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Abstract. In this work, we generalize the four circulant construction for self-

dual codes. By applying the constructions over the alphabets F2, F2 + uF2,
F4 +uF4, we were able to obtain extremal binary self-dual codes of lengths 40,

64 including new extremal binary self-dual codes of length 68. More precisely,

43 new extremal binary self-dual codes of length 68, with rare new parameters
have been constructed.

1. Introduction

Binary self-dual codes have generated a considerable amount of interest in the
literature for decades for their connections to many other mathematical structures
and applications. They have an upper bound on their minimum distance, which is
given by Conway and Sloane in [4], and is finalized by Rains in [16] as d ≤ 4b n

24c+6
when n ≡ 22 (mod 24) and d ≤ 4b n

24c+ 4, otherwise, where n is the length of the
self-dual code. Self-dual codes meeting these bounds are called extremal.

There is an extensive literature on constructions for extremal binary self-dual
codes. One of the main directions of research in the literature has been to construct
extremal binary self-dual codes whose weight enumerators have new parameters,
that were not known to exist before. This comes from the works by Conway and
Sloane in [4] and Dougherty et al. in [5] in which the possible weight enumerators
of all extremal self-dual codes of lengths up to 100 were classified.

While the tools in constructing extremal binary self-dual codes may differ from
taking a special matrix construction, considering a certain automorphism or the
neighboring construction, in all of these cases the final step is to do a computer
search over a reduced set of possible inputs. Using the afore-mentioned tools reduce
the search field considerably so that the search is now feasible to do in a reasonable
time.

For most known constructions for self-dual codes, one of the key concepts is “cric-
ulant” matrices. It is well-known that circulant matrices are determined uniquely
by their first rows and that they commute in matrix multiplication. The double-
circulant, bordered double circulant and four-circulant constructions are some of
the well-known construction methods in the literature that make use of circulant
martrices. Through these constructions the search field for a self-dual code of length
2n usually reduces to a constant multiple of 2n, which makes it feasible to search
for self-dual codes of lengths up to 88 for example.
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In this work, we will be considering a generalized version of the four-circulant
construction over the alphabets F2, F2 + uF2 and F4 + uF4 to construct extremal
binary self-dual codes. Our construction, in general, is different than the four-
circulant construction and we will be giving the comparative results. Using this
construction, we are able to construct many extremal binary self-dual codes of
lengths 40 and 64, and in particular we are able to construct 43 new extremal
binary self-dual codes of length 68 with new weight enumerators in W68,2. The
exact parameters in the weight enumerators are given in section 5.

The rest of the paper is organized as follows. In section 2, we give the pre-
liminaries on the alphabets to be used, special types of matrices that we use in
our constructions and the well known four circulant construction. In section 3, we
introduce our generalization of the four circulant construction and we give theo-
retical results about when they lead to self-dual codes as well as their connection
to the ordinary four-circulant construction. In section 4 we give the numerical re-
sults about extremal binary self-dual codes of lengths 40 and 64 that we obtain by
a direct application of our constructions over different alphabets together with a
comparison with the usual four-circulant construction. In section 5, we apply the
neighboring construction as well as extensions to the codes obtained in section 4 to
find new extremal binary self-dual codes of length 68. We finish with concluding
remarks and directions for possible future research.

2. Preliminaries

Let R be a commutative Frobenius ring of characteristic 2. A code C of length
n over R is an R-submodule of Rn. Elements of the code C are called codewords
of C. Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be two elements of Rn. The
duality is understood in terms of the Euclidean inner product; 〈x, y〉E =

∑
xiyi.

The dual C⊥ of the code C is defined as

C⊥ = {x ∈ Rn | 〈x, y〉E = 0 for all y ∈ C} .

We say that C is self-dual if C = C⊥.
Two self-dual binary codes of dimension k are said to be neighbors if their in-

tersection has dimension k − 1.
Let F4 = F2 (ω) be the quadratic field extension of the binary field F2 =

{0, 1}, where ω2 + ω + 1 = 0. The ring F4 + uF4 defined via u2 = 0 is a
commutative binary ring of size 16. We may easily observe that it is isomor-
phic to F2 [ω, u] /

〈
u2, ω2 + ω + 1

〉
. The ring has a unique non-trivial ideal 〈u〉 =

{0, u, uω, u+ uω}. Note that F4 + uF4 can be viewed as an extension of F2 + uF2

and so we can describe any element of F4 +uF4 in the form ωa+ ω̄b uniquely, where
a, b ∈ F2 + uF2.

