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Abstract: Nosiheptide is a sulfur‐containing peptide antibiotic, showing exceptional activity against 9 
critical pathogens such as Methicillin‐Resistant Staphylococcus Aureus (MRSA) and Vancomycin‐10 
Resistant Enterococci (VRE) with applications for livestock and can be synthesized via fed‐batch 11 
fermentation. A simplified mechanistic fed‐batch fermentation model for nosiheptide production 12 
from the literature considers temperature‐ and pH‐dependence of biomass growth, substrate 13 
consumption, nosiheptide production and oxygen mass transfer into the fermentation broth. 14 
Herein, we perform dynamic simulation over a broad range of possible feeding policies to 15 
understand and visualize the region of attainable reactor performances and productivities. We then 16 
formulate a dynamic optimization problem for maximization of nosiheptide production for 17 
different constraints of batch duration subject to operability constraints. A direct method for 18 
dynamic optimization (simultaneous strategy) has been performed in each case to compute the 19 
optimal control trajectories. Orthogonal polynomials on finite elements are used to approximate the 20 
control and state trajectories allowing the continuous problem to be converted to a Nonlinear 21 
Programme (NLP). The resultant large‐scale NLP problem is solved using IPOPT. Optimal 22 
operation requires feed rate to be manipulated in such a way that the inhibitory mechanism of the 23 
substrate can be avoided, with significant nosiheptide yield improvement realized. 24 

Keywords: Dynamic optimization; Nosiheptide; Fed‐batch process; Pharmaceutical manufacturing 25 
 26 

1. Introduction 27 

1.1. Nosiheptide 28 

Antibiotics are essential pharmaceutical products in modern society [1], whose syntheses either 29 
require complex multistep chemical routes [2,3] or make use of enzymatic pathways [4] to obtain 30 
their complex molecular structures. Designing efficient antibiotic manufacturing processes is 31 
imperative. Nosiheptide (Figure 1), a sulfur‐containing peptide antibiotic obtained through 32 
fermentation, exerts exceptional antibiotic activity in vitro and in a mouse model against critical 33 
Gram‐positive pathogens such as Methicillin‐Resistant Staphylococcus Aureus (MRSA), Vancomycin‐34 
Resistant Enterococci (VRE) or Clostridium difficile. Nosiheptide and other thiopeptide's mechanism of 35 
action is a result of binding on the 50S ribosomal subunit which prevents selective protein synthesis. 36 
Shown non‐toxic at high dosages, it is principally used for livestock applications [5]. Figure 2 shows 37 
sales volumes of different antibiotic classes for livestock applications, with sulphur‐containing 38 
antibiotics (including nosiheptide) being one of the top sellers. Recently the first total synthesis of 39 
nosiheptide was reported, utilizing double macro‐cyclization of a fully functionalized linear 40 
precursor [6]. Given low industrial yields, strong motivation exists to dynamically‐optimize the 41 
process for improved product yield while reducing production time and cost to improve the 42 
industrial relevancy of manufacturing this promising antibiotic [7,8]. 43 
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 44 
Figure 1. Nosiheptide molecular structure skeletal (left) + 3D (right) structures [9]. 45 

1.2. Process Modeling and Optimization Studies 46 

Antibiotics are often produced via batch or fed‐batch bioprocessing and frequently using 47 
enzymatic pathways. Dynamic modeling, simulation and optimization are used for theoretical 48 
understanding of complex reaction networks inherent of biopharmaceutical production and to 49 
elucidate optimal control trajectories/operating policies to meet specific production targets (e.g., 50 
maximize yield subject to purity constraints) [10]. Human antibiotic production, particularly β‐51 
lactams (whose broad applications + importance in global healthcare make them high priority), have 52 
received a lot of attention in process systems engineering in the past decade; a summary of pertinent 53 
literature examples on modeling and optimization of antibiotic production is provided in Table 1. 54 

 55 

Figure 2. Sales of livestock antibiotics for by antibiotic class (top) and animal type (bottom) [11]. 56 
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Table 1. Select modeling and optimization studies for human β‐lactam antibiotic production. 57 
Antibiotic Application Study Ref. 

