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Abstract 

 

Purpose of review: In recent years, the food addiction hypothesis of loss-of-control eating has 

gained traction in the field of eating disorders. In particular, the neural process of food addiction 

plays a dominant role in the recently formulated “addictive appetite” model of bulimia nervosa 

and binge eating disorder. Nonetheless, several components of the food addiction hypothesis, 

including the presence of withdrawal and tolerance effects, as well as the proposition that some 

foods possess “addicting” properties, remain highly controversial. In response, the current 

review synthesises existing evidence for withdrawal and tolerance effects in people with 

bulimia nervosa.  

Recent findings: The recent development of a validated tool to measure withdrawal from highly 

processed foods will aid in measuring withdrawal symptoms and testing hypotheses related to 

withdrawal in the context of food addiction. We subsequently describe preclinical and human 

evidence for a central insulin- and dopamine-mediated pathway by which recurrent loss-of-

control binge eating is maintained in bulimia nervosa.  

Summary: Evidence in populations with bulimia nervosa and loss-of-control eating provides 

preliminary support for the role of food addiction in the maintenance of bulimia nervosa. Future 

longitudinal research is needed to develop a clearer profile of illness progression and to clarify 

the extent to which dysregulation in glucose metabolism contributes to food craving and 

symptom maintenance in bulimia nervosa.  

Keywords: Food addiction; bulimia nervosa; eating disorders; sugar; dopamine  
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 Background 

The concept of “food addiction” has received increasing attention in the scientific 

literature of recent years. While cogent arguments have been made against the establishment 

of food addiction as a psychiatric diagnosis in its own right [1], there is substantial evidence to 

suggest that processes similar to those observed in substance abuse disorders play a significant 

role in the maintenance of eating disorders in which loss of control of  eating is a feature (e.g., 

anorexia nervosa -binge purge type, bulimia nervosa and binge eating disorder) [2]. In this 

article, we will use bulimia nervosa (BN) as the exemplar. The “Addictive Appetite Model” 

proposes that three primary processes maintain psychopathology in BN: 1) The high salience 

of palatable foods [3], which is moderated by a genetic susceptibility to food approach 

tendencies, reduced efficiency in satiation processes [4], and/or episodes of food restriction; 2) 

Chronic stress and interpersonal difficulties resulting  in a deficiency of alternative  rewards 

and a primed stress system [5]; and 3) Large swings in blood glucose, caused  by the 

consumption of foods with a high glycaemic index, self-induced vomiting or insulin resistance 

(and insulin omission in diabetes mellitus). These pathways may contribute to compulsive 

binge eating behaviour through aberrations in dopaminergic function in a similar way to 

substance addictions.  

The current review presents a synthesis of the literature investigating some of the 

controversial aspects of applying the food addiction paradigm to eating disorders.  For instance, 

there is uncertainty as to whether tolerance and withdrawal criteria for an addictive disorder as 

specified within the DSM-5 are met. We also present a synthesis of molecular, preclinical, 

clinical, and neuroimaging evidence illustrating how fluxes in glucose and insulin moderate 

central dopaminergic functioning. 

Does Bulimia Nervosa Meet DSM-5 Criteria for an Addictive Disorder? 
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The DSM-5 criteria for an addictive disorder are presented in Table 1. The extent to 

which BN meets these criteria has been reviewed extensively elsewhere [6]. In his 2014 review, 

Brewerton acknowledges significant phenotypic overlap between disorders of substance 

dependence and BN but highlights a paucity of systematic clinical evidence for tolerance and 

withdrawal in the latter, a point frequently cited as a major weakness of the food addiction 

hypothesis [7]. Much research on tolerance and withdrawal symptoms in humans to date has 

been largely anecdotal [8]. However, herein we synthesise the evidence from new assessment 

methods.   

Tolerance 

The most compelling evidence for food tolerance is demonstrated in animal models, as 

previously reviewed by Murray, et al. [9]. Rats who voluntarily overeat highly palatable food 

exhibit evidence of a neural reward deficit due to downregulated dopamine D2 receptors, which 

worsens as weight is gained [10-12]. This decreased sensitivity to reward is directly linked to 

the onset of compulsive food seeking in rats [11]. Repetitive bingeing on sucrose interspersed 

with periods of dietary restriction causes rats to triple their overall daily sugar consumption 

[13], a finding which may be of particular importance to BN as it is characterised by 

intermittent fasting and binge episodes [14]. A similar downregulation of dopamine D2 

receptors is found in humans addicted to drugs of abuse [15] and is thought to be a key driver 

of compensatory overconsumption in the Reward Hyposensitivity Theory [16, 17]. 

