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Abstract: Turbocharged diesel engines are extensively used in marine vessels, both as propulsion 7 

engines and as generator sets. The engines operation in the hostile marine environment results to 8 

performance degradation having a negative effect on the economics of the marine vessel’s operation both 9 

in terms of fuel consumption and maintenance. This paper presents a turbocharged 4-stroke diesel engine 10 

simulation framework based on one-dimensional calculations and analysis. The framework is suitable for 11 

turbomachinery and heat exchanger components fault simulation predicting both turbocharger and diesel 12 

engine performance and operability. Meanline models were used in conjunction with beta lines method 13 

for generating accurate and detailed compressor and turbine performance maps, coupled with a single 14 

zone closed-cycle diesel engine model for generating engine performance characteristics. The simulation 15 

framework modules are adjusted and validated against measured data. Following specific faults are 16 

simulated utilizing physical consistent parameters such as blade friction and thickness based on relevant 17 

literature data. Overall system simulation and operation analysis is carried out assessing operability and 18 

performance parameters. Analysis results show a significant reduction in engine performance, especially 19 

in case of both turbo-components being fouled (22% power reduction), in contrast with the heat 20 

exchanger fouling where the power reduction is about 1%. 21 
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Notation 

AL0 = 
Compressor diffuser outlet angle, Turbine 

nozzle inlet angle. 
Qcomb = 

In-cylinder fuel combustion 

energy input 

AL1 = 
Compressor diffuser inlet angle, Turbine 

nozzle outlet angle. 
Qcomb,tot = Total heat of combustion 

ALR3 = 
Compressor impeller exit sweep angle, 

Turbine impeller inlet angle 
QW = 

Heat transfer through the 

boundaries of the engine cylinder 

B4 = 
Compressor impeller inlet angle, Turbine 

impeller exit angle  
R = Resistance 

CC = Centrifugal Compressor R0 = 
Compressor diffuser outlet radius, 

Turbine nozzle inlet radius 

C.P, C.T = Charged Air Pressure and Temperature R1 = 
Compressor diffuser inlet radius, 

Turbine nozzle outlet radius 

Cpiston,mean = Mean piston speed R3 = 

Compressor impeller outlet 

radius, Turbine impeller inlet 

radius 

dP = Pressure Drop R4 = 
Compressor impeller inlet radius, 

Turbine impeller outlet radius 

HDDI = Heavy-Duty Direct Injection Re = Reynolds number 

HS0 = 
Compressor diffuser height at outlet radius, 

Turbine nozzle height at inlet radius 
RH = Relative Humidity 

LHV = Lower Heating Value of Diesel fuel RT = Radial Turbine 

mAIR = Diesel engine inlet air mass flow rate Sfc = Specific fuel consumption 

mcor  Corrected mass flow (𝑚 ̇ √𝜃/𝛿) T4,T5 = 
Temperature before and after 

Radial Turbine 

mEXH = Diesel engine exhaust gas mass flow rate RBDW = 

Compressor impeller outlet 

width, Turbine impeller inlet 

width 

 
mfuel = Diesel engine fuel mass flow rate T/C = Turbocharger 
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N = Diesel engine crankshaft speed, T/C speed Tcyl = In-cylinder Temperature 

n = Polytropic exponent TH1 = 

Compressor diffuser leading edge 

normal thickness, Turbine nozzle 

trailing edge normal thickness 

Nc = T/C Corrected speed (Ν/√𝜃) TH4 = 

Compressor impeller inlet normal 

thickness, Turbine impeller exit 

normal thickness 

Nc,des = T/C Design corrected speed Texh = Exhaust gas temperature 

NRBL = Number of impeller full blades TIVC  
Cylinder gas temperature at inlet 

valve closing 

NRSBL = Number of impeller splitter blades TEVO 
=

  

Cylinder gas temperature at 

exhaust valve opening 

NSTV = Number of stator vanes Tim = 
Temperature at diesel engine inlet 

manifold 

ηvol = Diesel engine volumetric efficiency U = Overall Heat Transfer Coefficient 

Pamb = Ambient Pressure Ucyl = 
Internal Energy of the engine 

cylinder content 

pcyl = In-cylinder pressure VSW = 
Diesel engine Cylinder swept 

volume 

PEVO = 
Cylinder gas pressure at exhaust valve 

opening 
W = Engine work output 

Pexh,manif = Gas pressure at exhaust manifold Δφc = 
Duration of combustion (in CA 

degs) 

Pim = Pressure at diesel engine inlet manifold ε = Effectiveness 

Pr = Prandlt number    

 37 

Introduction 38 

Turbocharged diesel engines have been widely used in vehicles, heavy duty trucks, ships, non-39 

interconnected electric power systems and other energy applications. Specifically, they have a leading 40 

role in marine industry, used mainly as main propulsion engines and as auxiliary power generator sets 41 

(GENSETs). Naval vessels up to frigate class utilize four-stroke diesel engines for propulsion as well as 42 

GENSETs since they offer lower acquisition cost, better fuel economy and better response to load 43 

changes compared to gas turbines (Bricknell, 2006). 44 

As discussed by Button et al. (2015), the bigger contributors in the life cycle cost of the turbocharged 45 

diesel engines are maintenance and operational costs. The development of an integrated simulation 46 

framework for simulating fault effects on turbocharged diesel engines is expected to contribute towards 47 
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quantifying the degradation effect on operational cost by providing information on the increased fuel 48 

consumption and decreased load (Murphy et al., 2015). At the same time, it may provide information on 49 

maintenance cost and operability concerning compressor surge margin reduction along with temperature 50 

and rotational speed changes that affect bearings life. Additionally, it can be used for providing suitable 51 

fault signatures, as discussed by Pagán Rubio et al. (2018). 52 

Turbocharger (T/C) consists of two components, a Centrifugal Compressor (CC) and a Radial (RT) or 53 