(F4 + uF4)
n

ψF4+uF4−−−−−−−−→
(F2 + uF2)

2n

↓ ϕF4+uF4
↓ ϕF2+uF2

F2n
4 ψF4−−−−−−−−−→

F4n
2
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Let us recall the following Gray Maps from [8, 15] and [6];

ψF4
: aω + bω 7→ (a, b) , a, b ∈ Fn

2

ϕF2+uF2
: a+ bu 7→ (b, a+ b) , a, b ∈ Fn

2

ψF4+uF4
: aω + bω 7→ (a, b) , a, b ∈ (F2 + uF2)

n

ϕF4+uF4
: a+ bu 7→ (b, a+ b) , a, b ∈ Fn

4

Note that these Gray maps preserve orthogonality in the respective alphabets, for
the details we refer to [15]. The binary codes ϕF2+uF2 ◦ ψF4+uF4 (C) and ψF4 ◦
ϕF4+uF4 (C) are equivalent to each other. The Lee weight of an element in F4 +uF4

is defined to be the Hamming weight of its binary image under any of the previously
mentioned compositions of the maps. A self-dual code is said to be of Type II if the
Lee weights of all codewords are multiples of 4, otherwise it is said to be of Type I.

Proposition 2.1. ([15]) Let C be a code over F4 + uF4. If C is self-orthogonal, so
are ψF4+uF4

(C) and ϕF4+uF4
(C). C is a Type I (resp. Type II) code over F4 +uF4 if

and only if ϕF4+uF4 (C) is a Type I (resp. Type II) F4-code, if and only if ψF4+uF4 (C)
is a Type I (resp. Type II) F2 + uF2-code. Furthermore, the minimum Lee weight
of C is the same as the minimum Lee weight of ψF4+uF4

(C) and ϕF4+uF4
(C).

Corollary 2.2. Suppose that C is a self-dual code over F4 + uF4 of length n and
minimum Lee distance d. Then ϕF2+uF2

◦ψF4+uF4
(C) is a binary [4n, 2n, d] self-dual

code. Moreover, C and ϕF2+uF2
◦ ψF4+uF4

(C) have the same weight enumerator. If
C is Type I (Type II), then so is ϕF2+uF2

◦ ψF4+uF4
(C).

In subsequent sections we will be writing tables in which vectors with elements
from the rings F2 + uF2 and F4 + uF4 will appear. In order to avoid writing
long vectors with elements that can be confused with other elements, we will be
describing the elements of this ring in a shorthand way, which will make the tables
more compact.

For the elements of F2 + uF2 we will use 0→ 0, 1→ 1, u→ u and 1 + u→ 3.
For the elements of F4+uF4, we use the ordered basis {uω, ω, u, 1} to express the

elements of F4+uF4 as binary strings of length 4. Then we will use the hexadecimal
number system to describe each element:

0 ↔ 0000, 1 ↔ 0001, 2 ↔ 0010, 3 ↔ 0011, 4 ↔ 0100, 5 ↔ 0101, 6 ↔ 0110,
7 ↔ 0111, 8 ↔ 1000, 9 ↔ 1001, A ↔ 1010, B ↔ 1011, C ↔ 1100, D ↔ 1101,
E ↔ 1110, F ↔ 1111.

For example 1+uω corresponds to 1001, which is represented by the hexadecimal
9, while ω + uω corresponds to 1100, which is represented by C.

We are going to use the following extension method for computational results in
the upcoming sections.

Theorem 2.3. ([7]) Let R be a commutative ring of characteristic 2 with identity.
Let C be a self-dual code over R of length n and G = (ri) be a k × n generator
matrix for C, where ri is the i-th row of G, 1 ≤ i ≤ k. Let c be a unit in R such that
c2 = 1 and X be a vector in Rn with 〈X,X〉 = 1. Let yi = 〈ri, X〉 for 1 ≤ i ≤ k.
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Then the following matrix 
1 0 X
y1 cy1 r1
...

...
...

yk cyk rk

 ,
generates a self-dual code D over R of length n+ 2.