Behavioural observations in people with substance use disorders mirror these findings.  

Individuals with BN endorse higher levels of  tolerance-like symptoms measured using 

the Yale Food Addiction Scale (YFAS) [8], compared with healthy controls [18, 19]. There are 

clinical reports of subthreshold BN patients initiating larger and more frequent binge episodes 

over time [20]. Consistent with these accounts is cross-sectional evidence of the correlation 
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between higher body weight and frequency and severity of binge eating episodes [21]. 

Individuals with binge-type eating disorders endorse significantly greater levels of eating for 

purposes of reward enhancement compared with weight-matched controls [22]. Such evidence, 

although compelling, remains indirect and is insufficient to prove the existence of tolerance in 

humans.  

A preference for intensely sweet food and larger quantities of sweeteners in individuals 

with BN is a characteristic often presented as an indicator of tolerance [3, 23-25]. Furthermore 

this  preference remains after ingesting a glucose load [26]. Magnetic resonance imaging (MRI) 

studies indicate hypofunctioning of gustatory and limbic circuitry in BN patients when tasting 

palatable food compared with controls [27, 28] and compared with individuals recovered from 

BN [29, 30]. This evidence is consistent with the idea that individuals with BN ingest more 

food over time because of a decreased sensitivity to sweet taste resulting from repeated binging 

on hyperpalatable foods [27].  

The development of impaired satiety mechanisms may be an indirect indicator of 

tolerance [6, 31, 32]. For example, a recent functional MRI (fMRI) study found that women in 

remission from BN exhibited the same response to taste stimuli in brain regions implicated in 

translating sensory information about taste into motivated behaviour, regardless of whether the 

individuals were hungry or sated, whilst healthy controls showed an increased response to taste 

stimuli when hungry versus when fed [33]. The authors also found an increased amygdala 

response in their remitted BN sample when fed compared to healthy controls, which they 

propose might project to the hypothalamus and motivate eating in the absence of hunger [33, 

34]. It is possible that brain circuitry in BN fails to de-value food reward when in a fed state, 

leading to eating beyond metabolic need. 
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Five years on from Brewerton’s 2014 review, there remains a paucity of direct evidence 

of tolerance in humans in relation to food intake and prospective, longitudinal studies are 

needed.  

Withdrawal Syndromes  

Preliminary evidence for a withdrawal syndrome in relationship to palatable food comes 

from animal models. There are consistent observations of strong physical (e.g., forepaw tremor, 

teeth chattering) and psychological (e.g., aggression, anxiety) withdrawal responses in rats 

during periods of withdrawal from sucrose [35-37]. The same observations, however, are not 

found with removal of high-fat foods [38] and have not yet been studied with removal of highly 

processed foods [39]. Neuroimaging studies show patterns consistent with this behavioural 

data. Sugar-dependent rats show a significant increase in extracellular acetylcholine and a 

decrease in dopamine release in the nucleus accumbens shell, as compared to control groups, 

during a 36-hour period of food deprivation [35], effects which are similar to withdrawal from 

morphine, nicotine, and alcohol. 

Traditionally withdrawal symptoms have not been clearly defined in the context of 

addictive-like eating, prompting criticism of the food addiction framework [40]. To date, the 

food addiction field has largely relied on observational and anecdotal clinical reports based on 

small cohorts or single case studies [41-46] and on self-reported endorsement of withdrawal 

symptoms on the YFAS [18] and other withdrawal scales [47]. Cross-sectional self-report 

accounts are consistent in describing physiological symptoms of withdrawal similar to those 

experienced during opiate withdrawal [8, 48]. Headaches, irritability and flu-like symptoms 

are reported by individuals abstaining from sugar [42], stomach pains, muscle spasms and 

shakiness by individuals abstaining or reducing intake of carbohydrates [43, 45], and nausea 

by individuals abstaining from salted food [49]. Furthermore, tiredness and irritability have 
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been cited as motivating factors for eating [45], providing some suggestion of food being used 

as a “pick-me-up”, or to avoid an experience of negative feelings of withdrawal.  