Axial Turbine depending on diesel engine size. The impact of turbocharger modeling on diesel engine 54 

combustion mechanism and performance characteristics have been thoroughly examined in the past by 55 

Giakoumis and Tziolas (2018) and by Giakoumis et al. (2017). Also the influence of turbocharger heat 56 

transfer modeling both for diesel and gasolines engine performance parameters have been investigated 57 

using neural networks by Huang et al. (2018). At present, the design and modeling of both T/C 58 

components can be performed by using 1D and 3D analysis. 1D analysis is used to calculate components 59 

performance maps using basic geometrical parameters and not the whole geometry in contrast to 3D 60 

analysis. Thus, it can be a powerful tool during preliminary design and modeling. In 1D analysis the flow 61 

through the impeller is assumed uniform and the off-design performance is calculated using mean 62 

streamline single zone models (Galvas 1973, Aungier 1995, Wasserbauer and Glassman 1975). A 63 

significant aspect for the compressor map is the prediction of surge line. Rodgers (1963) set the surge and 64 

choke limits for a wide range of centrifugal compressors using experimental data. Another approach was 65 

made by Japikse (1996), who assumed that a jet-wake structure exists in the impeller passage. Stuart et al. 66 

(2017) made a new approach in CC 1D analysis using a three-zone model assuming that impeller exit 67 

recirculation influences compressor work input. For the turbine performance, 1D models have been 68 

extensively applied, as for example described by Romagnoli and Martinez–Botas (2011) utilizing mean 69 

line analysis method well described in the past (e.g. Wasserbauer and Glassman 1975). Applying 1D 70 

models for T/C component faults simulation and map prediction allows for assessing the fault effect using 71 

physical consistent parameters such as roughness increase rather than arbitrary mass flow and efficiency 72 

reduction factors used in the literature (Pagán Rubio  et al. 2018) providing information, at the same time, 73 

of the fault effect on the surge line.  74 
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Studies conducted in the past have examined the effect of various faulty conditions on marine diesel 75 

engine performance characteristics. Specifically, Kökkülünk et al. (2016) investigated the performance 76 

degradation of a marine diesel engine by using curve-based approach and Kowalski (2015) developed a 77 

methodology of a multidimensional diagnostic tool based on exhaust gas composition of marine engines. 78 

Also, Sakellaridis et al. (2015) proposed a turbocharger simulation methodology for marine two-stroke 79 

diesel engine modeling and diagnostic applications. 80 

The 3D model provides a high-fidelity analysis, based on CFD simulation and as a time, consuming 81 

method, it is used in most cases, as a designing and stability analysis tool. It is also combined with 1D 82 

model, for loss correlations adaptation. Japikse and Baines (1997) suggested a turbomachinery 83 

component design procedure, combining 1D and 3D model, a  procedure followed by Qiu et al (2013), in 84 

T/C components design. 85 

The importance of the turbomachinery component maps used as part of a turbocharged engine model 86 

has been highlighted by Pesiridis et al. (2012). As discussed, suitable fitting and extrapolation methods 87 

should be applied for accurately predicting the engine performance.  88 

In the present work the well-established beta lines method suggested by Kurzke (1996) is applied for 89 

ensuring accurate interpolation and extrapolation both for compressor and turbine performance maps 90 

generated by corresponding meanline models, described in next section. Various types of models have 91 

been proposed and used in the literature for the simulation of performance and emissions of turbocharged 92 

diesel engines, depending on the application and configuration examined (Watson and Janota, 1982). 93 

Three are the main categories of diesel engine models: zero-dimensional thermodynamic models, quasi-94 

dimensional phenomenological models and multi-dimensional CFD models. In zero-dimensional 95 

thermodynamic models (Baldi et al. 2015 and Catania et al. 2011) the heat release is simulated in a 96 

simplified way, using empirical / mathematical expressions, without detailed study of physical and 97 

chemical sub-processes that actually take place in the combustion chamber, because these are strongly 98 

dependent on the spatial distribution of temperature and composition which are not taken into account. 99 

This approach is advantageous in applications where limited data are available regarding the design 100 

configuration and the operating parameters of the engine, while computational power is limited, and 101 
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computational time is a critical parameter. In the field of phenomenological simulation models, quite 102 

important are the multi-zone combustion models, which provide a temporal and spatial distribution of 103 

combustion temperature and mixture composition based on the concept of fuel jet distribution into zones. 104 

A fair compromise between more detailed multi-zone and single-zone combustion models is provided by 105 

two-zone combustion models, which offer reasonable accuracy at economic computer runtime 106 

(Rakopoulos et al., 2003). Two-zone models have been used very effectively for examining the effect of 107 

exhaust gas recirculation (EGR) rate and temperature on diesel engine combustion characteristics and 108 

pollutant emissions as demonstrated by Rakopoulos et al. (2018). Phenomenological models along with 109 

experimental campaigns have been used by Rakopoulos et al. (2015) and Rakopoulos et al. (2019) to 110 

examine the effect of various alternative fuels on HDDI turbocharged diesel engine performance 111 

characteristics and pollutant emissions under both steady-state and transient conditions. 112 