Amoxicillin Tonsillitis 

Bronchitis 

Pneumonia 

Gonorrhoea 

Sinus infections 

UTIs 

Application of ANNs to model complex reaction scheme for 

PGA catalyzed synthesis 
[12] 

Inclusion of additional experimental data to improve ANN 

in ref. [12]. 
[13] 

Maximization of API formation vs. different operating 

conditions in either methanol / ethylene glycol as reaction 

solvents 

[14] 

Sensitivity analysis on previous ANN study [12] [15] 

Modeling + simulation of continuous reactive crystallization 

in presence of substrates and impurities 
[16,17] 

Dynamic optimization of non‐isothermal reactor [18] 

Ampicillin UTIs 

Pneumonia 

Gonorrhoea 

Meningitis 

Abdominal 

infections 

Regression of nucleation and growth kinetics for pH 

crystallisation model 
[19] 

Modeling + simulation of reactive crystallization in presence 

of substrates and impurities 
[20] 

Modeling + simulation of continuous reactive crystallization 

in presence of substrates and impurities 
[16,17] 

Multiobjective dynamic optimization of pH crystallization [21] 

Cephalexin UTIs 

Respiratory tract 

infections 

Ear infections 

Skin infections 

Non‐isothermal modeling of enzymatic cephalexin batch 

synthesis 
[22] 

Optimization of synthesis pH, temperature and 

concentrations 
[23] 

Non‐isothermal modeling of enzymatic cephalexin batch 

synthesis 
[24] 

Modeling + simulation of reactive crystallization in presence 

of substrates and impurities 
[16,17] 

Regression of nucleation and growth kinetics for pH 

crystallisation model 
[25] 

Modeling and optimization of fed‐batch biopharmaceutical processes have also received 58 
significant attention for a wide variety of products, literature examples of which are summarized in 59 
Table 2. A variety of studies for the production of a range of products (including proteins, monoclonal 60 
antibodies (mAbs), antibiotics, amino acids etc.) from different biomass sources (including Chinese 61 
Hamster Ovary (CHO) cells for mAb production). Once reaction model parameters have been 62 
regressed (the subject of many different studies in Tables 1 and 2 and beyond), process model 63 
optimization subject to different design + operational constraints for different objectives (e.g., 64 
maximum productivity for composition limitations on purity) can be performed to realize the 65 
optimum design. Such studies have been implemented frequently for batch/fed‐batch process 66 
development (Table 2). 67 

1.3. This Work 68 

A fed‐batch fermentation process dynamic model for nosiheptide production described by Niu 69 
and colleagues (2013,2016) [26,27] allows insight into the process design space + elucidation of 70 
optimal feeding policies for enhanced productivity, which is yet to be done for this antibiotic; therein 71 
lies the novelty of the work. This paper is structured as follows: First, the published dynamic fed‐72 
batch model equations are described with model parameter estimation performed to improve process 73 
model accuracy vs. published experimental data; dynamic simulation is performed to understand the 74 
region of attainable fermentor performances; a dynamic optimization problem is then formulated 75 
and solved to elucidate the optimal reactor feeding policy to enhance the production of nosiheptide. 76 
A critical discussion of the simulation and optimization methodologies is also provided vs. the 77 
available data used for formulation and outlook on the field. 78 
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Table 2. Select modeling and optimization studies for fed‐batch pharmaceutical production. 79 
 Product Biomass Substrate Objectives Observations Lit. Ref. 

 Molecule Application      

1 Podophyllotoxin Anticancer Podophyllum 

hexandrum 

Indoleacetic 

acid,  

Glucose, 

Oxygen 

Regress model 

parameters from 

batch data to inform 

fed‐batch design 

Increased 

volumetric 

productivity by 

35.8%. 

[28] 

2 Unnamed protein Unknown Unnamed Glucose, 

Oxygen 

Application of ANNs 

to model bioprocess 

ANN formulated to 

capture industrial 

process behaviour. 

[29] 

3 Fluoroleucine  

ethyl ester 

Pharmaceutical 

intermediate 

Candida 

antarctica 

Azlactone, 

Ethanol 

Kinetic parameter 

regression for fed‐

batch process 

optimization 

400% increase in 

fed‐batch mode 

productivity vs. 

batch operation  

[30] 

4 Glutamine Amino acid CHO cells Glucose, 

Oxygen 

Markov chain Monte 

Carlo method for 

kinetics modeling 

Fed‐batch process 

modeling in 5,000 L 

bioreactor 

[31] 

5 Butyric acid Histamine 

antagonist 

Clostridium 

tyrobutyricum 

Glucose, 

Oxygen 

Reaction kinetic 

model parameter 

regression for fed‐

batch process 

Increased 

productivity + 

growth with fed‐

batch operation 

[32] 