Symptoms of psychological withdrawal are also widely reported. Cross-sectional self-

report accounts from patients with BN reveal that most feel tension, loneliness, and physical 

symptoms of anxiety before a binge, and the majority feel that their negative psychological 

states are alleviated whilst engaged in a binge [39]. Longitudinal studies using Ecological 

Momentary Assessment technology also report that binge eating and subsequent purging are 

usually preceded by dysphoric mood states [50-52]. However, there is high prevalence of 

depression and emotion dysregulation in BN populations [53], so it is not clear whether such 

presentations of low mood represent psychological withdrawal from food. Future research 

should aim to elucidate whether dysphoric mood states before bingeing are distinct from more 

permanent mood-related comorbidities, perhaps by comparing depressed versus non-depressed 

individuals with BN.  

The first and only tool to evaluate withdrawal in the context of addictive-like eating has 

been developed recently: The Highly Processed Food Withdrawal Scale – ProWS [39]. This in 

part is derived from the premise that specific nutritional ingredients are capable of triggering 

addictive-like responses [54]. In a pilot study, the ProWS was found to be positively associated 

with elevated YFAS symptoms, BMI and weight cycling, in a community sample, and 

responses on the ProWS explained an additional 11.2% of the variance in self-reported dieting 

success [39]. This tool may help differentiate between the withdrawal effects from different 

types of palatable food  [55, 56] . 

 

The Impact of Glucose Metabolism on Hedonic Eating Behaviour 

Preclinical Evidence             
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Sweet, palatable foods act as an unconditioned rewarding stimulus in humans and 

rodent models, with evidence suggesting that merely tasting sucrose without digestion 

produces activation of dopaminergic circuits within the striatum [57]. However, there is 

evidence to suggest that palatable foods with a high glycaemic index further contribute to the 

development of compulsive binge eating behaviour through changes in dopaminergic 

functioning triggered by wide swings in blood glucose. One candidate mechanism for this 

effect relates to the interaction between insulin and dopaminergic functioning. 

The role of mesolimbic dopaminergic functioning in food approach behaviours has 

been reviewed extensively elsewhere [58]. Dopamine-deficient mouse models exhibit severe 

aphagia leading to weight loss and death [59]. Conversely the stimulation of dopaminergic 

activity within the striatum triggers food consumption in rats without enhancing “liking” 

responses (e.g., lip-licking and paw licking). Thus, dopaminergic functioning is thought to hold 

a role  in food approach behaviours (wanting) that is discrete from the hedonic response to food 

receipt [60]. In contrast, central insulin suppresses feeding [61]. It is thought that the effects of 

central insulin and dopamine on food intake, are not independent, but rather interact to regulate 

hedonic eating behaviour. 

Dopaminergic neurons within the ventral tegmental area (VTA) express insulin 

receptors [62, 63], presenting a possible mechanism by which insulin might influence the 

dopaminergic induction of feeding behaviour. Furthermore, central insulin enhances the 

expression of dopamine transporter protein within the VTA via a protein kinase B (Akt) 

signalling system [64, 65]. The enhanced expression of dopamine transporters on the cell 

surface induced by insulin exposure is associated with greater dopamine uptake [66], thus 

reducing levels of synaptic dopamine. 
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            With regards to the effects of insulin on postsynaptic dopaminergic signalling, in vitro 

studies have found that insulin exposure invokes long-term depression of excitatory signalling 

within VTA dopamine neurons extracted from male C57BL/6J mice [67]. This effect appears 

to be long-lasting as, once induced, the long-term depression of VTA dopamine cells is not 

reversed by application of the insulin receptor antagonist S961 or through a tyrosine kinase 

inhibitor, which suppresses insulin receptor functioning [67]. 

            The effects of central insulin on dopaminergic functioning within the VTA likely have 

downstream effects in suppressing feeding, and particularly hedonic feeding. For example, 

Bruijnzeel, et al. [68] found that injecting insulin directly into the VTA of female rats decreased 

24-hour food intake. Mebel, et al. [69] have similarly found that injecting insulin directly into 

the VTA suppresses subsequent feeding in male C57BL/6J mice; however, this effect was 

dependent on the hunger status of the animals. That is, insulin in the VTA suppressed the 

quantity of sweetened high fat food consumed by sated mice but did not affect normal chow 

intake in hungry mice. This pattern of effects therefore suggests that insulin activity in the VTA 

acts selectively to suppress subsequent hedonic feeding, with weaker evidence for effects on 

homeostatic feeding behaviour.  

