
BIROn - Birkbeck Institutional Research Online

Costantini, S. and De Meo, P. and Giorgianni, A. and Migliorato, V. and
Provetti, Alessandro and Salvia, F. (2020) Exploring low-degree nodes first
accelerates network exploration. In: 12th ACM Web Science Conference
2020, 6-10 July 2020, Southampton, UK. (In Press)

Downloaded from: http://eprints.bbk.ac.uk/31937/

Usage Guidelines:
Please refer to usage guidelines at http://eprints.bbk.ac.uk/policies.html or alternatively
contact lib-eprints@bbk.ac.uk.

http://eprints.bbk.ac.uk/31937/
http://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk

Exploring Low-degree Nodes First Accelerates Network Exploration

STEFANIA COSTANTINI, University of L’Aquila, Italy

PASQUALE DE MEO∗, University of Messina, Italy

ANGELO GIORGIANNI and VALENTINA MIGLIORATO, University of Messina, Italy

ALESSANDRO PROVETTI, Birbeck, University of London, UK

FEDERICO SALVIA, University of Messina, Italy

We consider information diffusion on Web-like networks and how random walks can simulate it. A well-studied problem in this
domain is Partial Cover Time, i.e., the calculation of the expected number of steps a random walker needs to visit a given fraction
of the nodes of the network. We notice that some of the fastest solutions in fact require that nodes have perfect knowledge of the
degree distribution of their neighbors, which in many practical cases is not obtainable, e.g., for privacy reasons. We thus introduce a
version of the Cover problem that considers such limitations: Partial Cover Time with Budget. The budget is a limit on the number of
neighbors that can be inspected for their degree; we have adapted optimal random walks strategies from the literature to operate
under such budget. Our solution is called Min-degree (MD) and, essentially, it biases random walkers towards visiting peripheral areas
of the network first. Extensive benchmarking on six real datasets proves that the—perhaps counter-intuitive strategy—MD strategy is
in fact highly competitive wrt. state-of-the-art algorithms for cover.

1 INTRODUCTION

A number of data sources on the Web can be described as network data, i.e., collections of interrelated, often heteroge-
neous, objects (people, documents, multimedia objects and so on) tied by some kind of relationships. Important examples
of network data are the friendship network in Facebook [Viswanath et al. 2009], mutual following relationships in a
software development platform as GitHub [Rozemberczki et al. 2019] or co-purchase relationships between members of
an e-commerce Web site like Amazon [Yang and Leskovec 2015]. In what follows we will speak interchangeably of
networks and graphs [Newman 2018] as an ordered pair 𝐺 = ⟨𝑁, 𝐸⟩ consisting of a collection of nodes (associated to
artificial or real entities) and edges (which capture relationships between nodes).

Random Walks [Lovász 1993] are an important class of algorithms to analyze the structure of large networks; in
short, a random walk on a graph can be described as a random process which starts from one of the graph nodes and,
in a sequential fashion, selects the next node to move according to some specified probability [Lovász 1993]. Random
walks (RWs) have been applied in a broad range of graph analytic tasks such as the ranking of individuals in a social
network [Newman 2005] and the segmentation of large virtual communities [De Meo et al. 2014; Pons and Latapy 2006].
One of the most important application of RWs is network sampling [Hu and Lau 2013]: a family of techniques that takes
a graph G and seek to generate a representative subgraph G′ which preserves some of the structural properties of 𝐺 .
Graph sampling has a wide spectrum of applications on the Web such as the identification of a sample of people to poll
from an hidden population in sociological studies [Hu and Lau 2013], or the crawling of large Online Social Networks
[Ahn et al. 2007; Catanese et al. 2011; Gjoka et al. 2011].
∗Corresponding author

Authors’ addresses: Stefania Costantini, stefania.costantini@univaq.it, University of L’Aquila, Department of Information Engineering, Computer Science
and Mathematics, L’Aquila, 67100, Italy; Pasquale De Meo, pdemeo@unime.it, University of Messina, Department of Ancient and Modern Civilizations,
Messina, 98166, Italy; Angelo Giorgianni; Valentina Migliorato, University of Messina, Department of Ancient and Modern Civilizations, Messina, 98166,
Italy; Alessandro Provetti, ale@dcs.bbk.ac.uk, Birbeck, University of London, Department of Computer Science and Information Systems, London, WC1E
7HX, UK; Federico Salvia, University of Messina, Department of Ancient and Modern Civilizations, Messina, I-98166, Italy.

1

2 Costantini et al.

Many studies focused on estimating the efficiency of random walks and several parameters have been introduced
so far [Aleliunas et al. 1979; Avin and Krishnamachari 2008; Ikeda et al. 2009; Kahn et al. 1989; Redner 2001]. A key
parameter to assess the efficiency of a random walk is partial cover time [Avin and Brito 2004; Avin and Ercal 2005;
Chupeau et al. 2015; Weng et al. 2017], which quantifies the time a RW takes to visit a given fraction of the nodes of
𝐺 . Currently, the main focus in literature has been the “extremal” version of the problem, cover time [Aldous 1989]
defined as the expected number of steps a RW needs to visit all nodes in 𝐺 . Fewer studies have addressed cover time,
mostly focusing on the boundary cover time for specific classes (e.g. regular graphs) [Kahn et al. 1989] or on heuristics
[Abdullah et al. 2015; Ikeda et al. 2009].

We submit that in Web-based applications the (total) cover time may not be an interesting indicator vis-à-vis an
optimized (or at least reduced) partial cover time. For instance, consider rumor spreading in Online Social Network: we
are not worried if the rumor reached the entire population but we strive to spread the rumor to a sufficiently large
sample of the whole population.

