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SUMMARY
Swelling of the brain or spinal cord (CNS edema) affectsmillions of people every year. All potential pharmaco-
logical interventions have failed in clinical trials,meaning that symptommanagement is the only treatment op-
tion. Thewater channel protein aquaporin-4 (AQP4) is expressed in astrocytes andmediateswater flux across
the blood-brain and blood-spinal cord barriers. Here we show that AQP4 cell-surface abundance increases in
response to hypoxia-induced cell swelling in a calmodulin-dependent manner. Calmodulin directly binds the
AQP4 carboxyl terminus, causing a specific conformational change and driving AQP4 cell-surface localiza-
tion. Inhibition of calmodulin in a rat spinal cord injury model with the licensed drug trifluoperazine inhibited
AQP4 localization to the blood-spinal cord barrier, ablated CNS edema, and led to accelerated functional re-
covery comparedwith untreated animals. We propose that targeting themechanism of calmodulin-mediated
cell-surface localization of AQP4 is a viable strategy for development of CNS edema therapies.
INTRODUCTION

Swelling of the brain or spinal cord (known as central nervous

system [CNS] edema) is a result of increased CNS water content

and can occur after trauma, infection, tumor growth, or obstruc-

tion of blood supply (Jha et al., 2019; Liang et al., 2007). Trau-

matic injury and stroke are major causes; according to World

Health Organization (WHO) data, worldwide each year, 60million

people sustain a traumatic brain or spinal cord injury (TBI or SCI),

and 15 million people suffer a stroke (5 million die, another 5

million are permanently disabled). These injuries can be fatal or

lead to long-term disability, psychiatric disorders, substance

abuse, or self-harm (Fazel et al., 2014).

The pathophysiology of CNS edema is complex, being depen-

dent on the nature of the initial injury and the specific response of

the patient (Jha et al., 2019). Cytotoxic edema is the accumula-
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tion of water in intact cells. It is rapidly triggered when a state of

hypoxia causes loss of energy-dependent solute homeostasis

(Bordone et al., 2019). This drives water influx (Tang and Yang,

2016) down an osmotic gradient into perivascular astrocytes,

causing them to swell (Rosenberg, 1999; Simard et al., 2007).

The accumulation of intracellular water disrupts the local os-

motic environment, resulting in ionic edema (Kawamata et al.,

2007) and breakdown of the blood-brain barrier (BBB) or

blood-spinal cord barrier (BSCB), which may already be

damaged by the initial injury. Fluid accumulation in extracellular

spaces across a compromised BBB/BSCB is known as vaso-

genic edema (Simard et al., 2007) and may persist for many

days (Winkler et al., 2016). Cytotoxic and vasogenic edema are

key interdependent contributors to the development of CNS

edema, with extended periods of cytotoxic edema inducing

vasogenic edema and vice versa (Jha et al., 2019).
d by Elsevier Inc.
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Cytotoxic edema is the premorbid process of pathological cell

swelling in SCI (Goodman et al., 1976; Rowland et al., 2008; Saa-

doun and Papadopoulos, 2010), TBI (Klatzo, 1987; Manley et al.,

2004; Stokum et al., 2015), and stroke (Chu et al., 2016; Liang

et al., 2007; Manley et al., 2004). Current therapies only manage

the symptoms and include surgical intervention to make space

for injured tissues to swell or treatment with hyperosmotic

agents (Raslan and Bhardwaj, 2007). Crucially, however, such in-

terventions have high risk and low efficacy and can be applied

only after the damaging edema has fully developed (Gopalak-

rishnan et al., 2018; Torre-Healy et al., 2012). Treatments target-

ing the numerous pathways leading to CNS edema formation are

likely to be more valuable than those aimed at removing the

edema after it has formed (Jha et al., 2019). Consequently, there

is a pressing and unmet clinical need for treatments that can stop

CNS edema before it develops.

Regulation of astrocyte cell volume is central for avoiding the

damaging consequences of CNS edema (Vella et al., 2015;

Zhao et al., 2003). Aquaporins (AQPs) are plasma membrane

channels that play an integral role in the development of cyto-

toxic edema because they facilitate bidirectional transmem-

brane water flow. AQP4 is the principal member of this family

in the CNS (Papadopoulos and Verkman, 2013), being ex-

pressed abundantly in astrocytes (Oklinski et al., 2014; Oshio

et al., 2004). In AQP4 knockoutmice, post-ischemic brain edema

was reduced by 35% compared with wild-type controls (Manley

et al., 2000), whereas glial-conditional knockout mice showed a

31% reduction in brain water uptake after systemic hypo-

osmotic stress (Haj-Yasein et al., 2011), strongly supporting

AQP4 as a key player in cytotoxic edema. The role of AQP4 in

SCI has also been examined in AQP4 knockout mice (Kimura

et al., 2010; Saadoun et al., 2008). These and other studies sug-

gest that AQP4 has different roles in development and resolution

of CNS edema, with water flow through AQP4 driving cytotoxic

edema development in the early post-injury stage but later

clearing vasogenic edema. Consequently, reversible inhibition

of AQP4 function during the acute phase is a viable strategy to

prevent CNS edema (Verkman et al., 2017). However, despite

intense efforts over many years, no water-channel-blocking

drugs for any AQP have been approved for use in humans

(Abir-Awan et al., 2019; Liang et al., 2007; Verkman et al., 2014).

We focused on a conceptually different approach: targeting

AQP4 subcellular localization. We discovered previously that

AQP4 cell-surface abundance is rapidly and reversibly regulated

in response to changes in tonicity in primary cortical astrocytes

(Kitchen et al., 2015; Salman et al., 2017a). Here we present

the protein kinase A (PKA) and calmodulin (CaM) dependence

of AQP4 subcellular localization in astrocytes. We show that

acute hypoxia leads to subcellular relocalization of AQP4 in pri-

mary cortical astrocytes and that this is accompanied by

increased membrane water permeability. Direct interaction be-

tween AQP4 and CaM causes a specific conformational change

in the carboxyl terminus of AQP4 and drives AQP4 cell-surface

localization. Using a rat SCI model of CNS edema, we present

in vivo evidence that inhibitors of AQP4 subcellular localization

to the BSCB reduce spinal cord water content following CNS

injury. All measured pathophysiological features of SCI are coun-

teracted by pharmacological inhibition of CaM or PKA. Using
trifluoperazine (TFP), a CaM antagonist that is approved as an

antipsychotic by the US Food and Drug Administration and the

UK National Institute for Health and Care Excellence (NICE,

2019), we found a protective effect against the sensory and loco-

motor deficits following SCI. Treated rats recovered in 2 weeks

compared with untreated animals that still showed functional

deficits after 6 weeks. Our findings reveal that targeting AQP4

subcellular localization following CNS injury has profound effects

on the extent of subsequent damage and recovery. To our

knowledge, an effective AQP4-targeted intervention, which has

major implications for the future treatment of CNS edema, has

not been demonstrated previously. Overall, we show that target-

ing the mechanism of CaM-mediated AQP4 subcellular relocal-

ization is a viable strategy for development of CNS edema ther-

apies. This has implications for the development of new

approaches to treat a wide range of neurological conditions.

RESULTS

Hypoxia Induces AQP4 Subcellular Localization In Vitro

The relative increase in tonicity that leads to CNS edema can be

modeled by hypotonic treatment or hypoxic exposure of primary

astrocytes (Orellana et al., 2010; Slovinska et al., 2016; Yu et al.,

1989). To date, we have used a hypotonicity model to study

AQP4 translocation (Kitchen et al., 2015; Salman et al., 2017a).

Here we subjected primary astrocytes to both stimuli to show

that tonicity-triggered AQP4 subcellular relocalization can be

recapitulated in vitro by treating primary cortical astrocytes

with 5% oxygen for 6 h (hypoxia) (Figure 1A). The same inhibitors

have similar effects in hypoxic and hypotonic models (Figure 1A).

Chelation of Ca2+ or CaM inhibition through EGTA-AM or TFP,

respectively, reduced AQP4 translocation to control levels

following hypoxic or hypotonic treatment (Figure 1A). When nor-

moxic primary cortical astrocytes were treated with 5% oxygen,

AQP4 cell-surface abundance increased over 6 h of hypoxia

compared with untreated normoxic astrocytes (Figure 1B). There

was no increase in the total amount of AQP4 protein (Figure S1A).

A return to normoxic conditions (21% oxygen) reduced AQP4

cell-surface abundance over the subsequent 6 h (Figure 1B).

Calcein fluorescence quenching was used to quantify astrocyte

plasma membrane water permeability following hypoxia and in-

hibitor treatment (Figure 1C). The increase in shrinkage rate con-

stant for human primary cortical astrocytes treated with 5% ox-

ygen for 6 h (hypoxia) compared with controls mirrored the

increase seen in AQP4 surface localization in the same cells (Fig-

ure 1A). This increase was ablated by chelation of Ca2+ or CaM

inhibition through EGTA-AM or TFP, respectively. The increase

in AQP4 cell-surface localization (Figure 1B) was mirrored by

an increase in normalized membrane water permeability and

its subsequent decay following restoration of normoxia (Fig-

ure 1D). Representative calcein fluorescence quenching traces

are shown in Figure 1E. These results demonstrate that hypoxia

induces AQP4 subcellular relocalization, leading to an increase

in astrocyte membrane water permeability.

The transient receptor potential vanilloid 4 (TRPV4) channel is

linked to the pathology of edema (Hoshi et al., 2018) and is

known to be activated by cell swelling (Heller and O’Neil,

2007). We therefore inhibited TRPV4 following treatment with
Cell 181, 784–799, May 14, 2020 785
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5% oxygen for 6 h (hypoxia) or 85 mOsm/kg H2O (hypotonicity)

and compared AQP4 cell-surface biotinylation in human primary

cortical astrocytes with data for untreated normoxic astrocytes

(control). Inhibition of TRPV4 with HC-067047 (TRPV4i) ablated

AQP4 translocation (Figure 1A). Agonism of TRPV4 with

GSK1016790A (TRPV4a) increased AQP4 surface translocation

in the hypotonicity and hypoxia models (Figure 1A) and induced

AQP4 translocation in the absence of either trigger, suggesting

that Ca2+ influx through TRPV4 is sufficient to activate AQP4

translocation. This established the role of TRPV4 in regulatory

AQP4 translocation.

CaM and PKA Have Central Roles in AQP4 Subcellular
Relocalization
Wepreviously demonstrated that inhibitingCaM (with TFPorW-7)

or the action of PKA (with H89, myr-PKI 14-22 amide or via muta-

genesis of AQP4-S276) reduced hypotonicity-induced subcellular

relocalization of AQP4 in HEK293 cells (Kitchen et al., 2015). We

next investigated the role of CaM in PKA activation by measuring

the induction of CaM-dependent cyclic AMP (cAMP) accumula-

tion following a hypotonic trigger. cAMP levels increased approx-

imately 10-folduponhypotonic treatment (Figure 1F), and thiswas

ablated by CaM inhibition by TFP or W-7. The same ablation was

seen following removal of extracellular Ca2+ from the culture me-

dium. The CaM agonist CALP-3 (Villain et al., 2000) recapitulated

the effects of hypotonicity on cAMP accumulation. Figure 1F

shows thatPKAactivity correlatedwithcAMPconcentration inpri-

mary ratastrocytecell lysates under all of theconditionsdescribed

above. This demonstrates thatCa2+-dependent activation ofCaM

in astrocytes triggers activation of PKA. In vitro phosphorylation of

the recombinant AQP4 carboxyl terminus (recAQP4ct; Figure 1G)

demonstrated a single PKA phosphorylation site.

AQP4-Dependent CNS Edema Is Ablated by Inhibition of
CaM or PKA In Vivo

To investigate CNS edema in vivo, we used a rat SCI model

consisting of dorsal column (DC) crush injury at the T8
Figure 1. Hypoxia Induces AQP4 Subcellular Relocalization in Primary
(A) Mean fold change in AQP4 surface expression (±SEM), measured by cell-su

oxygen for 6 h (hypoxia) or 85 mOsm/kg H2O (hypotonicity) compared with un

trifluoperazine (TFP). The TRPV4 inhibitor (TRPV4i) was 4.8 mMHC-067047, and t

(TRPV4a) was 2.1 mMGSK1016790A. Kruskal-Wallis with Conover-Inman post ho

ns represents p > 0.05 compared with the untreated control (Table S2; n = 4).

(B) Mean fold change in AQP4 surface expression (±SEM) with time under hypo

surface expression was measured by cell-surface biotinylation after 1, 3, and 6

returned to normoxic conditions (21% oxygen), and AQP4 surface expression

Bonferroni correction (Table S2; n = 3).

(C) Calcein fluorescence quenching in response to elevation of extracellular os

membrane water permeability following the same hypoxia and inhibitor regimen d

Bonferroni correction (Table S2; n = 3).

(D) Normalized membrane water permeability of hypoxic rat primary cortical astro

permeability was measured over the subsequent 6 h. *p < 0.05 compared with t

(E) Representative calcein fluorescence quenching traces for hypoxia and normo

(F) Intracellular cAMP accumulation in rat primary cortical astrocytes (±SEM) i

intracellular Ca2+ chelator was 5 mM EGTA-AM] or the CaMi W-7 or TFP), and

subjected to the same treatments. Activity is normalized to the average of the untre

Bonferroni correction (Table S2; n = 3).