            Central insulin functioning may play a role in blocking the memory of palatable food 

reward or attenuating the incentive salience of cues associated with palatable food. Evidence 

for this hypothesis comes from studies demonstrating that injecting insulin either into the 

cerebral ventricles [70] or VTA [67] of rats at the time of memory retrieval reduces conditioned 

place preference for palatable food. Furthermore, Bruijnzeel, et al. [68] found that injecting 

insulin at a dose of .005mU/side into the VTA elevated the reward threshold for intracranial 

self-stimulation, thus indicating a reduction of reward functioning.  

 Evidence in Humans 
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Insulin resistance impacts on central dopaminergic systems in humans. For example, 

Dunn, et al. [71] conducted a positron emission tomography (PET) study using the dopamine 

D2/D3 receptor radioligand [18F]fallypride, and found that insulin sensitivity is negatively 

correlated with dopamine type 2 receptor availability in the ventral striatum in a heterogeneous 

sample of lean and obese women. In men, Anthony, et al. [72] found that exogenously 

administered insulin increases metabolism in the ventral striatum and prefrontal cortex, while 

decreasing metabolism in the right amygdala, hippocampus, and cerebellar vermis. 

Furthermore, the effect of insulin in increasing metabolism in the ventral striatum and PFC was 

lower in insulin-resistant, versus insulin-sensitive participants [72]. This pattern of findings is 

thus indicative of trait-level differences in the effects of central insulin on dopaminergic 

mesolimbic regions, known to be critical for food craving and food approach behaviour [59, 

73]. 

 Interactions between insulin resistance and central dopaminergic functioning may have 

functional significance for food craving in humans. Chechlacz, et al. [74], in an fMRI study, 

found that people with Type II diabetes mellitus (characterised by insulin resistance) exhibit 

greater blood oxygenated level dependent (BOLD) response to food versus non-food images 

in the insula, orbitofrontal cortex (OFC), and basal ganglia, when compared to people without 

diabetes mellitus. Moreover, this increased activation within the insula and OFC is positively 

correlated with self-reported external eating. These findings, taken together, thus provide 

evidence that insulin resistance, commonly observed following repeated excess consumption 

of fructose in combination with an overall excessive energy intake [75], is positively correlated 

with a pattern of neural response to food stimuli which is associated with greater external cue-

driven eating. However, it should be noted that the correlational nature of these findings limits 

the ability to draw firm causal inferences. Although there is relatively less evidence regarding 

food craving in Type I diabetes, an fMRI study has found that insulin detemir, which more 
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readily enters the brain compared to standard forms of insulin, is associated with reduced 

BOLD response to food images in the bilateral insula, a brain region associated with the 

regulation of appetite [76]. The authors have speculated that insulin detemir may therefore 

induce a more effective satiety reaction, thus explaining the reduced levels of weight gain 

observed in people with Type I diabetes mellitus taking insulin detemir [77]. 

 In a related study, Jastreboff, et al. [78] recruited 25 men and women in the obese 

weight range and 25 lean controls. Fasting insulin and glucose were taken to measure insulin 

resistance. During a subsequent fMRI task, audio scripts designed to provoke relaxing imagery 

or favourite food imagery were played. Food craving was assessed before and after each 

imagery trial. The degree of food craving following food imagery trials was positively 

associated with insulin resistance in the obese, but not lean, participant group. Furthermore, 

the relationship between insulin resistance and food craving within the obese participant group 

was mediated by BOLD responses in dopaminergic regions including the ventral tegmental 

area (VTA) and substantia nigra. These studies suggest that insulin resistance moderates 

craving and associated neural circuits in response to food related imagery.  

 Thus, the above studies illustrate that interactions between central insulin and 

dopaminergic systems, known to impact on feeding behaviour in animals, also regulate food 

craving in humans. While this evidence therefore supports a potential mechanism linking the 

short- and long-term physiological effects of sugar consumption to food craving in humans, it 

is also of interest to disentangle the effects of sweet taste on dopaminergic incentive 

sensitisation from the physiological effects of sugar in food approach behaviour in humans. In 

support of the physiological effects of glucose consumption on central dopaminergic 

functioning, regardless of sweet taste. Haltia, et al. [79] found that the intravenous 

administration of glucose, versus placebo, was associated with increased D2 receptor binding 

potential in the right caudate nucleus and bilateral putamen in both lean and overweight 
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women. However, intravenous glucose administration was rather associated with reductions in 

D2 receptor binding potential in the bilateral caudate nucleus, left putamen, and right thalamus. 