2.1. Special Matrices. Circulant matrices play an important role in many appli-
cations. In this section we briefly recall circulant matrices and its variations in the
form of reverse-circulant and λ-circulant matrices. For more detailed information
on circulant matrices we refer the reader to [18], [17] and the references therein.

With R a commutative ring with identity, let σ be the permutation on Rn that
corresponds to the right shift, i.e.

(2.1) σ(a1, a2, . . . , an) = (an, a1, . . . , an−1).

A circulant matrix is a square matrix where each row is a right-circular shift of the
previous row. In other words, if r is the first row, a typical circulant matrix is of
the form

(2.2)


r

σ(r)
σ2(r)

...
σn−1(r)

 .
It is clear that, with T denoting the permutation matrix corresponding to the n-
cycle (123...n), a circulant matrix with first row (a1, a2, . . . , an) can be expressed
as a polynomial in T as:

a1In + a2T + a3T
2 + · · ·+ anT

n−1,

with Tn = In. This shows that circulant matrices commute.
A reverse-circulant matrix is a square matrix where each row is a left-circular

shift of the previous row. It is clear to see that if r is the first row, a reverse-circulant
matrix is of the form

(2.3)


r

σ−1(r)
σ−2(r)

...

σ−(n−1)(r)

 .
An n× n square matrix A is called λ-circulant if every row is a λ-cyclic shift of

the previous one, in other words A is in the following form;
a1 a2 a3 · · · an
λan a1 a2 · · · an−1
λan−1 λan a1 · · · an−2

...
...

...
. . .

...
λa2 λa3 λa4 · · · a1

 .
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λ-circulant matrices are an immediate generalization of circulant matrices and
like circulant matrices, two λ-circulant matrices also commute.
λ-reverse-circulant matrices can also be defined in exactly the same way as an

extension of reverse circulant matrices.
The following lemma gives us an important result that we will be using in the

upcoming sections.

Lemma 2.4. [13] Let A and C be λ-circulant matrices. Then C ′ = CR is a λ-
reverse-circulant matrix and it is symmetric. Here R is the back-diagonal matrix.
Moreover, AC ′ − C ′AT = 0. Equivalently, ARCT − CRAT = 0.

A special case of Lemma 2.4 is as follows;

Lemma 2.5. Symmetric circulant matrices commute with reverse circulant matri-
ces.

2.2. On four circulant construction. The four-circulant construction, which
was inspired by orthogonal designs, was introduced in [2]:

Theorem 2.6. [2] Let A and B be n × n circulant matrices over Fp such that
AAT +BBT = −In then the matrix

G =

(
I2n

A B
−BT AT

)
generates a self-dual code over Fp.

Recently, the four circulant construction was applied on F2 + uF2 in [11], which
resulted in a new binary self-dual code of length 64.

The following is a variation of the four circulant construction, which was used
in [13] to obtain new extremal binary self-dual codes.

Theorem 2.7. [13] Let λ be a unit of the commutative Frobenius ring R, A be a
λ-circulant matrix and B be a λ-reverse-circulant matrix with AAT +BBT = −In
then the matrix

G =

(
I2n

A B
−B A

)
generates a self-dual code C over R.

3. A generalization of the four circulant construction

In this section, we give a generalization of the four circulant construction. We
also propose two specific variations of the construction.

Theorem 3.1. Let R be a commutative Frobenius ring of characteristics 2, A
and B be circulant matrices and C be a reverse circulant matrix. Then the code
generated by

G :=

(
I2n

A B + C
BT + C AT

)
is self-dual when AAT +BBT + C2 = In and AC = CA.
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Proof. Let M :=

(
A B + C

BT + C AT

)
. We are to show that MMT = I2n under

the given conditions. Indeed

MMT =

(
AAT +BBT +BC + CBT + C2 AB +AC +BA+ CA
BTAT + CAT +ATBT +ATC BTB +BTC + CB + C2 +ATA

)
=

(
AAT +BBT + C2 AC + CA
CAT +ATC BTB + C2 +ATA

)
=

(
In 0n
0n In

)
.