(G) Phosphorylation of glutathione S-transferase (GST)-recAQP4ct, analyzed by

complete (�1 mol phosphate/mol GST-recAQP4ct, 1P) after 2 h.
vertebra (Almutiri et al., 2018; Lagord et al., 2002; Surey

et al., 2014) and measured spinal cord water content 3, 7,

and 28 days post-injury (dpi). To confirm that development

of CNS edema is AQP4 dependent, plasmids encoding

AQP4 shRNA were injected into the lesion site at the time of

injury. AQP4 knockdown (Figures S1B and S1C) resulted in

reduced spinal cord water content at 3 dpi (Figure S1D) and

recovery of sensory and locomotor function within 1 week

compared with injured animals (DC+vehicle) or shRNA con-

trols (DC+shControl), which had elevated spinal water content

at 3 dpi and were still functionally impaired at 4 weeks (Fig-

ures S1E and S1F). Notably, at 28 dpi, water content in the

shAQP4 group was elevated above that of control animals

(sham, DC+vehicle, DC+shControl). Following initial recovery

within 1 week post-injury, behavioral function in the shAQP4

group deteriorated until the end of the experiment at 4 weeks

(Figures S1E and S1F). The impaired ability of animals in the

shAQP4 group to clear CNS edema is consistent with previ-

ous observations in AQP4-null mice (Papadopoulos and Verk-

man, 2007) and suggests that reversible blockade of AQP4

might be beneficial within 1 week post-injury.

Figure 2A shows that CaM inhibition (CaMi; with TFP) or PKA in-

hibition (PKAi; with H89) attenuated DC crush injury-induced CNS

edemawhenwe compared spinal cord water content in uninjured

rats (sham) with those receiving a DC crush injury (Almutiri et al.,

2018; Lagord et al., 2002; Surey et al., 2014) immediately followed

by treatmentwith direct injection of TFP orH89. A single dosewas

given, with the goal of acute inhibition of AQP4 subcellular reloc-

alization. In agreement with literature values (Li and Tator, 1999),

DC crush injury significantly increased mean spinal cord water

content from 70.6% to 75.6% at 3 dpi, to 73.1% at 7 dpi, and re-

turning to near control (sham) levels by 28 dpi. CaMi with TFP

effectively attenuated injury-induced elevation in spinal cord wa-

ter content to 72.8% at 3 dpi and completely ablated it to 70.4%

at 7 dpi (Figures 2A). PKAi with H89 attenuated injury-induced

rises in spinal cord water content to 71.5% at 3 dpi and 70.4%

at 7 dpi (Figure 2A).
Cortical Astrocytes
rface biotinylation in primary cortical astrocytes. Cells were treated with 5%

treated normoxic astrocytes (control). The CaM inhibitor (CaMi) was 127 mM

he intracellular Ca2+ chelator was 5 mM EGTA-AM. The TRPV4 channel agonist

c tests were used to identify significant differences between samples. *p < 0.05;

xia. Rat primary cortical astrocytes were exposed to 5% oxygen, and AQP4

h and compared with untreated normoxic astrocytes (normoxia). Cells were

was measured at 1, 3, and 6 h. *p < 0.05 by ANOVA followed by t test with

molality to 600 mOsm with mannitol was used to quantify astrocyte plasma

escribed in (A). *p < 0.05; ns indicates p > 0.05 by ANOVA followed by t test with

cytes over 6 h. Cells were returned to normoxic conditions (21% oxygen), and

he t = 0 normoxic control (Table S2; n = 3).

xia.

n response to forskolin, hypotonicity (with or without extracellular Ca2+ [the

the CaMa peptide CALP-3. PKA activity in lysates made from rat astrocytes

ated control. *p < 0.05. ns represents p > 0.05 by ANOVA followed by t test with

Phos-tag SDS-PAGE. The phosphorylation stoichiometry was judged to be
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TFP is an antipsychotic and anti-anxiety medication; its effects

are attributed to TFP antagonism of the dopamine D2 and a1

adrenergic receptors (Creese et al., 1996; Huerta-Bahena

et al., 1983). To determine whether the effects of TFP were pri-

marily through inhibition of CaM, wemeasured spinal cord water

content at 3 dpi following treatment with the alternative CaM in-

hibitor W-7, the D2 antagonist L-741,626, and the a1 antagonist

terazosin (Figure 2B). W-7 has no reported activity at the dopa-

mine D2 or a1 adrenergic receptors. Although W-7 treatment

recapitulated the effect of TFP on spinal cord water content

the a1 antagonist did not. D2 and protein kinase C (PKC) inhibi-

tors increased spinal cord water content (Figure 2B). These re-

sults demonstrate that inhibition of CaM or PKA attenuates DC

crush injury-induced edema. Similar changes in water content

were also observed in a cortical brain stab injury model following

treatment with TFP. The stab injury-induced rise in water content

24 h post-injury was almost completely ablated by treatment

with TFP (Figure S2A). Because TFP and H89 are inhibitors of

AQP4 translocation in vitro (Kitchen et al., 2015), we used

confocal microscopy to examine their effect on AQP4 transloca-

tion in astrocytes after DC crush injury in vivo.

CNS Edema Is Associated with Increases in Total AQP4
Expression and AQP4 Subcellular Translocation to the
BSCB; Both Are Ablated by CaMi or PKAi

AQP4 expression levels increase following traumatic injury,

including SCI (Nesic et al., 2006). In response to hypotonicity,

AQP4 is translocated to the plasma membrane of primary rat

and human astrocytes in vitro (Kitchen et al., 2015; Salman

et al., 2017a), but this translocation has not been demonstrated

in vivo. Rats were therefore subjected to a DC crush injury at T8

and treated with CaM inhibitor (TFP), PKA inhibitor (H89), or

vehicle (PBS). Representative images used for quantification

are shown in Figures 2C–2F. In Figure 2D, white arrows identify

astrocyte processes physically associated with endothelia,

which were assigned as astrocyte endfeet. Relative expression

was calculated by dividing the fluorescence intensity of peri-

endothelial AQP4 by the fluorescence intensity of non-endothe-

lial-cell-associated AQP4. At 3 dpi, increases in AQP4 transloca-

tion to the BSCB (p = 3.2 3 10�7; Figure 2G) and total AQP4

levels (p = 0.002; Figure 2H) were observed in injured rats
Figure 2. Inhibition of CaM or PKA Reduces Spinal Cord Water Conten

Crush Injury In Vivo

(A) Water content of the thoracic spinal cord 3 days after dorsal column (DC) crush

laminectomy only; DC+vehicle, T8 DC crush +PBS; DC+CaMi, DC crush + intra

10 mM H89; n = 4 rats per treatment group, except DC+vehicle 3 dpi (n = 8) and

(B) Water content of the thoracic spinal cord 3 days after DC crush to investigate t

TFP or 164 mM W-7; DC+A1Ri, DC crush + intra-lesion injection of 53 mM a1 ad

jection of 6.6 mM dopamine D2 receptor antagonist L-741,626; DC+PKCi, DC cru

treatment group, normalized to sham controls across multiple experiments.

(C–F) Representative images used to quantify data in (G) and (H) (scale bar, 50 mm)

(3 dpi; D), for which an increase in total AQP4 expression and translocation to th

observed, which is ablated by treatment with TFP (E) or treatment with H89 (F). Two

insets was manually adjusted to aid the eye (scale bars, 10 mm).

(G) Quantification of at least 24 images (a minimum of 4 images per animal, n =

(H) Quantification of at least 18 images (a minimum of 3 images per animal, n = 6

followed by post hoc Bonferroni-corrected t tests. *p < 0.05, ns represents p > 0

See also Figures S1–S3.
(DC+vehicle) compared with sham controls. Notably, 3 mm

away from the injury site, increases in AQP4 translocation to

the BSCB and total AQP4 levels were indistinguishable from

the levels observed in sham controls (Figures S2B–S2F).

Increased AQP4 localization to the BSCB and total AQP4

expression were ablated by treatment with the CaM inhibitor

TFP or the PKA inhibitor H89. Peri-endothelial localization of

AQP4 is consistent with its role in driving cytotoxic CNS edema

(Stokum et al., 2015; Tang and Yang, 2016). Inhibition of

increased AQP4 peri-endothelial localization was accompanied

by a reduction in spinal cord water content (Figure 2A).

Inhibition of AQP4 expression following CaMi or PKAi has not

been reported previously in vivo. It is known that the forkhead

transcription factor Foxo3a transcriptionally upregulates AQP4

after TBI in mice (Kapoor et al., 2013). Immunofluorescence mi-

crographs of rat spinal cord tissue stained for Foxo3a (green) and

DNA (DAPI, blue) 3 dpi showed nuclear localization of Foxo3a

(DC+vehicle) in contrast to cytoplasmic localization in control

(sham) tissue (Figures S3A and S3B) and consistent with

increased AQP4 expression (Figure 2H). Treatment with TFP

(DC+CaMi) or H89 (DC+PKAi) injected into the lesion site re-

sulted in cytoplasmic localization of Foxo3a (Figures S3C and

S3D). Foxo3a is well known to be regulated by phosphorylation

through the action of Akt, with phosphorylation inhibiting the nu-

clear translocation of Foxo3a (Stefanetti et al., 2018). Akt PK ac-

tivity was therefore measured by ELISA in cultured primary rat

astrocytes subjected to PKA activation with forskolin (10�5 M)

or 10-min extracellular hypotonicity (85 mOsm) in the absence

or presence of TFP (Figure S3E). Akt activity was reduced

following forskolin treatment, suggesting PKA-mediated inhibi-

tion of Akt activity in astrocytes. Following a hypotonic stimulus,

the presence of TFP prevented activation of PKA activity and

subsequent inhibition of Akt activity, consistent with ablation of

Foxo3a translocation to the nucleus (Figures S3C and S3D). An

immunoblot of fractionated primary rat astrocytes showed that

the abundance of Foxo3a was higher in the nuclear fraction

(only degradation products are seen the cytoplasmic fraction;

Figure S3G) following PKA activation with forskolin or hypotonic-

ity (Figures S3G and S3H). These data are consistent with

localization of Foxo3a to nuclei in injured spinal cord tissue

(Figure S3B).
t, AQP4 Translocation to the BSCB, and AQP4 Expression after DC

and treatment with CaM or PKA inhibitors (CaMi or PKAi, respectively). Sham,

-lesion injection of 41 mM TFP; DC+PKAi, DC crush + intra-lesion injection of

DC+vehicle 28 dpi (n = 3).

he mode of action of TFP. DC+CaMi, DC crush + intra-lesion injection of 41 mM

renergic receptor antagonist terazosin; DC+D2Rii, DC crush + intra-lesion in-

sh + intra-lesion injection of 9.94 mM PKC inhibitor Gö 6983. n = 3–12 rats per

. Sham tissue (C) was compared with tissue from animals 3 days after DC crush

e blood-spinal cord barrier (BSCB; white arrows identify astrocyte endfeet) is

representativemagnified images are shown for each panel. The contrast in the

6) shows changes in AQP4 BSCB localization.

) shows changes in total AQP4 expression. For all comparisons, ANOVA was

.05 (Table S2).
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Figure 3. Binding of CaM to the AQP4 Carboxyl Terminus

(A) Microscale thermophoresis (MST) data showing that full-length AQP4 interacts directly with CaM. The binding curve, obtained by plotting DFnorm against

[AQP4], could be fitted to a one-to-one binding model (estimated Kd of 29 ± 5.6 mM). Addition of 5mMEDTA demonstrated that binding was Ca2+ dependent. The

interaction was also inhibited by addition of 1 mM TFP. Truncation of the AQP4 carboxyl terminus before the predicted CBD (AQP4-D256) resulted in a construct

that did not interact with CaM. AQP4 F258/262/266A did not bind CaM. The phospho-mimetic mutant AQP4-S276E bound CaMwith approximately 2-fold higher

affinity (Kd = 17 ± 3.1 mM) than WT AQP4 (p = 0.031), suggesting that phosphorylation of S276 affects the interaction with CaM.

(B) Response curve showing that TFP inhibits the interaction between AQP4 and CaM in a concentration-dependent manner. The concentration of TFP needed

for 50% inhibition (IC50) was estimated to be 790 ± 2 mM.

(legend continued on next page)
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CaMBinds AQP4Directly and the Interaction Is Inhibited
by TFP
We have previously demonstrated that phosphorylation at S276

is necessary but not sufficient for AQP4 subcellular relocaliza-

tion. This suggests that CaM has an additional role, independent

of PKA, such as direct AQP4 binding, which has been reported

for other AQPs (Rabaud et al., 2009; Reichow et al., 2013). Using

the Calmodulin Target Database (Yap et al., 2000), we identified

a putative CaM-binding site between residues 256 and 275.

There is currently no structural information for this proximal

part of the AQP4 carboxyl terminus immediately following the

last transmembrane helix (Hiroaki et al., 2006; Ho et al., 2009;

Tani et al., 2009) (Figure S4A). In the crystal structures of other

mammalian AQPs (Frick et al., 2014; Gonen et al., 2004; Harries

et al., 2004; Horsefield et al., 2008; Sui et al., 2001), this region

forms an amphipathic helix that may be a common site for

AQP regulatory protein-protein interactions (Kreida and Törn-

roth-Horsefield, 2015). For AQP0, the carboxy-terminal helix har-

bors a CaM-binding domain (CBD) involved in channel gating

(Reichow et al., 2013; Reichow and Gonen, 2008; Figures

S4B–S4D). A structural prediction of the proximal region of the

AQP4 carboxyl terminus using PEP-FOLD3 (Lamiable et al.,

2016) shows a similar amphipathic helix (Figures S4E and

S4F). Three phenylalanine residues form a hydrophobic surface,

with charged and polar residues on the other side, which is a

typical characteristic of CaM-binding helices (Tidow and Nissen,

2013).