Of course, existing solutions for cover time might be extended to the partial cover time but they make assumptions
which we believe are unrealistic in Web applications. For instance, the approach of [Ikeda et al. 2009] requires that a
node knows the degrees of all of its neighbors to compute the probability that a random walk move from a node to one
of its neighbours. In Web-based applications such as Online Social Networks, an individual may refuse to disclose the
number of and identities of her/his friends for privacy reasons.

In this paper we introduce a new problem, called Partial Cover Time with Budget in which we wish to design a
random walk whose partial cover time is as small as possible under the constraint that any node in the graph is allowed
to query only a random sample of fixed size of its neighbors to retrieve their degrees.

We propose a new algorithm for reducing the partial cover time, called Min-Degree (in short, MD). The MD algorithm
combines ideas from the literature in a novel way, which builds random walks displaying these two key properties: (a)
RWs will preferentially visit unvisited nodes first and (b) among unvisited nodes, RWs will prefer transitioning to the
lowest-degree node.

We have conducted extensive validation tests on six real-life graph. On each we have compared the MD algorithm
with four state-of-the-art algorithms and found it highly competitive.

This paper is organized as follows. In Section 2 we provide basic definitions and background results while in Section
3 we discuss the related literature. Section 4 describes the MD algorithm while we present the main findings of our
experimental analysis in Section 5. Finally, we draw our conclusions in Section 6.

2 BACKGROUND

Let G = ⟨𝑁, 𝐸⟩ be an undirected and connected graph with |𝑁 | = 𝑛 nodes and |𝑚 | =𝑚 edges. We say that 𝐺 is of order
𝑛 and size𝑚.

For any node 𝑖 ∈ 𝑁 , let 𝑑𝑖 be the degree of 𝑖 , i.e., the number of edges incident onto 𝑖 and let 𝑁 (𝑖) be the set of
neighbours of 𝑖 , i.e, the set of nodes 𝑗 ∈ 𝑁 for which the edge ⟨𝑖, 𝑗⟩ belongs to 𝐸.

A Random Walk (in short, RW) on the graph 𝐺 is the process of visiting the nodes of 𝐺 in some sequential random
order. The RW starts at some fixed node, and, at each step, it moves from the current node (say 𝑖) to the next one (say
𝑗) with probability (called transition probability) 𝑝𝑖 𝑗 . We can collect 𝑝𝑖 𝑗 transition probabilities into a matrix P called
transition matrix probability.

Exploring Low-degree Nodes First Accelerates Network Exploration 3

A Simple Random Walk - SRW is a Random Walk such that the next node to visit is chosen uniformly at random from
the set of neighbors of the current node. In other words, if the walk is at node 𝑖 , then it will move to the node 𝑗 in the
next step with probability 𝑝𝑖 𝑗 = 1

𝑑𝑖
if 𝑗 ∈ 𝑁 (𝑖) and 𝑝𝑖 𝑗 = 0 otherwise.

Let us consider a RW starting from a node, say 𝑖: we say that the RW covers 𝐺 if the RW visits at least once every
node in 𝐺 [Kahn et al. 1989]. For each node 𝑖 ∈ 𝑁 we can define a random variable 𝑋𝑖 which specifies the first time a
RW starting from 𝑖 covers 𝐺 .

A long standing problem in random walk theory consists of estimating the expected value of 𝑋𝑖 , for any node 𝑖 from
which the random walk starts visiting 𝐺 .

More formally, we provide the following definition [Aldous 1989; Kahn et al. 1989]:

Definition 2.1 (Cover Time). Given a node 𝑖 , the cover time 𝐶𝐺 (𝑖) for the node 𝑖 is defined as 𝐶𝐺 (𝑖) = E[𝑋𝑖], i.e., it is
the expected number of steps the random walk takes to visits all nodes in G, provided that it starts from 𝑖 .

The maximum cover time 𝐶𝐺 is defined as:

𝐶𝐺 = max
𝑖∈𝑁

𝐶𝐺 (𝑖) (1)

The cover time of a graph represents thus a parameter to evaluate the efficiency of a random walk, i.e., to quantify
how fast a random walk is in covering G. The cover time of a graph (along with methods for bounding it) have been
extensively investigated [Aleliunas et al. 1979; Chandra et al. 1996; Kahn et al. 1989; Matthews 1988], especially for
Simple Random Walks.

One of the first result is due to Aleliunas et al. [Aleliunas et al. 1979] who showed that for any connected graph 𝐺
the cover time 𝐶 (𝐺) satisfies 𝐶 (𝐺) < 2 ×𝑚 × 𝑛 which is bounded above by 𝑂 (𝑛3). Feige [Feige 1995a,b] improved the
results of [Aleliunas et al. 1979] and, specifically, he showed that, for any connected graph 𝐺 , the cover time satisfied
the following condition:

(1 − 𝑜 (1)) 𝑛 log𝑛 < 𝐶𝐺 < (1 + 𝑜 (1)) 4
27

𝑛3 (2)

The lower bound occurs in case of a complete graph of order 𝑛 (i.e. a graph in which any pair of nodes is connected
by an edge) while the upper bound occurs for the so-called lollipop graph. In case of regular graphs (i.e., graphs in
which nodes have the same degree), Kahn et al. [Kahn et al. 1989] proved that 𝐶 (𝐺) is bounded above by 𝑂 (𝑛2).

In general, highly connected graphs display the lowest cover time; in contrast, if graph connectivity is poor or if
bottlenecks exist in the graph, then we expect an increase in cover time.

