter

task and the author believes it represents an extremely interesting avenue for research.
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Appendix A

Standard Substrate Cleaning Process

Standard microscope slides were cleaned in batches of 12 using the following standard

washing procedure:

• Rinse with water (H20)

• 15 min in ultrasonic bath with water

• second rinse

• dry with nitrogen

The above steps repeated with:

• propan2ol

• acetone

• Decon 90

• DI water
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Appendix B

Evolutionary Algorithm Performance on

Benchmark Optimisation Function

The notation used for the algorithms’ parameters, problem parameters and results in the

tables B.1 and B.2 below are those presented in Chapter 3, Tables 3.1 and 3.2. Good

values of algorithm and problem parameters, found using meta-optimisation, have been

reported in [1, 2]. Some of these values are used here to evaluate the quality of the

differential evolution (DE) algorithm and global particle swarm optimisation (PSO) de-

veloped for the purpose of the EiM. Implementations with lower number of iterations,

dimensions and individuals were chosen since they better reflect the implementation

that is used in the EiM experiments. The two algorithms were run on a 3.1GHz, 4 cores,

4GiB RAM desktop, this is different from the one used in [1, 2], but should not affect

the experiments in other ways than time taken to compute, which is not compared here.

Results obtained when solving of the Rosenbrock, Rastrigin and Ackley function are

reported here. These three test functions are benchmarks for testing optimisation algo-

rithms. They present a number of local minima, which makes them relatively difficult to

solve, but each have one known global optimum. The Rosenbrock test function is given

as

fRb(x) =

D−1
∑

d=1

(100 · (xd+1 − x2d)
2 + (xd − 1)2), (B.1)

with d ∈ D the dimension index and the solution vector generally implemented as x ∈
[−100.0, 100.0]. This function has a minimum at fRb(x

∗) = 0 for the optimum solution

x
∗ = 1. The number of dimensions to this problem is not set, with x = [x1, ...xD]

T and

−∞ ≤ D ≤ ∞, instead, it can be considered a problem parameter. The Rastrigin test

function is given as

fRt(x) =

D
∑

d=1

(x2d + 10− 10 · cos(2πxd)). (B.2)

It has a minimum at fRt(x
∗) = 0 when the optimum solution x

∗ = 0 is found. The

number of dimensions to this problem is not set, with x = [x1, ...xD]
T and −∞ ≤ D ≤

∞. This equation is generally implemented with x ∈ [−5.12, 5.12], which is also the

case here. The Ackley test function is

fAk(x) = 20 + e− 20 · exp(−0.2

√

√

√

√

1

D

D
∑

d=1

x2d)− exp(
1

D

D
∑

d=1

cos(2πxd)), (B.3)

with x ∈ [−30.0, 30.0]. It has a minimum at f(x∗) = 0 for the optimum solution

x
∗ = 0, with x = [x1, ...xD]

T for any value of D. Similar to the case of the Rosenbrock

functino, D can be considered a problem parameter when solving the Rastrigin and

Ackley functions.
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Appendix B. Evolutionary Algorithm Performance on Benchmark Optimisation

Function

B.1 Differential Evolution

Table B.1 presents the DE and problem parameters reported as optimal for the Rosen-

brock, Rastrigin and Ackley functinos in [1]. The third part of the table reports the best

fitness value, best∗ and the iteration at which this best was obtained, λ∗, both averaged

over fifty experiments. The last column reports the variance in best fitness, σ(best),
across the experiments, for each implementation and problem. Results reported in bold

are optimal, i.e. the algorithm has converged towards the problem’s global optimum in

every experiment.

TABLE B.1: DE performance on three benchmark optimisation test functions, using the param-

eters and variables reported in [1].

DE parameters Problem parameters Results

N CR F D Λ λ∗ best σ(best)

R
o

se
n

b
ro

ck

13 0.7450 0.9096 2 400 173.96 0.0000 0.0000

10 0.4862 1.1922 2 400 219.24 8.6877 25.1843

17 0.7122 0.6301 5 1000 886.06 1.1694 2.2591

28 0.9426 0.6607 10 2000 1095.22 0.3189 1.0815

12 0.2368 0.6702 10 2000 1975.98 6.2875 7.3890

R
as

tr
ig

in

13 0.7450 0.9096 2 400 28.40 0.0199 0.1329

10 0.4862 1.1922 2 400 41.34 0.0796 0.2699

17 0.7122 0.6301 5 1000 205.84.04 0.3184 0.5781

28 0.9426 0.6607 10 2000 930.90 4.9814 2.7109

12 0.2368 0.6702 10 2000 425.90 0.8756 0.8117

A
ck

le
y

13 0.7450 0.9096 2 400 95.48 0.0000 0.0000

10 0.4862 1.1922 2 400 119.02 0.3475 2.4284

17 0.7122 0.6301 5 1000 189.40 0.0000 0.0000

28 0.9426 0.6607 10 2000 500.90 0.0000 0.0000

12 0.2368 0.6702 10 2000 407.10 0.0000 0.0000

The DE algorithm found the optimum solution to the Ackley test problem in all but

one implementation. On the other hand, it was not able to always consistently find the

optimum solution to the Rastrigin and Rosenbrock problems, irrespective of the imple-

mentations tested here. This consistent with the discussion reported in [1].

