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perational stability of
unencapsulated perovskite solar cells through Cu–
Ag bilayer electrode incorporation†

Chieh-Ting Lin, ac Jonathan Ngiam,ac Bob Xu,ac Yu-Han Chang,bc Tian Du, ac

Thomas J. Macdonald, bc James R. Durrant bcd and Martyn A. McLachlan *ac

We identify a facile strategy that significantly reduces electrode corrosion and device degradation in

unencapsulated perovskite solar cells (PSCs) operating in ambient air. By employing Cu–Ag bilayer top

electrode PSCs, we show enhanced operational lifetime compared with devices prepared from single

metal (Al, Ag and Cu) analogues. Time-of-flight secondary ion mass spectrometry depth profiles indicate

that the insertion of the thin layer of Cu (10 nm) below the Ag (100 nm) electrode significantly reduces

diffusion of species originating in the perovskite active layer into the electron transport layer and

electrode. X-ray diffraction (XRD) analysis reveals the mutually beneficial relationship between the bilayer

metals, whereby the thermally evaporated Ag inhibits Cu oxidation and the Cu prevents interfacial

reactions between the perovskite and Ag. The results here not only demonstrate a simple approach to

prevent the electrode and device degradation that enhance lifetime and stability but also provide insight

into ageing related ion migration and structural reorganisation.
Introduction

Organic–inorganic hybrid perovskites have demonstrated their
potential in photovoltaic applications with power conversion
efficiencies (PCE) steadily increasing, such that champion cells
with a certied PCE of over 25% have been demonstrated.1–3

Improvements in device PCE have been driven not only by
modications to the composition4–6 and processing7,8 of the
perovskite active layer but also by a number of complementary
strategies, including surface defect passivation,9–12 modication
of the transport layers13,14 and energy level alignment of inter-
layers.14 However, the instability of perovskite solar cells (PSCs)
remains one of the key barriers to further development,
commercialization and ultimately wide-scale deployment.2,9,15–17

Several studies focusing on the stability of PSCs have high-
lighted instability under environmental stress, with factors
including contact with atmospheric moisture and oxygen,
elevated temperature and even exposure to light being
commonly accepted to be responsible for promoting
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degradation by a number of complex pathways.17–20 One solu-
tion is to create a physical barrier, typically a polymeric encap-
sulant, that can isolate the perovskite from such ubiquitous
environmental factors,21 however such strategies serve to
suppress, not prevent, these effects.22 Therefore, enhancing the
resistance of perovskite devices to environmental factors
without encapsulation is critical to further enhancing device
stability and operational lifetime. Several approaches have been
demonstrated to-date, including; introducing hydrophobic
charge transporting layers, developing alternative device
congurations i.e. employing fully inorganic triple stack device
with carbon electrode, or by tuning the intrinsic resistance of
the perovskite layer against environmental stresses by compo-
sitional engineering or defect passivation techniques.2,23–26

Whilst most studies reported thus far concentrate on improving
the intrinsic stability of the perovskite active layer other layers
in these multilayer devices also contribute to the observed
instability. Here we focus on the interface between the perov-
skite and the counter electrode and highlight instabilities that
limit device lifetime under operational conditions in ambient
air and, importantly, present a simple strategy to overcome such
limitations.

Generally, thermally evaporated metals are the preferred
counter electrode materials in most emerging photovoltaic
systems, including organic photovoltaics (OPVs), dye sensitized
solar cells (DSSCs) and PSCs. In addition to their conformal
nature such metallic layers can achieve high conductivity,
support spatial patterning to dene device area and, to an
extent also serve as an impermeable barrier to oxygen and
This journal is © The Royal Society of Chemistry 2020
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moisture. However, in ambient conditions many commonly
used metal electrodes i.e. Al, Ag, Cu, and Au can degrade during
device operation. The degradation products of perovskite active
layers are found to be corrosive to Al which also inherently is
susceptible to oxidation.27 Ag is known to react with halides
from the perovskite layers that diffuse to form species such as
AgI at the electrode interface.21,28 Whilst for Cu, which has been
demonstrated as an electrode material with improved stability
with no such metal–halide e.g. CuI detected aer extended
thermal stress of devices,21,29 for unencapsulated devices
surface oxidation of Cu leads to an increase in device series
resistance due to the poor conductivity of the oxide species
formed.29 Thus Au has been considered a logical choice of
electrode as it inherently provides a resistance to environmental
oxidation and appears also to be resistant to metal–halide
formation, however diffusion of Au into the perovskite active
layer can induce deep traps, leading to a degradation in
performance.21,30,31