In manyWeb-based applications, however, the cover time may not be a reliable indicator of the efficiency of a random
walk. For instance, suppose we consider a virtual community and let us focus on the spreading of a rumor in that
community; in general, it does not matter that low-degree nodes receive the rumor and it does not matter that the
whole population receives the rumor. In many cases, it suffices to verify that a relatively large portion of the whole
population has received that rumor and, thus, we are required to estimate the number of steps a walk takes before
visiting a fraction 𝜏 (with 0 ≤ 𝜏 ≤ 1) of nodes in G. Such an intuition is encoded in the notion of partial cover time

[Avin and Brito 2004; Avin and Krishnamachari 2008]:

Definition 2.2 (Partial Cover Time). Let G be undirected and connected with order 𝑛 and let 𝑖 be a node in 𝐺 and
𝜏 ∈ [0, 1]. The partial cover time 𝑃𝐶𝑇𝐺 (𝜏, 𝑖) for node 𝑖 ∈ 𝑁 is the expected number of steps a random walk takes to visit

4 Costantini et al.

at least ⌊𝜏 × |𝑁 |⌋ nodes in G, provided that the random walk starts from the node 𝑖 . The partial cover time 𝑃𝐶𝑇𝐺 (𝜏) is
defined as follows.

𝑃𝐶𝑇𝐺 (𝜏) = max
𝑖∈𝑁

𝑃𝐶𝑇𝐺 (𝜏, 𝑖) (3)

Some important bounds on 𝑃𝐶𝑇𝐺 (𝜏) are possible, as in the the following.

Definition 2.3 (Hitting Time). Let G = ⟨𝑁, 𝐸⟩ be an undirected and connected graph. Given a pair of nodes 𝑖 ∈ 𝑁 and
𝑗 ∈ 𝑁 , the hitting time 𝐻𝐺 (𝑖, 𝑗) is defined as the expected number of step a random walk takes to get to 𝑗 , provided that
it starts from 𝑖 . The maximum hitting time 𝐻𝐺 is defined as:

𝐻𝐺 = max
𝑖∈𝑁,𝑗 ∈𝑁

𝐻𝐺 (𝑖, 𝑗) (4)

[Avin and Brito 2004] proved that for any graph G and 0 ≤ 𝜏 < 1 we have that 𝑃𝐶𝑇𝐺 (𝜏) ∈ Θ(𝐻𝐺). As a consequence,
if G is such that 𝐻𝐺 ∈ 𝑂 (𝑛), then there exists a random walk which achieves a partial cover time which is also linear in
the number 𝑛 of graph nodes.

[Avin and Brito 2004] considered a partial cover time in the order of𝑂 (𝑛) as optimal and they provided some examples
of graphs for which it is possible to design random walks achieving optimal partial cover time, namely i) the complete
graph, ii) the star, iii) the hypercube, iv) the 3-dimensional mesh and v) random geometric graphs (i.e., undirected
graphs where nodes belong to some metric space and the probability of an edge between two nodes decreases with
their distance in that space).

3 RELATEDWORKS

In this section we review some of the most popular techniques to reduce the cover time of a random walk.

3.1 Non-uniform transition probabilities

Some authors [Abdullah et al. 2015; Ikeda et al. 2009] suggested to use proper transition probabilities, which derive
from the knowledge of the topology of G, to reduce the cover time 𝐶 (G).

In detail, a very important result is due to Ikeda et al. [Ikeda et al. 2009], who considered a transition probability
matrix P defined as follows:

𝑝𝑖 𝑗 =

𝑑
−1/2
𝑗∑

𝑘∈𝑁 (𝑖) 𝑑
−1/2
𝑗

, if ⟨𝑖, 𝑗⟩ ∈ 𝐸

0, otherwise
(5)

[Ikeda et al. 2009] proved that, for any graph𝐺 , a random walk in which transition probabilities follow Equation 5
has an hitting time in the order of 𝑂 (𝑛2) and a cover time in the order of 𝑂 (𝑛2 log𝑛). [Ikeda et al. 2009] proved also
that a random walk whose transition probabilities obeyed Equation 5 were also optimal for graphs with an arbitrary

topology, i.e., it is not possible to further reduce the cover time unless we restrict our attention on special classes of
graphs. The results of Ikeda et al. [Ikeda et al. 2009] assumes that each node knows the degree of all its neighbors. In
addition, observe that random walk in the framework of [Ikeda et al. 2009] are no longer simple because the walker
may cross a node more than once; intuitively, such an approach works because a node tend to privilege low degree
neighbours, thus favouring the exploration of regions of 𝐺 which would be hard to reach.

Exploring Low-degree Nodes First Accelerates Network Exploration 5

Abdullah et al. [Abdullah et al. 2015] suggested as to use transition probabilities of the form 𝑝𝑖 𝑗 ∝ 1/min
(
𝑑𝑖 , 𝑑 𝑗

)
and

they called their choice the minimum degree weighting scheme. For this choice of transition probabilities, Abdullah et

al. [Abdullah et al. 2015] proved that for every connected graph the hitting time is at most 6𝑛2 that the cover time is
at most 𝑂 (𝑛2 log𝑛). They further conjectured that if the minimum degree weighting scheme is applied, then every
connected graph has cover time 𝑂 (𝑛2) but such a conjecture is still unverified to our knowledge.

3.2 RandomWalks which prefer unvisited edges

An important research avenue to reduce cover time is to consider modified random walks which record the edges the
random walk used to explore the graph 𝐺 . More specifically, suppose that a particular step the random walk occupies a
node 𝑖 and let us consider the set of edges incident onto 𝑖 . If there is at least an unvisited edge (i.e. an edge which has
never been used by the random walk to explore G), then the random walk picks one of the unvisited edges according to
a prescribed rule A; if there are no unvisited edges incident onto the node currently occupied by the random walk,
then the random walk moves to a random neighbour.

