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ABSTRACT 

Seismic attributes (derived quantities) such as P-wave and S-wave impedances and 

P-wave to S-wave velocity ratios may be used to classify subsurface volume of rock into 

geological facies (distinct lithology-fluid classes) using pattern recognition methods. 

Seismic attributes may also be used to estimate subsurface petrophysical rock properties 

such as porosity, mineral composition and pore-fluid saturations. Both of these estimation 

processes are conventionally carried out independent of each other and involve significant 

uncertainties, which may be reduced significantly by a joint estimation process. We 

present an efficient probabilistic inversion method for joint estimation of geological facies 

and petrophysical rock properties. Seismic attributes and petrophysical properties are 

jointly modeled using a Gaussian mixture (GM) distribution whose parameters are 

initialized by unsupervised learning using well-log data. Rock physical models may be 

used in our method to augment the training data if the existing well data are limited, 

however this is not required if sufficient well data are available. The inverse problem is 

solved using the Bayesian paradigm that models uncertainties in the form of probability 

distributions. Probabilistic inference is performed using variational optimization which is a 

computationally efficient deterministic alternative to the commonly used sampling based 

stochastic inference methods. With the help of a real data application from the North Sea 

we show that our method is computationally efficient, honors expected spatial correlations 

of geological facies, allows reliable detection of convergence, and provides full 

probabilistic results without stochastic sampling of the posterior distribution. 

INTRODUCTION 

3D seismic data offers an extensive coverage of the subsurface and provides 

essential information required to build models of subsurface fluid reservoirs. Such models 

are used for reserves estimation and for making decisions regarding development of 

subsurface resources. At the very least, the structural architecture of a reservoir may be 

defined based on geological interpretation of 3D seismic data. Additional information in 

the form of spatial distribution of geological facies (discrete lithology-fluid classes) and 

petrophysical rock properties (continuous physical properties of rocks such as porosity and 

permeability) is also required for quantitative reservoir characterization. However, such 

information cannot be inferred from seismic data directly, and must be obtained from other 

sources of information such as well data. Since well data are usually limited and sparse, we 

need to map these properties over the entire reservoir. Such a mapping is usually 

performed by inverting seismic data to ensure that the mapped properties are consistent 

with the seismic data. For a given geological facies, petrophysical rock properties are often 

well correlated with seismic attributes; the latter refers to the quantities of interest or 

elastic rock properties that can be derived from seismic waveform data, such as P-wave 

and S-wave impedances. Therefore, seismic waveform data and their attributes provide 

useful constraints on the spatial distribution of both geological facies and petrophysical 

rock properties. 
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Examples of seismic attributes are P-wave and S-wave velocities (   and   ) and 

impedances (   and   ), the ratio of P-wave to S-wave velocity (       ), Poisson’s ratio 

( ), density ( ), Lame’s coefficients (  and  ), and amplitude variation with offset (AVO) 

attributes such as intercept ( ), gradient ( ) and their product (   ). Examples of 

petrophysical properties are porosity ( ), volume of clay (   ) in siliciclastic reservoirs, 

and pore space water saturations (  ). Although seismic attributes are generally estimated 

from the observed seismic waveform data, we refer to them as the observed data since 

these are considered as fixed inputs to our method. The elastic rock properties (or seismic 

attributes) and the petrophysical rock properties are together referred to as rock properties. 

Petrophysical rock properties and geological facies are henceforth together referred to as 

reservoir properties or model parameters of interest. 

Estimating petrophysical rock properties from seismic attributes is a non-unique 

inverse problem, but it can be regularized in a meaningful way if the solution can be 

constrained by the distribution of geological facies. Further, discrimination of geological 

facies from the seismic attributes may be improved if petrophysical rock properties are 

estimated and as such can be regarded as (uncertain) data along with the seismic attributes. 

Thus knowledge of either facies or petrophysical properties helps in the discrimination or 

estimation of the other. Since both of these are unknown, their inference from seismic 

attributes is a joint, usually nonlinear problem. In this paper, we solve this nonlinear 

problem in an iterative fashion, by alternately estimating one of these unknowns from the 

current estimate of the other in each iteration, with the objective of improving the overall 

joint model. 

For the sake of simplicity, Bayesian inversion often assumes that seismic attributes 

observed or measured at a location depend on the reservoir properties at that location only 

– the so-called localized likelihoods assumption. Such an assumption is commonly used in 

previous research (e.g., Larsen et al., 2006; Ulvmoen and Omre, 2010; Ulvmoen et al., 

2010; Walker and Curtis, 2014; Nawaz and Curtis, 2017). Unfortunately, band-limited 

nature of seismic data contravenes this assumption and induces strong spatial correlations 

in seismic images of the subsurface. Another common assumption for the sake of 

computational efficiency and analytical convenience is that geological facies are spatially 

independent which ignores spatial correlations in geology. Such an approach has also been 

implicitly or explicitly used in the literature (e.g., Shahraeeni and Curtis, 2011; Shahraeeni 

et al., 2012; Grana, 2018) with the hope that the spatial continuity of facies may be 

recovered from the spatial continuity of seismic data. These assumptions make the inverted 

reservoir properties vulnerable to noise in the input seismic attributes. Spatial coupling 

(probabilistic dependence between neighboring locations) based on prior information may 

be introduced in the reservoir properties (model parameters of interest) to reconstruct 

desired spatial correlations in their posterior distributions. The difficulty with this 

approach is that exact Bayesian inference is intractable in real-scale models with spatial 

coupling between the model parameters. Thus, approximate inference becomes inevitable 

in this case. Stochastic sampling using Markov-chain Monte Carlo (McMC) is widely 

employed as an approximate inference method for solving spatial inverse problems. 

However, since McMC is a suite of general methods, it is computationally expensive and 
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requires significantly large number of samples to converge to the unknown true 

distribution in high dimensional problems. Approximate inference may be performed more 

efficiently for many problems of practical interest under a suitable set of assumptions 

using exact sampling (e.g., Walker and Curtis, 2014), or completely avoiding posterior 

sampling by using variational principles (e.g., Nawaz and Curtis, 2017, 2018, 2019) or by 

using stochastic sampling within a variational framework (e.g., Zhang and Curtis, 2020a, 

2020b). 

Nawaz and Curtis (2017) used spatial inference on a 2D Hidden Markov Model 

(HMM) in order to recover the marginal posterior distributions of facies from noisy data, 

including spatial correlations from prior information on expected continuity of facies. 

Their method uses the localized likelihoods assumption whereby knowing the geology at a 

location makes the data observed at that location independent of geology elsewhere in the 

model. Examples of previous research in which the localized likelihoods assumption has 

been relaxed in 1D Bayesian inversion methods are Lindberg and Omre (2014, 2015), and 

Grana et al. (2017). Nawaz and Curtis (2018) introduced the concept of quasi-localized 

likelihoods (QLL) – a less stringent assumption than localized likelihoods. In that method, 

multi-dimensional probabilistic dependence is allowed between seismic attributes at a 

location and the facies in some arbitrary but pre-specified neighborhood of that location. 

Nawaz and Curtis (2019) completely removed the assumption of localized likelihoods such 

that model parameters may be conditioned on any data irrespective of their observation 

location. They used a discriminative approach that models the posterior distribution 

directly using supervised learning. This is in contrast to the generative approach that we 

use in the current paper where we model the posterior distribution through the joint 

distribution of the model parameters and the observed data. The discriminative approach 

provides additional sophistication – for example Nawaz and Curtis (2019) used it to 

discriminate between noise and signal in the data within the inversion process. However, 

that method requires generation of and learning from training examples which may be 

regarded as an unnecessary additional step when such sophistication is not required. 

This paper extends the method of Nawaz and Curtis (2018) by inverting seismic 

attributes (elastic rock properties) jointly for petrophysical rock properties and geological 

facies while honoring prior information on their spatial correlations. We achieve this using 

variational Bayesian inversion (VBI) – an efficient probabilistic inference method based 

on numerical optimization that allows reliable detection of its convergence. This avoids 

extensive sampling during inference, yet provides fully probabilistic Bayesian results. 

Below we introduce the Bayesian framework for probabilistic inversion that 

combines the prior information and the data likelihood (the information content in the data 

regarding unknown model parameters). We then discuss the prior probability model for 

spatially coupled facies. Then, we describe the practical limitations of exact Bayesian 

computation in realistic-scale models, and discuss variational Bayesian (VB) inference as 

an approximate inference method. In this section we describe how Bayesian inference can 

be performed within an optimization framework without requiring stochastic samples. 