The above equality holds because we have AB = BA and ATBT = BTAT since
circulant matrices commute and also because by Lemma 2.4 BC + CBT = 0 and
BTC + CB = 0. �

We obtain the following corollary when A is a symmetric circulant matrix:

Corollary 3.2. Let R be a commutative Frobenius ring of characteristic 2, A be a
symmetric circulant matrix, B be a circulant matrix and C be a reverse circulant
matrix. Then the code generated by

G :=

(
I2n

A B + C
BT + C A

)
is a self-dual code over R whenever A2 +BBT + C2 = In.

Proof. It follows by Theorem 3.1 and Lemma 2.5. �

We may also propose another special case of Theorem 3.1.

Corollary 3.3. Let C be a self-dual four circulant code of length 4n over R (of
characteristic 2) generated by

G :=

(
I2n

A B
BT AT

)
.

Then for any reverse circulant matrix C, which commutes with A and satisfies
C2 = 0, the matrix (

I2n
A B + C

BT + C AT

)
generates a self-dual code C′.

Corollary 3.3 allows us to reduce the size of the search field for that specific
variation. We may consider a four circulant code and search for reverse circulant
matrices C under the restrictions.

Example 3.4. Let n = 7 and C be the four circulant code where A = I7 and
B = 07, i.e. rA = (1, 0, 0, 0, 0, 0, 0) and rB = (0, 0, 0, 0, 0, 0, 0). The code C is
binary self-dual with parameters [28, 14, 2]. Let C be the reverse circulant matrix
with first row rC = (1110100) which satisfies C2 = 07 and obviously it commutes
with A. Then the code C′ obtained by Corollary 3.3 is an extremal binary self-dual
[28, 14, 6] code with an automorphism group of order 26 × 3× 7.

4. Computational Results

In this section, we provide examples to demonstrate the effectiveness of the
methods introduced in Section 3. We also compare the methods with the well known
four circulant construction for various lengths over the alphabets F2, F2 + uF2 and
F4 + uF4 .
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4.1. Comparison of the methods over F2 for length 40. We construct Type
I self-dual codes of length 40 by the four circulant construction and also by the
methods given in Section 3. The weight enumerator of a singly even binary self-
dual code of parameters [40, 20, 8] is in the following form:

W40 = 1 + (125 + 16β) y8 + (1664− 64β) y10 + · · · , 0 ≤ β ≤ 10

The existence of a code with β = 9 is still an open problem. There are codes for
the other values. In Table 1, we list four circulant self-dual binary codes of length
40.

Table 1. [40, 20, 8] four circulant codes

C40,i rA rB |Aut(C40,i)| β in W40

C40,1 (0100001110) (0100110011) 22 × 5 0
C40,2 (0000110011) (0010111001) 23 × 5 0
C40,3 (0101100111) (1111001011) 23 × 3× 5 0
C40,4 (1001000100) (0101101101) 214 × 3× 5 10
C40,5 (1000000010) (1101011101) 216 × 33 × 52 10

The binary self-dual codes of length 40 constructed from the construction given
in Corollary 3.2 are given in Table 2. Since A is symmetric circulant, we only list
the necessary entries of the first row rA.

Table 2. [40, 20, 8] codes by Corollary 3.2

D40,i rA rB rC |Aut(D40,i)| β in W40

D40,1 (110111) (0010001100) (1110100101) 23 0
D40,2 (011010) (0010111000) (1110010010) 24 0
D40,3 (011010) (0010011100) (1010000100) 23 × 3 0
D40,4 (100111) (1010110011) (0000100110) 26 0
D40,5 (111001) (1001011010) (0010011001) 27 0
D40,6 (010111) (1001111001) (0001011111) 22 1
D40,7 (011001) (0111000011) (0111100001) 23 1
D40,8 (011010) (0010000110) (1100000000) 24 1
D40,9 (110001) (1011000011) (0100110100) 23 2
D40,10 (000110) (0100010011) (1100001000) 26 2
D40,11 (111001) (1100101001) (0100111110) 29 × 32 2
D40,12 (110100) (1101111011) (0011111001) 213 2
D40,13 (001010) (1010000111) (1111110011) 25 4
D40,14 (011000) (0101010110) (0000001100) 26 4
D40,15 (100111) (0000110011) (1010011001) 27 4
D40,16 (000010) (0011111000) (0100101010) 28 6
D40,17 (000010) (1011101000) (0100101010) 28 × 3 6
D40,18 (010100) (1000111111) (0100100101) 215 10
D40,19 (110100) (0101010101) (1001110010) 214 × 3× 5 10
D40,20 (101010) (1000100010) (0101111101) 216 × 33 × 52 10
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We apply Corollary 3.3 to C40,4 from Table 1. In other words, we fix the circulant
matrices A and B and search for reverse circulant matrices which satisfy the given
conditions. The results are tabulated in Table 3. The results have shown the
method to be quite effective.