Full-length human AQP4, a carboxy-terminal deletion mutant

(AQP4-D256), and a triple mutant in which all three phenylala-

nines were replaced with alanine (AQP4-F258/262/266A) were

recombinantly expressed in the yeast Pichia pastoris. The ability

of all three AQP4 constructs to interact with human CaM was

probed using microscale thermophoresis (MST; Figure S5A).

The functional integrity of recombinant AQP4 as a water channel

was verified using a liposome shrinking assay, from which we

calculated an AQP4 single-channel permeability of 1.1 ± 0.1 3

10�13 cm3/s, in agreement with literature values (Tong et al.,

2012; Yang et al., 1997; Figure S5B). As seen in Figure 3A, full-

length AQP4 directly interacts with CaM in the presence of

Ca2+. The binding curve could be fitted to a one-to-one binding

model with an estimated Kd of 29 ± 6 mM. 5 mM EDTA abolished

the interaction, demonstrating that binding wasCa2+ dependent.

The interaction was also inhibited by 1mMTFP. AQP4-D256 and

AQP4-F258/262/266A did not interact with CaM, suggesting that

the CBD is located in the carboxyl terminus and involves the pre-

dicted hydrophobic surface created by three phenylalanines.
(C) Left: 1H, 15N-HSQC NMR data showing the interaction of the recombinant c

Chemical shift perturbations (CSPs) were observed by titrating CaM into 0.5 mM

CaM in the presence of 6mMCa2+. Top right: CSPs induced by CaM binding to re

are not available). Bottom right: chemical shift index (CSI) values of the Ca and C

consecutive positive CSI values (red) represents an a-helical conformation.

(D) Anti-CaM immunoblotting following nickel affinity chromatography (IMAC) fro

(AQP4) or AQP4 F258/262/266A-His6 (AQP4 CBDmut) demonstrates that the F25

(E) Cell-surface biotinylation followed by neutravidin/anti-AQP4 ELISA demonstr

fected HEK293 cells upon F258A/F262A/F266A mutation (AQP4 CBDmut) com

functions of the form 1�e�kt, and t1/2 was calculated as �ln(0.5)/k.

See also Figures S4 and S5.
In an additional MST experiment, the AQP4 and CaM concen-

trations were kept constant, and the concentration of TFP was

varied (Figure S5A). The experiment resulted in a concentra-

tion-response curve (Figure 3B) showing that TFP inhibits the

interaction between AQP4 and CaM in a concentration-depen-

dent manner. The interaction could not be studied at higher

TFP concentrations because of significant attenuation of the

fluorescence signal from CaM-Alexa Fluor 488. The concentra-

tion of TFP needed for 50% inhibition (IC50) was 790 ± 2 mM.

This is higher than the in vitro IC50, likely because of partitioning

of the hydrophobic TFPmolecule into detergent micelles used to

solubilize AQP4.

To examinewhether the interaction between AQP4 andCaM is

affected by AQP4 phosphorylation, S276 of the PKA site was re-

placed with glutamate (AQP4-S276E), and its interaction with

CaM was studied by MST. A binding curve was obtained (Fig-

ure 3A), but with approximately 2-fold higher affinity (Kd = 17 ±

3 mM) than wild-type AQP4 (p = 0.031), suggesting that the inter-

action of AQP4 with CaM is strengthened upon phosphorylation.

The structural consequences of the AQP4-CaM interaction

were investigated using a 1H, 15N-HSQC NMR experiment on

the recombinant AQP4 carboxyl terminus (recAQP4ct, residues

254–323) with CaM at 30�C. Figure 3C provides direct evidence

that CaM interacts with the predicted AQP4 CBD (residues 256–

275; Figure S4A) in the presence of Ca2+. Chemical shift pertur-

bations induced by CaM binding to recAQP4ct were plotted as a

function of the residue number. Chemical shift index values of

the Ca and C0 atoms within recAQPct suggested that, upon

CaM binding, the AQP4 carboxyl terminus becomes more a-he-

lical in character. CaM binding was accompanied by structural

changes that extended beyond the CBD region that harbors

the three phenylalanine residues (FKRRFKEAF; Figure 3C),

including the region where S276 is located. Further downstream,

the carboxyl terminus remained unstructured and was not

involved in CaM binding.

Direct Interaction with CaM Triggers AQP4 Subcellular
Relocalization
AQP4 binds CaM in vitro (Figure 3A), whereas inhibition with TFP

prevented AQP4 relocalization in primary cortical astrocytes

(Figure 1A) and CNS edema in vivo (Figure 2). To confirm a direct

role of AQP4-CaM interaction in AQP4 subcellular relocalization,

we studied CaMbinding andAQP4 translocation in HEK293 cells

transfected with AQP4 wild-type or CBD mutants (F258/262/

266A, F258A, F262A, and F266A). HEK293 cells were used

rather than astrocytes to avoid mixed endogenous/exogenous
arboxyl terminus of AQP4 (recAQP4ct; residues 254–323) with CaM at 30�C.
13C, 15N-labeled recAQP4ct with 0 (black) and 2 (green) molar equivalents of

cAQP4ct were plotted as a function of the residue number (X indicates that data
0 atoms of recAQPct. The sequence of the CBD is underlined. The region with

m 1% Triton X-100 lysates (input) of HEK293 cells transfected with AQP4-His6
8A/F262A/F266A mutation abrogates AQP4-CaM binding.

ates a reduced rate of AQP4 plasma membrane accumulation in AQP4-trans-

pared with the wild-type control (AQP-WT). Normalized data were fitted to
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AQP4 tetramers; the molecular mechanism of AQP4 transloca-

tion is conserved between HEK293 and primary astrocytes

(Kitchen et al., 2015). In agreement with our in vitro findings (Fig-

ure 3A), wild-type AQP4 bound CaM in HEK293 cells whereas

AQP4-F258/262/266A did not (Figure 3D). Figure 3E shows a

reduced rate of AQP4 plasma membrane accumulation in

AQP4-transfected HEK293 cells upon F258/262/266A mutation

(AQP4 CBDmut; t1/2 = 5.6 min) compared with the wild-type con-

trol (AQP WT; t1/2 = 0.9 min). In contrast, hypotonicity triggered

AQP4 relocalization to the plasma membrane for all of the single

mutants (F258A, F262A, and F266A) as for WT AQP4 (Fig-

ure S4G). These results demonstrate that the AQP4-CaM inter-

action drives rapid AQP4 subcellular relocalization.

Attenuation of CNS Edema by Targeted Inhibition of
AQP4 Improves Electrophysiological, Sensory, and
Locomotor Function
Compound action potentials (CAPs) were recorded across the

lesion site as a measure of neuronal signal conduction following

DC crush injury with or without treatment (Figures 4A and S5C;

Table S1). The negative (or repolarization) CAP trace across

the DC lesion site (at T8) was ablated after DC crush injury (Almu-

tiri et al., 2018; Hains et al., 2004; Lo et al., 2003) but was signif-

icantly restored following treatment with the CaM inhibitor TFP or

the PKA inhibitor H89 (Figure 4A). The PKC inhibitor Gö 6983 had

no effect on the ablated negative CAP trace, which was similar to

that of injured, untreated rats (DC+vehicle; Figure 4A). The CAP

area (Figure 4B) and the mean CAP amplitude (Figure 4C) were

also significantly improved following treatment with TFP or H89

but not with Gö 6983. The mean CAP areas 6 weeks after injury

in DC+CaMi- and DC+PKAi-treated rats were 45.5% ± 0.2% and

52.5% ± 0.7% of that observed for control animals (sham),

respectively. Overall, treatment with TFP or H89 reduced

injury-induced deficits.

We determined whether these electrophysiological improve-

ments translated into improvements in sensory and locomotor

function in treated rats. To assess sensory recovery, we used

the tape sensing and removal test, in which a small piece of

sticky tape is adhered to the hind paw; the time taken for rats

to detect and remove the tape is recorded (Almutiri et al.,
Figure 4. Inhibition of AQP4 Expression and Subcellular Relocalization

sory and Locomotor Functional Recovery, BSCB Breakdown, and Spin

(A) Superimposed representative spinal cord compound action potential (CAP) tra

and PKAi-treated (H89) rats compared with vehicle-treated and PKCi-treated (Gö

was 10 mM H89. PKCi treatment was 9.94 mM Gö 6983. In all cases, these were

(B and C) CaMi and PKAi significantly improved the mean CAP area (B) and the

(D) CaMi and PKAi treatment significantly improved the hindpaw tape sensing

recovered completely and were indistinguishable from sham controls.

(E) The mean ratio of slips/total steps in a ladder-crossing test was significantly

2 weeks. For the tape sensing/removal and ladder crossing tests, significant defi

model; ##p < 0.05, generalized linearmixedmodel; calculated as described previo

n = 18 rats/group).

(F) Treatment with 41 mM TFP significantly reduced BSCB breakdown 7 days afte

lesion site (representative images are shown in the left panel). *p < 0.05 (Table S

(G) TFP also suppressed the normal process of cavitation that occurs at lesion site

all depths through the DC (right panel; black-filled dots represent DC+vehicle;

(representative images are shown in the left panel). n = 6 rats/group; 2 independen

DC+vehicle with DC+CaMi by t test (Table S2).

See also Figure S5 and Table S1.
2018; Figure 4D). To assess locomotor function, we used the

horizontal ladder crossing test, in which rats navigate a 0.9-m

ladder with rungs randomly spaced 3.5–5.0 cm apart and the

number of slips/footfalls versus the total number of steps taken

to cross the ladder is recorded (Almutiri et al., 2018; Figure 4E).

These tests are sensitive in discriminating subtle changes in sen-

sory and locomotor function after DC crush injury (Almutiri et al.,

2018; Fagoe et al., 2016).

The mean sensing and removal time in injured (DC+vehicle)

animals increased from 25 s at baseline to 78 s at 2 dpi (Fig-

ure 4D). In sham animals, the mean sensing and removal time

was 15–20 s throughout the 6-week assessment period,

whereas after injury (DC+vehicle), a slight improvement was

observed throughout the time period. However, significant defi-

cits remained at 6 weeks, with animals taking an average of 35 s

to sense and remove the tape (Figure 4D). In rats treated with

TFP (DC+CaMi) or H89 (DC+PKAi), significantly reduced sensing

and removal times were observed within 1 week after injury, and

these rats were indistinguishable from control animals (sham)

3 weeks post-injury (Figure 4D). No improvements in tape

sensing and removal times were observed in animals receiving

the PKC inhibitor Gö 6983 (DC+PKC inhibition [PKCi]); responses

were similar to injured, untreated rats (DC+vehicle). Similarly,

there was a significant deficit in ladder-crossing performance

in injured, untreated rats (DC+vehicle) and rats treated with the

PKC inhibitor Gö 6983, which remained throughout the 6-week

assessment period (Figure 4E). In rats treated with TFP or H89

(DC+CaMi or DC+PKAi), significant improvements in ladder-

crossing performance were observed at 2 dpi, with animals

being indistinguishable from control (sham) animals by 2 weeks

after injury. Limiting DC crush injury-induced CNS edema with

TFP or H89 restored sensory and locomotor function in adult

rats, with their ability to walk returning to pre-injury levels.

TFP Reduces BSCB Breakdown and Cavity Size 6Weeks
after Injury
We evaluatedwhether TFP treatment affected BSCB breakdown

and lesion cavity size, which occur in humans and adult rats

after DC crush injury (Surey et al., 2014). BSCB integrity

is commonly assessed by immunohistochemically detecting
after Cytotoxic Edema In Vivo Improves Electrophysiological, Sen-

al Cord Cavitation

ces demonstrating the significant functional improvement in CaMi-treated (TFP)

6983) rats following DC crush. CaMi treatment was 41 mM TFP. PKAi treatment

injected directly into the lesion site at a volume of 2.5 mL.

mean CAP amplitude (C).

and removal time, and within 2 weeks, CaMi-treated and PKAi-treated rats

improved after CaMi and PKAi treatment, returning to sham control levels by

cits remained in vehicle-treated and PKCi-treated rats. #p < 0.05, linear mixed

usly (Fagoe et al., 2016; Table S2; n = 6 rats/group; 3 independent repeats; total

r DC crush (right panel), as determined by albumin staining (green) around the

2) by ANOVA followed by t test with Bonferroni correction.

s after DC crush, significantly reducing the cavity area 6weeks after DC crush at

white dots represent DC+CaMi), as determined by laminin staining (brown)

t repeats (total n = 12 rats/group); p = 4.03 10�10, comparing lesion volume in
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albumin extravasation into the spinal cord parenchyma after

injury (Cohen et al., 2009). Albumin immunohistochemistry and

subsequent quantification showed that the large area of BSCB

breakdown in injured, untreated animals (DC+vehicle) was

significantly reduced (4.0-fold) in TFP-treated rats (DC+CaMi;

Figure 4F). This was accompanied by a 4.0-fold reduction in

lesion cavity size (p = 4.0 3 10�10 versus DC+vehicle) at all

depths through the lesion site (Figure 4G). These results demon-

strate that TFP suppresses BSCB breakdown and reduces

lesion cavity size, both of which are likely to contribute to

the improvements in sensory and locomotor function in TFP-

treated rats.