Then we provide a real data example from the North Sea, where we first show the 
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inversion results for a gas reservoir on well-log data and then across 2D seismic attributes 

section. Finally, we provide a discussion on the method, and finally the conclusions. 

Before proceeding, we define the notation used in this paper. We use a linear index 

denoted by lower case letters such as   and   to define the locations (or cells) in our model, 

or equivalently vertices in the underlying graph. Sets are represented with italic, regular 

(non-boldface) capital (English or Greek) letters, e.g.,   and  . We use the term vector for 

a one-dimensional row or column matrix. We use boldface font with lower case (English 

or Greek) letters for vectors, e.g.,   or  , and upper case English or Greek letters for 

matrices, e.g.,  . A subscript used with such letters connotes meanings indicated in the 

text. The identity matrix is represented as  . A superscript   stands for transpose of a 

vector or matrix. Bracketed superscripts indicate an estimate of a quantity at the iteration 

number specified in brackets during the course of an iterative update, e.g.,      represents 

an estimate of some quantity   after t iterations of an iterative algorithm. A hat, or caret, 

over a parameter (or random variable) denotes its estimator, e.g.,    represents an estimator 

of  . Other commonly used statistical and set theoretic notations include: ‘ ’ for a random 

variable which reads “is distributed as”, ‘ ’ for set difference, ‘ ’ for the union of two 

sets, ‘ ’ for the intersection of two sets, and ‘   ’ for cardinality (or number of elements) of 

a set. 

BAYESIAN INVERSION 

We want to infer petrophysical rock properties   and facies   jointly from the 

seismic attributes   along with their associated uncertainty of prediction. In terms of 

probability theory, we seek the so called posterior distribution          of unknown 

model parameters   and   conditioned on the realized data  . For this purpose, we use the 

generative modeling approach that formulates an observational model (also called a 

forward model) to describe the relationship between data   and the model parameters   

and  . The forward model is usually a deterministic or stochastic relationship that can be 

used to express the likelihood          of data given the unknown model parameters. For 

the observed data, this conditional distribution is called the data likelihood. The posterior 

distribution          and the data likelihood          are related according to Bayes’ 

theorem as 

         
                  

    
 

            

    
   (1) 

where      represents the prior distribution of facies,        represents the conditional 

prior distribution of the petrophysical properties   given a particular facies model  , and 

     represents the marginal probability of data  . Since the data   are observed as a 

single realization of noisy underlying random data variables, the denominator      in 

equation 1 is an unknown constant that ensures normalization of the posterior distribution 

         to be a valid probability distribution. It is commonly referred to as the evidence, 

and is given by 
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   (2) 

Evaluation of the evidence      is intractable for realistic scale models, and must be 

estimated using approximate probabilistic inference. We postpone further discussion about 

estimation of      until next section. We first describe a model for the prior distribution 

     of facies, and then we combine the conditional prior distribution        and the 

likelihood          to form the joint distribution          of rock properties   and   

given facies  . 

Facies prior model 

Prior information on the expected patterns of geological facies in space is often 

available from any previously available data or from modeling of geological processes that 

might have produced the geological structures in a given depositional environment, and 

can be expressed effectively using a training image (TI) (Mariethoz and Caers, 2014). A TI 

is a pictorial manifestation of spatial continuity of subsurface geological features. Such 

information may be injected into the Bayesian inversion as prior information 

parameterized as a Markov random field (MRF), a graphical representation of probabilistic 

dependence among various facies in space. 

A MRF is a graphical model       , or simply  , containing a set of vertices   

(or nodes) that represent variables, and a set of edges   between these vertices that 

represent probabilistic dependence between the connected vertices (Figure 1). The vertices 

corresponding to the data (i.e., seismic attributes) are called observed vertices and those 

corresponding to the unknown parameters (reservoir properties) in each model cell are 

represented as unobserved vertices. A MRF that contains hidden vertices is known as a 

hidden Markov random field (HMRF). The set of vertices connected to a given vertex   is 

called the neighborhood of  , denoted by    . The subscript    indicates that     is 

exclusive of the vertex   itself. The neighborhood is expressed as    when it includes the 

vertex  . 

A MRF assumes that given the model parameters in the neighborhood of a vertex 

(or model cell), the model parameters at that vertex are conditionally independent of those 

in the rest of the model – the so-called (1st-order) Markov assumption. Accordingly, the 

geological heterogeneity may be regarded as globally random, while the geology at 

neighboring locations is more likely to be similar than those at distant locations. 
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          (a)                                (b)                                 (c)                                      (d) 

Figure 1: (a) Representation of a standard gridded (cellular) model, and (b, c and d) a 

probabilistic graphical model (PGM), where vertices in the latter (shown as circles) 

represent random variables and the edges (links between vertices) indicate probabilistic 

dependence between the connected vertices (or the associated random variables). Red 

circles represent hidden vertices or unobserved variables (model parameters) and the blue 

circles represent observed vertices (data). (c) A typical HMRF with localized likelihoods 

(LL) where each unobserved variable is conditioned on the observed variable at the same 

location only. (d) A HMRF with the quasi-localized likelihoods (QLL) assumption of 

Nawaz and Curtis (2018), where the hidden variable at each location is conditioned on the 

observed variables within a pre-specified neighborhood around that location. In this paper 

we use the QLL assumption which is a relaxation of the LL assumption. The neighborhood 

of any hidden vertex (red circle) in (b)-(d) consists of the four hidden vertices that share 

an edge with that vertex. 

According to the Hammerseley-Clifford theorem (proved by Besag, 1974), the joint 

distribution      of facies over a MRF decomposes into potential functions,            

called edge potentials, and may be expressed in the form of a Gibbs distribution given by 

      
 

 
           

       

  (3) 

where   is a constant that ensures normalization of the joint distribution to be a valid 

probability distribution and is given by the sum of the numerator over all possible 

configurations of  , i.e. 

              
        

  (4) 

The potential functions            may be estimated by scanning the training 

image and building histograms for various combinations of facies   over pixels with offset 

distance and direction depending on the graph structure. The prior conditional probability 

of occurrence of facies    at a location   in the model given the facies     
 in its 

neighborhood     is therefore given by 
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  (5) 

which defines the spatial coupling of facies in terms of the edge potentials           . 

Likelihood model 

Two main approaches are used for modeling the relationship between data and 

model parameters: physics-based modeling and the data-driven modeling. Physics-based 

models define a mapping from the model parameters to the observed data based on the 

physics of the problem. Semi-empirical approaches are often used to fit such models as 

they usually contain free parameters that are tuned such that the derived model matches 

observed examples of model parameter values and corresponding data. Examples are the 

parameterized empirical Gardner relationship between density and seismic velocity 

(Gardner et al., 1974), and the soft-sand and stiff-sand rock physics models (Dvorkin and 

Nur, 1996) with Gaussian distributed noise. Such models typically require a small number 

(often three or four) of parameters to be calibrated to fit petro-elastic data (e.g.,    and  ) 

from siliciclastic rocks. On the other hand, the data driven approach defines and fits a non-

parametric model to the observed samples – a model which cannot be defined in terms of a 

finite number of parameters. An example of a data-driven model is non-parametric kernel 

mixture density (Grana, 2018) that fits a pre-specified base function (the kernel function) at 

each data point to approximate any complex probability distribution. 

The physics based approach may allow intuitive interpretation of the observed data, 

for example, fitting the soft-sand and stiff-sand models to petro-elastic data (e.g.,    and  ) 

may help determine the compactness of the rocks under investigation. However, for this to 

be possible the models need to be simple, and consequently they may not capture salient 

features of any particular dataset. This may lead to inaccurate estimation of posterior (post-

inference) uncertainties of the model parameters conditioned to the observed data. The 

data-driven models incorporate little or no physical intuition about the relationship 

between model parameters and observed data, however they are flexible in the level of 

detail that they can capture. Also, in contrast to physics-based models which are often 

valid only for a particular type of geology, data-driven models may be applied to any 

geology. However, data-driven models may easily over-fit the data and consequently result 

in biased posterior estimates of the model parameters. 

We use a middle ground: a Gaussian mixture model (GMM), which is a semi-

parametric way of representing an arbitrarily complex and possibly multimodal 

distribution. A GMM defines a Gaussian mixture (GM) distribution as a linear 

combination (weighted sum) of Gaussian probability density functions (PDF). It is similar 

to the Kernel mixture density with Gaussian kernels, but it typically requires a much 

smaller number of kernels than the number of data points to be fit. For a random variable 

 , a GM distribution with   components may be expressed by the following PDF: 
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  (6) 

where                    represents a Gaussian PDF with mean    and covariance 

matrix   , and    is the weight of the  th
 component of the mixture. A GM distribution is a 

universal approximator of PDFs: given a sufficient number of Gaussian kernels with 

appropriate parameters, it can approximate any complex PDF to any desired non-zero 

accuracy (McLachlan and Peel, 2000). 