The process above is called E-Process (or edge-process) [Berenbrink et al. 2015]. In the simplest case, the rule A is a
uniform random choice over unvisited edges incident onto the node currently occupied by the walker but we do not
exclude arbitrary choices of A; as highlighted in [Berenbrink et al. 2015], the rule could be determined on-line by an
adversary, or could vary from node to node.

An important approach to cite is due to Avin and Krishnamachari [Avin and Krishnamachari 2008], who explicitly
focused on the reduction of the partial cover time. [Avin and Krishnamachari 2008] introduced the so-called Random

Walk with Choice, or in short, 𝑅𝑊𝐶 (𝑑) algorithm. The 𝑅𝑊𝐶 (𝑑) algorithm is an extension of a standard random walk
and, specifically, if we suppose that the random walk reaches a node 𝑖 at the time step 𝑡 , then the 𝑅𝐶𝑊 (𝑑) algorithms
performs the following steps:

(1) It selects, uniformly at random and with replacement, 𝑑 of the neighbors of 𝑖 , say 𝐷 (𝑖) with |𝐷 (𝑖) | = 𝑑 .
(2) The random walk moves to the node 𝑗 , selected according to the following rule:

𝑗 = arg min
𝑗 ∈𝐷 (𝑖)

𝑐𝑡 (𝑗) + 1
𝑑 𝑗

(6)

Here 𝑐𝑡 (𝑗) counts the number of times the node 𝑗 has been visited up to the time step 𝑡 .
The parameter 𝑑 is determined through experiments but in the special case 𝑑 = 1 the 𝑅𝑊𝐶 (𝑑) algorithm coincides

with a Standard Random Walk.

4 APPROACH DESCRIPTION

We now present our approach, called Min-Degree (or, in short, MD) to reduce the partial cover time of an undirected and
connected graph 𝐺 = ⟨𝑁, 𝐸⟩.

4.1 Main Features of the MD algoritmh

Previous research findings are relevant to design efficient strategies to navigate G, i.e., strategies that use the lowest
number of steps to visit a fraction 𝜏 of the nodes. For instance, the procedure proposed by [Ikeda et al. 2009] is optimal

for the cover time, in the sense that if we would choose transition probabilities as in Equation 5 then we would obtain a
random walk whose cover time is 𝑂 (𝑛2 log𝑛): the best lower bound for cover time we can hope for.

6 Costantini et al.

Unfortunately, the approach of [Ikeda et al. 2009] requires that a node knows the degrees of all of its neighbors. In
the Social Web scenario (and, in general, in many Web related domains) such an assumption may be unrealistic: for
instance, in real Online Social Networks, an individual may refuse to disclose the number and the identities of her/his
friends for privacy reasons; in addition, for some applications, the time required for generating the full list of neighbors
of a node could be unacceptably long.

We now introduce the new version of the problem, called Partial Cover Time with Budget: any node in the graph is
allowed to query only a fixed number of neighbors to retrieve their degrees.

For the budget version of the problem we now define the MD algorithm. MD algorithm combines ideas from the
literature, i.e., it builds random walks that have the following properties: (a) unvisited neighbors are preferred and (b)

among unvisited neighbors lowest-degree nodes are preferred.

4.2 The MD algorithm

We now describe our MD algorithm. It takes as input an undirected and connected graph G = ⟨𝑁, 𝐸⟩ with |𝑁 | = 𝑛 nodes
and |𝐸 | =𝑚 edges, a threshold 𝜏 ∈ [0, 1], a starting node 𝑖 ∈ 𝑁 , and an integer budget 𝐵 whose meaning will be clarified
later. It returns the number of steps a random walk starting from 𝑖 needs to visit, at least once; a subset of nodes of G
consisting of 𝑛max = ⌊𝜏 × |𝑁 |⌋ nodes (see Algorithm 1 for a high level description).

Algorithm 1 The MD algorithm

𝑉 ← {𝑖}
𝑥𝑖 ← 1
𝑛max ← ⌊𝜏 × |𝑁 |⌋
𝑘 ← 𝑖

while |𝑉 | < 𝑛max do
𝐿(𝑘) ← 𝑉 − 𝑁 (𝑘)
if |𝐿𝑘 | == 0 then
Draw a node 𝑗 uniformly at random from 𝑁 (𝑘)
𝑘 ← 𝑗

else

if |𝐿𝑘 | ≥ 𝐵 then

Draw a random sample �̂�(𝑘) of size 𝐵 from 𝐿𝑘
Let 𝑗 be the smallest degree node in �̂�(𝑘)
𝑘 ← 𝑗

else

Let 𝑗 be the smallest degree node in 𝐿(𝑘)
𝑘 ← 𝑗

end if

end if

Add 𝑘 to 𝑉
𝑥𝑖 ← 𝑥𝑖 + 1

end while

return 𝑥𝑖

MD uses an auxiliary variable 𝑥𝑖 (which is set equal to 1 at the beginning) to record its progress. Let also 𝑘 be an
auxiliary variable storing the currently-visited nod (initially, of course, 𝑘 = 𝑖). In addition, MD uses a set 𝑉 to record the
set of nodes already visited which, at the beginning, stores only the node 𝑖 .

Exploring Low-degree Nodes First Accelerates Network Exploration 7

The MD algorithm is iterative and, at each iteration, it aims at adding a node to the set of visited nodes𝑉 ; the algorithm
stops as soon as the set 𝑉 reaches cardinality 𝑛max = ⌊𝜏 × |𝑁 |⌋.

We thus describe the operations carried out within each iteration. Variable 𝑘 contains the current node the walker is
on and let 𝑁 (𝑘) contain the set of neighbors of 𝑘 .

MD will checks whether there are nodes in 𝑁 (𝑘) which have not yet been visited; to do so it builds the set 𝐿(𝑘) =
𝑉 − 𝑁 (𝑘).