Table 3. [40, 20, 8] codes by Corollary 3.3 for C40,4

E40,i rC |Aut(E40,i)| β in W40

E40,1 (1101011010) 23 0
E40,2 (1100011000) 22 2
E40,3 (0111001110) 23 2
E40,3 (0100001000) 28 2
E40,4 (0011100111) 213 2
E40,5 (0111101111) 211 4
E40,6 (1010010100) 28 6
E40,7 (1101011010) 28 × 3 6
E40,8 (1000110001) 215 10
E40,9 (1111011110) 216 10

4.2. Comparison of the methods over F2 for length 64. There are two pos-
sibilities for the weight enumerators of extremal Type I self-dual codes of length 64
(hence of parameters [64, 32, 12]) ([4]):

W64,1 = 1 + (1312 + 16β) y12 + (22016− 64β) y14 + · · · ,
W64,2 = 1 + (1312 + 16β) y12 + (23040− 64β) y14 + · · ·

where β and γ are parameters.
Self-dual four circulant [64, 32, 12]2 type I codes exist for weight enumerators

β = 0, 8, 16, 24, 32, 40, 48, 56, 64 and 72 in W64,2. We provide codes that we obtained
from Corollary 3.2 in Table 4. The results show that the limited version of the
generalized four circulant construction gives some codes which do not have four
circulant representation (The ones with β = 4, 10, 12, 13, 17, 18, 20, 28, 34.)
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Table 4. Type I extremal self-dual codes of length 64 by Corollary 3.2

Ci rA rB rC |Aut(Ci)| β in W64,2

C1 (101001111) (0001111001100011) (1101001110011001) 23 4
C2 (001101011) (0101001000001001) (0101011110111101) 24 8
C3 (111101110) (0011110000111101) (0101011110111101) 25 8
C4 (111101011) (0000100001000001) (0100000011001101) 23 10
C5 (101101111) (1000101000101000) (0010111110100010) 24 12
C6 (100110100) (0001001001111111) (0101011110111101) 23 13
C7 (100011101) (1010110001101011) (1100111001100100) 24 16
C8 (110001001) (0010111110100010) (1100011011111000) 23 17
C9 (000011110) (0000011101110111) (0100000011001101) 23 18
C10 (101101100) (1111001000100111) (1100101101001011) 24 20
C11 (000011100) (0010001101001111) (0101011110111101) 23 24
C12 (010111001) (1010000110110000) (0100010001011111) 24 24
C13 (010010011) (0000000100000101) (0101011110111101) 24 28
C14 (111011011) (0100000101111111) (0001010001000001) 24 32
C15 (011111000) (1000101000100010) (0001001101000011) 23 34

Remark 4.1. The first code with weight enumerator β = 34 in W64,2 has been
recently constructed in [1]. Here we give an alternative construction.

4.3. Comparison of the methods over F2 + uF2. In this section we compare
the methods; four circulant construction and generalized four circulant construction
over F2 + uF2 for length 32. A complete classification of four circulant codes of
length 32 over F2 + uF2 is given by Karadeniz et al. in [11]. Four circulant type
I codes of length 32 have binary images corresponding to weight enumerators with
β = 0, 16, 32, 48 and 80 in W64,2. In Table 5 we provide generalized four circulant
codes. It is observed that the latter method is more efficient as it produces many
more codes of length 64 with parameters that could not be obtained from the
ordinary four circulant construction.
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Table 5. [64, 32, 12] codes via Theorem 3.1 over F2 + uF2 (W64,2)