It should be noted that the intravenous method of administration employed in this study 

bypassed the gastrointestinal system, thus failing to stimulate the production of gastrointestinal 

hormones, such as glucagon-like peptide 1, which also impact on appetitive functioning [80, 

81]. This study is therefore limited in the extent to which it directly bears upon the oral 

consumption of glucose versus calorie-free sweet taste. Nonetheless, these findings provide 

evidence for the impact of glucose on mesolimbic dopaminergic functioning in the absence of 

sweet taste. The functional significance of the sexual dimorphism in brain response is not yet 

clear and would be an interesting avenue for future research. 

In another PET study conducted in nineteen participants with BMIs ranging from the 

lean to obese weight range dopamine functioning was measured following the consumption of 

a 75g oral glucose drink versus a calorie-free sucralose drink of equal volume and sweetness. 

Within the lean participant group, consuming the glucose drink, versus the calorie-free 

sucralose drink, was associated with increased dopaminergic binding potential within the 

ventral striatum, while the opposite was observed in the obese participant group (Wang, et al. 

[82]. Thus, there is evidence that glucose impacts upon dopaminergic functioning separately 

from the effects of sweet taste alone, with BMI modulating the direction of that effect. The 

reduced activation stimulated by sugar consumption in obese participants is in line with 

previous evidence of down-regulated striatal response to the receipt of sugar solutions, 

including chocolate milk and milkshakes [83, 84]. 

There is a relative paucity of research investigating the effects of glucose metabolism 

on dopamine-mediated feeding in BN and binge eating disorder without obesity. A recent meta-

analysis of studies analysing insulin sensitivity in BN and binge eating disorders has found 

significantly reduced insulin sensitivity in both disorders [85]. Such insulin resistance therefore 
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leads to greater flux in blood glucose following the consumption of foods with a high glycaemic 

index, thus potentially contributing to food craving in a similar manner to that described above 

for populations with obesity [78]. The effect of insulin resistance on glucose flux is further 

exacerbated by the wide swings in blood glucose induced by intermittent fasting followed by 

objectively large binge eating episodes in people with BN [86]. Frank, et al. [87] found 

evidence of some trait differences in brain response to glucose, with participants recovered 

from BN exhibiting suppressed BOLD response to a glucose, versus artificial saliva solution, 

in the anterior cingulate cortex and left cuneus in comparison to the control group. However, 

this study is confounded by the difference in sweet taste as well as nutritional content (glucose 

versus calorie-free liquid). It will therefore be critical to carry out similar research to that 

described above for obesity in populations with bulimia-spectrum disorders in order to clarify 

the functional role of a glucose metabolism pathway in loss-of-control binge eating versus the 

chronic overeating which commonly characterises overweight and obesity.  

Conclusion 

The current literature review has thus far served to illustrate the existing state of the 

evidence with regards to food tolerance and withdrawal effects in BN. Additionally, preclinical 

and preliminary evidence in human studies has elucidated an insulin-dependent mechanism 

whereby foods with a high glycaemic index interact with mesolimbic dopamine systems and 

heighten food craving in cases of insulin dysregulation. Nonetheless, there are several lines of 

evidence that should be explored further before definite conclusions can be drawn with regards 

to withdrawal and tolerance in BN and the physiological mechanisms which maintain addictive 

responses to palatable food.  
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Table 1. DSM-5 criteria for an addictive disorder (American Psychiatric Association, 2013) 

 

Criteria 1. The substance is often taken in larger amounts or over a longer period than 

was intended  

Criteria 2. There is a persistent desire or unsuccessful efforts to cut down or control use 

of the substance 

Criteria 3. A great deal of time is spent in activities necessary to obtain the substance, use 

the substance, or recover from its effects 

Criteria 4. Craving, or a strong desire or urge to use the substance 

Criteria 5. Recurrent use of the substance despite having persistent or recurrent social or 

interpersonal problems caused or exacerbated by the effects of its use 

Criteria 6. Continued use of the substance despite having persistent or recurrent social or 

interpersonal problems caused or exacerbated by the effects of its use 

Criteria 7. Important social, occupational, or recreational activities are given up or 

reduced because of use of the substance 

Criteria 8. Recurrent use of the substance in situations in which it is physically hazardous 

Criteria 

9. 

Tolerance, as defined by either of the following:  

 

(a) A need for markedly increased amounts of the substance to achieve 

intoxication or desired effect  

(b) A markedly diminished effect with continued use of the same amount 

of the substance  

Criteria 

10. 

Withdrawal, as manifested by either of the following: 

 

(a) The characteristic withdrawal syndrome for other substance 

(b) The substance (or a closely related substance) is taken to relieve or 

avoid withdrawal symptoms  
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