If the cardinality of 𝐿(𝑘) is zero, then, there are no unvisited nodes in 𝑁 (𝑘). Hence we select a random neighbour,
say 𝑗 , as in a Standard Random Walk.

In contrast, suppose that |𝐿(𝑘) | > 0, i.e., there is at least one of the neighbors of 𝑘 which have not yet been visited.
In this case, the MD algorithm has two options:

a) the set 𝐿(𝑘) contains at least 𝐵 elements: the algorithm draws, uniformly at random, a subset �̂�(𝑘) of size 𝐵. The
algorithm choose the lowest degree node from �̂�(𝑘) as the next node to move.

b) The set 𝐿(𝑘) contains no more than 𝐵 elements: in this case, the algorithm chooses the lowest degree node in
𝐿(𝑘) as the next node to move to. In both the two cases, let 𝑗 be the next node to visit. The algorithm MD renames
the node 𝑗 into 𝑘 , which is the current on which the random walk is positioned.

The MD algorithm updates the set 𝑉 by adding the node 𝑘 and it increments by one the variable 𝑥𝑖 . As previously
noted, the process above stops if the cardinality of the set 𝑉 reaches 𝑛max, 𝑥𝑖 is returned as output.

As observed in Section 2, the number of steps a random walk starting from a node 𝑖 takes to visit a fraction of nodes
of 𝐺 is a random variable 𝑋𝑖 and, thus, the output of the MD algorithm is a realization, called 𝑥𝑖 , of 𝑋𝑖 . If we apply MD a
large number of times, say 𝑇 , we generate a sequence of observed values 𝑥1

𝑖
, . . . , 𝑥𝑇

𝑖
and we take their average:

𝜌 (𝜏) = 1
𝑇

𝑇∑
ℓ=1

𝑥 ℓ𝑖 (7)

By the Strong Law of Large Numbers [Ross 2006], we obtain that 𝜌 (𝜏) converges to the actual partial cover time
𝑃𝐶𝑇 (𝜏, 𝑖) (see Definition 2.2). In our experiments we found that 𝑇 = 10 was sufficient to ensure convergence.

4.3 The role of the budget 𝐵

The budget 𝐵 has a fundamental role in the MD algorithm that we wish to clarify in this section. When 𝐵 is set to 1 the
algorithm chooses, uniformly at random, one of the unvisited neighbors of the current node and, thus, it coincides with
the Edge Process algorithm described in [Berenbrink et al. 2010].

It is instructive to consider the behaviour of the MD algorithm as 𝐵 increases and, in detail, we wish to observe that
if 𝐵 is sufficiently large, then the MD algorithm would degenerate into a deterministic procedure. Specifically, let us
suppose that the MD algorithm is currently visiting the node 𝑖; for a fixed value of 𝐵, say 𝐵 = 𝐵★, let 𝐿★

𝑖
be the set of

nodes from which MD will choose the next node to move.
By construction, the MD algorithm selects the smallest degree node 𝑛★min ∈ 𝐿

★
𝑖
. We ask for the probability 𝑝 that 𝑛★min

coincide with the smallest degree node 𝑛min in 𝐿𝑖 .
The estimation of 𝑝 depends on the node degree distribution and it will be experimentally discussed in Section 5.4;

however, we expect that 𝑝 will increase if the ratio 𝐵★

|𝐿𝑖 | increases too. At the limit case 𝐵★ = |𝐿𝑖 | such a probability
should be equal to one. Therefore, if 𝐵★ approaches to |𝐿𝑖 |, then MD would always direct the walk to a pre-specified
node (namely the unvisited node of lowest degree) and, thus, it could be no longer considered a proper random process.

8 Costantini et al.

Table 1. Main features of the graphs used in our experimental evaluation

Dataset Number of Number of Clustering Diameter
Nodes Edges Coefficient

Facebook-Pages 22 470 171 002 0.232 15
GitHub 37 700 289 003 0.013 7

BrightKite 58 228 214 078 0.172 16
Facebook Friendship 63 731 817 035 0.148 15

Flickr 105 938 2 316 948 0.089 9
Amazon 334 863 925 872 0.397 44

5 EXPERIMENTAL ANALYSIS

We have experimentally validated our MD algorithm by a comparative benchmark over a diversified set of six real
datasets that are available in the public domain. We sought to address the following fundamental questions:

RQ1 What is the optimal value for the budget 𝐵?
RQ2 How efficient is the MD algorithm to find a partial cover of a graph 𝐺 against other, state-of-the art, methods?

5.1 Dataset Description

We used six publicly-available benchmark graphs, whose main features are summarized in Table 1.
Facebook-Pages. This dataset was collected through the Facebook Graph API in November 2017 [Rozemberczki

et al. 2019]. Nodes identify Facebook pages belonging to one of the following categories: politicians, governmental
organizations, television shows and companies. Edges identify mutual “likes” between pages.

GitHub. This dataset was collected from the public GitHub API in June 2019 [Rozemberczki et al. 2019] and it
describes a social network of GitHub developers. Nodes are developers who have starred at least 10 repositories and
edges identify mutual follower relationships between them.

BrightKite. This dataset was obtained by collecting all the public check-in data between April 2008 to October
2010 for BrightKite, a location-based social networking Web site [Cho et al. 2011]. Nodes are associated with BrighKite
members and edges specify friendship relationships.

Facebook Friendship. This dataset contains friendship data of Facebook users [Viswanath et al. 2009]. A node
represents a user and an edge represents a friendship between two users.

Flickr. This dataset defines a graph in which nodes correspond to images from Flickr [McAuley and Leskovec
2012]. Edges are established between images which share some metadata, such as the same location or common tags to
annotate an image.

Amazon. This dataset defines the Amazon product co-purchasing network described in [Yang and Leskovec 2015].
Nodes represent products and edges connect commonly co-purchased products.