On the other hand, the multidimensional CFD models (Petranović et al. 2018, Reitz and Rutland 1995 113 

and Liang et al. 2010) are based on locally resolved solution of conservation of mass, energy and 114 

momentum and include detailed sub-models for spray and combustion phenomena. With this approach it 115 

is possible to obtain detailed results regarding the gas flow pattern and the spatial distribution of 116 

temperature and composition inside the combustion chamber. However, these models are very demanding 117 

in terms of detailed design data, computational power and expertise to be applied making its use 118 

appropriate only for specific applications.  119 

The intermediate category is the quasi-dimensional phenomenological models, which allows to 120 

execute efficient, fast and economic preliminary calculations of heat release models and exhaust 121 

emissions as a function of important engine parameters like injection pressure, injection timing, swirl 122 

ratio and boost pressure. These models are based on physical and chemical sub-models for fuel spray 123 

formation, air fuel mixing, combustion and emission formation, offering a fair compromise between the 124 

detailed CFD ones and the zero-dimensional models, being appropriate as predictive tools conducting 125 

parametric studies during engine development (Pagán Rubio et al. 2018, Pariotis and Hountalas 2003 and 126 

2004, Pariotis et al. 2005). 127 
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Focusing on models applied to investigate the matching between diesel engine and a turbocharger 128 

system, Charlton (1992) proposed the SPICE modeling software, which is a quasi-dimensional model, 129 

based on the filling and emptying method and is particularly suited for turbocharged diesel engine 130 

systems. The system of components is modeled as a combination of thermodynamic volumes, flow 131 

junctions and shafts. The intake and exhaust valves are represented by junctions, each having a schedule 132 

of effective flow area versus crankshaft position. One dimensional compressible flow equations are used 133 

to obtain flow rates for given pressures in the neighboring volumes. The performance of the turbocharger 134 

compressor and turbine is represented by tabulated data taken from performance maps published by the 135 

manufacturers.  136 

An alternative approach has been proposed by Ledger et al. (1971 and 1973), focusing on the 137 

transient simulation of turbocharged engines, by linking steady speed experimental data (regarding engine 138 

performance and gas flow) with dynamic models of the mechanical components of the system. However, 139 

the weakness of this approach is that it is heavily dependent on experimental data and it oversimplifies the 140 

simulation of combustion. A more comprehensive transient model (extended from the filling and 141 

emptying model) was developed by Watson and Marzouk (1977). Their model was used to investigate 142 

turbocharger response problems at a fundamental level. It takes into account the non-linear influence of 143 

combustion on the torque developed and the exhaust-gas energy available at the turbine, the pulsating 144 

nature of gas flow (including reverse flow) and also the influence of manifold pressure on pumping work. 145 

The increasing need for marine engine system downsizing, combined with the harsh working 146 

conditions, leads to frequent engine components failure, especially for the turbocharger. In order to ensure 147 

ship safety operation, by preventing those failures, a fault diagnosis system must be used. For 148 

turbocharger fault diagnosis, slight improvement has been made, comparing with the rest of 149 

turbomachines (e.g. turbofan, gas turbine, etc.), relying in most cases on engineers’ personal experience. 150 

At present, Barelli et al. (2009) presented a turbocharger diagnosis methodology based on Artificial 151 

Neural Network (ANN) and proposed a frequent data gathering campaign every 6 to 9 months in order to 152 

ensure the proper operation of such a system. Sakellaridis and Hountalas (2013) also developed a radial 153 

turbine mean line code for being a part in a T/C diagnostic tool with the ability of adapting to available 154 
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measured data. Cui et al. (2018) developed a gas-path diagnosis for diesel engine turbochargers, using 155 

health factors (flow capacity and isentropic efficiency), hence monitoring the T/C health status. 156 

The present study proposes a turbocharged diesel engine modeling framework using 1D modeling for 157 

T/C components, single zone modeling for the diesel engine and matching analysis between T/C and 158 

diesel engine. The diesel engine model is adapted to engine specific data and the overall integrated model 159 

is validated against shop trials data obtained from a marine diesel generator. Having developed a model 160 

capable to simulate the system operation over its whole envelope, engine fouling analysis is performed in 161 

order to determine how fouling in T/C and intercooler affects the whole system operation. 162 

The T/C component faults simulation is materialized using physical consistent parameters such as 163 

roughness increase rather than arbitrary mass flow and efficiency reduction factors (Kurz and Brun 2009) 164 

or time consuming CFD analysis (Melino et al. 2011) used in the literature. In this way the fault effect on 165 

the surge line is provided, thus the effect of faults on operability, usually neglected in the literature, is 166 

assessed as well. 167 

Integrated Simulation Platform 168 

The integrated simulation platform utilizes 1D models for calculating the T/C component maps based 169 

on the available geometry, then a fully coupled process integrating the T/C components the diesel engine 170 

and the intercooler is applied for calculating the performance and operating conditions at sub-system and 171 

system level.  172 

Turbocharger Modeling 173 

The turbocharger can be modeled by using specific compressor and turbine maps, a feature that can 174 

be applied when measured maps are available or when the geometry of the turbocharger is not available. 175 

In the latter case appropriate scaled maps can be used. In the case that measured turbomachinery 176 

geometry is available or the simulation system is used as part of an integrated pre-design or/and 177 

optimization procedure, or specific faults are to be simulated, suitable mean line aerothermodynamic 178 

models are used for calculating the component maps. A hybrid modeling approach can also be applied, for 179 

example using a measured map for the compressor and a map calculated based on geometry for the 180 

turbine.  181 
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For simulating Variable Geometry, either in the case of Inlet Guide Vanes for the compressor and 182 