GM distributions have been widely used to model the distribution of rock 

properties in geophysical literature (e.g., Meier et al., 2007a, 2007b, 2009; Grana and 

Della Rossa, 2010; Shahraeeni and Curtis, 2011; Grana et al., 2017; Nawaz and Curtis, 

2017, 2018). Shahraeeni and Curtis (2011) used a Mixture Density Network (MDN) 

(Bishop, 1995), which is a type of neural network that can be trained to emulate a desired 

conditional distribution with a GM distribution. They used it to compute cell-wise 

posterior distributions of petrophysical rock properties given the seismic attributes in each 

model cell after the network is trained on well data. In the current work, we use a variant 

of the expectation maximization (EM) algorithm (Dempster et al., 1977; Nawaz and Curtis, 

2018) to model the joint distribution of all rock properties (elastic and petrophysical) as a 

GM distribution. The posterior distribution of petrophysical rock properties given the 

seismic attributes may then be obtained analytically; by marginalizing or by conditioning 

on the joint distribution depending on whether the data (seismic attributes or elastic rock 

properties) uncertainties are included in the model or not, respectively. As opposed to the 

MDN approach that uses supervised learning from training examples, the presented 

method is based on unsupervised learning and is computationally more efficient as it 

avoids the computational cost of generating and learning from training examples. 

A rock physics model is usually used to relate elastic properties and corresponding 

petrophysical properties. However, if sufficient well coverage is available the joint 

distribution of rock properties may be estimated directly from the well data, i.e. without 

requiring a rock physics model. This allows estimation of the correlation between any 

combination of rock properties, and their variances. The conditional prior distribution 

       of petrophysical rock properties   given geological facies   is usually modeled 

using well logs that have been up-scaled at the dominant seismic wavelength relative to 

seismic attributes   (Grana and Della Rossa, 2010), and the likelihood          is 

usually modeled using rock physics models (Bosch et al., 2010; Grana and Della Rossa, 

2010; Lang and Grana, 2018; Grana, 2018) calibrated with the well data and local 

geological information. We adopt a different approach: we model both of the conditional 

prior        and the likelihood          jointly using up-scaled well-logs in the form of 

a joint distribution            of elastic attributes   and petrophysical properties   given 

the facies  , defined in terms of a set of parameters   which we will define and estimate 

below. Therefore, the current method does not require a rock physics model to be used. 

However, if well coverage is limited, available well data may be augmented by using an 

appropriate rock physics model prior to the estimation of the joint PDF of rock properties. 
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We adopt the quasi-localized likelihoods model of Nawaz and Curtis (2018) where 

rock properties    and    in each cell   are conditioned on the facies    
 in some pre-

specified neighborhood    of  . The quasi localized likelihoods defined in this manner, 

           
   , may be very high dimensional depending on the size of the 

neighborhood structure   . This may increase the computational cost of the method 

significantly. However, since facies in the neighboring locations tend to be similar in a 

MRF model, there is a high probability that any one facies dominates other facies within 

any neighborhood. This suggests that we can reduce the dimensionality of quasi-localized 

likelihoods by defining the most probable facies     in cell   as the one that maximizes the 

sum of some estimate of marginal probabilities        of facies    at locations     , i.e. 

          
 

       
    

       
 

            
 

     
    

  (7) 

where           
  is the prior probability of facies    at a location   given some estimate 

     
 of the facies     

 in the neighborhood     of   given by equation 5. 

Since the prior distribution      of facies is expressed as a Gibbs distribution, it 

factorizes over edges in the model according to equation 3. A similar factorization of 

           can be achieved by assuming conditional independence of rock properties (  

and  ) given the facies   such that 

                       
   

   

                

   

  (8) 

The probability of   given   may then be expressed as 

                      
      

   

                    

   

  

         

   

  (9) 

where                           is a potential function of    referred to as the vertex 

potential in a MRF model. It models the likelihood of observing seismic attributes    and 

current estimate of petrophysical properties    at a location   which may be regarded as the 

up-scaled response of facies    
 within the neighborhood of   (Nawaz and Curtis, 2018). 

If the estimate of marginal probability        in equation 7 is obtained from the current 

estimate of posterior marginal distribution of facies in cell  , the approximations 8 and 9 

correspond to the notion of empirical Bayes. 

Petrophysical rock properties are usually obtained from well log data, and are 

therefore much higher in resolution compared to the seismic attributes. To account for the 

difference in resolution, the rock properties            at a location   are assumed to be a 
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weighted linear combination of the corresponding high-resolution rock properties    at the 

neighboring locations      such that 

        

    

     (10) 

where    is a     vector of   dimensional vector of rock properties (seismic attributes    

and the petrophysical properties   ),    are the regression coefficients, and    is a vector of 

errors which are assumed to be jointly distributed according to a Normal distribution 

       . The regression coefficients    in this expression act as coefficients of a spatial 

averaging filter, and may be estimated within the inversion process (Nawaz and Curtis, 

2018), or may be fixed a priori based on vertical averaging of well-logs at the seismic 

wavelengths. 

We use a Gaussian mixture (GM) distribution to model                that is 

defined as a linear combination of a given number of Gaussian kernels, usually referred to 

as the components of the mixture distribution. Defining           
 , i.e. a vector of rock 

properties in cell  , the GM distribution is expressed as 

                            
  

   
       (11) 

where    is the number of mixture components (which may be different for each facies  ), 

     is the component weight and is included in  , and          is the Gaussian kernel for 

the  th
 component and facies      . The Gaussian kernels          are given by 

                
  

  
        

  

  
  

   
  
        

        
 
   

        (12) 

where   represents the probability density function (PDF) of the Normal distribution,  ’s 

and  ’s are means and block covariance matrices of the kernel (and are also included in  ) 

with subscripts indicating the data   or the petrophysical properties   components of   . 

The expression for a Gaussian kernel may also be expressed explicitly as 

                       
    

    
  

 
         

 
    

             

     

(13) 

where   is the dimensionality of   , and       and      are mean and covariance matrix of 

the kernel          given by 

       
  

  
  

   
 (14) 

and 
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  (15) 

Since the joint conditional distribution            of seismic attributes   and rock 

properties   given facies   (and the distribution parameters  ) is modeled as a GM 

distribution, and the prior distribution of facies      is modeled as a MRF, the overall 

model of joint distribution            of the data   and model parameters   and   

represents a Gaussian mixture - Markov random field (GM-MRF). The parameters   may 

be defined as 

                         (16) 

We may initialize   using some training data (e.g., up-scaled well logs) and, as we show 

later,   may be updated as a part of the inversion process. 

Posterior model 

The posterior distribution in equation 1 may be written as 

           
              

      
  (17) 

Substituting equations 3 and 8 into equation 17 we get 

           
          

      
 

 

  
                

   

           
       

  (18) 

where        has been absorbed in the normalization constant    on the right hand side. 

This demonstrates that although we only assumed that the prior distribution      on facies 

  is a MRF, the posterior distribution            and the joint distribution            

then also turn out to be MRFs. This is a consequence of the spatial conditional 

independence assumption on rock properties   and  , and we show in the next section that 

such a factorization of the posterior distribution is crucial for making inference tractable 

for real-scale models. 

VARIATIONAL BAYESIAN (VB) INFERENCE 

Evaluating the denominator        in equation 18 requires summation and/or 

integration over a very high dimensional space for most real scale models. For this reason, 

approximate inference using stochastic sampling (e.g., by using McMC) is performed (e.g., 

Grana and Della Rossa, 2010; Rimstad and Omre, 2013; Lindberg and Omre, 2014, 2015) 

but, as discussed earlier, it is computationally expensive. We instead use the variational 

Bayes (VB) method which uses the ‘calculus of variation’ to obtain a tractable functional 

approximation         , or simply  , of the intractable true posterior distribution 
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          . The approximate posterior distribution   is chosen to belong to a family ℚ 

of distributions that are more easily manipulated, and is commonly referred to as the 

auxiliary or variational distribution. The approximation is achieved by minimizing the 

Kullback-Leibler (KL) divergence                     (also called relative-entropy, 

Shannon, 1948) between   and           , which quantifies how different are its two 

argument distributions, and is given by 

                          
        

          
   

              
        

          
  

 

  (19) 

VBI transforms probabilistic inference into numerical optimization which can be 

performed efficiently without requiring stochastic sampling while still providing full 

probabilistic results. For implementation details, see Nawaz and Curtis (2018). They used 

the Expectation Maximization (EM) algorithm (Dempster et al., 1977) as the optimization 

framework to solve the Bayesian inverse problem. 