In Figures 1(a)- 1(f) we report node degree distribution for the datasets used in our tests.
We observe that node degree distribution is right-skewed for all datasets considered in our experimental trials.
Differences in observed distributions are likely to derive from the mechanisms regulating the formation and growth

of each social network. For instance, the GitHub dataset collects mutual likes between GitHub members who are
quite active as software contributors, and, thus, the average node degree is higher than in other social networks and
approximately thousand nodes have a degree ranging from 50 to 110. Other datasets such as Amazon have edges

Exploring Low-degree Nodes First Accelerates Network Exploration 9

that represent the so-called co-purchase relationship. As expected, we observe that more than half of the nodes in the
Amazon dataset display a degree less than five and the probability of observing a node with degree bigger than fifty is
close to zero.

(a) Facebook Pages (b) GitHub (c) BrightKite

(d) Facebook (e) Flickr (f) Amazon

Fig. 1. Degree Distribution for the six datasets

5.2 Evaluation Metrics

We introduce the normalized partial cover time 𝐶 (𝜏) of an algorithm as:

𝐶 (𝜏) = 𝜌 (𝜏)
𝑛

(8)

Here, the parameter 𝜌 (𝜏) has been introduced in Equation 7 and it is normalized by the number 𝑛 of graph nodes in
order to make comparisons across graphs of different order possible.

Of course, the normalized partial cover time𝐶 (𝜏) increases (or, at least, it does not decrease) if 𝜏 increases. Given two
methods𝑀1 and𝑀2 and a threshold 𝜏 ∈ [0, 1], we say that the algorithm𝑀1 is more efficient than𝑀2 if the normalized
partial cover time 𝐶1 (𝜏) associated with𝑀1 is less than the normalized partial cover time 𝐶2 (𝜏) associated with𝑀2.

5.3 Baseline Methods

We compared the MD algorithm with four baseline algorithms from the literature, namely:

• Standard RandomWalk, SRW. This is the well-known random walk over an undirected and connected graph
in which the walker selects the next node to move uniformly at random among its neighbors.
• Edge-Process, EP. This is the method described in [Berenbrink et al. 2015], and, unlike SRW, the random walk
prefers unvisited edges to select the next node to reach.

10 Costantini et al.

• All Degrees, AD. This is the method described in [Ikeda et al. 2009] and it assumes that a node knows the
degree of all its neighbors. We recall that the AD method is optimal for cover time, i.e., it achieves a cover time of
𝑂
(
𝑛2 log𝑛

)
independently of the topology of the graph.

• Random Walks with Choice - RWC(d). This is the method described in [Avin and Krishnamachari 2008]; in
compliance with recommendations provided in [Avin and Krishnamachari 2008] and after some experiments, we
decided to set 𝑑 = 3 because such a value of 𝑑 offered the lowest 𝐶 (𝜏).

All these methods have been described in Section 3. We also tried the method described in [Abdullah et al. 2015] but
we found it had worse performance than other methods above and, thus, we do not report its results here.

5.4 Budget Tuning (𝑅𝑄1)

In this section we study the role of the budget 𝐵 on our MD algorithm. Recall from Section 4.3 when 𝐵 increases the
probability 𝑝 that will MD choose the smallest-degree node among the neighbors will increase accordingly; so for higher
values of B MD could be no longer considered a random-search process.

Fig. 2. Probability 𝑝 of selecting the smallest degree node as function of the budget 𝐵.

Figure 2 reports the values of 𝑝 as function of the budget 𝐵 for all our datasets. Firstly, observe that, for all datasets
under scrutiny, a value of 𝐵 = 10 corresponds to a probability 𝑝 ranging from 0.37 to 0.66: in other words, the MD

algorithm has a high chance of discovering (and, thus, selecting) the smallest degree node even if it has at its disposal
only ten nodes. Such a behavior depends on the degree distribution observable in many real-life graphs and, in particular,
in the graphs considered in our study: node degree distribution is, in fact, right-skewed which implies that the vast
majority of nodes displays a small degree (generally less than five). Therefore, a random sample of nodes in one of
our graphs will, with high probability, contain one or more nodes of small degree; in many cases, the sample will also
contain a node showcasing minimum degree.

A further observation is that 𝑝 grows linearly with 𝐵 in all datasets but its rate of growth differs across datasets: the
steepest increase in 𝑝 occurs forAmazon. Differences in slopes are attributable to the different node degree distribution
we observe in each graph.

Finally, Figure 2 suggests that a value of 𝐵 = 5 is generally reasonable because it implies a value of 𝑝 always less
than 0.32. Therefore, we set 𝐵 = 5 for the experiments next.

Exploring Low-degree Nodes First Accelerates Network Exploration 11

5.5 Performance comparison (𝑅𝑄2)

We used the normalized partial cover time𝐶 (𝜏) to compare the methods introduced in Section 5.3 and the MD algorithm.
The normalized partial cover time 𝐶 (𝜏) obtained for values of 𝜏 ranging from 0.01 to 0.3 is reported in Figures 3(a)-

3(f). The main findings of our experimental analysis can be summarized as follows:

• The MD algorithm significantly outperforms all other approaches if 𝜏 > 0.05. In contrast, if 𝜏 ≤ 0.05 and we
concentrate on Brightkite, Facebook Friendship and Amazon datasets, the MD algorithm is suboptimal,
even if its normalized partial cover time 𝐶 (𝜏) is very close to that of the best performing methods.
The increase of𝐶 (𝜏) due to the increase 𝜏 in the MD algorithm is generally much slower than that experienced by
other methods. We can therefore confirm the algorithmic idea underpinning MD, i.e., that biasing random walks
toward low-degree and unvisited nodes actually accelerates the process of visiting a graph.
• Apart from our approach, the EP method performs very well if 𝜏 is small (i.e., it is smaller than 0.1); if 𝜏 is larger
than 0.1 and we focus on the Facebook and Flickr datasets, the normalized partial cover time associated with
the EP method deteriorates significantly but it is often significantly better than the normalized partial cover time
observed for other methods. We can conclude, therefore, that the strategy of privileging unvisited edges yields a
remarkable acceleration.
• In the SRW approach, we report an almost linear increase in 𝐶 (𝜏) as 𝜏 increases too. If 𝜏 is smaller than 0.05, the
SRW method is competitive with other methods, with the exception of the Amazon dataset. In general, poor
performances of the SRW algorithm depends on the fact that the algorithm visits a node more than once and,
thus, a larger number of steps are required before terminating.
• The AD method performs very well on the Flickr dataset: here, its normalized partial cover time is close to that
of the MD algorithm and it is significantly smaller than the normalized partial cover time of all other methods.
Flickr is also the most arduous dataset among those under scrutiny, i.e., the dataset on which all methods
under investigation showcase the worst values of the normalized partial cover time. The AD method displays
its worst performances on the Amazon dataset. That’s not surprising: while the AD algorithm achieves, in the
worst case, the optimal cover time for a graph of arbitrary topology, there are no guarantees that AD will is also
be the most efficient choice for minimizing the partial cover time (and, thus, for normalized partial cover time)
[Avin and Brito 2004]. Our experiments, therefore, prove that on real-life graphs the AD algorithm might not be
competitive, if we goal is to minimize the (unbudgeted) normalized partial cover.
• With the exception of the Amazon dataset, the normalized partial cover time of the 𝑅𝐶𝑊 (𝑑) algorithm is worse
than that of all other methods. This result is somewhat surprising since the normalized partial cover time of the
𝑅𝐶𝑊 (𝑑) algorithm is often worse than that of an SRW.
It must be stressed, however, that the 𝑅𝐶𝑊 (𝑑) approach has been designed to optimize the partial cover time for
specific topologies such as regular graphs, grids, hypercubes or random geometric graphs (used to model wireless
networks). Those topologies differ significantly from the topology of the graphs considered in our study (which
display a high irregularity in the node degree distribution). Differences in graph topology have a big impact on
the partial cover time and they explain the large values of 𝐶 (𝜏) we observed for the 𝑅𝐶𝑊 (𝑑) algorithm.

6 CONCLUSIONS

We have introduced a variation of the (Partial) Graph Cover Time problem that considers budgets, defined as a limit
on the accessibility of neighbor nodes. We have designed an efficient random-walk solution which operates exactly

12 Costantini et al.

(a) Facebook Pages (b) GitHub

(c) BrightKite (d) Facebook

(e) Flickr (f) Amazon

Fig. 3. Values of the normalized partial cover time𝐶 (𝜏) as function of 𝜏 for the SRW, EP, AD, RCW and MD algorithms.

under the constraint that a node can access only a fraction of its neighbors. The MD algorithm introduce here favorably
combines heuristic search ideas, namely the preference for unvisited nodes and, among those, for lowest-degree ones.

Exploring Low-degree Nodes First Accelerates Network Exploration 13

Experiments on six real-life graphs in the Social Web scenario have confirmed that MD is effective and can outperform
state-of-the-art methods.

We plan to extend these results in several directions. For instance, we will assess how (and if) partial cover time
𝑃𝐶𝑇𝐺 (𝜏, 𝑖) depends on the choice of the “start” node and, specifically, whether some node features associated with a
start node 𝑣 (such as the Betweenness Centrality or the Eigenvector Centrality of 𝑖) are in fact predictive of 𝑃𝐶𝑇𝐺 (𝜏, 𝑣).
Another direction of research is to parametrize the number of allowed visits to metadata on size and density of the
input graph, e.g. with a log-log dependence between number of nodes and budget (which corresponds to considering
MD optimal for |G| > 216 ≈ 64𝑘). Finally, we will propose an analogous of MD for the directed-graph case, which is the
natural model for asymmetric relationships that we had previously explored such as trust networks [Agreste et al. 2015]
and online negotiation [Costantini et al. 2013].

ACKNOWLEDGMENTS

This article is based upon work from COST Action DigForAsp CA17124, supported by COST (European Cooperation in
Science and Technology. www.cost.eu

REFERENCES

M. Abdullah, C. Cooper, and M. Draief. 2015. Speeding up cover time of sparse graphs using local knowledge. In Proc. of the International Workshop on
Combinatorial Algorithms (IWOCA 2015). Springer, Verona, Italy, 1–12.

S. Agreste, P. De Meo, E. Ferrara, S. Piccolo, and A. Provetti. 2015. Trust Networks: Topology, Dynamics, and Measurements. IEEE Internet Computing 19,
6 (2015), 26–35.

Y. Ahn, S. Han, H. Kwak, S. Moon, and H. Jeong. 2007. Analysis of topological characteristics of huge online social networking services. In Proc. of the
16th International Conference on World Wide Web, WWW 2007. ACM, Banff, Alberta, Canada, 835–844.

