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• A housing stock model representing
11.5 M English and Welsh dwellings is
described.

• An IAQ metamodel is applied to dwell-
ings in London (PM2.5 & NO2) and na-
tionally (CO).

• Exposure to outdoor NO2 & PM2.5 and
outdoor and indoor-sourced CO is esti-
mated.

• Housing has a greater modification of
outdoor PM2.5 levels than for NO2.

• Energy retrofits without added ventila-
tion may increase CO exposures by
18–63%.
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Estimates of population air pollution exposure typically rely on the outdoor component only, and rarely account
for populations spending themajority of their time indoors. Housing is an important modifier of air pollution ex-
posure due to outdoor pollution infiltrating indoors, and the removal of indoor-sourced pollution through active
or passive ventilation. Here, we describe the application of an indoor air pollution modelling tool to a spatially
distributed housing stock model for England and Wales, developed from Energy Performance Certificate (EPC)
data and containing information for approximately 11.5 million dwellings. First, we estimate indoor/outdoor
(I/O) ratios and total indoor concentrations of outdoor air pollution for PM2.5 and NO2 for all EPC dwellings in
London. The potential to estimate concentration from both indoor and outdoor sources is then demonstrated
by modelling indoor background CO levels for England and Wales pre- and post-energy efficient adaptation, in-
cluding heating, cooking, and smoking as internal sources. In London, we predict a median I/O ratio of 0.60 (99%
CIs; 0.53–0.73) for outdoor PM2.5 and 0.41 (99%CIs; 0.34–0.59) for outdoor NO2; Pearson correlation analysis in-
dicates a greater spatial modification of PM2.5 exposure by housing (ρ= 0.81) than NO2 (ρ= 0.88). For the de-
monstrative CO model, concentrations ranged from 0.4–9.9 ppm (99%CIs)(median = 3.0 ppm) in kitchens and
0.3–25.6 ppm (median = 6.4 ppm) in living rooms. Clusters of elevated indoor concentration are found in
urban areas due to higher outdoor concentrations and smaller dwellings with reduced ventilation potential,
with an estimated 17.6% increase in the number of living rooms and 63% increase in the number of kitchens
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exceeding recommended exposure levels following retrofit without additional ventilation. Themodel has the po-
tential to rapidly calculate indoor pollution exposure across large housing stocks and estimate changes to expo-
sure under different pollution or housing policy scenarios.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
1. Introduction

Air pollution exposure is one of the largest contributors to prema-
turemortality in theUK,with around40,000 deaths brought forward at-
tributable to exposure to particulate air pollution and NO2 annually
(RCP, 2016). Background levels of air pollution also have implications
for morbidity. Air pollution exposure has been associated with a num-
ber of physiological diseases (RCP, 2016), while exposure to even low
concentrations of indoor pollutants, such as carbon monoxide (CO),
has been linked with neurological symptoms in building occupants
(Croxford et al., 2008).

Housing and occupant behaviour are important modifiers of air pol-
lution exposure, with building characteristics such as geometry and de-
sign, permeability, and ventilation components impacting on the
infiltration of outdoor pollution indoors and the removal of internally-
generated pollution (Taylor et al., 2014; Shrubsole et al., 2012; Taylor
et al., 2016; Fabian et al., 2012; Dimitroulopoulou et al., 2006). Given
that the UK population spends around 90% of their time indoors (ONS,
2005), buildings – particularly the housing which is predominantly
mixed-mode – are an important microenvironment for pollution expo-
sure (Smith et al., 2016). Due to the significant health-burden of air pol-
lution in the UK, there is a need to understand population indoor
exposures, taking into account spatial variations in both outdoor pollu-
tion levels and the modifying effects of the housing stock. In addition,
there is a growing need to quantify changes in indoor exposure follow-
ing policy-driven changes to the housing stock - for example dwelling
energy efficiency improvements - and outdoor pollution levels.

Indoor air pollution is often estimated using deterministic models,
whereby exposure is modelled as a function of building geometry, ven-
tilation characteristics, outdoor concentrations, indoor emission
strengths and schedules, and the physical properties of the pollutants
[e.g. (Shrubsole et al., 2012; Fabian et al., 2012; Emmerich et al., 2005;
Hamilton et al., 2015; Milner et al., 2011)]. To evaluate indoor exposure
at the population-level, models must be run for housing variants repre-
sentative of the stock. A number of studies have sought to estimate
population-level indoor pollution exposure at the regional or national
level in the UK. Taylor et al. (2014) estimated indoor concentrations of
PM2.5