6 Penicillin Antibiotic Penicillium Glucose, 

Oxygen 

Implementation of 

Design of Dynamic 

Experiments for 

process optimization 

Process 

optimization with 

few experiments 

[33] 

7 mAb Various 

therapeutic 

applications 

GS‐NS0 cell 

line 

Glucose Sensitivity analysis + 

dynamic  

optimization 

Increased 

productivity 

[34] 

8 EG2‐hFc 

(mAb) 

Various 

therapeutic 

applications 

CHO cells Glucose, 

Oxygen 

Reaction kinetic 

parameter regression 

+ sensitivity analysis 

Single set of 

parameters 

described state 

trajectories 

[35] 

9 Unnamed mAb Various 

therapeutic 

applications 

CHO cells Glucose, 

Oxygen 

Reaction kinetic 

parameter regression 

for modeling 

System modeling 

on lab‐ and 

production scales 

[36] 

10 β‐Carotene Vitamin A 

precursor 

Saccharomyces 

cerevisiae 

Glucose, 

Ethanol, 

Oxygen 

Dynamic  

optimization of 

reaction scheme 

Reduced operating 

costs of bioreactor 

[37] 

11 mAb Various 

therapeutic 

applications 

GS‐NS0 cells Glucose, 

Glutanamine 

Model reformulation 

to improve 

computational 

efficiency 

Improved structure 

and increased 

production from 

optimal feeding 

[38] 

12 Immunoglobulin  

G (mAb) 

Various 

therapeutic 

applications 

CHO cells Unspecified Dynamic model 

formulation for 

optimal pH control 

Increased 

productivity from 

optimal control  

[39] 

13 mAb Various 

therapeutic 

applications 

GS‐NS0 cells Glucose, 

Glutanamine 

Comparison of 

simultaneous + 

sequential 

optimization  

Sequential 

approach attains 

higher productivity 

[40] 

2. Dynamic Process Modeling, Simulation and Optimization Methodology 80 

2.1. Nosiheptide Fed-Batch Fermentation Model + Parameter Estimation 81 

2.1.1. Dynamic Process Model 82 

A schematic of the fed‐batch fermentation process for nosiheptide is shown in Figure 3 [26,27]. 83 
The bioreactor/fermentor has volume, VF = 100 L with biomass (Streptomyces actuosus) in broth 84 
volume, V = 60 L at the start of the batch (time, t = 0). Varying the reactor feeding (F), temperature (T) 85 
and pH alter state profiles over the batch duration, namely biomass (X), substrate (S), product (P) and 86 
dissolved oxygen (CO) concentrations. The subsequent dynamic fed‐batch process model assumes 87 
ideal mixing and no lag with respect to changes in process conditions during the batch. 88 
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 89 

Figure 3. Fed‐batch nosiheptide production via fermentation. 90 

The fed‐batch fermentation of Streptomyces Actuosus to produce nosiheptide is a complex 91 
biochemical process. The dynamic process model makes various simplifications in order to simplify 92 
the model equations [26,27]. The model assumptions include (1) ideal mixing such that pH, T and 93 
concentrations (X, S, P) are spatially uniform in the bioreactor at a given t, (2) biomass cell chemical 94 
compositions do not vary with t and (3) there is negligible lag between the imposed fermentation 95 
process condition changes and process dynamics. 96 

The dynamic model for nosiheptide fermentation is that proposed by Niu and colleagues 97 
(2013,2016) and references therein [26,27]; The main objectives of this study are parameter estimation 98 
to improve model discrepancy vs. reporter experimental results by the same authors and to then 99 
perform dynamic optimization of the fed‐batch fermentation process to elucidate possible 100 
improvements for nosiheptide production.  101 

Biomass (X) growth is defined by specific growth (µg) and death (µd) rates (functions of both pH 102 
and temperature, T). In Eq. 1, the first term = cell growth, second term = cell death and third term = 103 
dilution by reactor feed, respectively. Here, F = reactor feed flow rate, V = culture volume, Ag and Ad 104 
= pre‐exponents for growth and death terms, respectively, Eg and Ed = energy barriers to growth and 105 
death, respectively, R = Universal gas constant, K1 and K2 = model constants, KS and KO = the substrate 106 
and oxygen Contois saturation constants, respectively, Kd = the Monod constant, CO = dissolved 107 
oxygen content and XMAX = maximum biomass concentration. 108 

dX

dt
 = �µ

g
– µ

d
–

F

V
� X (1) 