DISCUSSION

CNS edema is caused by traumatic injuries, infection, tumor

growth, and stroke (Jha et al., 2019; Liang et al., 2007). Traumatic

injuries are a leading cause of psychiatric disorders, substance

abuse, attempted suicide, disability, and early death in adults un-

der 45 years of age (Fazel et al., 2014). The biggest increase in

patient numbers is currently in those older than 60 years (so-

called ‘‘silver trauma’’). In the United States, this silent epidemic

affects more than 1.7 million individuals annually. Depression,

suicidal behavior, and an increased risk of neurodegenerative

conditions such as Alzheimer’s disease and Parkinson’s disease

are known outcomes of traumatic CNS injury in patients of any

age (Chen et al., 2014; Zlokovic, 2011).

Although industry has pursued the development of specific

drugs that halt CNS edema progression, all have failed in phase

III clinical trials; two recent trials showed that progesterone had

no effect on neurological outcome following TBI (Stein, 2015).

Notably, few strategies have focused on the primary cause of

CNS edema, which is dysregulated flow of water into cells. Cur-

rent treatment approaches are therefore limited by an absence

of pharmacological interventions and a reliance on alleviating

the symptoms of edema and not the causes, using therapies

introduced more than 80 years ago (Manley et al., 2000).

AQPs play an essential role in promoting short-term suscepti-

bility to the pathological changes in volume that enhance CNS

edema formation; consequently, they are established as drug

targets (Verkman et al., 2014). All previous strategies to identify

AQP inhibitors have focused on blocking the pore of the AQP

channel. Based on this approach, pharmacological inhibition of

AQP4 by AER-270 has been suggested to cause a reduction in

CNS edema, and AER-271, a pro-drug of AER-270, is the subject

of phase I safety trial NCT03804476 in healthy volunteers. How-

ever, although 70% maximal inhibition of rat AQP4 and 20%

maximal inhibition of mouse and human AQP4 have been re-

ported in water transport assays, AER-270 had the same effect

on water content in rat and mouse stroke models, suggesting

that the effect is not AQP4 dependent (Farr et al., 2019). Because

AER-270 is a known nuclear factor kB (NF-kB) inhibitor, and

NF-kB inhibition can reduce CNS water content (Li et al.,

2016), it may instead be acting through this modality.

We show a direct mechanistic relationship between inhibition

of AQP4 function and a reduction in CNS edema. We present an

in vivo demonstration that targeting the subcellular localization

of a membrane channel protein, rather than targeting its activity
794 Cell 181, 784–799, May 14, 2020
directly, is a viable therapeutic strategy. Our focus on targeting

a fundamental cellular process, rather than trying to block a

pore, provides a broadly applicable framework for future drug

development. Regulation by vesicular trafficking is a common

biological mechanism controlling the function of many mem-

brane protein families (Offringa and Huang, 2013). It is well-

characterized for AQP2 in the renal collecting duct in response

to the antidiuretic hormone vasopressin (van Balkom et al.,

2002), but current dogma fails to recognize the central role of

translocation as a regulatory mechanism for the AQP family as

a whole (especially in response to non-hormonal, physiological

triggers) and its implications for cell and tissue homeostasis.

Here we present pathophysiologically relevant AQP subcellular

relocalization and establish it as a regulatory mechanism. Using

a rat model of CNS edema, we show that CaMi or PKAi effec-

tively limits spinal cord water influx 3 dpi and completely abol-

ishes spinal cord edema by 7 dpi (Figure 2; Figure S2 shows

the same effect after brain edema). Total AQP4 expression

and localization at the BSCB increased following DC crush

injury, and both were blocked by inhibition of CaM or PKA (Fig-

ure 2). We also demonstrate the central roles of CaM and PKA in

increased cell-surface expression of AQP4 and AQP4 subcellu-

lar relocalization to the BSCB following injury (Figures 1 and 2).

Ablation of edema and AQP4 BSCB relocalization in vivo are

accompanied by complete functional recovery by 2 weeks

post-injury (Figure 4). Although CaM has multiple roles in our

proposed mechanism, we demonstrate a direct interaction be-

tween CaM and AQP4 that is necessary for AQP4 subcellular re-

localization (Figure 3).

The anti-psychotic effects of TFP are attributed to its anti-

dopaminergic and anti-adrenergic actions (Qin et al., 2009).

Dopamine decreases AQP4 expression in cultured astrocytes

(Küppers et al., 2008); if the anti-dopaminergic effects of TFP

were dominant in our experiments, then we would expect

increased AQP4 expression following TFP treatment and wors-

ening of edema, as seen when the selective D2 antagonist

L-741,626 increased spinal cord water content above the

DC+vehicle control 3 dpi (Figure 2B). The fact that we observed

the opposite with TFP suggests that the CaMi effects of TFP

dominate any anti-dopaminergic effects in CNS edema. This in-

crease in edema with an anti-dopaminergic inhibitor along with

the increased edema following PKCi is particularly interesting,

given that, in the cultured pig kidney cell line LLC-PK1, dopamine

signaling via PKC reduced AQP4-dependent plasma membrane

water permeability (Zelenina et al., 2002); our data suggest that

this pathway may also be active in astrocytes. Anti-adrenergics

are associated with delayed onset of edema after intracerebral

hemorrhage in humans but have no effect on patient outcome

(Sansing et al., 2011). We see prevention of edema following

TFP treatment (rather than just delayed onset) and a strong effect

on outcome, whereas the a1 antagonist terazosin had no effect

on spinal cord water content following DC crush injury. This sug-

gests that the primary modality of TFP in our model is its CaM

antagonism (Tanokura and Yamada, 1986). Previously published

data using a rat model of stroke demonstrate that treatment with

TFP prevents onset of brain edema, which has been proposed to

be via CaMi stabilizing the integrity of the BBB. We suggest

that the beneficial effects are due to a reduction in AQP4



Figure 5. AQP4 Subcellular Relocalization

Drives Cytotoxic Edema: The Proposed

Roles of CaM and PKA
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Following hypoxic insult, failure in Na+, K+, and Cl�

pumps in the plasma membrane leads to osmotic

dysregulation. The mechanosensitive TRPV4

channel facilitates an influx of Ca2+ ions into

astrocytes, which activates CaM. CaM interacts

with an adenylyl cyclase, activating cyclic AMP

(cAMP)-dependent PKA, which phosphorylates

AQP4 at Ser276, causing it to relocalize to the

plasma membrane. CaM interacts directly with

AQP4; this regulatory interaction drives AQP4

subcellular relocalization (created with https://

biorender.com).
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peri-endothelial localization (Figure 2), which was not measured

in that study (Sato et al., 2003).

Our data show that CaM has at least two distinct roles in

translocation of AQP4 in astrocytes. First, activation of CaM

following opening of TRPV4 (which has been suggested to

interact with AQP4; Benfenati et al., 2011; Jo et al., 2015) leads

to activation of an adenylyl cyclase, production of cAMP, and

activation of PKA (Figure 1). Second, CaM binds directly to

AQP4 (Figure 3), and the strength of this binding is modulated

by phosphorylation of AQP4 at a single PKA consensus site,

S276. We have shown previously (Kitchen et al., 2015) that hy-

potonicity-mediated AQP4 relocalization is blocked by several

PKA inhibitors (hypericin, H-89, and myr-PKI, in increasing or-

der of specificity), that a non-phosphorylatable AQP4 mutant

(S276A) does not relocalize, and that a phospho-mimetic

mutation (S276D) removes the PKA dependence of the relocal-

ization. Furthermore, multiple phosphoproteomics datasets

(retrieved via dbPAF; Ullah et al., 2016; available at http://

dbpaf.biocuckoo.org) demonstrate that AQP4-S276 is phos-

phorylated in human, rat, and mouse tissue samples. Together,

these data suggest a model of AQP4 translocation whereby an

influx of calcium ions activates CaM; this activates PKA via a

CaM-activated adenylyl cyclase (e.g., AC1, AC3, or AC8; all

three are expressed in rat and mouse brain; Sanabra and Men-

god, 2011). PKA phosphorylates AQP4, and CaM binds to

AQP4 to facilitate its translocation to the plasma membrane

(Figure 5). Our NMR data suggest that this binding causes a

conformational change in the AQP4 carboxyl terminus, which

becomes more structured, with increased a-helical content

(Figure 3C). An increased affinity toward the AQP4-S276E

phospho-mimetic mutant suggests that CaM preferentially

binds phosphorylated AQP4, with a 2-fold decrease in Kd.

Although this increase in affinity is modest, it is possible that
the additional charge found on an actual

phosphoserine residue compared with

the mimetic glutamate residue leads to

a more enhanced difference in vivo.

CaM and PKA also appear to be

involved in the post-injury increase in

AQP4 protein expression. A previous
study using a mouse TBI model found that direct activation of

the Aqp4 gene by the transcription factor Foxo3a is responsible

for increased AQP4 expression (Kapoor et al., 2013); our data

suggest that this response is conserved in rats (Figures 2 and

S3). We demonstrate that astrocyte swelling initiates Foxo3a nu-

clear translocation via PKA-mediated inactivation of Akt. The Akt

agonist SC79 has been shown recently to have a neuroprotec-

tive effect in a ratmiddle cerebral artery occlusion (MCAO)model

of stroke (Luan et al., 2018). This protective effect was attributed

to inhibition of apoptosis; our data suggest that an alternative

interpretation of these findings is inhibition of Aqp4 upregulation

in astrocytes following MCAO. Previous studies showing in-

creases in AQP4 surface localization used a model of astrocytic

cell swelling based on hypotonic treatment of astrocytes

(Kitchen et al., 2015; Salman et al., 2017a). Although this creates

a tonicity gradient similar to that seen during cytotoxic edema

formation after stroke or traumatic injury, physiologically, astro-

cytes actually experience an intracellular increase in tonicity rela-

tive to the extracellular fluid caused by hypoxia-driven effects on

ion channels and transporters (Lafrenaye and Simard, 2019). Our

data in Figures 1A–1D provide evidence of acute hypoxia-medi-

ated AQP4 translocation and are the basis of a simple and easy-

to-implement in vitro model to study CNS injury and edema,

which reproduces the AQP4 translocation response observed

in vivo.

Following injury, increased AQP4 immunoreactivity (Fig-

ure 2H) might be influenced by astrogliosis. Hypertrophy and

migration of reactive astrocytes (which have increased AQP4

expression; Vizuete et al., 1999) into the injury epicenter aid

tissue repair and cause glial scarring. Astrocyte migration

depends on AQP4 at the leading edge (Saadoun et al., 2005);

inhibiting AQP4 relocalization may reduce the number of infil-

trating reactive astrocytes. An additional benefit of inhibiting
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AQP4 relocalization may therefore be a reduction in the number

of invading, reactive astrocytes and in the extent of glial

scarring. This may facilitate axon sprouting and could account

for the improved electrophysiological outcomes reported in

our study.

TFP is licensed as a drug for human use (NICE, 2019) that we

administered in rats at a dose approximately equivalent to its

licensed dose in humans. This treatment resulted in functional

recovery 2 weeks after DC crush injury; animals treated with

TFP could walk normally after 2 weeks, whereas untreated ani-

mals had still not recovered 6 weeks post-injury. The future

socio-economic impact of this work is enormous; our data pro-

vide a molecular mechanistic understanding of water channel

regulation (Figure 5) that has the potential to define a therapeutic

framework for the tens of millions of CNS edema patients annu-

ally, worldwide, for whom there is still no pharmacological

intervention.
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d QUANTIFICATION AND STATISTICAL ANALYSIS

B Analysis of functional tests

B Analysis of tape sensing removal test
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-AQP4 antibody Abcam Cat#:ab46182; RRID: AB_955676

Mouse monoclonal anti-AQP4 antibody Abcam Cat#:ab9512; RRID: AB_307299

Rabbit anti-AQP4 antibody Abcam Cat#:ab128906; RRID: AB_11143780

Chicken anti-mouse IgG-HRP antibody Santa Cruz Cat#:sc-2954; RRID: AB_639239

Donkey anti-rabbit IgG-HRP antibody Santa Cruz Cat#:sc-2313; RRID: AB_641181

Rabbit anti-Foxo3 IgG antibody Abcam Cat#:ab23683; RRID: AB_732424

Mouse anti-RECA-1 antibody Abcam Cat#:ab9774; RRID: AB_296613

Goat anti-rabbit IgG FITC antibody Merck Cat#:F0382; RRID: AB_259384

Goat anti-chicken IgY Alexafluor 488 antibody Abcam Cat#:ab150169; RRID: AB_2636803

Goat anti-mouse IgG Alexafluor 633 antibody ThermoFisher Cat#:A-21050; RRID: AB_141431