Fi rA rB rC |Aut(Fi)| β

1 (0, u, 0, 0, 1, u, 3, 0) (u, u, u, 0, 0, 1, 1, 3) (0, u, 3, 0, 0, u, 3, 0) 24 0
2 (u, u, 0, u, 1, u, 1, u) (u, u, u, 0, 0, 1, 1, 3) (0, 0, 3, 0, 0, 0, 3, 0) 25 0
3 (u, u, u, u, 1, u, 3, u) (u, u, u, 0, 0, 1, 1, 3) (u, u, 1, u, u, u, 1, u) 26 0
4 (u, 0, u, 0, 0, 1, u, 3) (u, u, u, u, 0, 1, 1, 1) (1, u, 3, 0, 3, u, 1, 0) 23 4
5 (u, u, u, u, 1, 1, 3, 1) (u, u, 0, 1, 0, 0, 1, 3) (u, u, 0, u, u, u, 0, u) 24 4
6 (0, u, 0, u, 1, u, 3, u) (u, u, u, 0, 0, 1, 1, 3) (u, 0, 3, 0, u, 0, 3, 0) 25 4
7 (0, u, 0, u, 1, 1, 0, 1) (u, u, 0, u, 1, 1, 1, 3) (u, 0, u, 0, u, 3, u, 3) 23 8
8 (u, 0, 0, u, 1, u, 1, 0) (u, u, u, u, 0, 1, 1, 1) (u, 0, 1, 0, u, 0, 1, 0) 24 8
9 (u, u, u, u, 1, 1, u, 1) (u, u, u, u, u, 1, 0, 1) (u, 0, u, u, 1, 3, 1, 1) 25 8
10 (u, u, 0, 0, 1, 1, 0, 3) (u, u, 0, u, 1, 1, 1, 3) (u, u, 0, u, u, 1, 0, 1) 23 12
11 (u, u, u, u, 0, 1, 0, 3) (u, u, u, u, 0, 1, 1, 1) (1, u, 3, u, 1, u, 3, u) 24 12
12 (0, u, 0, u, 0, 1, u, 3) (u, u, u, 0, 0, 1, 1, 3) (1, 0, 3, 0, 1, 0, 3, 0) 25 12
13 (u, 0, 0, 0, u, 1, u, 3) (u, u, u, 0, 0, 1, 1, 3) (1, u, 3, u, 1, u, 3, u) 26 12
14 (u, 0, u, 0, 1, 1, u, 1) (u, u, u, u, u, 1, 0, 1) (0, 0, 0, u, 1, 3, 1, 1) 24 16
15 (u, u, u, u, 0, 1, 0, 3) (u, u, u, u, 0, 1, 1, 1) (3, 0, 3, 0, 3, 0, 3, 0) 25 16
16 (u, u, 0, u, u, 1, u, 3) (u, u, u, 0, 0, 1, 1, 3) (3, 0, 3, 0, 3, 0, 3, 0) 26 16
17 (0, 0, u, 0, 0, 1, 0, 3) (u, u, u, 0, 0, 1, 1, 3) (3, 0, 3, 0, 3, 0, 3, 0) 27 16
18 (u, u, u, u, 1, 1, u, 1) (u, u, 0, 0, u, 1, u, 3) (u, u, u, 0, 3, 3, 3, 1) 23 20
19 (u, 0, 0, u, 1, u, 1, 0) (u, u, u, u, 0, 1, 1, 1) (0, 0, 1, 0, 0, 0, 1, 0) 24 20
20 (u, u, u, u, 1, 1, 0, 1) (u, u, 0, u, 1, 3, 3, 1) (u, u, u, u, u, 3, 0, 3) 23 24
21 (u, 0, 0, u, 0, 1, u, 1) (u, u, u, u, 0, 1, 1, 1) (3, u, 3, 0, 3, u, 3, 0) 24 24
22 (u, u, 0, u, 0, 1, 0, 1) (u, u, u, 0, 0, u, 0, 1) (1, 0, 1, 0, 1, 3, 1, 3) 25 24
23 (u, 0, 0, 0, u, 1, u, 3) (u, u, u, 0, 0, 1, 1, 3) (1, u, 3, 0, 1, u, 3, 0) 24 28
24 (u, u, u, u, u, 1, 0, 3) (u, u, u, 0, 0, 1, 1, 3) (1, u, 1, 0, 1, u, 1, 0) 25 32
25 (u, u, 0, 0, 1, 0, 1, u) (u, u, u, u, 0, 1, 1, 1) (u, 0, 3, 0, u, 0, 3, 0) 24 36
26 (u, u, u, 0, 1, u, 3, 0) (u, u, u, 0, 0, 1, 1, 3) (u, u, 3, u, u, u, 3, u) 25 36
27 (0, u, u, 0, 0, 1, 0, 1) (u, u, u, 0, 0, 1, 1, 3) (1, 0, 3, 0, 1, 0, 3, 0) 24 44
28 (0, u, u, 0, 0, 1, 0, 1) (u, u, u, 0, 0, 1, 1, 3) (1, u, 1, u, 1, u, 1, u) 25 48
29 (u, 0, u, 0, u, 1, 0, 3) (u, u, u, 0, 0, 1, 1, 3) (3, u, 3, u, 3, u, 3, u) 27 80