Owing to the intrinsic sensitivity to oxygen Al and Cu can be
considered as non-ideal electrode materials in non-
encapsulated devices, the degradation that is induced when
Au is used in combination with the high cost of this noble metal
render it unsuitable also. In balance, Ag provides the necessary
stability however the formation of AgI is a signicant concern.
Strategies to overcome metal–halide formation, including the
use of atomic layer deposited (ALD) metal oxides or graphene
interlayers, involve insertion of an impermeable barrier prevent
halide diffusion between the perovskite active layer and the
electrode.32–34 Inserting amine-mediated metal oxides between
the perovskite and electrode has also been shown to capture
diffused iodide ions, prolonging device storage lifetime in inert
atmosphere.35 More recently, Wolff et al. demonstrated a solu-
tion-processed peruorinated self-assembled monolayer that
improves the stability of both the perovskite absorber layer and
the full PSC under increased temperature and humidity.36 These
recent solution-based alternatives highlight that PSCs can be
stabilized without costly ALD processes.

Here we investigate p–i–n PSCs that employ organic charge
transport layers, these devices are attractive owing to the low
processing temperatures that can be used and the minimal
current–voltage (J–V) hysteresis observed. Recently we have
shown that p–i–n PSC have higher resistance to oxygen induced
photodegradation compared to conventional n–i–p PSCs when
[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) is used as the
n-type electron transport layer (ETL), where PCBM serves as
a superoxide scavenger, furthermore in planar structured
devices oxygen diffusion is slower compared with architectures
built on mesoporous metal oxides.24 Others have addressed the
issue by inserting impermeable thin layers of semimetals e.g. Bi
or semiconductors e.g. TiO2 between the perovskite and the
metallic electrode.37,38 Unlike previous studies using imperme-
able materials to inhibit iodide diffusion from the perovskite to
Ag electrode, this work describes a process which we simply
evaporate a thin layer (10 nm) of Cu between Ag and the electron
transporting layer (ETL). By employing a Cu–Ag bilayer elec-
trode we observe that the device retains 85% of its initial PCE
aer 80 hours of operation in ambient air, compared with Cu
This journal is © The Royal Society of Chemistry 2020
and Ag single metal electrodes that retain 60% and 10% of their
initial PCEs respectively. This electrode conguration can be
readily and reproducibly deposited and inhibits the formation
of AgI at the semiconductor/metal interface and the oxidation of
Cu, both conrmed by time-of-ight-secondary ion mass spec-
troscopy (ToF-SIMS) and X-ray photoelectron spectroscopy
(XPS).
Results and discussion

Full details of device fabrication procedures, materials and
methods are given in the experimental section. Fig. 1a shows
a schematic of the layer structure of the p–i–n devices prepared,
consisting of (layer thicknesses in parenthesis) ITO (140 nm)/
PTAA (15 nm)/PFN (<10 nm)/MAPbI3 (330 nm)/PCBM (60 nm)/
BCP (<10 nm)/electrode (100 nm), with a typical cross-section
scanning electron microscope (SEM) image shown in Fig. 1b.
For comparison representative current–voltage (J–V) character-
istics of devices formed using Al, Cu, Ag, and Cu–Ag electrodes
under 1 Sun, AM1.5 illumination are shown in Fig. 1c.