Chicken anti-albumin antibody Abcam Cat#:ab106582; RRID: AB_10888110

Rabbit polyclonal anti-laminin antibody Sigma Cat#:L9393; RRID: AB_477163

Mouse anti b-actin antibody Sigma-Aldrich Cat#:A2228; RRID: AB_476697

Rabbit anti-calmodulin antibody Cell Signaling Cat#:D1F7J; RRID: AB_2799090

Rabbit anti-lamin B1 antibody Cell Signaling Cat#:D4Q4Z; RRID: AB_2650517

Rabbit anti-alpha tubulin antibody Cell Signaling Cat#:2144; RRID: AB_2210548

Mouse anti-His tag antibody Takara Bio Cat#:631212; RRID: AB_2721905

Bacterial and Virus Strains

E.coli strain DH5a Thermo Fisher 18265017

One Shot BL21 (DE3) E. coli Thermofisher C600003

One Shot TOP10 E. coli Thermofisher C404010

Chemicals, Peptides, and Recombinant Proteins

Trifluoperazine dihydrochloride Sigma-Aldrich T8516

W-7 hydrochloride Sigma-Aldrich 681629

L-741,626 Sigma-Aldrich L135

Terazosin hydrochloride Sigma-Aldrich T4680

H89 Tocris 2910

Gö6983 Tocris 2285/1

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) Sigma 42773

2-Oleoyl-1-palmitoyl-sn-glycero-3-phospho-rac-(1-glycerol)

(POPG)

Sigma 76559

Cholesterol Sigma C8667

5(6)-Carboxyfluorescein Sigma 21877

Alexa Fluor 488 maleimide ThermoFisher A10254

NH4Cl (
15N, 99%) Cambridge Isotopes NLM-467-5; CAS# 39466-62-1

D-glucose (1-13C, 98-99%) Cambridge Isotopes CLM-1396-5; CAS# 110187-42-3

Glutathione Sepharose 4B GE Healthcare 17-075601

PreScission protease GE Healthcare 27-084301

Phos-Tag acrylamide NARD Institute AAL-107

2,2-dimethyl-2-silapentane-5-sulfonate Cambridge Isotopes DLM-32-10; CAS# 2039-96-5

D2O (D, 99.96%) Cambridge Isotopes DLM-6-1000; CAS# 7789-20-0

Amicon Ultra-15 centrifugal filter unit Millipore-Sigma UFC900308

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

M9 minimal media salts Millipore-Sigma M9956-500ML

Recombinant human AQP4 (UniProtID P55087) Öberg et al., 2011 N/A

Recombinant human AQP4- D256 This paper N/A

Recombinant human AQP4-F258/262/268A This paper N/A

Recombinant human AQP4-S276E This paper N/A

Recombinant GST-recAQP4ct (containing human AQP4 residues

254-323)

This paper N/A

Recombinant human calmodulin S17C (UniProtID P0DP23) O’Connell et al., 2010 N/A

Recombinant chicken calmodulin Nakashima et al., 1996 N/A

Bovine heart cAMP-dependent protein kinase (PKAc) Hofmann et al., 1975 N/A

EZ-Link Sulfo-NHS-SS-biotin, cell impermeable biotinylation

reagent

ThermoFisher 21331

Calcein-AM ThermoFisher C3100MP

Critical Commercial Assays

RNeasy Plus Mini Kit QIAGEN 74134

QIAquick PCR Purification Kit QIAGEN 28104

Pierce BCA Protein Assay Kit ThermoFisher 23225

ELISA-based assay kit for PKA activity Abcam ab139435

ELISA-based assay kit for Akt activity Abcam ab139436

Experimental Models: Cell Lines

Rat primary cortical astrocytes GIBCO N7745100

Human cerebral cortex primary astrocytes Sciencell 1800

HEK293 ATCC CRL-1573

Experimental Models: Organisms/Strains

Rats/Sprague-Dawley Charles River UK CD IGS

Pichia pastoris strain X-33 Thermo Fisher C18000

Oligonucleotides

Primer recAQP4ct: NT forward 50-GCGCGGATCCCCAGATGT

TGAATTCAAACG

This study N/A

Primer recAQP4ct: NT reverse 50-CCATCTGGAGAGGTATT

GTCTTCA

This study N/A

Primer recAQP4ct: CT forward 50-CAATCTGGAGAGGTATT

GTCTTCAGTATAAGCGGCCGCGCGC

This study N/A

Primer recAQP4ct: CT reverse 50- GCGCGCGGCCGCTTAT

ACTGAAGACAATACCTCTCCAGATTG

This study N/A

Recombinant DNA

pGFP-C-shLenti-AQP4 Origene Cat no. TL709442, Locus ID: 25293

pGFP-C-shLenti-Control Origene Cat no. TR30021

pDEST47-hAQP4-His6 This study N/A

pDEST47-hAQP4-F258A-His6 This study N/A

pDEST47-hAQP4-F262A-His6 This study N/A

pDEST47-hAQP4-F266A-His6 This study N/A

pDEST47-hAQP4-F258/262/266A-His6 This study N/A

pGEX-6P1 GE Healthcare 27-1542-01

Software and Algorithms

NMRPipe NIST IBBR https://www.ibbr.umd.edu/nmrpipe/

NMRViewJ NMRFx http://nmrfx.org/nmrfx/nmrviewj
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to andwill be fulfilled by the Lead Contact, RoslynM.

Bill (r.m.bill@aston.ac.uk). All unique/stable reagents generated in this study are available from the Lead Contact with a completed

Materials Transfer Agreement.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture
Rat primary cortical astrocytes (Invitrogen, Poole, UK) were cultured routinely in DMEM supplemented with 20% (v/v) fetal bovine

serum (Invitrogen), 1% penicillin/streptomycin and 1% glutamine in humidified 5% (v/v) CO2 in air at 37�C. Primary human cortical

astrocytes (Sciencell, Cat. No. 1800) were plated on 75 cm2 culture flasks (Thermo Scientific Nunc Cell Culture Treated EasYFlasks)

and cultured routinely in Astrocyte Medium (Sciencell; 1801) containing 1% fetal bovine serum (FBS, Sciencell Cat. No. 0010), 5 mL

astrocyte growth supplement (AGS, Sciencell Cat. No. 1852) and 5mL penicillin/streptomycin solution (P/S, Sciencell Cat. No. 0503).

The cells were then incubated either in humidified 5% (v/v) CO2 in air at 37�C for the normoxia work or in a controlled hypoxic atmo-

sphere using a Coylab Hypoxia Chamber Glove Box, with a humidified airtight apparatus with inflow and outflow valves (into which a

mixture of 90% N2, 5% O2 and 5% CO2 was flushed) for the hypoxia-related experiments. HEK293 cells were cultured routinely in

DMEM supplemented with 10% (v/v) fetal bovine serum (Invitrogen). HEK293 cells were transiently transfected when approximately

70% confluent, using 12 mg polyethyleneimine (branched, average Mr = 25,000, Sigma-Aldrich, 408727) and 2 mg plasmid DNA in

35 mm dishes.

DC crush injury in adult rats
All animal experiments were licensed by the UKHomeOffice and experimental protocols approved by the University of Birmingham’s

Animal Welfare and Ethical Review Board. All animal surgeries were carried out in strict accordance with the guidelines of the UK

Animals Scientific Procedures Act, 1986 and the Revised European Directive 1010/63/EU and conformed to the guidelines and

recommendation of the use of animals by the Federation of the European Laboratory Animal Science Associations (FELASA). The

ARRIVE guidelines for reporting of in vivo experiments were followed. Adult, female Sprague-Dawley rats weighing 170-220 g

(Charles River, Margate, UK) were randomly assigned to each experimental group with the investigators masked to the treatment

conditions. The rats used were 6-8 weeks old at the start of each experiment. Rats were injected subcutaneously with 50 ml bupre-

norphine to provide analgesia prior to surgery and anaesthetized using 5% isoflurane in 1.8 ml/l of O2 with body temperature and

heart rate monitored throughout surgery. To injure the DC axons, a partial T8 laminectomy was performed: the DCwas crushed bilat-

erally using calibrated watchmaker’s forceps (Lagord et al., 2002; Surey et al., 2014). Experiments investigating the effects of inhib-

itors of AQP4 relocalization (or control inhibitors) on CNS edema comprised the following groups: Sham controls (partial laminectomy

but no DC lesion); DC+Vehicle (partial laminectomy followed by T8DC crush + intra-lesional injection of vehicle (PBS); DC+CaMi (par-

tial laminectomy followed by T8 DC crush + intra-lesional injection of 5 mg TFP in 2.5 ml final volume; 41 mM); DC+PKAi (partial lam-

inectomy followed by T8 DC crush + intra-lesional injection of 10 mM H89 (PKAi)); DC+PKCi (partial laminectomy followed by T8 DC

crush + intra-lesional injection of 9.94 mMGö 6983 (PKCi)). Additional inhibitors were CaMi (164mMW-7), A1Ri (53mM terazosin) and

D2Ri (6.6mML-741,626). All inhibitors were injected in a final volume of 2.5 ml. Intra-lesional injectionswere performed using in-house

pulled glass micropipettes (P1000 micropipette puller set to pull micropipettes with an internal tip diameter of 0.5 mm; Sutter Instru-

ments, Novato, CA, USA). The glass micropipettes were loaded with appropriate solutions, attached to the rubber tubing from but-

terfly needles and secured to a 5 mL syringe. Using a dissecting microscope, the tip of the micropipette was inserted into the lesion

site and solutions were pushed through, with air in the syringe, slowly over a 1minute period, with a 20 swait prior to withdrawal of the

micropipette to alleviate backflow. To assess the effect of short hairpin RNA to AQP4 (shAQP4) on edema and behavioral recovery

after DC crush injury, groups comprised DC+shControl (scrambled control driven by a U6 promoter; Cat No. TR30021, Origene,

Rockville, MD, USA) and DC+shAQP4 (U6 promoter + shAQP4; Cat No. TL709442, Origene) were investigated. 2 mg plasmid DNA

was injected directly into the dorsal root ganglion (DRG) using micropipettes as described above, immediately after DC crush injury

(Almutiri et al., 2018). In vivo jetPEI (PEI: Polyplus Transfection, New York, USA) was prepared according to the manufacturer’s in-

structions and 2 mg plasmid DNA was used to transduce DRG neurons (DGRN). Non-viral DRGN transduction is as effective as

AAV but without the need to transduce DRGN 1-2 weeks prior injury to maximize transgene expression (Almutiri et al., 2018). All

rats were housed under standard conditions after surgery along with their cagemates in groups of 4. Animals were allowed to survive

for either 3-28 days for water content analysis or 6 weeks for electrophysiological, behavioral and histological assessments.

Cortical stab injury model in adult rats
A modified 3 mm cortical stab injury, originally described in the mouse, was adapted for adult Sprague-Dawley rats (Allahyari and

Garcia, 2015). Adult, female Sprague-Dawley rats weighing 170-220 g (Charles River, Margate, UK) were randomly assigned to

each experimental group with the investigators masked to the treatment conditions. Briefly, after securing the rat’s head in a stereo-

taxic frame, a small craniotomywas performed. A number 11 bladewas then attached to themanipulator arm of the stereotaxic frame

and lowered precisely 3mm into the brain tissue, 1mm caudal to the coronal suture and 1mm lateral to the sagittal suture and kept in
e3 Cell 181, 784–799.e1–e9, May 14, 2020
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place for 10 s prior to removal. A small piece of gel foamwas then used to soak up any excess blood and fluids. Animals were treated

with intra-lesional injections with pulled glass micropipettes with CaMi (Stab injury+CaMi), PKAi (Stab injury+PKAi) and PKCi (Stab

injury+PKCi) or Vehicle (Stab injury). Untreated (Sham) animals had a craniotomy only. The skull flap was replaced and kept in place

with bone cement. The skin was then closed using absorbable sutures and animals returned to their home cages.

METHOD DETAILS

ELISA
AQP4 protein levels were measured by sandwich ELISA following the manufacturer’s instructions (Abcam) (Salman et al., 2017b). A

96-well plate (Nunc, Wiesbaden, Germany) was coated by overnight incubation at 4�C with 5 mL/well of rabbit polyclonal anti-AQP4

(Abcam, ab46182) diluted 1:500 in carbonate/bicarbonate buffer (pH 9.6). The plate was washed twice with phosphate-buffered sa-

line and 0.05% Tween 20 (PBS-T; pH 7.5). The remaining unsaturated protein-binding sites were blocked with 5% non-fat dry milk in

PBS overnight at 4�C with gentle shaking. Plates were washed twice for 5 min with PBS-T. Proteins were extracted using CelLyticTM

(Sigma, Cat. No. C2978) supplemented with protease inhibitor cocktail (Sigma, Cat. No. P2714, 1:100). Total protein concentration

was determined using PierceTM BCA Protein Assay Kit (ThermoFisher Scientific, Cat. No. 23225) following the manufacturer’s pro-

cedure. 60 mg total protein was added to eachwell and incubated for 120min at 37�C. Plateswerewashed twicewith PBS-T. 100 ml of

1:1000 diluted mouse monoclonal anti-AQP4 antibody (Abcam, ab9512) was added to each well. The plates were covered with ad-

hesive plastic and incubated for 2 h at 37�C and then washed twice for 5 min with PBS-T. 100 mL of horseradish peroxidase (HRP)-

conjugated secondary antibody, chicken anti-mouse (Santa Cruz, sc-2954), diluted 1:5000 in blocking buffer, was added to eachwell

and incubated for 30 min at 37�C. The plates were washed four times with PBS-T, followed by a single wash with PBS. The plates

were incubated with 100 ml /well of RayBioTM TMB One-Step Substrate Reagent (Raybiotech; Cat. No. J120215098), at room tem-

perature for 30minutes, under light-protected conditions. After the color was developed, the reaction was stopped by adding 50 ml of

2 M H2SO4. Absorbance was measured at 450 nm using a Perkin Elmer Wallac 1420 Victor2 microplate reader.

Cell surface biotinylation
Primary human astrocytes were plated in 6 well plates 2 days before each experiment. Cell surface amines were biotinylated using a

cell impermeable amine-reactive biotinylation reagent (EZ-Link Sulfo-NHS-SS-Biotin; ThermoFisher Scientific, Loughborough, UK,

Cat. No. 21331). Cells were exposed to the indicated experimental conditions and then incubated in 1 mL of 0.5 mg/ml biotinylation

reagent in PBS on ice for 30 minutes. Unreacted reagent was quenched in 500 mL 25 mM glycine in PBS per well for 3 3 5 minutes.