Variable Guide Vanes for the turbine the simulation tool can handle multimaps performing 3-D 183 

interpolations as discussed by Alexiou et al. (2012). If the meanline codes are applied for the T/C 184 

components modeling then the Variable Geometry is integrated to the calculations, since the maps are 185 

derived for specific inlet angles allowing the optimization of the Variable Turbine control schedule as part 186 

of a design process, or the simulation of variable geometry fault for assessing its effect on operability and 187 

performance.  188 

Centrifugal Compressor  189 

For calculating the compressor map, namely the relation between corrected mass flow rate, pressure 190 

ratio and efficiency for different corrected rotational speeds an in-house compressor meanline code is 191 

used. The 1-D code is based on the methodology presented in (Galvas, 1973). The flow properties are 192 

calculated along a streamline in mean radial position using Wiesner slip factor. The compressor 193 

performance is evaluated using empirical correlations for compressor losses and flow deviation. The 194 

meanline program allows the calculation of the compressor map without increasing the time for the 195 

overall matching of the integrated system. Additionally, compressor geometry optimization can be 196 

performed not in isolation but in the frame of an integrated system. The geometry related inputs of the 197 

compressor code can be seen in Fig. 1. 198 

The meanline code has been validated against experimental data published by NASA-Galvas 199 

(1973). As seen in Fig.2 and Fig. 3 the map derived for the specific geometry is in good agreement with 200 

the experimental data, especially for rotational speeds lower than the maximum one. The deviation 201 

between the experimental and calculated data increases as rotational speed increases, since at high 202 

rotational speeds the 3-D phenomena become significant. This error trend is similar to the original code 203 

presented by Galvas (1973). For surge line prediction, two surge criteria are taken into account, namely 204 

one for impeller inducer and one for vaned diffuser surge. Both surge limits are calculated with empirical 205 

correlations, developed by Rodgers (1963) and Galvas (1973) respectively. 206 
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Radial Inflow Turbine  207 

Similar to the compressor, a meanline code based on the work of Wasserbauer et al. (1975) is used. 208 

In this meanline model, the flow properties are calculated along a streamline in mean radial position, 209 

computing turbine performance using empirical correlations for radial turbine losses and angle deviation. 210 

The geometry related inputs of the turbine code can be seen in Fig. 4. The code is validated against 211 

measured data for a specific geometry (Wasserbauer and Glassman, 1975). The results indicate that both 212 

chocking line and low pressure operating region are predicted with good accuracy, as seen in Fig. 5 213 

Diesel Engine Model 214 

For diesel engine modeling an in-house single zone thermodynamic combustion model has been used 215 

for the closed engine cycle. The main scope of the simulation model developed is to predict the engine 216 

performance, the thermodynamic properties of the working medium and its mass flow rate, in order to be 217 

coupled with the compressor and turbine model, using as little as possible experimental data for model 218 

calibration. Therefore, a simple approach is followed, which is based on the application of the first law of 219 

thermodynamics assuming that the entire combustion chamber consists of a single homogeneous mixed 220 

charge. Thus, only the temporal variation of the in-cylinder mixture concentration, temperature and 221 

thermodynamic properties is considered, as a function of the instantaneous cylinder volume. In other 222 

words, at each crank angle degree integration step, the model predicts the in-cylinder homogeneous 223 

mixture composition (i.e. perfect combustion products concentrations after combustion initiation), the in-224 

cylinder pressure and the uniform in-cylinder bulk gas temperature. For the close part of engine cycle the 225 

energy conservation equation is written as: 226 

𝑑𝑈𝑐𝑦𝑙

𝑑𝑡
=

𝑑𝑄𝑤

𝑑𝑡
+

𝑑𝑄𝑐𝑜𝑚𝑏

𝑑𝑡
−

𝑑𝑊

𝑑𝑡
 (1) 

The mechanical work performed by the piston during the compression and expansion phase is due 227 

to the volume change of the cylinder and is calculated by the following trapezoidal rule: 228 

𝑑𝑊 = (𝑝𝑐𝑦𝑙,𝑖 + 𝑝𝑐𝑦𝑙,𝑖+1)  ∗
𝑑𝑉𝑐𝑦𝑙

2
 (2) 
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where pcyl,i and pcyl,i+1 are two successive values of cylinder pressure and dVcyl is the cylinder 229 

volume step. 230 

The heat addition via combustion is taken into account assuming complete combustion of the fuel 231 

injected with a specified lower heating value. The fuel burning rate at each crank angle degrees, is 232 

predetermined using a simple empirical model (Wiebe function) according to the following expression 233 

(Stiesch, 2003)  234 

𝑄𝑐𝑜𝑚𝑏(𝜑)

𝑄𝑐𝑜𝑚𝑏,𝑡𝑜𝑡

= 1 − exp (−6.908 ∗ (
𝜑 − 𝜑𝑆𝑂𝐶

𝛥𝜑𝑐

)
𝑚+1

) (3) 

Where 𝑄𝑐𝑜𝑚𝑏,𝑡𝑜𝑡 = 𝑚𝑓𝑢𝑒𝑙 ∗ 𝐿𝐻𝑉, m and 𝛥𝜑𝑐 are parameters determined through the calibration 235 

procedure conducted. The ignition delay is estimated using an Arrhenius type equation (Heywood, 1988):  236 