4.4. Computational results over F4+uF4. Four circulant codes of length 16 over
F4 +uF4 had been studied in [12]. The binary images of these codes are Type I ex-
tremal self-dual binary codes with weight enumerators β = 0, 4, 8, 12, 24, 28, 32, 36, 40, 48
and 52 in W64,2. We apply Corollary 3.2 and observe that it provides many new
parameters that could not be constructed from the four circulant construction. The
results are tabulated in Table 6.
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Table 6. Self-dual codes via Corollary 3.2 over F4 +uF4 of length
16 whose binary images are self-dual codes of length 64

Ei rA rB rC |Aut(Ei)| β in W64,2

E1 (D,F, 5, F ) (E,C, 0, 1) (7, B, 4, A) 23 1
E2 (5, B,D,B) (A,E,B,D) (7, F, 1, 8) 23 5
E3 (B, 9, D, 9) (2, E, 9, 7) (D, 7, 1, 2) 23 9
E4 (D,F, F, F ) (E,E, 9, 8) (A, 6, 9, 7) 23 13
E5 (9, 7, 7, 7) (0, F, C, 0) (4, 1, F,A) 23 17
E6 (F, 9, 7, 9) (2, 4, 3, F ) (F, 5, B, 8) 23 21
E7 (D, 0, F, 0) (9, E, C,A) (D,B, 4, 2) 23 29
E8 (5, 8, 6, 8) (F, 5, E, 8) (0, 8, 9, 7) 25 40
E9 (B, 4, 4, 4) (7, E, 8, D) (0, 6, 4, 2) 25 52

Remark 4.2. The codes with weight enumerators for 1, 5, 13, 17, 21, 29 and 52 were
first constructed in [10] as R3 lifts of the extended binary Hamming code. These
are reconstructed by a circulant construction in Table 6.

5. New extremal binary self-dual codes of length 68

The possible weight enumerator of an extremal binary self-dual code of length
68 (of parameters [68, 34, 12]) is in one of the following forms by [3, 9]:

W68,1 = 1 + (442 + 4β) y12 + (10864− 8β) y14 + · · · , 104 ≤ β ≤ 1358,

W68,2 = 1 + (442 + 4β) y12 + (14960− 8β − 256γ) y14 + · · ·

where 0 ≤ γ ≤ 9. Recently, Yankov et al. constructed the first examples of codes
with a weight enumerator for γ = 7 in W68,2. Together with these, the existence of
codes in W68,2 is known for many values. In order to save space we only give the
lists for γ = 5 and γ = 6, which are updated in this work;

γ = 5 with β ∈ {113,116,...,181} γ = 6 with β ∈ {2m|m = 69, 77, 78, 79, 81, 88}

We construct 36 new codes with the rare parameter γ = 6 and 7 codes with γ = 5
in W68,2.

We first construct two new codes of length 68 by applying the extension method
described in Theorem 2.3 over F2 + uF2 to F2 from Table 5.