Cells were lysed in 250 ml of CelLyticTM (Sigma, Poole, UK, Cat. No. C2978) supplemented with protease inhibitor cocktail (Sigma,

Cat. No. P2714, 1:100). The lysate was centrifuged at 21,000 g at 4�C for 10 minutes to remove insoluble material. Biotinylated pro-

teins were pulled out by incubation in Pierce NeutrAvidin Coated Plates, 96-well (ThermoFisher Scientific; Cat. No. 15129) for 2 hours

at 4�Cwith shaking. Each lysate was loaded in triplicate with the same amount of total cellular protein per lysate measured by Pierce

BCA Protein Assay Kit (ThermoFisher Scientific, Cat. No. 23225). Plates were blocked with 3% w/v BSA in PBS for 1 hour at RT with

shaking. Plateswere incubated on a shaker overnight at 4�Cwith an anti-AQP4 antibody (Abcam, Cambridge, UK, Cat No. ab128906)

diluted 1:500 in 0.05%PBS-Tween. Plates were washed with 0.1%PBS-Tween and incubated at RT for 1 hour with HRP-conjugated

secondary antibody (Santa Cruz, CA, USA, Cat No. sc-2313) diluted 1:2,500 in 0.05% PBS-Tween. Plates were washed with 0.1%

PBS-Tween three times then oncewith PBS and incubatedwith SIGMAFASTOPD (Sigma; Cat No. P9187) for 30minutes, wrapped in

foil. Absorbance was measured at 450 nm using Perkin Elmer Wallac 1420 Victor2 microplate reader.

Calcein fluorescence quenching
Cells were plated into black-walled, clear-bottomed tissue culture treated 96-well plates (Greiner) 48 hours before the experiment.

Cells were loaded with 5 mM calcein-AM in growth medium supplemented with 1 mM probenecid (to inhibit dye leakage) for 90 mi-

nutes. Cells were washed twice with HEPES-buffered growthmedium supplemented with 1mMprobenecid, then coveredwith 75 mL

probenecid-supplemented HEPES-buffered medium. Fluorescence was read on a BioTek synergy HT plate reader with injector sys-

tem. Each well was read continuously (dt = 50ms) for 5 s, followed by injection of 75 mL HEPES-buffered medium containing 400mM

mannitol to give a final concentration of 200 mM and an osmotic gradient of 200 mOsm. Fluorescence was read for a further 50 s.

Normalized fluorescence values were converted to normalized volumes using a Coulter counter generated standard curve. Single-

phase exponential decay functions were fitted and rate constants were taken as proportional to the membrane water permeability.

Analysis of kinase activity
ELISA-based assay kits (Abcam, Cat No. ab139435, ab139436) were used to measure PKA and Akt activity in cell lysates according

to the manufacturer’s instructions. Cells were lysed in a non-denaturing, phosphatase inhibiting lysis buffer for 45 minutes, centri-

fuged at 21,000 g for 10 minutes to remove insoluble material and protein was quantified using detergent-insensitive Bradford assay

(Expedeon, San Diego, CA, USA). Lysates were diluted in the kit dilution buffer as required to load 2,000 ng of total cellular protein in

30 mL per well of the assay plate. For in vitro phosphorylation, protein kinase A was purified from bovine heart (Hofmann et al., 1975)

using DEAE-cellulose chromatography, ammonium sulfate precipitation and size-exclusion chromatography.
Cell 181, 784–799.e1–e9, May 14, 2020 e4
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Expression and purification of recombinant human AQP4 constructs
Full-length AQP4 containing a carboxy-terminal His6-tag was expressed in Pichia pastoris (Öberg et al., 2011). Constructs containing

the phospho-mimetic mutation (AQP4-S276E), a stop codon after residue 256 (AQP4-D256) and the phenylalanine triple mutant

(AQP4-F258/262/266A) were generated using a megaprimer mutagenesis protocol (Tseng et al., 2008). Cells were grown in a 3 L

fermentor (Belach Bioteknik, Stockholm, Sweden) and protein expression was induced using methanol for 24-36 hours. Routinely,

50-100 g of cells were suspended in 200mL cell resuspension buffer (50 mMpotassium phosphate buffer pH 7.5, 5% glycerol, 2 mM

EDTA) and were lysed by 12 3 30 s bead beating cycles, with 30 s on ice between each cycle. The cell lysate was centrifuged at

10,000 x g for 40 minutes to remove unbroken cells and cell debris, after which membranes were isolated from the supernatant

by ultracentrifugation at 100,000 x g for 1 hour. The membranes were homogenized and washed twice, first using wash buffer

(5 mM Tris-HCl pH 9.5, 4M urea, 2 mM EDTA) followed by membrane buffer (20 mM Tris-HCl pH 8, 20 mM NaCl, 10% glycerol) sup-

plemented with 1 mMPMSF and 2mMEDTA. Themembranes were finally suspended in membrane buffer to a final concentration of

0.5 g/ml and stored at �80�C until further use. Membranes were diluted 1:1 with solubilization buffer (20 mM Tris-HCl pH 8, 300 mM

NaCl, 8% octyl-b-D-glucoside (OG, Anatrace, Maumee, OH, USA) supplemented with one cOmpleteTM EDTA-free protease inhibitor

cocktail tablet (Roche, Welwyn Garden City, UK) with continuous stirring for 2.5 hours at 4�C. The final solubilization volume and

detergent concentration were 50 mL and 4%, respectively. Unsolubilized material was pelleted at 100,000 x g for 30 min and the

supernatant was loaded on Ni-affinity column (HisTrap, GE Healthcare, Herefordshire, UK) equilibrated with AQP4 buffer (20 mM

Tris-HCl pH 8, 300mMNaCl, 10% glycerol, 1%OG) supplemented with 10mM imidazole. After washing with AQP4 buffer containing

75 mM imidazole, AQP4 was eluted using 300 mM imidazole. Fractions were analyzed using SDS-PAGE, pooled and concentrated

using a Vivaspin concentrator with 50 kDa cut-off. The concentrated sample was loaded on a Superdex 200 10/300 GL (GE Health-

care, Herefordshire, UK) equilibrated with the AQP4 buffer. After SDS-PAGE analysis, relevant fractions were pooled and concen-

trated as above.

A fragment of human AQP4 encoding the cytosolic carboxy-terminal tail (residues 254-323; NP_001641.1) was amplified by stan-

dard PCR techniques and sub-cloned into the pGEX-6P1 vector. The construct was verified by DNA sequencing. The GST-AQP4ct

fusion protein (GST-recAQP4ct) was produced in E. coli strain BL21(DE3) in LB medium. GST-recAQP4ct was isolated using gluta-

thione-Sepharose 4B resin. The phosphorylation of GST-recAQP4ct was analyzed by phosphate-binding-tag SDS-PAGE. Samples

were resolved in SDS gels containing 12% acrylamide, 40 mM Phos-tag reagent (NARD Chemicals; Kobe City, Japan) and 0.1 mM

MnCl2 at 20 mA/gel. Separated proteins were visualized with Coomassie Brilliant-Blue staining.

Proteoliposome shrinking assay
To evaluate whether purified, recombinant AQP4 is functionally active, we characterized water transport using a proteoliposome

assay. Following purification, AQP4 was reconstituted in liposomes with a lipid composition of 1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphocholine (POPC), 2-oleoyl-1-palmitoyl-sn-glycero-3-phospho-rac-(1-glycerol) (POPG) and cholesterol in a 2:1:2 ratio

(Tong et al., 2012). Specifically, POPC, POPG and cholesterol (Sigma) were mixed in a 2:1:2 ratio and dissolved in chloroform in a

glass vial to a concentration of 25 mg/ml followed by dehydration using N2 forming a thin lipid bilayer. Upon dehydration, the lipid

film was kept under a light N2 stream for 2 hours to achieve complete chloroform removal. The lipid film was rehydrated with recon-

stitution buffer (20mM HEPES pH 8.0, 200 mM NaCl) with added fluorophore, 10 mM (5)6-carboxyfluorescein (Sigma), to a concen-

tration of 20 mg/ml lipids. The lipid suspension was sonicated in a sonication bath for 33 15min, with a 5 min break between cycles.

The lipids were frozen in liquid nitrogen and thawed three times. When thawed for the third time, the lipids were passed through a

100 nmpolycarbonate filter 11 times, using an extruder (Mini-Extruder, Avanti). The lipids were diluted to 4mgml-1 with reconstitution

buffer containing 25% glycerol and 1% OG, after which 0.02% Triton X-100 was added to the sample to a final concentration of

0.02%. AQP4 was added to the lipid suspension using a lipid-to-protein-ratio (LPR) of 200 and each sample was dialyzed overnight

at 4�C in reconstitution buffer. The samples were centrifuged at 57,000 3 g (1.5 hours) and the resulting pellets were suspended in

reconstitution buffer.

The shrinkage assay was performed on an SX-20 Stopped-Flow Spectrometer system (Applied Photophysics), where the lipo-

somes were mixed with reaction buffer with 200 mOsm sucrose. Data were collected at 495 nm at a 90� angle for 2 s. All data

were collected at 18�C. Empty liposomes were used as a negative control. The data were analyzed and plotted in Pro-Data Viewer

(Applied Photosystems). Data for each sample were the average of 10 readings. Data were fitted using a double exponential fit. The

smallest rate constant is unaffected by changes in AQP4 reconstitution efficiency, while the larger rate constant corresponds lipo-

somes containing AQP4. This rate constant (k) was used to calculate the osmotic water permeability, Pf (cm/s) = k / ((S/V0)*Vw*Cout),

where (S/V0) is the initial surface area to volume ratio of the liposome, VW is the partial molar volume of water (18 cm3 mol-1), and Cout

is the external osmolality (0.1 Osm). The reconstitution experiments were performed three times to achieve data reproducibility and

statistically evaluated using a t test (p < 0.05). The single-channel unit permeabilities (Pu) were calculated using these Pf values

divided by the AQP4 density per unit surface area (SuD) (Werten et al., 2001); Pu = Pf/SuD. SuD was calculated using the theoretical

area per lipid molecule value (Am; 0.47 nm2) (Tong et al., 2012) and an LPR of 200.

Labeling of human CaM
Human CaM carrying a S17C mutation was a gift from Professor Sara Linse, Lund University (O’Connell et al., 2010). As the protein

lacks cysteines, the S17C mutation introduces a unique site for labeling on the opposite side of the binding cleft that is not likely to
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interfere with binding. CaM was labeled with Alexa Fluor 488 in a 2:1 Alexa:CaM ratio in 20 mM phosphate buffer pH 8 at room tem-

perature (3 hours).

Microscale thermophoresis
MST experiments were carried out in premium coated capillaries on a Monolith NT.115 (Nanotemper Technologies, Munich, Ger-

many). All experiments were carried out in triplicate. AQP4 constructs were diluted in a 2:1 dilution series with 20 mM Tris pH 8,

300 mM NaCl, 5 mM CaCl2 1% OG and mixed 1:1 with a solution containing 32 or 50 nM CaM-Alexa Fluor 488. For experiments

with EDTA and TFP, these were added to the buffer at concentrations of 10 mM and 2 mM respectively, resulting in a final concen-

tration in the capillaries of 5 and 1 mM. For determining the affinity with wild-type AQP4, AQP4-S256E, AQP4-DS256 or AQP4-F258/

262/266A, labeled CaM was mixed with unlabelled CaM to a final total CaM concentration of 17 mM. The mix between labeled and

unlabelled CaMwas important in order to avoid loss of fluorescence due to CaM-Alexa Fluor 488 sticking to the capillaries. For each

AQP4 construct, three individual dilution series were prepared, each containing 12-16 samples with AQP4 concentrations ranging

between 0.4 and 160 mM (wild-type AQP4), 1.0 and 200 mM (EDTA and TFP), 0.52 and 230 mM (AQP4-S276E and DS256) and 1.5

and 130 mM (AQP4-F258/262/266A). The samples were transferred to capillaries and MST data were obtained using MST and

LED power settings of 20% and 10% (wild-type AQP4), 20% and 20% (EDTA, TFP and AQP4-F258/262/266A) and 40% and

10% (AQP4-S276E and DS256). Fnorm was defined as the Fo/F1 ratio of normalized fluorescence where Fo and F1 correspond to

fluorescence before and after heating, respectively (Figure S2). The time point taken as F1 was determined by the M.O. Affinity Anal-

ysis software (Nanotemper Technologies) as the time interval that gives the best signal to noise ratio. For studying the concentration-

dependence of the TFP-inhibition, three separate two-fold dilution series of TFP (0.3-3 mM) were made, resulting in 12 samples each

that were mixed 1:1 with a solution containing 400 mM full-length AQP4 and 64 nMCaM- AlexaFluor 488. MST-data were obtained as

above using an MST and LED power setting of 80% and 20%, respectively.