Devices prepared with the various electrodes achieved
comparable PCEs, around 18–19%, and ll factors (FFs)
approaching 80% with minimum hysteresis (Table S1 and
Fig. S1†). These devices were then subject to ageing close to
their maximum power point (mpp) in ambient air (RH � 40–
50%) under continuous LED illumination, the intensity of
which was calibrated by matching the short circuit current
density (Jsc) obtained under the AM 1.5 illumination. The
measured PCEs as a function of time are shown in Fig. 1d with
the time dependent J–V scans shown in Fig. S2.† It is seen that
despite Al having been previously reported to be stable in n–i–p
based devices,39 here near complete degradation in p–i–n based
devices is observed in around 20 hours. In addition to the
measured performance rapidly decaying obvious degradation of
the electrode can be seen on visual inspection, Fig. S3.† This
degradation in p–i–n structure with Al is agreed with the
previous report, showing macroscopic deformation following
ageing.40 In the case of Ag electrodes two decay regions are
observed, an initial loss of 20% of PCE in �20 hours and a near
complete (90%) loss in PCE aer 80 hours. In comparison the
Cu electrode device showed one continuous decay, with 40%
PCE loss aer 80 hours. Interestingly, when 10 nm Cu is evap-
orated prior to Ag deposition, the devices showed a signicant
improvement in stability with some 85% of the initial PCE
remaining aer 80 hours illumination. In order to examine the
origins of these differences in operational stability and to
investigate the shelf stability of these devices, the PCE changes
of Cu–Ag bilayer electrode device stored in ambient air (RH �
40–50%) in dark were recorded and are shown in Fig. S4.† The
device retained some 93% of its initial PCE aer >750 hours
storage in air, highlighting that shelf-stability does not translate
into operational lifetime.
Single layer electrode conguration

In order to investigate the behavior of the various electrodes
chemical depth proles of fresh and aged devices employing Ag
J. Mater. Chem. A, 2020, 8, 8684–8691 | 8685
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Fig. 1 (a) Schematic diagram of the typical device architecture investigated, here with the Cu–Ag bilayer electrode, (b) cross-section SEM image
of a typical device, (c) J–V characteristics of devices with different electrodes as indicated, (d) stability measurements (PCE) of devices aged under
continuous LED illumination in ambient air.
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and Cu electrodes were measured by Time-of-Flight Secondary
IonMass Spectrometry (ToF-SIMS), Fig. 2a–d. It should be noted
that the sputtering time cannot be used to directly compare
layer thicknesses between samples as sputter rates depend
largely on the sputter current which can vary between
measurements. However, regarding the possibility of total ion
dose and instrumental factors affecting secondary ion yield and
subsequently prole features, all data points have been
normalized to the total intensity. The mass fragments used for
layer identication in the devices are shown in Table S2.†

ToF-SIMS chemical depth proles of the as-prepared
samples are characterized by sharp interfaces, indicating
discrete interfaces and limited vertical diffusion in the devices,
Fig. 2a and b. The relatively at proles show that there is no
accumulation of beam damage, from either the sputter or
primary beams, on the surface of the material (if present one
would expect a prole gradient that is higher at the beginning
and lower towards the end). Further, the electrode layers do not
have any signal enhancements at interfaces indicating the
absence of matrix effects.

Considering rst a single electrode conguration with Cu
aer 80 hours of ageing (Fig. 2c) where while the layers in the
device structure can still be distinguished, the depth proles are
signicantly different from those of the as-prepared devices,
notably at the electrode and at the MAPI layer. There is signif-
icant accumulation of I� on the surface of the electrode but the
Cu/BCP/PCBM interface has not changed as the interfacial
widths remain largely similar (Fig. S5†), in contrast, the inter-
facial width of C3

� at the PCBM/MAPI interface has increased.
Compared to the as-prepared device, the prole of I� in the
8686 | J. Mater. Chem. A, 2020, 8, 8684–8691
perovskite layer can be seen to extend towards an earlier sputter
time than PbI3

� and I�, I2
�, I3

�, and PbI3
� proles are visibly

less uniform. These features are indicative of degradation of the
perovskite active layer. Considering the impact of ageing on the
electrode itself, Cu may be oxidized in contact with air, with
a limiting thickness of the native oxide being around 5 nm.
Here, the native CuO layer can be detected by XRD with
a characteristic, albeit weak, (111) diffraction peak observed at
39.2� 2q in aged devices (Fig. 2e). CuO is highly insulating41 thus
we hypothesize that formation on the Cu electrode surface will
contribute to the observed reduced performance.