Expectation Maximization (EM) algorithm 

Expectation Maximization (EM) is an iterative algorithm where each iteration 

comprises of two steps: the so-called E-step and the M-step, which alternately minimize 

                  with respect to   and  , respectively. Nawaz and Curtis (2018) 

showed that the E-step of the EM algorithm can be solved using a message passing 

algorithm, called belief propagation (BP) (Pearl, 1982, 1988), or its variant, the loopy 

belief propagation (LBP) (Murphy et al., 1999; Yedidia et al., 2001a, 2001b; Koller and 

Friedman, 2009). The LBP algorithm in the E-step of the EM algorithm performs spatial 

inference by minimizing                   with respect to  . This provides an estimate 

of the posterior distribution        of facies   given seismic attributes  . The marginal 

conditional distribution of    given    and     at a location   may be obtained by 

conditioning on                  (see equation 11) by setting the parameters   equal to 

their current estimate      at any iteration  , which may be represented by a GM 

distribution as 

                         
               

  

   
       (20) 

where the bracketed superscript refers to the iteration number, and the Gaussian kernel 

            for the  th
 mixture component and facies       is given by 

                    
      

   
       

     
   

        (21) 
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with mean      and covariance matrix      estimated from the current estimate      of the 

parameters   of the joint distribution of   and   (equation 11) by 

    
      

        
        

     
     

     (22) 

and 

    
        

        
        

     
     

     (23) 

Since petrophysical properties   are assumed to be conditionally independent given facies 

 , their joint posterior distribution               given   and   over the entire graphical 

model   at any iteration   may be expressed as 

                                  
   

  

       
               

  

      
       (24) 

The M-step of the EM algorithm at any iteration   computes an updated set of 

parameters        by minimizing                   with respect to   while keeping 

the variational distribution   fixed. This results in the parameters                       

of the joint GM distribution of         to be updated for all of the facies       and 

mixture components            as follows: 

    
      

 

 
                

    
 

   
 (25) 

    
      

               
      

 
   

               
     

   

 (26) 

    
      

               
             

              
      

  
   

                
     

   

  (27) 

where                 
     is the current estimate (at iteration  ) of the marginal distribution 

of facies       at location   estimated in the E-step, and acts as weight for averaging the 

rock properties            at a location   in order to honor the spatial dependence among 

facies  . 
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Approximate posterior distribution 

On convergence of the EM algorithm, the variational distribution        

approximates the true posterior distribution        of facies   given seismic attributes  , 

such that the desired joint posterior distribution          may be approximated as 

                                                     (28) 

where    is the final estimate of parameters  . Note that in the above expression the 

variational approximation               on the form of posterior distribution is used 

only for the posterior distribution of facies, and no approximation on the form of the 

posterior distribution          of petrophysical properties   is assumed; only the value 

             of            is approximated by the use of estimated parameters   .  

 

 

Figure 2: A flow-chart summary of the inversion method. Inputs are shown in green color: 

well data, rock physics model and seismic attributes. Prior information about facies is 

shown in red color, and estimated quantities and distributions are shown in white color. 

The arrows represent direction of flow of data in the workflow. The steps corresponding to 

rock physics modeling and the corresponding synthetic rock properties for each of the 

geological facies are enclosed in a blue colored box to emphasize that these are optional 

and may not be required if sufficient well data is available. 
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Figure 2 shows a flow chart summary of the overall method. For a discussion on 

computational efficiency of this variational method, we refer to Nawaz and Curtis (2018) 

since our current method is an extension of their VBI method to include continuous rock 

properties, and the computational efficiency of these methods is similar. 

FIELD EXAMPLE: NORTH SEA 

We apply the joint inversion method to estimate the spatial distribution of 

petrophysical rock properties and geological facies from well data and seismic attributes 

from the North Sea. The data available for testing our method includes vertical 2D sections 

of seismic attributes, P-wave impedance (  ), S-wave impedance (  ), and Vp/Vs ratios 

(     ) (Figure 3) obtained from prestack seismic waveform inversion, and well logs from 

two wells, W1 and W2 (Figures 4 and 5), that are located on the available 2D seismic 

section. The seismic attributes were available from a previous inversion of seismic 

waveform data. We are interested in classifying the seismic attribute data into three 

geological facies: shale, brine-sand and gas-sand, which are jointly estimated together with 

petrophysical properties of interest: clay volume (   ), water saturation (  ) and porosity 

( ). The well log data were first analyzed and the three facies of interest (shale, brine-sand 

and gas-sand) were interpreted from the log data. Crossplots of pairs of elastic properties 

are shown in Figure 6 with the color scales set to (Figure 6a-6c) the volume of clay and 

(Figure 6d-6f) the facies interpreted from the well-log data. The gas-sand points are well 

separated while the brine-sand and shale points show a significant overlay. 

The prior spatial distribution of facies was modeled as a MRF using a training 

image (TI) that represents a conceptual depiction of typical forms of expected geological 

structures and spatial distributions of facies in the subsurface (Figure 7). The TI encodes 

the spatial conditional distributions of facies graphically. The prior information was 

extracted from the training image in terms of prior probabilities          
  constructed 

from histograms of various facies configurations in the image using equation 5. The prior 

probabilities encapsulate the spatial conditional distributions of facies under the 

assumption that they are stationary over the entire model space. Since our input seismic 

attributes span a small 2D vertical section therefore stationarity is an acceptable 

assumption in this case. If, however, the aim is to invert a large region (or volume) of 

space or depth/time interval, the priors must be conditioned to the location using zonation 

or depth trends that capture the expected variability of facies patterns in space. 
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(a)    

(b)    

(c)    

 

Figure 3: Seismic attributes (a) P-wave impedance, (b) S-wave impedance, and (c) Vp/Vs 

ratios, derived from a selected 2D section of waveform seismic AVO data using a 

deterministic inversion method. These attributes are used as inputs to our method for the 

joint inversion of geological facies and petrophysical rock properties. 
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Figure 4: Well-log data and facies profiles in a well W1 in the study area. Standard well-

log pneumonics are used for the well log curves as shown in the headers above the display 

columns. The color codes for three facies, i.e. yellow for shale, blue for brine-sand and red 

for gas-sand, are used as standard in all of the subsequent figures in this paper. The well 

log data from W1 are used as input for modeling the facies dependent prior joint 

distribution of elastic (seismic attributes) and petrophysical rock properties. Three 

reservoir layers encountered in W1 are marked with labels ‘A’, ‘B’ and ‘C’ for 

correlation. 
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Figure 5: Well-log data and facies profiles in a well W2 in the study area. These data were 

not incorporated in the inversion process, and were used only for cross-validation (testing) 

of the results. Standard well-log pneumonics are used for the well log curves as shown in 

the headers above respective columns. Three reservoir layers encountered in W2 are 

marked with labels ‘A’, ‘B’ and ‘C’ for correlation. 

The initial distribution of facies-dependent rock properties for seismic inversion 

was built from well log data. The well logs from W1 were used to model the prior 

distribution of rock properties. W1 encountered only dry gas in the reservoir layers (A, B 

and C), while W2 encountered brine in the reservoir layer ‘C’. For this reason, log data 

from W2 within the ‘C’ interval were used for calibration of the prior distribution. Apart 

from the ‘C’ interval, W2 data were only used for validation (testing) of the inversion 

results. To reliably build the probability distribution of rock properties within a subsurface 
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section (or volume), a significant amount of well data are typically required. However, 

wells are often sparsely located and the well data are usually limited. In such a case, rock 

physics modeling and Monte Carlo (MC) simulation must be performed to augment the 

existing well data in order to build the prior distribution. If we construct a prior 

distribution using log data only from one well, it would not contain sufficient information 

to represent the entire model that is to be inverted. Thus, we first build a probabilistic rock 

physics model of the reservoir formations and then simulate rock properties from it to 

augment the existing well data. 

 

                           (a)                                    (b)                                    (c) 

 

                           (d)                                    (e)                                    (f) 

Figure 6: Crossplots between various combinations of P-wave impedance (  ) and S-wave 

impedance (  ) and the P-wave to S-wave velocity ratios (Vp/Vs) observed in the well log 

data: (a)    versus   , (b)    versus      , (c)    versus      , (d)    versus   , (e)    versus 

     , (f)    versus      . The crossplots (a)-(c) are color coded with respect to the volume 

of clay (   ) and (d)-(f) are color coded with respect to the interpreted facies. The gas-

sand points are well separated from the other facies, while the brine-sand and shale points 

have a significant overlap. 