2 for London by combining modelled outdoor levels with building
physics-derived estimates of indoor/outdoor (I/O) ratios in a
geographically-referenced housing stock model. While the modelled
dwelling archetypes were representative of 76% of the London housing
stock, variations in dwelling size or building fabric propertieswithin the
archetypes were not considered. A similar approachwas taken in a sub-
sequent work, which estimated indoor pollution exposure across Great
Britain, modelling I/O ratios and concentrations of air pollutants from
indoor sources (Taylor et al., 2016). Housing information was obtained
for approximately 1 million homes at postcode-level via the Homes En-
ergy Efficiency Database (HEED), and building physics used to model
unique combinations of dwelling geometry and building fabrics. Due
to the very large number of simulations required, this study did not
vary dwelling size, nor did it investigate any changes to exposure fol-
lowing energy efficient adaptations to the housing stock. Other studies
have sought to estimate population-level exposure indoors by estimat-
ing concentrations across a representative but non-geographically ref-
erenced housing stock. Hamilton et al. (2015) used building
simulation to estimate indoor exposure to radon, PM2.5, environmental
tobacco smoke, cold, and damp for England at the population-level
using a representative housing stock model. Changes to exposure fol-
lowing a number of energy efficiency interventions were estimated,
which were, in turn, converted to health outcomes. However, this
study used a limited number of dwelling archetypes, and did not ac-
count for the spatial variation in housing types and their local outdoor
pollution concentrations. Internationally, a number of studies have
used buildingmodelling approaches to estimate the spatial distribution
of indoor air pollution exposure. Building infiltration rates have been es-
timated for dwellings in different US regions (Persily et al., 2010), which
have then been used to estimate indoor exposure to outdoor PM10 in
these regions (Chen et al., 2012). Sarnat et al. (2013) included
spatially-varying estimates of building air exchange rates and outdoor
NOx, CO, and PM2.5 concentrations for Atlanta, comparing estimated in-
door exposures to hospital visits for asthma and wheeze.

Owing to the wide availability of large air pollution datasets, ma-
chine learning techniques are increasingly being used to estimate air
pollution exposures (Bellinger et al., 2017). While the vast majority of
such studies examine outdoor air pollution, machine learning has
been applied to estimate indoor exposures to outdoor and ground-
sourced pollution given monitored indoor NO2 and PM2.5 (Challoner
et al., 2015), radon (Pegoretti and Verdi, 2009) and modelled PM2.5

(Dias and Tchepel, 2014; Symonds et al., 2016). Symonds et al. (2016)
developed a neural networkmodelling framework for both indoor tem-
peratures and PM2.5 from outdoor sources using the outputs of building
physics models. In both (Symonds et al., 2016) and other building sim-
ulation studies (Van Gelder et al., 2014), neural networks performed
better than othermetamodeling techniques such as Support VectorMa-
chines (SVMs). However, other machine learning techniques may per-
form better in other cases. This neural network framework provides
opportunities to overcome the computational limitations of the above
building physics-based studies (Taylor et al., 2014; Taylor et al., 2016;
Hamilton et al., 2015) – where an individual simulation of a dwelling
may take several minutes to an hour, depending on the building com-
plexity and computational power. This approach facilitates the rapid
calculation of indoor air pollution exposure at the housing stock level
given detailed sets of housing characteristics under a range of different
housing scenarios.

In this study, we describe the application of this metamodeling
framework across a large geographically-referenced housing stock
model to predict indoor air pollution levels. The objectives are to:

1) Develop an underlying geographically-referenced housing stock
model using the recently-released Energy Performance Certificate
(EPC) data (DCLG, 2017) as input to the metamodel.

2) To apply the metamodeling framework described previously
(Symonds et al., 2016), and further adapted for this study, to predict
the I/O ratios of outdoor PM2.5 and NO2 for all EPC dwellings in
London; and to overlay these I/O ratios with modelled ambient out-
door air pollution concentrations to estimate total levels of indoor
exposure to background outdoor air pollution.

3) To demonstrate the potential of themodel to estimate total levels of
pollution concentration from both indoor and outdoor sources, for
individual buildings in England and Wales. Here, background levels
of CO are modelled along with internal sources from heating,
cooking, and smoking both prior to and following building retrofit.
The model application here is demonstrative, as there is significant
uncertainty in indoor emission rates. CO was selected as the

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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modelled pollutant as its deposition rate is negligible, removing this
additional level of uncertainty.

The approach described here offers a number of improvements over
the previous studies that sought tomodel regional or national indoor air
pollution in the UKmentioned above, including better coverage and de-
tail of housing data – including potential indoor pollution sources -
along with the ability to rapidly examine a range of different housing
and pollutant emission scenarios.

2. Methods

The modelling workflow and input data for the metamodel can be
seen in Fig. 1, and are described in the corresponding sections below.