Table 7. New codes of length 68 as extensions of codes in Table
5 by Theorem 2.3

D68,i Fi c X γ β
D68,1 2 1 (31u011u30uu113u3333u11u010301101) 5 101
D68,2 2 1 + u (130031u300013101313u31uu301u3103) 5 105

Now, applying the neighboring construction to the codes obtained in Table 7,
we get the following new codes of length 68:
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Table 8. New codes of length 68 as neighbors of codes in Table 7

N68,i D68,i x γ β
N68,1 2 (1010111001011100010100000010000000) 5 109
N68,2 2 (0000110011011010111101110100011100) 5 111
N68,3 2 (0000111110011111111011010001100000) 5 112
N68,4 2 (1101110000001001011100101100010101) 5 114
N68,5 1 (1110110100000001001100000111001010) 5 115
N68,6 2 (1001010001010101110010111110111000) 6 133

Example 5.1. Let C68 be the code obtained by extending ϕ (E6) over F2+uF2 where
X = (3, 0, 1, 1, u, 0, u, 3, 0, 1, 1, u, 1, 0, 0, u, 3, 0, 0, u, u, u, 1, 3, 3, 0, 1, 3, 1, u, 0, 3), then
the binary image of C68 is an extremal self-dual [68, 34, 12] code with weight enumer-
ator for γ = 6 and β = 157 in W68,2. As listed above only 6 codes with γ = 6 were
known before. So this is the first example of a self-dual code with the corresponding
weight enumerator.

Without loss of generality, we consider the standard form of the generator matrix

of ϕ (C68). Let x ∈ F68
2 − ϕ (C68) then D =

〈
〈x〉⊥ ∩ ϕ (C68) , x

〉
is a neighbor of

ϕ (C68). The first 34 entries of x are set to be 0, the rest of the vectors are listed in
Table 9. As neighbors of ϕ (C68) we obtain 34 new codes with weight enumerators
for γ = 6 in W68,2, which are listed in Table 9. All the codes have an automorphism
group of order 2.

Table 9. New extremal binary self-dual codes of length 68 with
γ = 6 as neighbors of C68

C68,i X β C68,i X β

C68,1 (1111111100111100001100001000000111) 137 C68,2 (0101001001001111111011100010111011) 139
C68,3 (1000001100000110110110000111100010) 140 C68,4 (0010011101110110011001110110110110) 141
C68,5 (1111111111000011111101100010011001) 142 C68,6 (1001000001111111111010010000011110) 143
C68,7 (1100100010000111001100111111110001) 144 C68,8 (0000110001110110011011011010000110) 145
C68,9 (1000010100001010110101110111110101) 146 C68,10 (1100110100000010010000110010011110) 147
C68,11 (1110101000011110100101111111101011) 148 C68,12 (0110011001001101000111010101011000) 149
C68,13 (1111111100101101000000001011111000) 150 C68,14 (0000100001100010111010011111111000) 151
C68,15 (1110000010100000001110110110000101) 152 C68,16 (1010100100110011111101001101001001) 153
C68,17 (1111010010000100100000101000011101) 155 C68,18 (1000001011110111100101100000001000) 159
C68,19 (0001010001010101010010010001100010) 160 C68,20 (1100000100011110101111110001010101) 161
C68,21 (0101110011110010110000111111010011) 163 C68,22 (1000000111111000000010111100010001) 164
C68,23 (0100000001010000001001110110010110) 165 C68,24 (0111001010010100000010010010101000) 166
C68,25 (1111010011000111000101101001011100) 167 C68,26 (0010110010110100000010001111000000) 168
C68,27 (0000010011010110001010010000101001) 169 C68,28 (1110101000110000011111010101010101) 170
C68,29 (1110100001100111100100000010010010) 171 C68,30 (1000001101101110010001101010111101) 172
C68,31 (1100100001110011101001010001100000) 173 C68,32 (0100011001000011000100010100101100) 174
C68,33 (0110000001110110000111101000101011) 177 C68,34 (1011111000100000001011010000101010) 184

6. Conclusion

In this paper, we generalize the well known four circulant construction for con-
structing self-dual codes. We compare both methods to highlight the significance of
the generalized construction. Additionally, we construct many new codes of length
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68. For codes of length 68, we constructed the following codes with new weight
enumerators in W68,2:

γ = 5, β = {101, 105, 109, 111, 112, 114, 115}.
γ = 6, β = {133, 137, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152,

153, 155, 157, 159, 160, 161, 163, 164, 165, 166, 167, 168, 169, 170, 171,

172, 173, 174, 177, 184}.

The binary generator matrices of the new codes we have constructed are available
online at [14].

The results we have obtained have demonstrated the effectiveness of the new
construction and the difference from the ordinary four-circulant construction. A
possible direction for future research could be applying these constructions for dif-
ferent rings and lengths.
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