Now to consider the single Ag electrode aer 80 h ageing
Fig. 2d shows similar features to those in degraded Cu—notably,
increased I� and AgI2

� intensities at the electrode surface and
larger PbI3

�, I�, and I2
� interfacial widths. However, the prole

of I� is much broader compared with the Cu electrode case
where I� concentration at the PCBM layer is not negligible as
compared to the as-prepared single metal and degraded Cu
samples—this also coincides with a larger Ag� – interfacial
width. In fact, proles of PbI3

�, I2
�, I�, and Ag� can be observed

to intersect (Fig. S6†), a strong indication of cross-diffusion
between layers that is not observed with Cu as an electrode.
Whilst Ag is oen considered as a noble metal it can thermo-
dynamically be oxidized by atmospheric oxygen under normal
temperatures,42 with a native oxide thickness in the range of 1–
2 nm being anticipated, hence beyond the sensitivity limit of
XRD. Here, Fig. 2f conrms there is no XRD evidence that either
crystalline AgI or Ag2O, the latter as an oxidation product, have
formed. Based on depth proles from ToF-SIMS, the detected
AgI2

�, which follows the I� signal closely, is a strong indication
This journal is © The Royal Society of Chemistry 2020
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Fig. 2 Time-of-flight secondary ionmass spectrometry (ToF-SIMS) depth
profile of device with (a) fresh Cu (b) fresh Ag, (c) aged Cu and (d) aged Ag
electrode. XRD spectra of (e) Cu and (f) Ag electrode on device before and
after ageing. The devices are aged under same condition as Fig. 1d.

Fig. 4 Schematic diagram of aged devices with (a) Ag (b) Cu and (c)
Cu–Ag counter electrode.
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of the presence of AgI. Thus, it is possible that both products are
present either in low concentrations or are amorphous in nature.
According to literature, Ag electrodes readily form AgI with
diffused I�, contributing to the reduction of device performance.
Qi et al. proposed this degradation is due to an energy level
misalignment at the semiconductor/metal interface, low
conductivity of AgI, or a combination of these factors.28

Additionally, while we note that in all devices diffusion of
metal ions into the perovskite active layer were not directly
detected in ToF-SIMS depth proles, the presence of higher
Fig. 3 Time-of-flight secondary ion mass spectrometry (ToF-SIMS) dep
spectra of Cu–Ag electrode on device before and after ageing. The dev

This journal is © The Royal Society of Chemistry 2020
concentrations of CuI2
� and AgI2

� within the MAPI layer of
degraded devices may be an indication of such a phenomenon.
The nature of these species (metal–I2

�) may be beam-induced,
however, their formation is likely to arise only when I co-
exists with Cu/Ag or when CuI/AgI is present. Therefore, they
can be used as indicators for I�/metal diffusion and CuI/AgI
formation; in fact, there is a direct correlation of such metal–
halide ions with I� intensity at the electrode surface. The
increased concentration of Ag–I species within the perovskite
active layer can therefore contribute to the observed differences
in device operational stability on account of its lower conduc-
tivity.26 To briey summarise it is apparent that in all aged
devices, their depth proles become broader and less dened
due to vertical diffusion of various species.
Cu–Ag bilayer electrode conguration

Now we turn to consider bilayer, Cu–Ag electrodes. In Fig. 3a, the
ToF-SIMS depth prole shows that the bilayer electrode consists
of the anticipated two discrete layers and that no diffusion of I�

has occurred. In contrast, in the aged device it is clear that I�

diffusion into the Ag electrode has occurred and notably there
appears to be no I� accumulation accumulate in the ETL or at the
th profile of device with (a) Cu–Ag (b) aged Cu–Ag electrode. (c) XRD
ices are aged under same condition as Fig. 1d.