We performed fluid substitution by synthetically replacing gas with brine in the 

reservoir sands to simulate the reservoir scenarios that are not actually encountered in W1. 

This requires a suitable rock physics model to be calibrated with the well data (Bosch et 

al., 2010). We investigated two related rock physics models: the soft-sand and stiff-sand 

models (Dvorkin and Nur, 1996). The soft-sand model assumes that the sand is 

unconsolidated and the cement is deposited away from the grain contacts, while the stiff-
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sand model assumes that the sand is strongly consolidated due to the deposition of cement 

material at the grain contacts. The parameters of these models are the coordination number 

  , the critical porosity   , and the hydrostatic pressure  .    refers to the average 

number of contacts that each grain has with its surrounding grains, and    refers to the 

initial porosity at the time of deposition (before the implacement of cement). Figure 8 

shows the      crossplot overlaid on the two models using different values for    and 

  . Higher values of    and    show a better fit of the well data with the soft-sand model 

than with the stiff-sand model. This suggests that the compaction of reservoir sands can be 

described by the intermediate stiff-sand model (Mavko et al., 2009). 

The rock physics modeling involves a number of intermediate parameters, such as 

mineral and fluid properties, that introduce uncertainties in the desired elastic properties of 

brine-saturated rock. Such intermediate parameters are regarded as confounding variables 

and are assigned Uniform prior distributions listed in Table 1. MC simulation was then 

performed to sample these confounding variables, followed by upscaling of well logs and 

fluid substitution using Gassmann’s equations (Berryman, 1999) to model brine and gas 

saturated rock with prior probabilities of brine-sand and gas sand taken from the training 

image. The simulated data were then combined with the existing well data to obtain 

augmented data that are expected a priori to represent the elastic properties of rocks in the 

entire model. 

 

 

Figure 7: The training image used to model the spatial prior distribution of facies that is 

constructed from histograms of various facies configurations found in this image. 
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                                       (a)                                                                  (b) 

  Gas-sand      Brine-sand      Shale 

Figure 8: Porosity ( ) vs. P-wave velocity (  ) crossplots with color codes based on the 

facies interpreted from the well data. The overlaid rock physics template (lines with 

different shades of grey) correspond to trends for different Net-to-Gross (   ) ratios 

predicted using (a) the soft-sand and (b) the stiff-sand model. Each of the two rock physics 

models are calibrated using different set of parameters: the coordination number       

and the critical porosity        for the soft-sand model, and      and the critical 

porosity        for the stiff-sand model. This shows that the reservoir can be modeled 

using the Intermediate stiff-sand model (Mavko et al., 2009), i.e. either by a stiffer soft-

sand model or a softer stiff-sand model. 

Figure 9 shows    versus      , and    versus    crossplots for a comparison 

between the original well data, the data after fluid substitution (brine replacing gas in the 

reservoir) using mean values of the confounding parameters, and the augmented data using 

MC simulations. The prior facies dependent joint distribution of the petrophysical and 

elastic rock properties (Figure 10) was modeled as a GM distribution using the augmented 

data. Each of these facies dependent GM distributions was modeled as a mixture of two 

Gaussian components in order to capture possible multimodal behavior of rock properties 

within each facies. 

Before applying our method to invert elastic seismic attributes for petrophysical 

properties and facies, we first test the method by inverting the elastic logs from W2 for 

petrophysical properties and facies. This also validates the consistency of the prior 

distribution built using rock physics modeling against the log data from W2. Recall that 

the W2 data were not used in building the prior distribution. The joint inversion for 

petrophysical rock properties and facies was performed by updating the prior distribution 

of rock properties by conditioning on the seismic attributes (Figure 11) using the EM 
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algorithm as discussed earlier. The E-step of the EM algorithm approximates the posterior 

marginal distributions of facies using equations 20-24, while the M-step updates the 

parameters of the joint distribution of rock properties given facies estimated in the E-step 

using equations 25-27. The marginal conditional distribution of petrophysical properties 

given the observed elastic properties (elastic well logs in this case) may be computed for 

each facies at any iteration of the EM algorithm by conditioning on the joint distribution of 

rock properties given facies using equation 20. However, this is typically required only 

after convergence of the EM algorithm. 

 

 

 

Table 1: Prior Uniform distribution ranges used for the intermediate rock physics 

parameters. 

Rock Physics Parameter Range 

Coordination number,    5 – 13 

Critical porosity,    0.4 – 0.5 

Hydrostatic pressure,   40 – 55 MPa 

Mineral density,    2.5 – 2.8 g/cm
3
 

Mineral bulk modulus,    15 – 38 GPa 

Mineral shear modulus,    5 – 44 GPa 

Brine density,    1.0 – 1.1 g/cm
3
 

Brine bulk modulus,    2.2 – 2.8 GPa 

Gas density,    0.15 – 0.25 g/cm
3
 

Gas bulk modulus,    0.04 – 0.06 GPa 

Error in volume of clay,      0.0 – 0.2 

Error in water saturation,     0.0 – 0.1 

Error in porosity,    0.0 – 0.1 
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                                    (a)                                 (b)                                  (c) 

 

                                        (d)                               (e)                                  (f) 

 

                                        (g)                              (h)                                 (i)    

  Gas-sand      Brine-sand      Shale 

Figure 9: (a)-(c)    versus       crossplots in the first row, (d)-(f)    versus       

crossplots in the second row, and (g)-(i)    versus    crossplots in the third row. The first 

column (a, d and g) displays the crossplots using log data from W1.  The second column 

(b, e and h) displays the crossplots using the original well data together with the well data 

after replacing gas with brine in the sand layers using Gassmann fluid substitution 

modeling to show the effect of brine on the elastic properties of reservoir layers (A, B and 

C). The third column (c, f and i) displays the crossplots using Monte Carlo (MC) simulated 

data using the soft-sand model with intermediate rock physics parameters as shown in 

Table 1 to simulate a wide range of possible values that might not have been sampled in 

the well data. 
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  Gas-sand      Brine-sand      Shale 

Figure 10: Matrix-plot of samples from components of the prior joint distribution of 

elastic and petrophysical rock properties. The first three components are the elastic 

properties: P-wave impedance    (IP log), S-wave impedance    (IS log) and the P-wave to 

S-wave velocity ratios       (VPVS log), and the last three components are the 

petrophysical properties: clay volume     (VCL log), water saturation    (SWT log) and 

porosity   (PHIT log). The diagonal plots represent smoothed histograms of each of the 

components, and the off-diagonal plots show facies dependent correlations between the 

respective components. 
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Figure 11: Well logs inversion results. The first three columns display the input elastic 

rock properties: P-wave impedance    (IP log), S-wave impedance    (IS log) and the P-

wave to S-wave velocity ratios       (VPVS log), shown in the solid-black lines estimated 

from the sonic (DTP and DTS) and density (ZDEN) logs shown in Figures 4 and 5. The 

solid-black curves in columns 4-6 are the reference petrophysical well logs, and solid-red 

curves the mean inverted petrophysical properties: clay volume     (VCL log), water 

saturation    (SWT log) and porosity   (PHIT log). Column-7 displays the reference 

facies interpreted from the well data and column-8 shows the inverted facies. The yellow 

shaded regions bounded by the dashed-red curves represent the 2
nd

 standard deviation of 

the posterior marginal distributions of the petrophysical rock properties in columns 4-6, 

and the 2
nd

 standard deviation of the conditional marginals of the joint distribution of rock 

properties obtained by conditioning on the estimated posterior mean petrophysical 

properties and integrating out the elastic properties other than the one that is plotted in 

columns 1-3. 

Testing the inversion method on the well log data provides a best case scenario for 

our method since the BP algorithm performs exact inference in the 1D case. Therefore, any 

inaccuracies in the inversion results in this case are not a result of any approximation used 

in probabilistic inference, but may be attributed to the approximations used in rock physics 

modeling. The inversion results are shown in Figure 11. The input to inversion are the 

measured elastic well logs (P-wave and S-wave impedances and VpVs ratios) that are 

shown as solid-black curves in the columns 1-3. The outputs are joint posterior distribution 

of the elastic and petrophysical rock properties and facies. The joint posterior GM 

distribution was conditioned on the observed elastic well logs using equations 20 and 

marginalized to obtain the posterior distribution of inverted petrophysical logs (VCL, SWT 

and PHIT). Each of the marginal posterior GM distributions of petrophysical properties 
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were approximated with univariate Gaussian distributions for display and interpretation 

purposes. The solid-red curves in columns 4-6 are means of posterior distribution of 

petrophysical properties. The yellow shaded regions bounded by the dashed-red curves in 

columns 1-6 are the 2
nd

 standard deviation of the posterior distribution of corresponding 

rock properties. The actually observed petrophysical logs are shown as solid-black curves 

in columns 4-6 for comparison. 