𝜏𝑖𝑑 = 𝐴 ∗ 𝑝𝑐𝑦𝑙
−𝑛 ∗ 𝑒𝑥𝑝 (

𝐸𝐴

𝑅̃
∗

1

𝑇𝑐𝑦𝑙
) (4) 

Where, P and T are the instantaneous in-cylinder pressure and temperature, 𝐸𝐴 is the apparent activation 237 

energy of the fuel auto-ignition process, 𝑅̃ is the universal gas constant and A and n are constants 238 

dependent on the fuel. In this study the values proposed by Wolfer are used, i.e. n=1.19, A=0.44 and the 239 

parameter 𝐸𝐴/𝑅̃=4650 K (Heywood, 1988). 240 

The heat transfer between the cylinder gases and the combustion chamber walls can be due to both 241 

convection and solid body radiation which originates from hot soot particles. However, as stated in the 242 

model developed the assumption of ideally mixed combustion chamber is made, therefore, soot particles 243 

are not taken into account. To compensate this, the effect of radiative heat transfer is taken into account 244 

by an empirical augmentation of the convective heat transfer coefficient (Stiesch, 2003). The convective 245 

heat transfer rate between the gas and the wall can be described by the Newton's cooling law: 246 

𝑄𝑤̇ = ℎ ∗ 𝐴 ∗ (𝑇𝑤 − 𝑇𝑐𝑦𝑙) (5) 

Where h is the convective heat transfer coefficient, A is the instantaneous surface area of heat transfer 247 

and 𝑇𝑤, 𝑇𝑐𝑦𝑙 are the mean wall and in-cylinder gas temperatures respectively. The convective heat transfer 248 

coefficient is estimated assuming that an analogy with a steady turbulent flow over a solid wall exists, 249 

using the following expression:  250 
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𝑁𝑢 =
ℎ ∗ 𝐿

𝑘
= 𝐶 ∗ 𝑅𝑒𝑎 ∗ 𝑃𝑟𝑏 (6) 

Where L represents a characteristic length and equals the cylinder bore diameter, C, a and b are empirical 251 

constants that are determined by curve fitting experimental data of wall heat transfer rates. In this study 252 

a=0.80, b=0.40. To calculate the brake engine power, the correlation proposed by Chen and Flynn (1965) 253 

for turbocharged engines are used, where the friction mean effective pressure FMEP in bar is calculated 254 

as: 255 

𝐹𝑀𝐸𝑃 = 0.137 + 0.005 ∗ 𝑃𝑚𝑎𝑥 +0.162 ∗ 𝑐𝑝𝑖𝑠𝑡𝑜𝑛,𝑚𝑒𝑎𝑛 (7) 

Where Pmax is the peak combustion in-cylinder pressure in bar and cpiston,mean is mean piston speed in m/s. 256 

The air mass flow rate is calculated using the following expression:  257 

𝑚̇𝐴𝐼𝑅 =
𝑃𝑖𝑚

𝑅 ∗ 𝑇𝑖𝑚
∗ 𝑉𝑠𝑤 ∗ 𝑛𝑣𝑜𝑙 ∗ (

𝑁

2
) (8) 

Where 𝑃𝑖𝑚 and 𝑇𝑖𝑚 are the pressure and temperature at the engine inlet manifold (after inter-cooler), 𝑛𝑣𝑜𝑙 258 

is the volumetric efficiency, 𝑅 is the air gas constant and N is the engine crankshaft speed. The gas 259 

temperature at IVC is calculated using the following equation: 260 

𝑇𝐼𝑉𝐶 = 𝑇𝑖𝑚 + 𝛥𝑇 (9) 

Where ΔT is an adjusted input parameter to the integrated simulation model. 261 

The volumetric efficiency nvol used in Eq. (8) is adjusted in order predicted data for peak cylinder 262 

pressure, brake power output and exhaust gas temperature after turbocharger to match corresponding shop 263 

trials data. The exhaust gas flow rate is calculated by:  264 

𝑚̇𝐸𝑋𝐻 = 𝑚̇𝐴𝐼𝑅 + 𝑚̇𝑓𝑢𝑒𝑙 (10) 

A polytropic expansion is used to calculate exhaust gas temperature using corresponding value of exhaust 265 

gas temperature at EVO as follows: 266 

𝑇𝑒𝑥ℎ = 𝑇𝐸𝑉𝑂 (
𝑃𝑒𝑥ℎ,𝑚𝑎𝑛𝑖𝑓

𝑃𝐸𝑉𝑂
)

𝑛−1
𝑛

 (11) 

Where PEVO is the cylinder gas pressure at EVO and Pexh,manif is the exhaust manifold pressure, which is 267 

calculated using the following expression: 268 
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𝑃𝑒𝑥ℎ,𝑚𝑎𝑛𝑖𝑓 =  
1

2
𝑃𝑖𝑚 + √(𝑃𝑖𝑚100)2 − 8𝑚̇𝑒𝑥ℎ

2 𝑇𝑖𝑚 + (𝑇𝐸𝑉𝑂 − 𝑇𝑖𝑚) (12) 