Microscale thermophoresis data analysis
Raw data treatment was done in MO. control software (NanoTemper Technologies) and curve fitting was done using Origin (Origin-

Lab, Northampton, MA, USA). The binding curve data could be described by a one-to-one binding model:

y = S1+ ðS2�S1Þ
�

LFree

LFree +KD

�

LFree = 0:5ðLTot �PTot �KDÞ+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25ðKD +PTot � LTotÞ2 + LTotKD

q

where S1 and S2 are the signals of the unbound and bound form
 respectively. LFree is the free monomeric [AQP4] and LTot the total

monomeric [AQP4]. PTot is the total [CaM-Alexa Fluor 488] and Kd the dissociation constant.

The dose-response curve could be described by the following equation:

y = A1+
A2� A1

1+ 10ðLOGx0�xÞp
where A1 and A2 are the signals of the unbound and bound fo
rm respectively, x0 is the midpoint of the slope and p is the Hill

coefficient.

AQP4 plasmids for expression in HEK293 cells
An AQP4-His6 construct for mammalian expression was generated by site-directed mutagenesis using our pDEST47-hAQP4-GFP

plasmid (Kitchen et al., 2015) as template. The first 8 codons of the GFP tag were mutated to 6 alternating histidine codons (CAC/

CAT), followed by two in-frame stop codons. This plasmid was used as template for site-directed mutagenesis to make AQP4-

F258A-His6, AQP4-F262A-His6, AQP4-F266A-His6, and AQP4-F258/262/266A-His6.

Immobilised metal affinity chromatography to capture AQP4-CaM complexes
To measure endogenous calmodulin binding to AQP4-6xHis6 or AQP4-F258/262/266A-His6 in HEK293 cells, cells were transiently

transfected for 24 hours, then exposed to a fourfold reduction of extracellular osmolarity for 10 minutes to induce cell swelling. Cells

were lysed using 1% Triton X-100, 150 mM NaCl, 2 mM CaCl2, 25 mM Tris pH 7.4, supplemented with fresh EDTA-free protease

inhibitor cocktail (Sigma-Aldrich, 11873580001). Insoluble material was removed by centrifugation at 20,000 g for 10 minutes, and

His6-tagged proteins and their interacting partners were precipitated using HisPur Ni-NTA magnetic beads (ThermoFisher, 88831)

following the manufacturer’s instructions. 75 mM imidazole was used for washing and 300 mM for elution. All buffers were supple-

mented with 2 mM CaCl2.
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NMR experiments
Uniformly 13C, 15N-labeled GST-recAQP4ct was prepared in M9 minimal medium containing 0.5 g/L 15NH4Cl and 1 g/L 13C-glucose

(Cambridge Isotope Laboratories), captured on glutathione-Sepharose 4B resin and cleaved on-column by treatment with

PreScission Protease. The eluted recAQP4ct protein contained the cloning artifact ‘GPLGS’ at its amino-terminus. The 15N, 13C-

rAQP4ct protein was concentrated and exchanged into buffers for NMR with an Amicon centrifugal filter (Millipore). Concentration

was determined using its predicted molar extinction coefficient (1490 cm-1 M-1 at 280nm). NMR samples of recAQP4ct contained

0.5 mM 13C, 15N-labeled recAQP4ct, 20 mM Bis-Tris (pH 7), 0.03% NaN3, 100 mM KCl, 6 mM CaCl2 and 0.5 mM 2,2-dimethyl-2-si-

lapentane-5-sulfonate (DSS) in 90%H2O/10%D2O. NMR samples of recAQP4ct complexed with CaM contained an additional 1mM

CaM (Nakashima et al., 1996). All NMR experiments were performed at 30�C on a Bruker Avance 600 MHz NMR spectrometer.

Sequential assignments of the main-chain atoms of recAQP4ct with and without CaM were achieved using two-dimensional 1H,
15N-HSQC and three-dimensional HNCACB, CBCA(CO)NH, HNCO, HN(CA)CO, HNCA, and HN(CO)CA experiments. All NMR

spectra were processed with NMRPipe and analyzed using NMRViewJ (Delaglio et al., 1995; Johnson, 2004).

Analysis of spinal water content
Immediately after sacrificing rats, spinal cord tissue was dissected 5 mm either side of the lesion site. Tissue was then

weighed in Eppendorf tubes, dried at 95�C for 48 hours and reweighed. The percent water content was calculated as water con-

tent (%) = [(wet weight-dry weight)/ wet weight] 3 100% (Li and Tator, 1999).

Immunohistochemistry
Rats were culled by rising concentrations of CO2 in accordance with UK Home Office Animals (Scientific Procedures) Act 1986.

Animals were then intracardially perfused with 4% paraformaldehyde in phosphate-buffered saline (PBS). Spinal cords were

dissected ± 5 mm from the lesion site and cryo-protected in increasing sucrose concentrations in PBS, before being embedded

in OCT Compound (ThermoFisher Scientific) and snap frozen on dry ice. Tissue was sectioned onto Superfrost Plus Slides

(ThermoFisher Scientific, Loughborough, UK) at 30 mm using a Bright cryostat (Bright Instrument, Cambridgeshire, UK) through

the parasagittal plane of the cord and stored at�20�C until required. To detect AQP4, Foxo3 and RECA-1, sections were defrosted,

blocked with normal goat and rat serum (ThermoFisher Scientific, Cat No. 01-6201 and 10710C) at 3% each in 0.3% PBS-Tween20

and incubated overnight at 4�C in antibody-diluting buffer containing 1:400 rabbit anti-AQP4 IgG (Abcam,Cat No. ab128906) or 1:200

rabbit anti-Foxo3 IgG (Abcam, Cat No. ab23683) and 1:50mouse anti-RECA-1 (Abcam, Cat No. ab9774). Sections were thenwashed

in PBS and incubated in 1:400 secondary antibody goat anti-rabbit IgG FITC, (Merck KGaA, Darmstadt, DE, Cat No. F0382) and/or

1:400 goat anti-mouse IgG Alexafluor 633 (ThermoFisher Scientific) for 2 hours at room temperature before being washed again and

mounted with Fluoroshield with DAPI (Merck KGaA). Immunohistochemistry for albumin was performed as above, but with the block-

ing buffer step after the primary antibody incubation of 1:100 chicken anti-albumin (Abcam, Cat No. ab106582) followed by 1:200

secondary goat anti-chicken IgY Alexafluor 488 (Abcam, Cat No. ab150169). To detect laminin, frozen sections were allowed to

thaw for 30 minutes at room temperature and blocked in 3% H2O2 and 5% normal goat serum, followed by incubation with 1:100

rabbit anti-laminin (Sigma, Cat No. L9393) overnight at 4�C. This was followed by incubation with biotinylated linking antibody

and HRP (Dako), with brief rinses in PBS between incubations. The reaction was visualized using 3,30-diaminobenzidine (Vector Lab-

oratories) and counterstainedwithMayer’s hematoxylin. Reagent controls (omitting the primary antibody or substituting non-immune

serum for the primary antibody) on tissue sections revealed no staining, thus confirming the specificity of the primary antibodies used.

Image acquisition and analysis of total and relative AQP4 levels
Imaging was done using an upright Leica Microsystems SP5 TCS II with multiphoton add-on and a 63x magnification apochromati-

cally-corrected (APO) oil lens. Laser properties were 488 Argon @ 20% (anti AQP4 – AlexaFluor 488; green); 633 HeNe laser at 29%

(anti RECA1 – AlexaFluor 633; red); 800 nm multiphoton laser for DAPI (SpectraPhysics MaiTai; blue). X, Y resolution was 1,024 3

1,024 pixels for all images. The spectral range collected for AQP4 was 499-570 nm and RECA1 was 642-785 nm. Laser power, pixel

size, scanning speed, smart gain and offset and AOBS settings were kept constant for analysis of total AQP4 levels. To facilitate ac-

curate acquisition and analysis of relative astrocytic endfoot to process levels of AQP4, smart gain and offset were adjusted using the

quick LUT, glow over and under setting, to create a dynamic fluorescence range (0-255). Images were analyzed using ImageJ. The

relative intensity of BSCB (peri-endothelial) AQP4 signal was determined by drawing 2 dimensional ROIs along peri-endothelial end-

feet or along astrocyte processes away from the BSCB (3-10 ROIs per image, depending on the number of endothelial cells in the

image). The ratio of intensity (peri-endothelial/non-peri-endothelial) was calculated per image (4-9 images per animal), and averaged

for each animal. For the analysis of total AQP4 levels, ROIs were the entire original field of view.

Quantification of albumin immunostaining and cavity size
To eliminate sample bias caused by variation in the size of the wound cavity at different wound depths, cavity sizes in sections taken

from similar depths in each animal were compared and quantified (Esmaeili et al., 2014). Briefly, laminin immunolabeling was per-

formed at defined depths through the lesion site and the cavity size was quantified using Image-Pro Analyzer 6.2 (Media Cybernetics

Inc., Bethesda, MD, USA) after setting the background threshold levels using antibody control sections (omission of primary anti-

body). Cavity size was determined by tracing around the cavity perimeter and determining the area (n = 12 biological repeats).
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For albumin immunolabeling, 3 sections from defined depths through the cord from each treatment group were analyzed. Albumin

was quantified by cropping images to defined ROIs containing the lesion site and auto-thresholding to remove background pixels

(auto-threshold was set at a level where antibody control sections were counted at 0 pixels). The number of pixels with an intensity

above the background threshold was counted (n = 3 biological repeats).

Analysis of brain water content
Immediately after sacrificing rats, 5mmof coronal brain tissue centered around the lesion site was removed from the ipsilateral cortex

(or corresponding contralateral cortex (as controls)), weighed on aluminum foil, dried at 65�C for 24 hours and re-weighed. The

percent water content was calculated as water content (%) = [(wet weight-dry weight)/wet weight] x 100% (Dempsey et al., 2000).

Protein extraction, immunoblot and densitometry
Total protein from DRG or spinal cord tissues was extracted, immunoblotted and analyzed by densitometry. Briefly, 40 mg of total

protein was resolved on 12%SDS gels, transferred to polyvinylidene fluoride (PVDF) membranes (Millipore,Watford, UK) and probed

with relevant primary antibodies: anti-AQP4 (Abcam, Cambridge UK, Cat No. ab46182; 1:400 dilution) and b-actin (Sigma, Cat no

A2228.1:1000 dilution). Membranes were then incubated with relevant HRP-labeled secondary antibodies and bands were detected

using an enhanced chemiluminescence kit (all from GE Healthcare, Buckinghamshire, UK). Anti b-actin antibodies were used as a

protein loading control. For densitometry, blots were scanned into Adobe Photoshop (Adobe Systems Inc, San Jose, CA, USA) keep-

ing all scanning parameters the same between blots and the integrated density of the bands was analyzed using the built-in macros

for gel analysis in ImageJ (NIH, USA, https://imagej.nih.gov/ij). Means ± SEMwere plotted in Microsoft Excel (Microsoft Corporation,

CA, USA). For cultured cells, 10 mg protein was run on hand-cast 8% acrylamide Tris-glycine SDS-PAGE gels using a Tris-glycine-

SDS running buffer. Proteins were transferred to 0.2 mm PVDF using a Tris-glycine-methanol transfer buffer. For immunoblotting of

CaM, 16% gels were used and 2 mM CaCl2 was added to the standard Tris-glycine-methanol transfer buffer (McKeon and Ly-

man, 1991).

Electrophysiology after CNS edema
Sixweeks after DC crush injury and treatment, compound action potentials (CAP) were recorded after vehicle, CaMi (TFP), PKAi (H89)

or PKCi (Gö 6983) treatment. Briefly, with the experimenter masked to the treatment conditions, animals were deeply anesthetized

using 5% isoflurane and deep anesthesia maintained with 1.5% isoflurane for the duration of the experiment. Heart rate was carefully

monitored and body temperaturemaintained using a feedback-controlled thermal blanket. Pancuronium bromide (0.3mg/kg, Sigma)

was injected intraperitoneally to minimize muscular contractions that may interfere with the electrophysiological assessments. A

Kopf stereotaxic apparatus (Kopf Instruments, Tujunga, CA, USA) was used to affix rats into position and a midline incision made

through the skin, followed by laminectomy and exposure of the thoracic and lumbar spinal regions. The durawas cut and the exposed

spinal cord was bathed in warmmineral oil. Silver wire electrodes (0.01 inch diameter; A-M Systems, Carlsborg, WA, USA) that were

insulated except at the tip were used to stimulate the DC axons at L1/2 and CAPs were recorded at C4/5 along the midline surface of

the spinal cord. Stimulating single current pulses (0.05 ms) were applied in increasing increments at L1/2 (0.2, 0.3, 0.6, 0.8 and

1.1 mA) with the signal from the recording electrode amplified with filters set at 300-3,000 Hz, collected and analyzed using Spike

2 software (Cambridge Electronic Design, Cambridge, UK). At the end of the experiment, the dorsal half of the spinal cord was

completely transected between stimulating and recording electrodes to confirm that a CAP could not be detected. Finally, with

the animals under deep anesthesia, animals were killed by overdose of anesthetics. CAP amplitudes were calculated between

the negative deflection after the stimulus artifact and the next peak of the wave. CAP area was calculated by rectifying the negative

component (full-wave rectification in Spike 2 software) and measuring its area at the different stimulation intensities. Superimposed

Spike 2 software processed data are shown for representative CAP traces (Almutiri et al., 2018).