2.1. Metamodel

The neural networkmetamodel is an updated version of the model-
ling framework described previously by Symonds et al. (2016); we refer
the reader to that paper for full details of the development and
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performance of the applied model. Briefly, the framework consists of
metamodels for eight different building archetypes, representative of
the English housing stock (Appendix 1). These archetypes were derived
for previous stock modelling, and have built forms and internal layouts
representative of the average English dwelling (Taylor et al., 2016).

The basis of each metamodel is a large number of EnergyPlus
(US-DOE, 2013) simulations of indoor air pollution for the archetypes
using the Generic Contaminant Model. Building parameters for the
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performance (buoyancy). Internal emissions and occupancy were
modelled using fixed schedules, described in Section 2.3.2. The models
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Table 1
Summary for EPC dwelling characteristics.

Parameter Value Percent

Dwelling type End Terrace 9.2
Mid Terrace 19.3
Semi 23.3
Detached 14.0
Bungalow 9.4
Converted Flats 23.5
Low rise Flats 1.2
High rise Flats 0.1

Wall type Cavity 66.2
Solid 33.8

Terrain City 35.9
Urban 60.8
Rural 3.3

Main fuel Gas 80.9
Kerosene 0.7
LPG/Propane 3.8
Solid 0.9
Electric/Community 13.7

% Dwelling coverage

35
.2

- 42
.8

42
.9

- 45
.8

45
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- 49
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49
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- 53
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Fig. 2. Coverage of EPC dwellings across England and Wales by constituency.
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hourly average indoor air pollution levels for each room in the dwelling
for a year. A neural network modelling framework was then developed
using PyBrain (Schaul et al., 2010), relating the randomly-sampled
EnergyPlus input parameters to indoor air pollution metrics calculated
from the simulation results. For externally-sourced NO2 and PM2.5, the
metamodeling framework estimates the annual average I/O ratio
based on the assumed time-activity profile of the occupants (two indi-
viduals, home all day) within the dwelling. Occupants are assumed to
spend waking hours in the living room (7 am–10 pm), and night time
hours (10 pm–7 am) in the primary bedroom. For CO, it estimates the
annual maximum 8-hour mean concentration inside dwellings for the
living room and kitchen, which enables comparison with the WHO-
recommended exposure threshold of 8.1 ppm over this period (WHO,
2010).

Advances to the metamodel used in this paper include the ability to
vary floor area, ceiling height, and glazing ratio of dwellings, and the ca-
pacity to vary pollutant indoor emissions rates using a power law distri-
bution informed by CO emissions in the PANDORA dataset (Abadie and
Blondeau, 2011). The deposition velocity of the generic indoor contam-
inant has been added as an additional metamodel variant, allowing pre-
dictions for multiple pollutants (NO2 and PM2.5) to be made, one at a
time. The original model execution has also adapted and improved to
allow additional dwelling input data on mains gas connectivity and
heating type to flag potential indoor sources of air pollution and their
emission rates. Internal layouts are held constant.

2.2. Building stock data

Domestic building stock data for England and Wales was obtained
from the EPC database (DCLG, 2017). The EPC database contains infor-
mation on dwelling geographical location – includingpostcode and con-
stituency – and housing characteristics related to energy efficiency,
which is gathered when a dwelling is sold, rented, or undergoes an
energy-efficiency retrofit. To provide the underlying housing stock
data required as input to the metamodels, the EPC database was
parameterised. The process of parameterisation is described in detail
in Appendix 2. Briefly, the raw EPC data was converted into metamodel
inputs (Fig. 1) through a process of data cleaning, and dwelling energy
efficiency and permeability estimated using the UK Governments Stan-
dard Assessment Procedure for energy in buildings (SAP) (BRE, 2009)
using a SAS (SAS Institute, 2017) script.We acknowledge significant un-
certainty in the SAP methods. Parameterisation followed methods
outlined in previous work that has converted housing survey data for
energy performance calculations (Hughes et al., 2012). In addition, the
EPC data was parameterised a second time to represent the complete
retrofit of the housing stock to increase energy efficiency, reflecting
changes to building fabric thermal efficiency and airtightening. Fabric
U-values were reduced to the minimum possible for dwelling age and
fabric type according to SAP (Taylor et al., 2018). Reductions in airtight-
ness were estimated first as changes to the dwelling air change rate
(ach) following floor sealing and draught-stripping (using the reduc-
tions specified in the SAP model), or cavity wall, solid wall, or loft insu-
lation (using estimated reductions from Hong et al. (2004)). The
dwelling permeability was then re-estimated from the ach as in SAP.