At this point it is worth to make some observations about the diesel engine closed-cycle simulation 269 

model. Specifically, the model predicts the variation of in-cylinder pressure during closed-cycle diesel 270 

engine operation and thus, it does not account for the variation of cylinder pressure during intake stroke in 271 

order to calculate the pumping work during gas exchange. However, the impact of the negative pumping 272 

power on the brake engine power output is rather limited since the highest portion of indicated power 273 

results from the closed-cycle engine operation and thus, the error induced in the calculation is not 274 

considerably important. The results from a more detailed phenomenological model which is under 275 

development, considering the time and space evolution of the fuel jet, along with cylinder pressure 276 

predictions during gas exchange process, will be presented in a future paper. However, it should be 277 

underlined that the main scope of the selection of single-zone approach was based on the fact that it is 278 

suitable for cases where there are very limited available data for the geometrical and the operational 279 

characteristics of the engine. This is the case that is usually met in practical applications where turbo-280 

matching has to be implemented in existing engines under retrofitting (i.e. replacement of existing 281 

turbocharger with another one) where the only available data are the test records of the diesel engine at 282 

shop trials. 283 

Intercooler 284 

The intercooler performance is estimated by prescribing the intercooler effectiveness and total 285 

pressure losses on the hot and cold sides. The temperature effectiveness (ε) and pressure drop at design 286 

point are defined according to the following equations (Alexiou and Tsalavoutas, 2013). 287 

ε =
Tin,hot − T𝑜𝑢𝑡,ℎ𝑜𝑡

Tin,hot − T𝑖𝑛,cold
 (13) 

𝑃𝑜𝑢𝑡,𝑐𝑜𝑙𝑑 𝑜𝑟 ℎ𝑜𝑡 = 𝑃𝑖𝑛,𝑐𝑜𝑙𝑑 𝑜𝑟 ℎ𝑜𝑡(1 − 𝑑𝑃𝑐𝑜𝑙𝑑 𝑜𝑟 ℎ𝑜𝑡) (14) 

Where dPcold or hot is the pressure drop in the intercooler. In order to estimate the outlet temperatures 288 

of both cold and hot side of the intercooler, a heat flow balance is performed between the hot and cold 289 
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sides. For off-design operation the pressure drop is a function of mass flow deviating relative to design as 290 

is the effectiveness (Walsh and Fletcher, 2008). 291 

Coupling between T/C and Diesel Engine 292 

CC and RT geometries are used as input data for the meanline models in order corresponding 293 

performance maps to be generated. The input data for diesel model set up are the inlet valve closing 294 

angle, the exhaust valve opening angle, the compression ratio, the cylinder bore, the piston stroke, the 295 

generator efficiency and the shop trials data. The input data for intercooler model set up are the inlet air 296 

mass flow, pressure drop and effectiveness at nominal point (100% of load). Having established the 297 

integrated model for a specific turbocharged diesel engine, the required input data for a single operating 298 

point run are ambient conditions, engine speed and engine fuel consumption (or demanded output power). 299 

This procedure flow chart is depicted in Fig. 6. 300 

 301 

Test Case Engine 302 

The present integrated simulation platform is used to simulate the operation of a specific 303 

turbocharged marine diesel engine throughout its whole operating envelope. The technical specifications 304 

of the diesel engine are shown in Table 1.  305 

The results are compared against engine shop trials data for validating the overall system model. 306 

The shop trials data are shown in Table 2.   307 

 308 

Experimental Verification 309 

As discussed, the approach followed for the simulation of diesel engine operation is based on 310 

empirical and semi-empirical expressions to determine the fuel burning rate, heat transfer and friction 311 

power losses. Therefore, it is necessary to calibrate model’s constants by comparing the output of the 312 

simulation model with corresponding available experimental data. It should be noticed, that since the 313 

original scope of the simulation framework was to be used as a tool in retrofitting existing engines, the 314 

data used for model calibration are limited to the ones usually found in shop test records, which for the 315 

case examined are: engine brake power output, peak in-cylinder combustion pressure and exhaust gas 316 
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temperature. The values of the calibration constants are determined following an optimization procedure 317 

to minimize the error when comparing calculated and measured values at each operating point (25%, 318 

50%, 75% and 100% of full engine load) and at rated engine speed. 319 

In Fig. 7 the comparison between the measured and the calculated values for brake engine power, 320 

peak combustion pressure and exhaust gas temperature, at the engine operating conditions used for 321 

calibration is depicted. As observed, there is a good matching between measured and calculated values, 322 

which indicates that the model reliably reproduce the specific engine operation for the entire range of the 323 

conditions examined. It should be noted that one set of calibration parameters is used for the whole 324 

operating envelope.  325 

Turbocharged Engine model validation with Engine shop trials 326 

The geometry of the compressor and turbine has been measured and used as input to the mean line 327 

compressor and turbine codes. The specific fuel consumption and boost pressure against engine power is 328 

presented in Fig. 8 for five different operating points (Load: 25, 50, 75, 100 and 110%) as reported in the 329 

engine shop trials. 330 

As seen, the integrated turbocharged engine model simulates the overall engine operation in very 331 

good agreement to the engine shop trials data. The maximum deviation from the reported mean sfc and 332 

boost pressure value is 2.6% and 9% respectively. It should be noted that the reported at the shop trials 333 

maximum measurement error for the sfc is 5%. The matching of T/C components with engine is 334 

presented in Fig. 9 and Fig. 10 where the compressor and turbine maps with corresponding operating 335 

lines are shown.  336 

Having established a model that can simulate the turbocharged engine throughout its operating 337 

envelope the effect of specific faults on performance and operability can be assessed and the system 338 

behavior can be analyzed. Specifically, T/C components and heat exchanger fouling is examined herein. 339 