D. Aldous. 1989. An introduction to covering problems for random walks on graphs. Journal of Theoretical Probability 2, 1 (1989), 87–89.
R. Aleliunas, R. Karp, R. Lipton, L. Lovász, and C. Rackoff. 1979. Random Walks, Universal Traversal Sequences, and the Complexity of Maze Problems. In

Proc. of the Annual Symposium on Foundations of Computer Science (FOCS 1979). IEEE Computer Society, San Juan, Puerto Rico, 218–223.
C. Avin and C. Brito. 2004. Efficient and robust query processing in dynamic environments using random walk techniques. In Proc. of the International

Symposium on Information Processing in Sensor Networks. Berkeley, California, 277–286.
C. Avin and G. Ercal. 2005. On the cover time of random geometric graphs. In Proc. of the International Colloquium on Automata, Languages, and

Programming (ICALP 2005). Springer, Lisbon, Portugal, 677–689.
C. Avin and B. Krishnamachari. 2008. The power of choice in random walks: an empirical study. Computer Networks 52, 1 (2008), 44–60.
P. Berenbrink, C. Cooper, R. Elsasser, T. Radzik, and T. Sauerwald. 2010. Speeding Up Random Walks with Neighborhood Exploration. In Proc. of the

Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010. ACM Press, Austin, Texas, USA, 1422–1435.
P. Berenbrink, C. Cooper, and T. Friedetzky. 2015. Random Walks Which Prefer Unvisited Edges: Exploring High Girth Even Degree Expanders in Linear

Time. Random Structures And Algorithms 46, 1 (2015), 36–54.
S. Catanese, P. De Meo, E. Ferrara, G. Fiumara, and A. Provetti. 2011. Crawling Facebook for social network analysis purposes. In Proc. of the International

Conference on Web Intelligence, Mining and Semantics, WIMS 2011. ACM, Songdal, Norway, 52.
A. Chandra, P. Raghavan, W. Ruzzo, R. Smolensky, and P. Tiwari. 1996. The electrical resistance of a graph captures its commute and cover times.

Computational Complexity 6, 4 (1996), 312–340.
E. Cho, S. Myers, and J. Leskovec. 2011. Friendship and mobility: user movement in location-based social networks. In Proc. of the ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining. San Diego, CA, USA, 1082–1090.
M. Chupeau, O. Bénichou, and R. Voituriez. 2015. Cover times of random searches. Nature Physics 11, 10 (2015), 844–847.
S. Costantini, G. De Gasperis, A. Provetti, and P. Tsintza. 2013. A heuristic approach to proposal-based negotiation: With applications in fashion supply

chain management. Mathematical Problems in Engineering 2013, 896312 (2013).
P. De Meo, E. Ferrara, G. Fiumara, and A. Provetti. 2014. Mixing local and global information for community detection in large networks. Journal of

Computer and Systems Sciences 80, 1 (2014), 72–87.
U. Feige. 1995a. A tight lower bound on the cover time for random walks on graphs. Random Structures & Algorithms 6, 4 (1995), 433–438.
U. Feige. 1995b. A tight upper bound on the cover time for random walks on graphs. Random Structures & Algorithms 6, 1 (1995), 51–54.
M. Gjoka, M. Kurant, C. Butts, and A. Markopoulou. 2011. Practical recommendations on crawling online social networks. IEEE Journal on Selected Areas

in Communications 29, 9 (2011), 1872–1892.
P. Hu and W. Lau. 2013. A survey and taxonomy of graph sampling. arXiv preprint arXiv:1308.5865 (2013).

www.cost.eu

14 Costantini et al.

S. Ikeda, I. Kubo, and M. Yamashita. 2009. The hitting and cover times of random walks on finite graphs using local degree information. Theoretical
Computer Science 410, 1 (2009), 94–100.

J. Kahn, N. Linial, N. Nisan, and M. Saks. 1989. On the cover time of random walks on graphs. Journal of Theoretical Probability 2, 1 (1989), 121–128.
L. Lovász. 1993. Random walks on graphs. Combinatorics 2, 1 (1993), 1–46.
P. Matthews. 1988. Covering problems for Brownian motion on spheres. The Annals of Probability 16, 1 (1988), 189–199.
J. McAuley and J. Leskovec. 2012. Image Labeling on a Network: Using Social-Network Metadata for Image Classification. In Proc. of the European

Computer Vision Conference, ECCV 2012. Florence, Italy, 828–841.
M. Newman. 2005. A measure of betweenness centrality based on random walks. Social networks 27, 1 (2005), 39–54.
M. Newman. 2018. Networks. Oxford university press.
P. Pons and M. Latapy. 2006. Computing Communities in Large Networks Using Random Walks. J. Graph Algorithms Appl. 10, 2 (2006), 191–218.
S. Redner. 2001. A guide to first-passage processes. Cambridge University Press.
S. Ross. 2006. A first course in probability. Pearson Prentice Hall Upper Saddle River, NJ.
B. Rozemberczki, C. Allen, and R. Sarkar. 2019. Multi-scale Attributed Node Embedding. arXiv preprint arXiv:1909.13021 (2019).
B. Viswanath, A. Mislove, M. Cha, and K. Gummadi. 2009. On the evolution of user interaction in Facebook. In Proc. of the 2nd ACM workshop on Online

social networks. Barcelona, Spain, 37–42.
T. Weng, J. Zhang, M. Small, F. Bijarbooneh, and P. Hui. 2017. Partial cover time that is sublinear in the number of targets on complex networks: a

universal law. arXiv preprint arXiv:1701.03259 (2017).
J. Yang and J. Leskovec. 2015. Defining and evaluating network communities based on ground-truth. Knowledge and Information Systems 42, 1 (2015),

181–213.

	Abstract
	1 Introduction
	2 Background
	3 Related Works
	3.1 Non-uniform transition probabilities
	3.2 Random Walks which prefer unvisited edges

	4 Approach Description
	4.1 Main Features of the MD algoritmh
	4.2 The MD algorithm
	4.3 The role of the budget B

	5 Experimental Analysis
	5.1 Dataset Description
	5.2 Evaluation Metrics
	5.3 Baseline Methods
	5.4 Budget Tuning (RQ1)
	5.5 Performance comparison (RQ2)

	6 Conclusions
	Acknowledgments
	References