The standard deviation (Std.) of rock properties quantifies the natural variability of 

these properties, and also provides quantification of uncertainty of the predicted 

petrophysical properties. For precise inversion results, exactly 95.4% of the actual 

observed log samples should fall within the 2
nd

 standard deviation of the posterior 

distribution. We define the percentage of actual petrophysical log samples contained 

within the 2
nd

 standard deviation of the predicted distributions to the ideal value of 95.4% 

as the confidence ratio (CR). An ideal CR is therefore 1.0 which refers to perfect 

prediction of uncertainty for a Gaussian distribution. A CR value greater than 1.0 

represents over-estimation of uncertainty, and vice versa. The CR for well data inversion 

of the petrophysical properties are shown in Table 2. The uncertainty is slightly under-

estimated for the inverted petrophysical properties (with CR ranging between 0.93 and 

0.98). It is interesting to note that since our method estimates the posterior conditional 

distributions of petrophysical properties from the joint distribution of elastic and 

petrophysical rock properties, it yields uncertainty in the input elastic properties under the 

joint distribution as well (as shown by the yellow shaded regions in columns 1-3).  

 

Table 2: Accuracy measures for the petrophysical properties and facies inverted at well 

locations computed with respect to the actually measured (reference) log-curves and facies 

interpreted from well data. Confidence ratio and success rate are defined in the text. 

Property and Accuracy measure 

Well-log 

inversion 

(W2) 

Seismic 

inversion 

(W1) 

Seismic 

inversion 

(W2) 

Volume of clay,    : Confidence 

ratio 
0.93 0.82 0.73 

Volume of clay,    : Correlation 0.91 0.59 0.72 

Water saturation,   : Confidence 

ratio 
0.96 0.82 0.91 

Water saturation,   : Correlation 0.81 0.68 0.61 

Porosity,  : Confidence ratio 0.98 0.77 0.89 

Porosity,  : Correlation 0.93 0.60 0.81 

Shale prediction: Success rate 0.94 0.83 0.82 

Brine-sand prediction: Success rate 0.76 0.60 0.66 

Gas-sand prediction: Success rate 0.98 0.80 0.96 

Overall facies prediction: Success 

rate 
0.90 0.74 0.81 

 



Geophysics 

28 
 

 (a)  

 (b)  

 (c)  

Figure 12: Cell-wise posterior marginal distributions of (a) shale, (b) brine-sand, and (c) 

gas-sand. Yellow color represents high probability (value=1.0) and dark blue color 

represents low probability (value=0.0). 
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Figure 13: Cell-wise posterior marginal entropy of facies classification shown in Figure 

12  scaled between 0.0 and 1.0. Yellow color represents high entropy (value=1.0) and dark 

blue color represents low entropy (value=0.0). 

 

The similarity between the mean inversion results and the corresponding reference 

log curves is estimated in terms of Pearson’s correlation coefficient, herein referred to 

simply as correlation. Excellent correlation of 0.91 and 0.93 is obtained for inverted      

and   (compared to the measured reference log curves VCL and PHIT, respectively), 

while a relatively lower correlation of 0.81 is obtained between the inverted    and the 

measured SWT log curve. It shows that the elastic properties have a higher correlation 

with clay volume and porosity than with water saturation, which is also evident from 

Figure 10. 

The success rate refers to the percentage of facies correctly predicted at the well 

location. The success rate is very good for shale (94%) and a bit low for brine-sand (76%), 

whereas the gas-sand has an excellent 98% predicted rate as the gas-sand properties are 

well discriminated from the rest of the two facies (Figure 9). As mentioned earlier, a 1D 

inversion with our method provides the best case results since the probabilistic inference is 

exact in this case, and minor discrepancies between predicted and actual properties are due 

to the approximations used in rock physics modeling. Since, the two wells are located 

quite close together (about 2.0 km apart), the reservoir properties are not expected to be 

too different and the assumption of stationarity appears to be valid. 
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(a) 

 

(b) 

Figure 14: Maps of the facies with maximum marginal distribution in each cell. (a) Map of 

the three inverted facies: Shale (SH: shown in yellow), brine-sand (BS: blue) and gas-sand 

(GS: red). (b) Map with an additional facie “Shale/Sand” (SS: brown) identified from high 

entropy layers in Figure 13. 
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(a) 

 

(b) 

Figure 15: Cell-wise map of (a) clay volume (   ) and (b) its standard deviations (Std.). 

Yellow color represents high values and dark blue color represents low values of the 

respective properties. 
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(a) 

 

(b) 

Figure 16: Cell-wise map (a) water saturation (  ) and (b) its standard deviations (Std.). 

Yellow color represents high values and dark blue color represents low values of the 

respective properties. 
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(a) 

 

(b) 

Figure 17: Cell-wise map (a) porosity ( ) and (b) its standard deviations (Std.). Yellow 

color represents high values and dark blue color represents low values of the respective 

properties. 
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(a)  

(b)  

 

Figure 18: Seismic attributes inversion results at the (a) W1 and (b) W2 well locations. 

The first three columns display the elastic rock properties: P-wave impedance    (IP log), 

S-wave impedance    (IS log) and the P-wave to S-wave velocity ratios       (VPVS log), 

where the reference elastic well logs are shown in solid-black lines and the seismic 

attributes used as input to the inversion are shown in solid-red lines. The solid-black 

curves in columns 4-6 are the reference petrophysical well logs, and solid-red curves are 

the mean inverted petrophysical properties: clay volume     (VCL log), water saturation 

   (SWT log) and porosity   (PHIT log). Column-7 displays the reference facies 

interpreted from the well data and column-8 shows the inverted facies. The yellow shaded 

regions bounded by the dashed-red curves in columns 1-6 represent the 2
nd

 standard 

deviation of the posterior marginal distributions of the respective rock properties.  
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After verifying the inversion results at the well log scale, we applied our method to 

invert the available elastic seismic attributes jointly for the spatial distributions of facies 

and petrophysical rock properties. The limited resolution of the seismic attributes is 

accounted for within the inversion framework using a boxcar averaging kernel (the 

regression coefficients in equation 10) whose length is determined by the dominant seismic 

wavelength. Figure 12 shows the marginal posterior distributions of the three facies and 

Figure 13 shows the entropy (a measure of uncertainty) of these distributions scaled 

between 0.0 and 1.0. The entropy is mostly low except at the transitions between different 

facies, but it appears to be high within some layers too. Since gas-sand has well 

discriminated properties as seen in the log data, high entropy within some layers indicates 

presence of mix brine-sand and shale lithology that is not well discriminated. Figure 14a 

shows the facies map with maximum marginal distributions in each model cell for the 

three inverted facies: shale, brine-sand, and gas-sand. Figure 14b shows the facies map 

with an additional facies defined as a combination of non-discriminated shale-sand 

identified to exist in the cells where entropy is greater than a cutoff value of 0.5 (i.e., 50% 

of the scaled entropy range from 0.0 to 1.0). Even though we inverted for three facies, the 

entropy of the marginal posterior distributions identifies that an additional facies may also 

be interpreted as shaly-sand or sandy-shale shown in brown color in Figure 14b. 

The inverted petrophysical properties along with their standard deviations are 

shown in Figures 15 to 17. The gas reservoir consists of three sand layers (A, B and C), 

while only two layers are well identified which appear to be merging towards the right in 

the inversion results, possibly due to limited resolution of the input seismic attributes. The 

seismic attribute inversion results at the well locations are shown in Figure 18. The 

measured well logs are shown in solid-black curves for reference. The solid-red curves in 

columns 1-3 are the input seismic attributes along the boreholes in columns 1-3, and means 

of the posterior distribution of petrophysical properties in columns 4-6. The yellow shaded 

regions bounded by the dashed-red curves in columns 1-6 are the 2
nd

 standard deviation of 

the posterior distribution of corresponding rock properties. 