Turbocharger fouling assessment 340 

Turbocharger fouling can be caused due to compressor fouling, turbine fouling or a combination of 341 

both, leading to inefficient operation and a shift of operating and surge line. All compressors are 342 
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susceptible to fouling as a result of the ingestion of air impurities that accumulate on and stick to gas path 343 

free surfaces, blades and shrouds, modifying airfoil geometry (Diakunchak, 1992). In addition, oil leaks 344 

from compressor seals and bearings mix with some of the ingested particles and deposit on the blade 345 

surfaces (Lakshminarasimha et al. 1994). The result will be the deterioration of airfoils aerodynamic 346 

behavior and reduction of flow area leading to the compressor and engine performance degradation.  347 

Turbine fouling is mainly depending on type and quality of the operating fuel as discussed by Meher-348 

Homji (1987). When heavy fuel oil or crude oil is used, the turbine degradation is expected to be 349 

significant. Low melting point ashes, metals and unburned hydrocarbons can be aggregated in the turbine 350 

in the form of scale. The contaminants deposition will have an impact over blade, by changing the airfoil 351 

shape, the inlet angle and increasing the surface roughness. These effects will result to the reducing of the 352 

airfoil throat area and apparently reducing the performance characteristics and the service life of the 353 

component. Also, especially in marine gas turbines, sulfidation may occur resulting in turbine corrosion. 354 

As a result, fouling rate will increase, as discussed by Basendwah et al. (2006) 355 

Since both T/C components may be fouled, five different fouling cases are simulated herein. The 356 

simulation is performed by altering the blade thickness and friction accordingly, as presented in Table 3. 357 

The selected blade thickness change due to fouling is between 0.2 and 0.5 mm as proposed by 358 

Mezheritsky and Sudarev(1990) for a medium size T/C. 359 

The results of fouling analysis are shown in Fig11 –Fig13. As seen in Fig. 11, compressor fouling 360 

causes the movement of the surge line towards lower pressure ratios for high rotational speeds, hence 361 

reducing the compressor stable operation regime. Turbine fouling is mostly affecting the inlet mass flow 362 

and turbine efficiency hence reducing shaft horse power and increasing specific fuel consumption. As 363 

seen in Fig. 12 the fifth simulated case (F2-F3), which is the most severe one, results to a shaft horse 364 

power reduction of 22% highlighting the effect that T/C components fouling can have on a turbocharged 365 

engine. For this reason the original nominal power demand canot be satisfied for this case.The effect of 366 

fouling on fuel consumption is considerable leading to a specific fuel increase of about 5% for the worst 367 

case, as depicted in  Fig. 13.  368 
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For further interpretation of the fouling analysis, additional simulation is performed, with results 369 

presented in Table 4 highlighting the effect of fouling in engine performance degradation for constant 370 

engine speed and load. The demanded shaft power, used in this simulation, represents the fifth simulated 371 

case (F2-F3) maximum power, aiming to ensure that engine operates stable in all fouling conditions. It is 372 

observed that as the fouling level increases, the fuel consumption increases in order to satisfy the 373 

demanded load. Also boost pressure and T/C rotational speed reduction occurs due to compressor and 374 

turbine degradation. Final, the system outlet temperature rises, because of the turbine efficiency 375 

reduction.  376 

 377 

Intercooler fouling assessment 378 

The air density determines the maximum weight of fuel that can be effectively burned per working 379 

stroke in the cylinder. The increase in air density can be performed by decreasing the charged temperature 380 

leading to power increase. The intercooling is used for this purpose.  In most cases, intercooler consists of 381 

three channels. 382 

o Air channel 383 

o Brackish water channel 384 

o Sea water channel 385 

Brackish water drains heat energy from charged air through a finned tube exchanger, increasing its 386 

density. This energy is transferred in next step to sea water through a secondary exchanger. In order to 387 

perform the simulation of a fouled intercooler it was assumed that:  388 

o Maximum fouling sea water resistance is 0.176 𝑚2𝐾/𝑘𝑊 (Kakac et al. 2012) 389 

o Maximum pressure drop increase is 0.29% due to fouling. (Gautam et al. 2017) 390 

Using the heat exchanger fouling assumptions, clean cooler effectiveness to fouled cooler 391 

effectiveness ratio can be determined as follows. 392 
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εclean

εfouled
=  

1
Uclean

+ Rf

1
Uclean

 (15) 

Thus, calculating 𝜀𝑓𝑜𝑢𝑙𝑒𝑑 and using it, in turbocharged engine model, sfc, power and temperature 393 

changes can be calculated. Heat exchanger fouling leads to effectiveness reduction and pressure drop 394 

increase, hence, the air density before the manifold is decreased causing engine shaft horse power and 395 

efficiency reduction. The fuel consumption is increased by 1% as reported in Table 5, thus heat exchanger 396 

fouling economic effect can become significant. In addition exhaust gas temperature increases significant 397 

and turbocharger operating line is moved towards surge (Fig. 14), expected to affect turbocharger stable 398 

operation.  399 

The heat exchanger fouling rate depends on many parameters, including time. It is of interest to assess 400 

how the buildup of heat exchange fouling affects the overall turbocharged engine performance over time. 401 

The changes of pressure drop and resistance over time are evaluated according to the following and the 402 

values discussed, while time is assumed dimensionless, for expressing the relative change of performance 403 

parameters over time (see Fig 15 and Fig 16).  404 

o Pressure drop reduction function against fouling resistance has parabolic form. (Gautam et al. 405 