The parameterised EPC datawas thenfiltered to removemultiple in-
stances of the same dwelling by selecting buildings by the building ref-
erence number with the most recent inspection date. Dwellings with
missing data were removed. This resulted in 11,529,776 unique records
(Fig. 1A) (summarised in Table 1). To reduce themetamodel processing
time, 3,895,043 unique instances of dwellings were selected (Fig. 1),
linked to the original database using a BuildingCode.

In order to evaluate the representativeness of the parameterised EPC
data, a random stratified selection of 1,000,000 EPC certificates was
sampled from the dataset and the converted results compared by region
against the EHS, which is representative of the English housing stock.
Comparisons of the EPC dataset and the representative EHS showed
good agreement (Appendix 2), with a slight skew of the EPC towards
energy efficient dwellings. This provided confidence that the EPC data
is representative of the English housing stock as a whole.

The coverage of the EPC data was evaluated by summing the unique
building reference numbers by postcode and constituency. At the post-
code level, there was buildings data in 1,173,614 postcodes (or 77.4% of
English andWelsh postcodes), with amedian of 7 andmode of 1 in each
postcode. The constituency sum was used to estimate a percent cover-
age by comparing it with the number of dwellings in each constituency
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according to the 2011 Census (ONS, 2011), and mapped using ArcGIS
(ESRI, 2017). The parameterised data covered an estimated 47% of the
24.4 million dwellings across England and Wales. The coverage across
England and Wales can be seen in Fig. 2, while the variation in housing
characteristics is illustrated in Appendix 2. EPC dwelling coverage in
constituencies range from 0 to 66% in Nottingham South (median
46.3%).

2.3. Model application

The metamodel was applied in London using the parameterised EPC
dataset for PM2.5 and NO2 from outdoor sources, and in England and
Wales for CO from both indoor and outdoor sources. The underlying
EnergyPlus models were run with static occupant behaviour assump-
tions, with summertime window-opening modelled to occur when
modelled daytime indoor temperatures exceed 23 °C and night time
temperatures exceed 21 °C; indoor heating was modelled using a ther-
mostat setting of 22 °C from September–May. These are informed by
comfort standards detailed in the Chartered Institute of Building Service
Engineers (CIBSE) Guide A (CIBSE, 2015).

2.3.1. Estimates of indoor concentration of outdoor PM2.5 and NO2 in
London

Dwellings located in London were selected from the parameterised
EPC dataset (1,598,995 dwellings, or approximately 44% of the total cur-
rent London stock), and the metamodel used to estimate an annual av-
erage I/O ratio for PM2.5 and NO2. Both PM2.5 and NO2 were modelled
with deposition velocities to account for variations in building geome-
try. The English-average ratio of the internal surface area (floor, ceiling,
and total wall area) to internal volume (floor area × ceiling height) was
estimated to be 2.3 m−1 using data from the EHS. Deposition rates for
PM2.5 (0.19 h−1) (Long et al., 2001) and NO2 (0.87 h−1) (Emmerich
and Persily, 1996) were adjusted by this value to estimate their deposi-
tion velocities, 2.26 × 10−5 m s−1 and 1.04 × 10−4 m s−1, respectively.
PM2.5 wasmodelledwith a penetration factor (defined as the fraction of
pollutants that infiltrate through the building envelope) of 0.8 during
the heating season, and 1 during the summer, while NO2 was modelled
with a fixed penetration factor of 1 (Fabian et al., 2012). Themodel does
not currently allow for seasonal or daily changes in outdoor air pollution
or dwelling I/O ratio. We acknowledge significant uncertainty in the
penetration rates and deposition velocities of the pollutants.

Background annual average PM2.5 and NO2 levels for 2015 were ob-
tained from theUKDepartment for Environment, Food and Rural Affairs
(DEFRA)website in a 1 km×1kmgrid for London (DEFRA, 2015). These
outdoor values were spatially joined to London postcode boundaries in
ArcGIS, and matched to themodelled EPC dwellings; the outdoor levels
were then multiplied by the modelled I/O ratio of individual dwellings
to estimate total indoor concentration of outdoor air pollution. The
Pearson correlation coefficient between indoor and outdoor pollution
was then calculated to estimate the modifying effect that dwellings
have for both PM2.5 and NO2. Multicollinearity in outdoor pollution
caused by gridded DEFRA data spanning multiple postcodes was ad-
dressed by merging postcodes that shared an underlying grid cell.