Functional tests after CNS edema
Functional testing was carried out after injury (Almutiri et al., 2018; Fagoe et al., 2016). Briefly, masked and randomly-assigned an-

imals (n = 18/group/test) received training to master traversing a horizontal ladder for 1 week before functional testing. Baseline pa-

rameters for all functional tests were established 2-3 days before injury. Animals were then tested 2 days after DC lesion + treatment

and then weekly for 6 weeks. Experiments were performed by an observer blinded to treatment with animals tested in the same order

and at the same time of day. Three individual trials were performed each time for each animal.

Horizontal ladder crossing test

This tested the animals’ locomotor function and was performed on a 0.9-m-long horizontal ladder with a diameter of 15.5 cm and

randomly adjusted rungs with variable gaps of 3.5-5.0 cm. Animals were assessed traversing the ladder with the total number of

steps taken to cross the ladder and the number of left and right rear paw slips being recorded. The mean error rate was then calcu-

lated by dividing the number of slips by the total number of steps taken.

Tape sensing and removal test (sensory function)

The tape sensing and removal test determines touch perception from the left hind paw. Animals were held with both hind-paws

extended and the time it took for the animal to detect and remove a 15x15 mm piece of tape (Kip Hochkrepp, Bocholt, Germany)

was recorded and used to calculate the mean sensing time.
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QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical details for the experiments performed can be found in the figure legends, including the statistical tests used, the exact

value of n, what n represents and the precision measures. For in vitro data that were normally distributed, ANOVA with a Bonferroni

post hoc test was used to determine statistical differences between means. The data in Figure 1F are presented as a fold-change

normalized to the experimental control. ELISA and cell-surface biotinylation data were found to be nonparametric in distribution using

the Shapiro-Wilk test, so a Kruskall-Wallis analysis with a Conover-Inman post hoc test was used to identify significant differences

(p % 0.05) using StatsDirect 3 software. For in vivo data, no statistical methods were used to predetermine sample sizes based on

previous studies of a similar nature (Almutiri et al., 2018).

Analysis of functional tests
the complete time-course of lesioned and sham-treated animals for the horizontal ladder crossing test was compared using binomial

(since individual steps are scored as a successful step or a slip, therefore following a binomial distribution) generalized linear mixed

models (GLMM) (Fagoe et al., 2016). Animals were set as random factors, time as a continuous covariate, lesioned/sham (‘LESION’)

was set to ‘true’ in lesioned animals, ‘false’ otherwise and operated/unoperated (‘OPERATED’) set to ‘false’ before surgery and ‘true’

after surgery, as fixed factors. Binomial GLMMs were fitted in R using package lme4 with the glmer functions set using the following

model formulae:

outcome � LESION � time+OPERATED+ ðtimeyanimalÞ (Model 1)
outcome � LESION + time+OPERATED+ ðtimeyanimalÞ (Model 2)
outcome � LESION + time+OPERATED+ ð1yanimalÞ (Model 3)
outcome � time + OPERATED+ ð1yanimalÞ (Model 4)
Bracketed terms refer to the ‘random effects’ and account for re
peated-measurements in estimation of the effect sizes and signif-

icant of INT (Interaction term of LESION over time, i.e., Model 1) and LESION. P values for GLMMs were calculated by model com-

parison using parametric bootstrap for INT and LESION against the null hypothesis that each parameter is zero, using pbkrtest in R

package with 1,000 and 20,000 simulations.

Analysis of tape sensing removal test
the time-courses of lesioned versus sham animals were compared using linear mixed models (LMMs) with the R package lme4 with

the glmer functions set with the samemodel formulae as for the ladder crossing tests. Standard regression diagnostics (quantile plots

of the residuals versus the normal distribution, plots of residuals versus fitted values) were carried out for the data fitted with LMMs

and P values for the INT and LESION parameters of the LMMs were calculated by model comparison using package pbkrtest in R,

with the Kenward-Roger method (Fagoe et al., 2016). Independent sample t tests were performed in SPSS, Version 21 (IBM). For

testing of the significance between binding constants determined by MST, a Z-test for two population means was used:

Z =

�
X1 � X2

�
ðs2

1 + s2
2Þ
where X1 and X2 are the two binding constants, s1 and s2 their s
tandard deviation.

DATA AND CODE AVAILABILITY

The published article contains all datasets generated and analyzed during this study.
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Figure S1. Knockdown of AQP4 Suppresses Acute Cytotoxic Edema and Improves Functional Recovery in Rats at 3 dpi but Not at 28 dpi

following DC Crush Injury

a, ELISA for AQP4 showing no increase in total AQP4 protein in primary astrocytes after 6 h under hypoxia (5% O2; n = 6); b, Representative immunoblot and c,

densitometry to confirm 60% and 75% knockdown of AQP4 using in vivo JetPEI-delivered shRNA to AQP4 (shAQP4) at 3 dpi and 28 dpi following DC crush injury

(n = 3 independent repeats from 3 pooled rat spinal cords/experiment (total n = 9 rats/condition)); d, Spinal cord water content was significantly suppressed at 3

dpi, but at 28 dpi the water content in DC + shAQP4-treated animals was significantly higher than DC + Vehicle-treated controls, despite 75% AQP4 protein

knockdown (n = 3-4 rats/condition, 3 independent repeats (total n = 10 rats/condition)); e, Knockdown of AQP4 improved tape sensing and removal time up to

1week after DC crush injury, but the sensing and removal time gradually increased to above DC+ vehicle-treated controls at 4 weeks after DC crush injury (n = 3-4

rats/condition, 3 independent repeats (total n = 10 rats/condition)); f, The early improvement in ladder crossing ability of rats gradually worsened 1 week after and

at 28dpi is higher than DC+vehicle-treated controls (n = 3-4 rats/condition, 3 independent repeats (total n = 10 rats/condition)). * represents p < 0.05, ns rep-

resents p > 0.05 (see Table S2 for p values). Animals were euthanized at 28dpi due to episodes of vomiting, gait problems, lethargy and convulsions, possibly

reflecting their inability to regulate water in the CNS. Related to Figure 2.
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Figure S2. Targeted Inhibition of CaM or PKA Reduces Acute Brain Water Content after an In Vivo Brain Stab Injury Model of Cytotoxic
Edema; Increases in AQP4 Expression and AQP4 Translocation to the Blood-Spinal-Cord Barrier are Localized to the Injury Site In Vivo.

a, Water content of the ipsilateral and contralateral brain cortex 3 days after stab injury and treatment with CaM, PKA or PKC inhibitors (CaMi or PKAi). Sham =

craniotomy only; Stab injury+Vehicle = 3 mm cortical stab injury + PBS; Stab injury+CaMi = 3 mm cortical stab injury + intra-lesion injection of 41 mM trifluo-

perazine (TFP); Stab injury + PKAi = 3 mm cortical stab injury + intra-lesion injection of 10 mM H89; Stab injury+PKCi = 3 mm cortical stab injury + intra-lesion

injection of 9.94 mM Gö 6983; n = 18 rats per treatment group, * represents p < 0.05, ns represents p > 0.05 (see Table S2 for p values). Central bars represent

median, crosses represent the mean, outer bars represent upper and lower quartiles. Outliers (data points more than 1.5 3 IQR from the median) are shown as

separate points; b, Increases in AQP4 expression and AQP4 translocation to the blood-spinal-cord barrier are localized to the injury site in vivo. Representative

images showing AQP4 expression (green) with endothelial cells labeled with RECA1 (red) in Sham animals; c, 3 days after DC crush (3 dpi), an increase in total

AQP4 expression and translocation to the blood-spinal-cord barrier (BSCB) is observed at the injury site; d, At a minimum of 3 mm away from the lesion, total

AQP4 expression and translocation to the BSCB are indistinguishable from that of sham animals; e, Normalized relative perivascular fluorescence (A.U. ± SD

3 days after DC crush injury; sham = laminectomy only; DC+vehicle = T8 DC crush + PBS at the injury site; DC+vehicle (away) = T8 DC crush + PBS at sites at a

minimum of 3mm away from the lesion site; f, Normalized total AQP4 fluorescence (A.U. ± SD) following the same experimental conditions described in panel e. *

represents p < 0.05, ns represents p > 0.05 (see Table S2 for p values). Related to Figure 2.
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Figure S3. Subcellular Fractionation of Primary Rat Astrocytes Reveals Foxo3a Nuclear Translocation

a-d, Immunofluorescence micrographs of rat spinal cord tissue stained for Foxo3a (green) and DNA (DAPI, blue) 3 days after dorsal column (DC) crush and

treatment with PBS (DC + vehicle), TFP (DC + CaMi) or H89 (DC + PKAi) injected into the lesion site; zoomed-in images are shown for each panel; e, Relative

protein kinase activity in cultured primary rat astrocytes subjected to PKA activation with forskolin (10�5 M) or 10 minutes extracellular hypotonicity (85 mOsm) in

the absence or presence of TFP. Data (n = 3) are normalized to untreated controls. * represents p < 0.05, ns represents p > 0.05 compared to untreated control by

ANOVA followed by t test with Bonferroni correction, see Table S2 for p values); f, Immunoblot of fractionated primary rat astrocytes showing the abundance of

Foxo3a, which is higher in the nuclear fraction (only degradation products are seen the cytoplasmic fraction as shown in panel g) following PKA activation with

forskolin or hypotonicity. This is consistent with the image in panel b showing localization of Foxo3a to nuclei in injured spinal cord tissue. C = cytoplasmic

fraction, N = nuclear fraction; g, Primary rat astrocytes were subjected to subcellular fractionation following activation of PKA by forskolin or hypotonicity. Intact

Foxo3a was detected only in the nucleus (predicted molecular weight 71 kDa, black arrowhead). Degraded Foxo3a was detected in the cytoplasm (white

arrowhead). h, Densitometry of nuclear Foxo3a signals shown in panel g and normalized to nuclear Lamin B. * represents p < 0.05, ns represents p > 0.05 (see

Table S2 for p values). Related to Figure 2.
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Figure S4. The Predicted AQP4 CBD and Its Comparison with the CBD in the AQP0 Crystal Structure

a, Crystal structure of the human AQP4 tetramer viewed from the side of the membrane and from the extracellular side. The carboxyl terminus, for which there is

no structural information, is shown as beads. The sequence of the predicted CaM-binding domain (green beads) is shown in the box with hydrophobic residues

highlighted in green. The phosphorylation site at Ser 276 is highlighted with a red circle; b, Crystal structure of bovine AQP0 (PDB code 1YMG) showing the

carboxy-terminal helix (black box) which harbors the CaM-binding domain of AQP0; c, Zoom-in on the CaM binding domain with residues involved in binding

shown in stick representation; d, Helix wheel representation of the AQP0 carboxy-terminal helix showing its amphipathic character. Colors indicate residue types

as follows: hydrophobic-green, basic-blue, acidic-red and polar-yellow; e, Top scoring structural model of the predicted AQP4 CaM-binding site generated by

PEP-FOLD3. Hydrophobic and charged/polar residues on either side of the predicted helix are shown in stick representation; f, Helical wheel representation of the

predicted helix in panel e showing its amphipathic character. Colors indicate residue types as follows: aromatic-purple, hydrophobic-green, basic-blue, acidic-

red and polar-yellow; g, Hypotonicity-induced translocation of AQP4 in HEK293 cells is abrogated by a triple F258/262/266A mutation, but not by the corre-

sponding single point mutations. *p < 0.05 by ANOVA followed by Bonferroni-corrected t test, ns denotes p > 0.05 (see Table S2 for p values). Related to Figure 3.
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Figure S5. MST and CAP Experimental Controls

a, Typical MST traces. The relative fluorescence is plotted against the experiment time. Each trace corresponds to a sample with a different concentration of

AQP4whereas calmodulin (CaM) concentration remained constant, except for the trifluoperazine (TFP) titration experiment (bottom right) in which TFPwas varied

and both AQP4 and CaM were kept constant. The difference in relative fluorescence before (blue column) and after (red column) heating is used to calculate

DFnorm. The position of the red column was determined by the M.O. Affinity Analysis software (Nanotemper) as the time interval that gave the best signal to noise

ratio; b, Recombinant AQP4 is a functional water channel. Fluorescence traces from aproteoliposome shrinking assay showing that liposomes containing purified

AQP4 (blue) have significantly higher water permeability than empty liposomes (gray). The increase in fluorescence corresponds to the fluorophore ((5)6-car-

boxyfluorescein) present on the inside of the liposomes becoming more fluorescent as the liposomes shrinks when mixed with hyperosmotic solution. The data

were fitted to a double exponential function (solid blue and black lines for AQP4-containing and empty liposomes, respectively) and the rate constant (k) was used

to calculate the osmotic water permeability (Pf). For AQP4-containing liposomes Pf = 5.9 ± 0.53 10�2 cm/s and for control liposomes Pf = 1.2 ± 0.23 10�2 cm/s,

corresponding to an AQP4 single channel permeability of 1.1 ± 0.13 10�13 cm3/s. Analysis by t test showed a statistically-significant difference between AQP4-

containing liposomes and empty liposomes (p = 0.0015; Table S2). Related to Figure 3; c, Representative Spike 2 software processedCAP traces. A normal short-

latency negative-positive CAP trace was observed in sham animals which was ablated in DC+vehicle- and DC+PKCi-treated rats, but partially restored in DC +

CaMi and DC + PKAi-treated rats. Following a dorsal hemi-section in the same animals at the end of the experiment, CAP traces were ablated in all animals,

indicating DC axon regeneration. Related to Figure 4.
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