Across all problems, however, a global optimum was found in at least one experiment

per implementation. This is better reflected in the convergence of the fitness function,

illustrated in Figure B.1 for each problem and implementation. The fitness function

values are averaged per iteration and over the fifty experiments, such each graph presents

the convergence obtained across implementations for a given test function. Since the

values of the fitness function start very high in the case of the Rosenbrock function, a

log scale is used in Figures (a)-(d) for the sake of clarity. In the case of the other two

functions, the y-axis follows a linear scale.
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FIGURE B.1: Convergence of the fitness function produced by a differential evolution algorithm

over five different implementations averaged over fifty experiments for the (a) Rosenbrock, (c)

Rastrigin and (e) Ackley benchmark test functions. Minimum fitness achieved by the PSO algo-

rithm over five different implementations, per experiment, per iteration, for the (b) Rosenbrock,

(c) Rastrigin and (b) Ackley benchmark test functions.

B.2 Particle Swarm Optimisation

Table B.1 presents the PSO and problem parameters reported as optimal for the Rosen-

brock, Rastrigin and Ackley functions in [2]. The third part of the table reports the best

fitness value, best∗ and the iteration at which this best was obtained, λ∗, both averaged

over fifty experiments. The last column reports the variance in best fitness, σ(best),
across the experiments, for each implementation and problem. Results reported in bold

are optimal, i.e. the algorithm has converged towards the problem’s global optimum in

every experiment.

Across the three test functions, the global PSO used here was able to find the op-

timum solutions in every experiment for more than one implementation. The number

of particles (individuals) did not appear to affect the quality of the solutions at low
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TABLE B.2: Global PSO performance on three benchmark optimisation test functions, using the

parameters and variables reported in [2].

PSO parameters Problem parameters Results

N ω c1 c2 D Λ λ∗ best σ(best)

R
o

se
n

b
ro

ck

25 0.3925 2.5586 1.3358 2 400 176.42 0.0000 0.0000

29 −0.4349 −0.6504 2.2073 2 400 101.44 0.0000 0.0000

47 −0.3593 −0.7238 2.0289 5 1000 986.04 3.37057 11.5747

63 −0.1832 0.5287 3.1913 5 1000 865.3 0.51585 1.2828

63 0.6571 1.6319 0.6239 10 2000 361.20 9.2954 16.4792

204 −0.2134 −0.3344 2.3259 10 2000 1245.84 2.3825 2.3215

R
as

tr
ig

in

25 0.3925 2.5586 1.3358 2 400 16.20 0.0000 0.0000

29 0.3925 2.5586 1.3358 2 400 15.66 0.0000 0.0000

47 0.3925 2.5586 1.3358 5 1000 204.68 0.0000 0.0000

63 0.3925 2.5586 1.3358 5 1000 402.70 0.0000 0.0000

63 0.6571 1.6319 0.6239 10 2000 727.50 0.4182 0.7981

204 −0.2134 −0.3344 2.3259 10 2000 110.06 0.3383 1.6602

A
ck

le
y

25 0.3925 2.5586 1.3358 2 400 49.80 0.0000 0.0000

29 0.3925 2.5586 1.3358 2 400 61.44 0.0000 0.0000

47 0.3925 2.5586 1.3358 5 1000 464.6799 0.0000 0.0000

63 0.3925 2.5586 1.3358 5 1000 65.560 0.1585 0.5459

63 0.6571 1.6319 0.6239 10 2000 154.56 0.0000 0.0001

204 −0.2134 −0.3344 2.3259 10 2000 57.92 0.2953 0.8106

dimensions (D=2), and it was always possible to find the problem’s global optimum.

However, when the number of dimensions increased (D≥5), i.e. with increasing prob-

lem complexity, PSO did not always converge towards the problems’ optimum, and the

convergence was dependent on the number of particles used. For higher dimensional

implementations, a larger number of particles improved the algorithm’s performance.

This is consistent with the discussion reported in [2].

The convergence of the fitness function optimised by PSO, across each problem and

implementation, is illustrated in Figure B.2 Similarly to DE, the fitness function values

are averaged per iteration and over the fifty experiments, such each graph presents the

convergence obtained across implementations for a given test function. Since the values

of the fitness function start very high in the case of the Rosenbrock function, a log scale

is used in Figures (a)-(d) for the sake of clarity. In the case of the other two functions,

the y-axis follows a linear scale. As discussed in [2], and more generally in PSO-related

literature [3, 4], the algorithm tends to converge quickly to an optimum, which can be

either local or global. Once the algorithm has converged, it is difficult for it to escape

this optimum, which, if it is local, means that the global optimum of the problem at hand

will never be reached.
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FIGURE B.2: Convergence of the fitness function produced by a global particle swarm optimi-

sation algorithm over five different implementations averaged over fifty experiments for the (a)

Rosenbrock, (c) Rastrigin and (e) Ackley benchmark test functions. Minimum fitness achieved

by the PSO algorithm over five different implementations, per experiment, per iteration, for the

(b) Rosenbrock, (c) Rastrigin and (b) Ackley benchmark test functions.
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