2.3.2. National estimates of indoor CO levels
To demonstrate the ability to the model to estimate concentration

from outdoor and indoor sources, CO concentration was estimated for
outdoor sources, and indoor cooking, smoking, and heating systems.
The negligible deposition rate of CO with a penetration factor of 1
means that the I/O ratio without indoor sources approximates to 1.
Therefore, the metamodel was used to model the background indoor
concentration from indoor sources, while local 8-hour annual maxi-
mum outdoor concentrations were extracted from modelled values
(Fig. 3, see Vieno et al. (2016) and references therein for model descrip-
tion). Thesewere summed to estimate themaximum theoretical 8-hour
concentration from both indoor and outdoor sources in dwellings.
We focus on internal emissions under normal operation (indoor
levels from 0–30 ppm) rather than defective appliances that may
cause short-term health problems (levels above 100 ppm). We ac-
knowledge a great deal of uncertainty in emission rates and occupant
activities which may lead to indoor CO generation; therefore, the
model is intended to be demonstrative of the relative effects of housing
on indoor concentration rather than to produce absolute estimates. In-
door CO emission rates for the different activities can be seen in
Table 2. We assumed a working extract fan in the kitchen during
cooking, and that no supplemental ventilation is provided during
smoking. For heating, we assumed 90% of CO is vented outside, an esti-
mate informed by comparing initial source-specific model outputs with
values from the literature (Humfrey et al., 1996). The schedule of
pollutant-generating activities has been taken from previous studies
into indoor air pollution in English dwellings (Shrubsole et al., 2012;
Taylor et al., 2016; Hamilton et al., 2015) (Table 2). Emissions from in-
door heat sources (living room) were assumed to occur during heating
hours when the indoor temperatures drop below the thermostat
setpoint of 22 °C, which represents the lower range of the recom-
mended thermal comfort criteria for UK living rooms (CIBSE, 2015).
Emission rates were assumed to be constant while activities were
occurring.

The primary heating system of EPC dwellings was used to flag the
housing heating system and modify the CO emission rate from heating
accordingly. Similarly, if the EPC dwelling was not connected to mains
gas, it was assumed that an electric stove was used for cooking. The
metamodel framework was run for all unique EPC dwellings assuming
both smoking and non-smoking households. The results were then



Table 2
CO emission activity schedules, additional provided ventilation, and emission rates for different indoor sources.

Activity Times Location of
CO source

Ventilation Fuel/heating type Estimated emissions
rate (mg/min)

Reference

Heating 06:00–08:00, 16:00–24:00,
Sept–May

Living room Assumed 90% vented Gas (mains) 15.9 (Cáceres et al., 1983;
Girman et al., 1982)

Bulk LPG or
Bottled gas – propane

8.7 (Cáceres et al., 1983)

Heating oil 1.7 (Cáceres et al., 1983)
House coal, wood or solids 2889 (Tissari et al., 2008)
Community or electric – –

Cooking 07:40–08:00, 19:00–19:30 Kitchen Extract fan (0.06 m3/s) Gas 29 (Dimitroulopoulou et al., 2006)
Electric – –

Smoking 5 min per hour, 08:00–22:00 Living room None Smoker 7.2 (Dimitroulopoulou et al., 2006)
Non-smoker – –
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joined back to the main parameterised EPC database, with results with
andwithout indoor smokingweighted according to the estimated num-
ber of smoking households in each local authority taken from theUKOf-
fice for National Statistics (ONS, 2017).

3. Results

3.1. Indoor concentrations of outdoor pollution in London

Outdoor levels of NO2 vary from 9.9–53.7 μg m−3 (median exposure
25.7 μg m−3), while outdoor PM2.5 varies from 8.6–14.6 μg m−3 (me-
dian exposure 11.1 μg m−3). The modelled distributions of I/O ratios
and absolute concentrations can be seen in Fig. 4. Individual dwelling
modelled I/O ratios for NO2 had a median of 0.41 (99% CIs; 0.34–0.59),
while I/O ratios for PM2.5 had a median of 0.60 (99% CIs; 0.53–0.73).
These lead to ranges of indoor exposure for NO2 of 7.3–23.3 μg m−3

(99% CIs; median 12.9 μg m−3), and for PM2.5 of 6.4–10.2 μg m−3 (99%
CIs; median 8.0 μg m−3).

The modification of outdoor pollution exposure by housing for NO2

and PM2.5 can be seen in Fig. 5. For NO2, outdoor concentrations remain
highest in central London; along themain train lines headingwest of the
city; and surrounding the North Circular road. The estimated indoor
concentrations have a good spatial correlation with outdoor concentra-
tions (ρ = 0.88), indicating that outdoor concentrations of NO2 may
provide a reasonable estimate of relative indoor exposures to NO2

from outdoor sources. Indoor concentrations were estimated to be
higher in Northern London due to high background levels of NO2, the
prevalence of leaky detached or semi-detached dwellings with higher
NO2
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Fig. 4. Distribution of individual-dwelling I/O ratios and total concentr
estimated air exchange rates, and in some cases greater exposure to
wind due to the surrounding terrain.