J. Mater. Chem. A, 2020, 8, 8684–8691 | 8687
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Fig. 5 XRD patterns of MAPbI3 of devices with (a) Ag (b) Cu (c) Cu–Ag counter electrode before and after ageing under same condition in Fig. 1d.
(d–g) The fitting plots of XRD data of MAPbI3 before and after ageing.
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ETL–Cu interface. Aer ageing the two metal layers remain
discrete with no notable intermixing occurring. We also note that
the concentration of AgI2

� in the degraded device is visibly sup-
pressed compared to the single Ag electrode case (Fig. S7†). This
implies that the thin layer of Cu plays a crucial part in effectively
preventing Ag diffusion and AgI formation at the metal–semi-
conductor interface, inhibiting Ag-induced device degradation.
Furthermore, it can be observed that the CuO diffraction peak of
the aged device is absent, which indicates that oxidation of Cu has
not occurred (Fig. 3c). We also show that in a bilayer electrode
device with a thicker Cu layer of 100 nm, subjected to the same
conditions, a CuO diffraction peak is not observed (Fig. S8†). Here
then we see a synergistic effect when combining both electrodes
where the Cu prevents accumulation or metal–iodide species at
the ETL–electrode interface and the Ag electrode subsequently
inhibits oxidation of the Cu, as shown in Fig. 4.
8688 | J. Mater. Chem. A, 2020, 8, 8684–8691
Age induced structural transitions

While the Cu–Ag bilayer conguration demonstrated better
improved to both oxidation and metal–halide formation at the
ETL–electrode interface, a gradual reduction in PCE over time is
still observed. Naturally, such devices are not immune to the
inherent instability and degradation of the perovskite layer but
do offer improved resistance to both. Thus far we have focused
on diffusion and oxidation as the origins of diminished
performance over time, we now turn to consider structural
changes that may also be occurring in the perovskite active layer
with ageing. In addition to compositional changes caused by
ageing structural changes appear also to be induced high-
lighting the complex interplay between these processes. The
XRD patterns for representative fresh and aged devices high-
light this phenomenon, Fig. S9.† In the case of Al electrodes
This journal is © The Royal Society of Chemistry 2020
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near complete degradation is observed, evidenced by a signi-
cant reduction in peak intensity and the emergence of a strong
PbO2 peak at 30.31� 2q,43 this is consistent with the J–V data
shown in Fig. 1d. However, for the other electrode congura-
tions there is an observed splitting of the (110) diffraction peak
around 14.15� 2q with the emergence of a (002) diffraction peak
at 14.03� 2q. In MAPI system the (110) diffraction peak oen
displays an asymmetry owing to the overlapping (002) diffrac-
tion peak that is anticipated owing to the tetragonal structure
being stabilized at room temperature.44 Looking in detail at the
(110)/(002) peak splitting, Fig. 5a–c, with the tting of these two
phases is shown in Fig. 5d and e (tting parameters given in
Table S3†) it is apparent that device ageing is having a signi-
cant impact on structure and that there is a distinct structural
transition occurring during the ageing process. This is more
evident as we move to the higher order diffraction peaks, Fig. 5f
and g, where more pronounced peak splitting is clearly
observed. From the ToF-SIMS data discussed above it is
apparent that theMAPI active layer is becoming X-site i.e. iodine
decient during ageing. Looking at the integrated peak areas of
the (100) and (002) family of planes their sum appears to be
reasonably consistent indicating that the quantity of crystalline
material remains fairly constant – this can be interpreted as
a transition in structure rather than a degradation of formation
of any amorphous phases. It is unclear, and indeed beyond the
scope of this work as to whether the iodide diffusion is driving
the structural distortion or vice versa and this will be the focus of
our continuing studies.