       

                             (a) Well: W1                                                 (b) Well: W2 

Figure 19: Confusion matrix plots for facies prediction from seismic attributes at the 

locations of wells (a) W1 and (b) W2. 
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The quantitative analysis of seismic attributes inversion results is summarized in 

Table 2. The uncertainty is under-estimated for the inverted petrophysical properties in 

both of the wells (with CR ranging between 0.73 and 0.89). Acceptable correlations 

(ranging between 0.59 and 0.81) are found between the inverted petrophysical properties 

and the respective observed well logs. Lower correlations and coverage ratios are mainly 

due to a significantly lower resolution of input seismic attributes compared to the well 

logs. Facies prediction rates are very good for gas-sand and shale (between 80% and 96%) 

and are a bit low (60% and 66% in W1 and W2, respectively) for brine-sand because 

brine-sand exists mostly in the form of thin layers (Figure 4) which are below seismic 

resolution. Figure 19 shows the confusion matrix plot of facies predictions at the well 

locations of W1 and W2. The confusion matrix displays the percentage of predicted facies 

along columns with respect to the true facies along rows. For example, the element at 

index      , i.e. top left square, represents the percentage of facies predicted as shale when 

the true facies is shale. Similarly, the element at index       (2nd box from left on the top 

row), represents the percentage of facies predicted as brine-sand when the true facies is 

shale, and so on. For a good prediction, the diagonal elements must have high values 

(shown as a color closer to yellow), and the off-diagonal elements must have a low value 

(shown as a color closer to dark blue). 

DISCUSSION 

A major contribution of this paper is the development of a computationally 

efficient inversion method for spatially correlated continuous (petrophysical) rock 

properties jointly with discrete rock properties (facies), using a sampling-free (i.e. without 

using McMC) yet fully probabilistic approach. The spatial correlations in continuous rock 

properties are governed by the spatial continuity of geological facies such that the 

inversion results honor both the data and the spatial prior information following the 

Bayesian philosophy. 

The presented method avoids the common approach of petrophysical inversion that 

is based on an explicit use of a forward rock physics model (e.g., Bosch et al. 2009; Lang 

and Grana, 2018) that defines the relationship between data and model parameters. 

Contrary to that previous work, a pure data-driven approach does not require any models; 

the relationship between the data and model parameters is expressed in the form of a 

probability distribution. Both approaches have their merits and demerits. For example, 

forward modeling always requires some simplistic assumptions about rock composition 

and structures which govern their properties. Such assumptions are undesirable when 

sufficient well data is available, in which case a data-driven approach may perform better. 

On the other hand, rock physics models are more helpful in interpreting the inversion 

results. 

Our method is primarily data driven; it builds facies dependent joint distributions 

of all of the continuous rock properties (elastic as well as petrophysical properties) and 

thus implicitly involves correlations between rock properties without requiring any 

forward model. However, a forward rock physics model may be used to augment the 
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existing well data by generating samples of potential reservoir scenarios that are not 

encountered in the existing wells, or in case of limited availability of well data. 

Augmenting the existing well data in this manner also ensures that the prior distribution 

does not over-fit the existing well data, which refers to the case when inversion might 

perfectly predict model parameters close to the well location but may fail at other 

locations. Explicit use of forward modeling for solving an inverse problem often requires 

further assumptions such as linearity of the relationship between data and model 

parameters (e.g., Grana et al., 2017) for computational efficiency. The presented method 

makes no such assumptions; it is fully nonlinear and is still computationally efficient. 

An additional advantage of the presented method is that the prior joint distribution 

of elastic and petrophysical properties implicitly introduces prior information on the 

petrophysical properties. Only the prior information on the facies is separately required, 

which can be provided in the form of training images. A training image depicts the 

expected spatial continuity of geological facies which can be modeled using geological 

process modeling (Griffiths et al., 2001; Hill et al., 2009) or other methods (e.g., Mariethoz 

and Caers, 2014; Lindberg et al., 2015). Prior information on both facies and the 

petrophysical properties helps to regularize the nonlinear joint inversion problem. 

Mixture density estimation has been widely used in the rock physics or 

petrophysical inversion literature. Grana (2018) used a data dependent non-parametric 

kernel density estimation (KDE) method. This approach may be computationally 

expensive in the case of a large dataset since it requires the fitting of a predefined kernel at 

each data point. Also, like any other data driven method, KDE is highly susceptible to 

over-fitting. Parametric distributions (e.g., Gaussian), on the other hand, are often too 

simple to reliably model a complex probability density function (PDF). In this paper, we 

used a semi-parametric Gaussian mixture (GM) distribution. A GM distribution is robust 

enough to capture any level of detail in any complex PDF provided a sufficient number of 

kernels are used, but it typically requires a much smaller number of parameters compared 

to a non-parametric distribution, and is therefore less prone to over-fitting. 

Shahraeeni and Curtis (2011) used a GM distribution within a mixture density 

network (MDN) based inversion method for estimation of petrophysical parameters. They 

used a GM distribution with diagonal covariance matrices. A large number of kernels are 

required in such a case in order to reasonably represent a distribution with significantly 

nonlinearly correlated components. For example, P-wave and S-wave impedances are 

generally strongly correlated. In this work we used Gaussian components with full 

covariance matrices which capture any correlations among various variables. Such 

correlations are useful in regularizing an inverse problem in order to mitigate non-

uniqueness of the solution. Although a GM distribution with full covariance involves more 

parameters per kernel, it requires a much smaller number of components to accurately 

model a given distribution. 

A common approach in geophysical literature is to use a GM distribution with one 

component per facies to be inverted. In this paper, we generalized this approach by using 

multiple mixture components per facies. This allows the modeling of multimodal 
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distributions caused due intrinsic variability of rock properties within the same facies, e.g., 

due to patchy saturation, multiple types of porosity (pores, vugs, and fractures in 

carbonates), etc. 

We presented an application of the method on a real dataset from the North Sea. 

We inverted a 2D seismic section with restricted depth range under the assumption of 

stationarity, i.e. the statistical relationship between the rock properties do not vary with 

location. If, however, a larger subsurface volume is to be inverted, non-stationarity may be 

a challenge which can be addressed by the introduction of spatial and depth trends in the 

rock properties, and zonation to account for changing patterns of facies (Mariethoz and 

Caers, 2014). In spite of such strategies, sufficient sampling of rock properties in the 

subsurface still remains a critical requirement for reliable inversion in any possible 

scenario. 

In our real data example, the seismic attributes (P-wave and S-wave impedances 

and Vp/Vs ratios) were obtained deterministically from the seismic waveform data, which 

do not provide an uncertainty measure in the estimated attributes. Thus, the uncertainty in 

input attributes due to errors in their estimation process was not incorporated; only the 

uncertainty due to intrinsic variability of rock properties within each facies was 

incorporated. This resulted in under-estimation of the posterior uncertainty in 

petrophysical properties. This suggests that the ignored uncertainties should also be 

acknowledged for an improved estimation of posterior uncertainties in the petrophysical 

properties.  

The presented method requires a predefined structure of the Markov random field 

(MRF) which means that the size of the neighborhood is fixed. This approach is similar to 

sequential simulation methods in Geostatistics that use a predefined template for spatial 

conditioning of neighboring variables (Strebelle, 2001; Mariethoz and Caers, 2014). A 

more general approach would invert the neighborhood structure and size along with the 

model parameters using a hierarchical Bayes approach (Luo and Tjelmeland, 2018). We 

leave this as a topic of future research. 

CONCLUSIONS 

We presented a Bayesian inversion method for joint estimation of geological facies 

and petrophysical rock properties and their associated uncertainties from seismic attributes. 

We showed that under a suitable set of assumptions that are less stringent compared to 

most previous research on this topic, we can devise an efficient method to solve the 

inverse problem. Our method is based on a variational optimization approach which is 

computationally efficient, allows reliable detection of convergence, and remains 

computationally efficient in high dimensions (e.g., when inverting 3D seismic data). We 

also demonstrated with the help of a real data example from North Sea that prior 

information about the spatial distribution of geological facies helps recover spatial 

correlation in petrophysical rock properties. Also, the use of a Gaussian mixture model 

(GMM) for joint distribution of petrophysical rock properties and seismic attributes, 

allowed us to capture complexity and multi-modality in the distribution of continuous rock 
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properties. The real data application showed reasonable accuracy of inversion results. 