For PM2.5, the modifying effect of housing on exposure is stronger,
likely due to the penetration factor, resulting in a significant change in
exposure pattern relative to outdoor concentrations and less discernible
spatial trends (ρ = 0.81). This indicates that outdoor PM2.5 levels may
be a less reliable indicator of indoor exposure. Similar to NO2, elevated
indoor concentrations were found in parts of Northern London due to
high background levels, the housing stock, and the terrain.

3.2. National indoor CO concentrations

The metamodel was able to estimate indoor concentrations for all
unique dwellings in the EPC database in around 5 h for each run (Laptop
with Intel i5, 1.70 Ghz, 16GB RAM). Outdoor 8-hour average maximum
concentrations for dwellings ranged from 0.2–1.8 ppm (99% CIs;
median = 0.7 ppm). The equivalent current concentrations in individ-
ual buildings were much higher due to indoor sources, with concentra-
tions in kitchens ranging from 0.4–9.9 ppm (99% CIs; median =
3.0 ppm) and living rooms, 0.3–25.6 ppm (99% CIs; median =
6.4 ppm). Estimated indoor concentrations of this demonstrative
model can be seen in Fig. 6, with estimated areas of high exposure in
urban areas such as London due to high outdoor background levels,
and the metamodel predicting elevated levels of indoor-sourced CO
due to the prevalence of flats andmoremodern air-tight housing. An es-
timated 38% of living rooms and 4% of kitchens had a maximum 8-hour
mean concentration that exceeded the WHO guidelines for exposure
during the course of a year under current conditions.
PM2.5

Total (ugm-3)

0 10 20 30 40

ation of indoor pollution from outdoor sources for NO2 and PM2.5.



Fig. 5. Postcode-average outdoor concentrations (left) and average estimated indoor concentrations (right) for PM2.5 and NO2 in London.
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Energy efficiency changes to the underlying housing stock without
adding additional ventilation is projected to lead to an increase in me-
dian CO concentration. Annual maximum 8-hour concentration under
the retrofit scenarios for kitchens ranged from 0.5–8.6 ppm (99% CIs;
median 3.6 ppm), while for living rooms it ranged from 0.3–26.3 ppm
(99% CIs; median 7.2 ppm). This corresponds to a post-retrofit increase
of 0.6 ppm and 0.8 ppm in kitchens and living roof, respectively. Follow-
ing retrofit, an estimated 45% of living rooms and 6% of kitchens exceed
the recommended WHO exposure thresholds.

4. Discussion

This paper described the development of a national housing stock
model, and the application of an indoor air quality metamodeling
framework in order to estimate the spatial variation in indoor air pollu-
tion. The combined housing stockmodel andmetamodeling framework
enables the rapid estimate of air pollution levels at the individual-
dwelling address level for around half the English and Welsh housing
stock. The tool may be used to estimate concentrations or exposures
under current conditions, and following a range of adaptation scenarios,
including changes to outdoor air pollution levels, reduced indoor emis-
sions from changes in fuel use, as well as a variety of housing retrofit or
new construction scenarios.
4.1. Housing stock

The EPC housing stock model offers a number of advantages over
other UK publicly-available housing stock models. The 11.5 million
dwellings in the parameterised dataset offers a significant improvement
in coverage in comparison to the approximately 1 million dwellings
from HEED that formed the basis of the national modelling work de-
scribed by Taylor et al. (2016). For London, the 1.6 million dwellings
in the EPC represent an improvement in both coverage and building in-
formation provided by the underlying building stock data in Taylor et al.
(2014). The spatial information held in the database allows the geo-
graphical modification of pollution exposure to be considered, provid-
ing an advantage over datasets such as the EHS which have limited
spatial information. The EPC dataset is, however, limited by the lack of
occupant information such as the presence of smokers, which is avail-
able in some versions of the EHS.

The comparison between the EPC dataset and the EHS (Appendix
2) showed that the EPC data is reasonably representative of the English
housing stock. However, there are a number of potential sources of bias
or error in the EPC dataset, including:

• EPC certificates are obtained when buildings are constructed, retrofit,
sold, or rented. This may mean a bias towards more energy efficient
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dwellings,while housing that is not retrofit and has not been included
in a transaction will be underrepresented.

• There are a number of concerns regarding the quality of EPC surveys.
Where obvious errors were found in the data, the data was removed.
However, due to the large number of dwellings in the EPC dataset, it
was not possible to check the estimated building parameters for
each dwelling.

Nonetheless, the EPC dataset has valuable potential as a source of
dwelling information, and as a platform for modelling the dwelling
modification of environmental hazard exposures.