2017) 406 

o Fouling resistance function against time has linear form. (Kakac et al. 2012) 407 

As seen in Fig. 16 the sfc increase and the shaft horse power decrease are more profound during the 408 

first period of fouling. Over time the fouling build up is degrading the overall performance but the 409 

degradation rate is expected to be reduced over time.  410 

 411 

Conclusion 412 

An integrated simulation framework for turbocharged internal combustion engine performance and 413 

operability assessment has been developed. For the turbomachinery components 1D models have been 414 

applied for analyzing the impact of turbomachinery fouling on sub-system and system level. The effect of 415 
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intercooler fouling has been assessed as well. The assessment is undertaken utilizing models suitable 416 

adapted to shop trials data. The results indicate that: 417 

Compressor fouling causes the movement of the surge line towards lower pressure ratios, hence 418 

reducing the compressor stable operation regime. Turbine fouling is mostly affecting the inlet mass flow 419 

and turbine efficiency reducing shaft horse power and increasing specific fuel consumption. As for the 420 

combination of compressor and turbine fouling, power may be reduced up to 22% highlighting the effect 421 

that T/C components fouling can have on a turbocharged engine and leading to a 5%  specific fuel 422 

consumption increase. 423 

Heat exchanger fouling leads to effectiveness reduction and pressure drop increase resulting, for the 424 

case examined herein, to 1% specific fuel consumption increase and 1% power decrease, indicating that 425 

intercooler fouling may affect the engine life cycle cost. In addition exhaust gas temperature increases 426 

significant, an increase that is expected to affect the turbocharger bearings life. Also, turbocharger 427 

operating line is moved towards surge line, increasing the chance of working under unstable operation. 428 

The present simulation framework has a lot of possible other applications apart from the study of 429 

engine system degradation due to fouling in T/C components and heat exchanger. It can be an integrated 430 

part either of a retrofitting platform with design and optimization modules or of a diagnostic tool, for 431 

predictive maintenance purposes. Therefore, the authors intent to replace the single-zone diesel engine 432 

model by a more detailed phenomenological one coupled with detailed modeling for NOx emissions from 433 

marine diesel engine, while CO2 emissions will be directly calculated by the fuel consumption. 434 

Finally, the present framework can be used to any type of turbocharged engine after specific 435 

modifications, which include adaptation of engine modeling to gasoline or diesel engine geometrical and 436 

operational specifications and individual combustion conditions. The single-zone combustion model 437 

modifications for gasoline engines include the selection of a Wiebe function suitable for gasoline 438 

combustion and the observation of cylinder pressure variation rate for controlling fuel supply to avoid 439 

pre-ignition or post-combustion knocking phenomena. Single-zone combustion concept can be considered 440 

more suitable for gasoline combustion modeling due to its predominantly premixed nature. 441 

 442 
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Data Availability 443 

All the data generated or used during the study are available from the corresponding author by 444 

request. 445 
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Table 1. Diesel engine technical specifications 

Cycle 4 Fuel LHV [kJ/kg] 42700 

Cylinders 5 Number of turbochargers 1 

Bore[mm] 200 Injection timing 10 degCA BTDC 

Stroke[mm] 300 Injection pressure 294 bar 

Fuel Type Diesel Number of injector nozzle holes 8 
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Table 2. Diesel engine shop trials data 

Load 

[%] 

Output 

[kW] 

Fuel* 

[kg/h] 

C.P 

[barg] 

C.T 

[C] 
𝑃𝑎𝑚𝑏 

[mbar] 
𝑇𝑎𝑚𝑏 
[C] 

RH 

[%] 
𝑃𝑚𝑎𝑥 
[bar] 

𝑇𝑒𝑥ℎ 
[C] 

25 113 32.2 0.36 35 1001.5 31 62 62 283 

50 225 53.5 0.69 37 1003.7 30.5 66 83 339 

75 338 73.6 1.23 42 1003.5 31 65 108 365 

100 450 94.5 1.84 45 1003 31.5 59 131 399 

110 495 104.3 2.05 47 1002.7 32.5 54   
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Table 3. Turbocharger fouling conditions 

 Centrifugal Compressor Radial Turbine 

Fouling 

condition 

Blade thick. 

change[mm] 

Blade thick. 

change [%] 

Friction coef. 

change [%] 

Nozzle thick. 

change [mm] 

Nozzle thick. 

change [%] 

Friction Coef. 

change [%] 

F1 +0.2 +21% +13% - - - 

F2 +0.5 +54% +50% - - - 

F3 - - - +0.5 -2.4% +37.5% 

F1-F3 +0.2 +21% +13% +0.5 -2.4% +37.5% 

F2-F3 +0.5 +54% +50% +0.5 -2.4% +37.5% 
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Table 4. System operation dependence on fouling 

 Specific shaft horse power (377 kW) 

Fouling 

condition 

T/C 

rotational 

speed  

Boost 

Pressure  
T4 T5 sfc 

F1 -0.9% -10.0% 3% 4% 0.28% 

F2 -2.0% -22.2% 8% 12% 1.06% 

F3 -2.2% -6.2% 2% 4% 0.17% 

F1-F3 -2.6% -13.9% 5% 8% 0.61% 

F2-F3 -3.7% -26.1% 9% 15% 1.31% 
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Table 5. Fouled intercooler parameters 

Condition sfc [g/kWh]  T4 (oC) T5 (oC) 

Healthy 214.49 480 360 

Fouled Intercooler 216.72 (+1.04%) 497 (+17) 381 (+21) 
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