However, like most other inversion methods, limited resolution of seismic data and lack of 

sufficient well data to provide prior information remain potential challenges for this 

method to produce reliable results.  
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LIST OF FIGURES 

Figure 1: (a) Representation of a standard gridded (cellular) model, and (b, c and d) a 

probabilistic graphical model (PGM), where vertices in the latter (shown as circles) 

represent random variables and the edges (links between vertices) indicate probabilistic 

dependence between the connected vertices (or the associated random variables). Red 

circles represent hidden vertices or unobserved variables (model parameters) and the blue 

circles represent observed vertices (data). (c) A typical HMRF with localized likelihoods 

(LL) where each unobserved variable is conditioned on the observed variable at the same 

location only. (d) A HMRF with the quasi-localized likelihoods (QLL) assumption of 

Nawaz and Curtis (2018), where the hidden variable at each location is conditioned on the 

observed variables within a pre-specified neighborhood around that location. In this paper 

we use the QLL assumption which is a relaxation of the LL assumption. The neighborhood 

of any hidden vertex (red circle) in (b)-(d) consists of the four hidden vertices that share 

an edge with that vertex. 

Figure 2: A flow-chart summary of the inversion method. Inputs are shown in green color: 

well data, rock physics model and seismic attributes. Prior information about facies is 

shown in red color, and estimated quantities and distributions are shown in white color. 

Rock physics modeling and the corresponding synthetic rock properties for each of the 
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geological facies are enclosed in a blue box to emphasize that these are optional and may 

not be required if sufficient well data is available. 

Figure 3: Seismic attributes (a) P-wave impedance, (b) S-wave impedance, and (c) Vp/Vs 

ratios, derived from a selected 2D section of waveform seismic AVO data using a 

deterministic inversion method. These attributes are used as inputs to our method for the 

joint inversion of geological facies and petrophysical rock properties. 

Figure 4: Well-log data and facies profiles in a well W1 in the study area. Standard well-

log pneumonics are used for the well log curves as shown in the headers above the display 

columns. The color codes for three facies, i.e. yellow for shale, blue for brine-sand and red 

for gas-sand, are used as standard in all of the subsequent figures in this paper. The well 

log data from W1 are used as input for modeling the facies dependent prior joint 

distribution of elastic (seismic attributes) and petrophysical rock properties. Three 

reservoir layers encountered in W1 are marked with labels ‘A’, ‘B’ and ‘C’ for 

correlation. 

Figure 5: Well-log data and facies profiles in a well W2 in the study area. These data were 

not incorporated in the inversion process, and were used only for cross-validation (testing) 

of the results. Standard well-log pneumonics are used for the well log curves as shown in 

the headers above respective columns. Three reservoir layers encountered in W2 are 

marked with labels ‘A’, ‘B’ and ‘C’ for correlation. 

Figure 6: Crossplots between various combinations of P-wave impedance (  ) and S-wave 

impedance (  ) and the P-wave to S-wave velocity ratios (Vp/Vs) observed in the well log 

data: (a)    versus   , (b)    versus      , (c)    versus      , (d)    versus   , (e)    versus 

     , (f)    versus      . The crossplots are color coded with respect to the volume of clay 

(   ) in (a)-(c) and with respect to the interpreted facies (d)-(f). The gas-sand points are 

well separated from the other facies, while the brine-sand and shale points have a 

significant overlap. 

Figure 7: The training image used to model the spatial prior distribution of facies that is 

constructed from histograms of various facies configurations found in this image. 

Figure 8: Porosity ( ) vs. P-wave velocity (  ) crossplots with color codes based on the 

facies interpreted from the well data. The overlaid rock physics template (lines with 

different shades of grey) correspond to trends for different Net-to-Gross (   ) ratios 

predicted using (a) the soft-sand and (b) the stiff-sand model. Each of the two rock physics 

models are calibrated using different set of parameters: the coordination number       

and the critical porosity        for the soft-sand model, and      and the critical 

porosity        for the stiff-sand model. This shows that the reservoir can be modeled 
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using the Intermediate stiff-sand model (Mavko et al., 2009), i.e. either by a stiffer soft-

sand model or a softer stiff-sand model. 

Figure 9: (a)-(c)    versus       crossplots in the first row, (d)-(f)    versus       

crossplots in the second row, and (g)-(i)    versus    crossplots in the third row. The first 

column (a, d and g) displays the crossplots using log data from W1.  The second column 

(b, e and h) displays the crossplots using the original well data together with the well data 

after replacing gas with brine in the sand layers using Gassmann fluid substitution 

modeling to show the effect of brine on the elastic properties of reservoir layers (A, B and 

C). The third column (c, f and i) displays the crossplots using Monte Carlo (MC) simulated 

data using the soft-sand model with intermediate rock physics parameters as shown in 

Table 1 to simulate a wide range of possible values that might not have been sampled in 

the well data. 

Figure 10: Matrix-plot of samples from components of the prior joint distribution of 

elastic and petrophysical rock properties. The first three components are the elastic 

properties: P-wave impedance    (IP log), S-wave impedance    (IS log) and the P-wave to 

S-wave velocity ratios       (VPVS log), and the last three components are the 

petrophysical properties: clay volume     (VCL log), water saturation    (SWT log) and 

porosity   (PHIT log). The diagonal plots represent smoothed histograms of each of the 

components, and the off-diagonal plots show facies dependent correlations between the 

respective components. 

Figure 11: Well logs inversion results. The first three columns display the input elastic 

rock properties: P-wave impedance    (IP log), S-wave impedance    (IS log) and the P-

wave to S-wave velocity ratios       (VPVS log), shown in the solid-black lines estimated 

from the sonic (DTP and DTS) and density (ZDEN) logs shown in Figures 4 and 5. The 

solid-black curves in columns 4-6 are the reference petrophysical well logs, and solid-red 

curves the mean inverted petrophysical properties: clay volume     (VCL log), water 

saturation    (SWT log) and porosity   (PHIT log). Column-7 displays the reference 

facies interpreted from the well data and column-8 shows the inverted facies. The yellow 

shaded regions bounded by the dashed-red curves represent the 2
nd

 standard deviation of 

the posterior marginal distributions of the petrophysical rock properties in columns 4-6, 

and the 2
nd

 standard deviation of the conditional marginals of the joint distribution of rock 

properties obtained by conditioning on the estimated posterior mean petrophysical 

properties and integrating out the elastic properties other than the one that is plotted in 

columns 1-3. 

Figure 12: Cell-wise posterior marginal distributions of (a) shale, (b) brine-sand, and (c) 

gas-sand. Yellow color represents high probability (value=1.0) and dark blue color 

represents low probability (value=0.0). 
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Figure 13: Cell-wise posterior marginal entropy of facies classification shown in Figure 

12  scaled between 0.0 and 1.0. Yellow color represents high entropy (value=1.0) and dark 

blue color represents low entropy (value=0.0). 

Figure 14: Maps of the facies with maximum marginal distribution in each cell. (a) Map of 

the three inverted facies: Shale (SH: shown in yellow), brine-sand (BS: blue) and gas-sand 

(GS: red). (b) Map with an additional facie “Shale/Sand” (SS: brown) identified from high 

entropy layers in Figure 13. 

Figure 15: Cell-wise map of (a) clay volume (   ) and (b) its standard deviations (Std.). 

Yellow color represents high values and dark blue color represents low values of the 

respective properties. 

Figure 16: Cell-wise map (a) water saturation (  ) and (b) its standard deviations (Std.). 

Yellow color represents high values and dark blue color represents low values of the 

respective properties. 

Figure 17: Cell-wise map (a) porosity ( ) and (b) its standard deviations (Std.). Yellow 

color represents high values and dark blue color represents low values of the respective 

properties. 

Figure 18: Seismic attributes inversion results at the (a) W1 and (b) W2 well locations. 

The first three columns display the elastic rock properties: P-wave impedance    (IP log), 

S-wave impedance    (IS log) and the P-wave to S-wave velocity ratios       (VPVS log), 

where the reference elastic well logs are shown in solid-black lines and the seismic 

attributes used as input to the inversion are shown in solid-red lines. The solid-black 

curves in columns 4-6 are the reference petrophysical well logs, and solid-red curves are 

the mean inverted petrophysical properties: clay volume     (VCL log), water saturation 

   (SWT log) and porosity   (PHIT log). Column-7 displays the reference facies 

interpreted from the well data and column-8 shows the inverted facies. The yellow shaded 

regions bounded by the dashed-red curves in columns 1-6 represent the 2
nd

 standard 

deviation of the posterior marginal distributions of the respective rock properties.  

Figure 19: Confusion matrix plots for facies prediction from seismic attributes at the 

locations of wells (a) W1 and (b) W2. 
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LIST OF TABLES 

Table 1: Prior Uniform distribution ranges used for the intermediate rock physics 

parameters. 

Table 2: Accuracy measures for the petrophysical properties and facies inverted at well 

locations computed with respect to the actually measured (reference) log-curves and facies 

interpreted from well data. Confidence ratio and success rate are defined in the text. 
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