4.2. PM2.5 and NO2

The metamodeling framework enabled the rapid calculation of I/O
ratio and indoor concentrations of pollution from indoor sources. The
I/O ratios of PM2.5 modelled here are broader in range (0.13–0.86)
than the mean I/O ratios factors found in previous modelling work for
London (0.45–0.62), and empirical studies in Europe (0.30–0.70)
(Hänninen et al., 2011) and internationally (0.3–0.82) (Chen and
Zhao, 2011), although the range from 1st to 99th percentile is similar
(0.53–0.73). This is likely due to the verywide range of housing variants
modelled in this study. Similarly, the range of postcode-average indoor
PM2.5 from outdoor sources estimated here (3.2–12.9 μg m−3) is much
broader than the 5.2–11.4 μg m−3 estimated in Taylor et al. (2014),
while the medians were similar (8.0 μg m−3 versus 7.9 μg m−3, respec-
tively). This is due to the larger range in building variantsmodelled, bet-
ter coverage of housing data, and the smaller spatial unit of aggregation
possible due to this improved coverage. Results indicate that the maxi-
mum I/O ratio for PM2.5 is six times greater than the minimum, while
the maximum I/O ratio for NO2 is seven times greater than the mini-
mum, demonstrating the significant potential modification of outdoor
pollution exposure fromhousing. OutdoorNO2may be used as a reason-
able proxy for indoor exposures to outdoor levels, while outdoor PM2.5

has a lower correlation with the corresponding indoor levels.
The tool is flexible and may be run in the future with any pollutant,
given a deposition velocity, and penetration factor. We acknowledge
there is a great deal of uncertainty and limitations in the modelling of
these pollutants. The I/O model calculates an annual average, however
it is likely that the I/O ratio changes seasonally due to climate, for by ex-
ample increased window-opening during summer, and greater wind
pressures during winter. Occupant behaviour is modelled deterministi-
cally, including window-opening that occurs over a static indoor tem-
perature threshold. This does not allow for variation in window-
opening behaviour by occupants – for example due to personal prefer-
ence, or a reluctance to open due to proximity to busy roads or areas of
high crime. The model would, however, be capable of doing so should
more established evidence on temperature and location related
window-opening behaviour become available. Additionally, the occupant
schedulewithin dwellingmicroenvironments is fixed,with exposures es-
timates based on the presumed location of an occupant within the dwell-
ing. We assume that occupants are home during the day, reflecting the
housing modification of exposure rather than absolute occupant expo-
sure. While housing is an important microenvironment for exposure
(Smith et al., 2016), occupants may not be home during peak hours of
outdoor air pollution levels. There is also significant uncertainty in pollu-
tion deposition, penetration factors, and themodelled housing character-
istics. Further evaluation of the model sensitivity to variations in inputs
should be performed using a global sensitivity analysis (Das et al., 2014).

There were also a number of limitations with the outdoor air pollu-
tion data. We do not include temporal variation in outdoor levels, and
the relatively coarse grid of background levels may not reflect actual
outdoor levels close tomajor roads, for example. We have also assumed
that outdoor air pollution does not vary with the height of the building,
and that top floor flats will be exposed to the same level of outdoor air
pollution as ground floor flats, whereas stratification of pollution may
occur by busy roads. As the I/O ratio is converted to a total indoor con-
centration during a post-processing step, it would be possible to include
this in the future. There remains a lack of empirical data at the required
scale with which to validate the model outcomes.
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While the modelled results have been summarised at postcode-
level, it is not known what spatial resolution is required to estimate
population exposure reliably. Aggregating at larger spatial units may
have the effect of reducing errors caused bymodel assumptions and un-
reliable building input data, as well as helping tominimise the temporal
limitations of the model (Stroh et al., 2007). However, outdoor air pol-
lution and housing in London may vary significantly over small geo-
graphical distances, which is likely to have significant implications for
exposure.

4.3. CO

The model of indoor CO is intended to illustrate the application of
the model to a spatially-varying housing stock, where housing charac-
teristics may influence exposure risks. Uncertainty is particularly large
for indoor air pollution from indoor sources. A range of values for emis-
sion rates and deposition velocities may be found in the literature for
different pollutants, which will lead to a range in indoor concentration
estimates. We have not quantified this uncertainty here, but the ability
to vary the emissions and deposition velocitymeans that this can be car-
ried out in future studies.