Conclusions

In summary, we demonstrate that employing Cu–Ag bilayer
electrodes can effectively enhance electrode and device stability
compared to single metal electrodes of Cu, Ag and Al. Using
ToF-SIMS we identify the nature of the perovskite active layer
components that diffuse during extended device ageing under
operation and highlight the synergistic relationship in the dual
electrode conguration where the Cu layer (10 nm) inhibits AgI
formation at the PCBM/electrode interface, and the suscepti-
bility of Cu to oxidation is circumvented by utilizing Ag as
a barrier to oxygen. In addition to identifying the diffusing
species we also highlight signicant structural transition using
X-ray diffraction and show how these are enhanced with device
ageing under operation. Our new electrode conguration
confers numerous advantages on the devices and can be readily
implemented during electrode evaporation. Our structural
analysis gives an insight into ageing related structural changes
that have not thus far been reported and provide an exciting
avenue of future exploration in these fascinating energy
conversion systems.

Experimental details
Perovskite solar cell fabrication

The inverted (p–i–n) planar structure perovskite solar cells
consisted of ITO/PTAA/PFN/perovskite/PCBM/BCP/top elec-
trode. The top electrode was varied as described in the
This journal is © The Royal Society of Chemistry 2020
manuscript. The devices were fabricated by rstly cleaning ITO
substrates in acetone, soap, water, acetone and then iso-
propanol using ultrasonics, drying under a N2 stream and
nally exposing to UV-ozone treatment immediately before use.
PTAA (2 mg mL�1 in chlorobenzene) was spin-coated onto the
cleaned ITO substrate at 3000 rpm for 20 seconds. The perov-
skite solution, 1.5 MMAPbI3 in DMF/DMSO (8.9 : 1.1), was then
spin-coated on the substrate at 4000 rpm for 30 seconds. Aer 7
seconds of spinning 0.4 mL diethyl ether was dripped onto the
substrate. The substrate was then annealed at 60 �C for 1
minute and then 100 �C for 30 minutes. PCBM solution (30 mg
mL�1) was spin-coated on the substrate at 2000 rpm for 20
seconds. BCP (0.5 mg mL�1) was then spin coated on the
substrate at 4000 rpm for 20 seconds. Finally, 100 nm of Al, Ag
or Cu was thermally evaporated as a top electrode, in the case of
bilayer electrodes 10 nm Cu and 100 nm Ag were thermally
evaporated in sequence without breaking vacuum.
Device characterization and stability measurements

The J–V characteristics were measured under Air Mass 1.5G
global (AM 1.5G) illumination (Xenon lamp) at 1 sun intensity,
calibrated by a certicated silicon reference cell from National
Renewable Energy Laboratory (NREL). The device stability
measurements were performed in ambient air under 1 sun
illumination provided by an LED light source. The intensity of
the LED light was calibrated by matching the Jsc of devices
measured using the xenon lamp. The devices were loaded at
0.8 V, which is close to maximum power point, and their J–V
characteristics measured every 5 hours.
Scanning electron microscopy (SEM)

A LEO Gemini 1525 Field Emission Scanning Electron Micro-
scope was used to obtain SEM images. The sample was coated
with 5 nm chromium. Working distance was set at 5 mm, with
the accelerating voltage kept below 5 kV.
XRD measurements

X-ray diffraction (XRD) proles of perovskite lms were ob-
tained with a X'Pert Powder diffractometer (PANalytical) using K
line of Cu X-ray source. The diffraction patterns cover a 2q range
of 10–50�, with a step size of 0.016�.
SIMS

ToF-SIMS was performed using the IONTOF-TOFSIMS5 instru-
ment. An O2 1 kV (�230 nA) sputter beam, with a raster size of
300 mm � 300 mm, for its uniform sputtering rates and mini-
mization of damage accumulation, was used. For the generation
of secondary ions, a Bi3

+ 25 kV (�0.5 pA) primary ion beam in
the high-current bunched mode (HCBM) for higher mass
resolution was used, in which a 150 mm � 150 mm analysis area
was centered within the sputter crater. Measurements were
performed in the interlaced mode (no pause between sputtering
and analysis cycles)-total ion images were closely observed to
ensure no sample charging took place. The same mass
J. Mater. Chem. A, 2020, 8, 8684–8691 | 8689
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calibration andmass fragment peak list were applied to all mass
spectra and depth proles, respectively, before analysis.
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