The potential for themodel to account for occupant behaviour on in-
door concentration is limited: while it can modify the temperatures
above which windows may be opened, the use of extract fans, and can
turn emission sources on or off, emission schedules, locations, and
sources are modelled deterministically. This means that for CO concen-
trations, the emission from heaters is currently fixed to the living room,
while some important potential sources of CO – such as from attached
garages – are not modelled. The model is highly sensitive to housing
characteristics and pollutant emission assumptions, which should be
explored in further studies using stochastic methods. The model could
be further improved by using distributions of occupancy behaviours
based on empirical data, for example thermostat settings (Shipworth
et al., 2010). We assume an extract ventilation of 60 l/s in the kitchen
during cooking, in-line with building regulations (HM Government,
2010) for extracts that are not adjacent to the hob. This likely means
an under-estimate of CO levels in the 51% of English dwellings that do
not have a working extract fan (DCLG, 2011), and an over-estimate in
dwellings that have an extract fan adjacent to the hob. Future versions
of the model could test different extract fan ventilation rates and loca-
tions within the kitchen.

When applying the model to a building stock, it is potentially mis-
leading to predict occupant pollutant-generating behaviours to the
building-level. We assumed ‘average’ behaviours, assuming that devia-
tions from this average would be reduced when the results were aggre-
gated across spatial units. Estimates of pollution from indoor sources at
the individual-building level should therefore be treated with caution,
and viewed as an illustrative estimate of the potential housingmodifica-
tion of exposure rather than absolute estimates of concentration. As
with I/O ratios, the model is largely theoretical, and there is a limited
amount of empirical data on which to validate the results.

The metamodel has been applied here to estimate indoor air pollu-
tion, but is also capable of modelling annual space heating energy use,
indoor overheating, standardised indoor temperature (SIT), and mois-
ture. The EPC database provides important housing data which may
also help inform other studies, such as being used to identify emission
sources due to fuel burning, locations for potential energy efficiency in-
terventions, and linking housing data to health records. By applying the
metamodeling framework to the parameterised EPC dataset, we have
produced spatially-varying indoor pollution estimates that may be
used in exposure assessments and epidemiological studies. The ability
to rapidly run the metamodel for the national housing stock means
that the indoor air pollution implications of housing policies may be
evaluated, while also potentially accounting for modelled future
changes in outdoor exposure. Future research will include expanding
the model's capacity to simulate pollutants from indoor sources, and
applying the exposure estimates in healthmodels under current and fu-
ture scenarios. Further development of themodel's ability to account for
variations in occupant schedules – for example through Markov Chain
models –would enable the role of occupant behaviour to be accounted
for, thereby enabling the range of population indoor exposures to be
better understood.

5. Conclusions

Wehave described the application of ametamodelling framework to
predict indoor concentrations of PM2.5 and NO2 from outdoor sources,
and indoor concentrations of CO from both indoor and outdoor sources.
The EPC building stock data improves the spatial coverage and buildings
information relative to housing models used previously as the basis for
modelling studies, while the metamodeling approach makes it compu-
tationally possible to estimate indoor air pollution concentrations for
individual-dwellings at a national scale. We predict median I/O ratios
for London dwellings of 0.41 (99% CIs; 0.34–0.60) for NO2, and 0.60
(99% CIs; 0.53–0.73) for PM2.5. These result in estimated median indoor
exposures to outdoor-sourced NO2 of 12.9 μg m−3 (99% CIs; 7.3–23.0
μg m−3), and for PM2.5 of 8.0 μg m−3 (99% CIs; 6.4–10.2 μg m−3). Hous-
ing is shown to have an important modifying effect on exposure to out-
door pollutants, with the effect stronger for PM2.5 (ρ = 0.81) than for
NO2 (ρ = 0.88).

While highly sensitive to model input assumptions, the demonstra-
tive CO model estimated indoor concentrations of CO from both indoor
and outdoor sources to have a national median of 3.0 ppm (99% CIs;
0.4–9.9 ppm) in kitchens and 6.4 ppm (99% CIs; 0.3–25.6 ppm) in living
rooms; complete retrofit without additional purpose-provided ventila-
tion was estimated to increase exposure in both rooms 0.6 ppm and
0.8 ppm, respectively. Indoor exposures to CO were predicted to be
greatest in urban areas, due to the prevalence of flats with lower air
change rates trapping indoor generated air pollution, as well as high
outdoor concentrations. Modelling building modification of pollutant
exposure over a spatially distributed building stock enables the estimate
of exposures for a population spending significant amounts of time in-
doors, and can enable locations of potentially elevated exposures to be
identified.

Capsule

We use a model derived from building physics simulations to esti-
mate 1) the indoor concentration of NO2 and PM2.5 from outdoor
sources for 1.6million dwellings in London, and 2) CO from both indoor
and outdoor sources for 11.5 million dwellings across England and
Wales at individual-building level; results are then mapped to show
the spatial variation in indoor concentration.
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