µ
g
 = 

Ag exp �–
Eg

RT
�

1 + 
K1

10‐pH  + 
10‐pH

K2

 
S

KSX + S
 

CO

KOX + CO
 �1 – 

X

XMAX
� (2) 

µ
d
 = Ad exp �–

Ed

RT
� �1 – 

CO

Kd + CO
� (3) 

The substrate (S) is considered to have three actions, described by each term in Eq. 4: to provide 109 
nutrients for cell growth (first term), to produce metabolites (second term) and to maintain bacteria 110 
culture activity (third term), with the fourth term describing dilution from the reactor feed. Here, mS 111 
= the maintenance coefficient of substrate and YX/S and YP/S = the yield constants of biomass and 112 
product vs. substrate, respectively. 113 

dS

dt
 = –mSX  – 

1

YX/S

dX

dt
 – 

1

YP/S

dP

dt
 – 

F

V
X (4) 

Feed
F(t)

V(t)

pH(t)

T(t)

CO(t)

X(t)

S(t)

P(t)

Fermentor
VF

Variable Type Description

F Control Bioreactor feed rate

V State Fermentation broth volume

pH Control Fermentation broth pH

T Control Fermentation broth temperature

X State Biomass (Streptomyces actuosus)

S State Substrate (Glucose)

P State Product (Nosiheptide)

CO State Dissolved oxygen content in broth

VF Design Fermentor volume
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The Luedeking‐Piret model for microbial metabolite formation (i.e., nosiheptide production) is 114 
considered, simplifying to account for the rate being uncoupled with cell growth (i.e., nosiheptide 115 
production is independent of cell growth rate), producing Eq. 5, where Kh = the equilibrium constant, 116 
β = specific production rate (Eq. 6), µP = specific production rate and KP and KI = production rate 117 
inhibition constants 118 

dP

dt
 = βX – KhP – 

F

V
P (5) 

β = 
µ

P
S

KP + S + 
S2

KI

 
(6) 

The reaction volume, V, increased over time with the feed‐rate, F. The model assumes a dilute 119 
fermentation broth with negligible volume changes due to biomass growth, substrate consumption 120 
or nosiheptide formation. 121 

dV

dt
 = F (7) 

A dissolved oxygen model is considered from a mass balance (Eq. 8, [26,27]). The saturated 122 
oxygen concentration, CO*, is a function of temperature and is reported with a value of 0.037 g L‐1 in 123 
the fermentation broth in the original experimental demonstration [26,27]; it is assumed that this 124 
value does not vary with changing state profiles over the course of the batch duration. The volumetric 125 
transfer coefficient (KLa) is dependent on the tank and stirrer characteristics as defined by Eq. 10. In 126 
Eq. 8, the first term (KLa (CO*–CO) = mass transfer of oxygen into the fermentation broth, the second 127 

term (mOX) = biomass maintenance consumption, the third term �
1

YX/O

dX

dt
� = oxygen consumption due 128 

to biomass growth, the fourth term �
1

YP/O

dP

dt
� = oxygen consumption in product formation and the 129 

fifth term �
F

V
CO� describes dilution from reactor feed. Here, CO* = saturation dissolved oxygen 130 

concentration, mO = maintenance coefficient of dissolved oxygen, YX/O and YP/O = yield constants of 131 
biomass and product vs. dissolved oxygen, respectively, d = agitator diameter, n = agitator speed, Pi 132 
= input power under nonaerobic conditions, Q = ventilation volume and D = vessel volume.  133 

dCO

dt
 = KLa�CO*– CO� – mOX – 

1

YX/O

dX

dt
 – 

1

YP/O

dP

dt
 – 

F

V
CO (8)

CO*(T = 29 °C) = 0.037 g L‐1 (9)

KLa = 0.1322
d0.56n0.18Pi

0.36Q0.3992

DV0.4
 (10) 

2.1.2. Model Parameter Estimation 134 

Niu and colleagues (2013,2016) performed a range of experimental campaigns, gathering state 135 
data to facilitate parameter estimation of values which may not be directly measured [26,27]. It was 136 
found that there was significant mismatch between certain presented state trajectories (namely 137 
product P and dissolved oxygen content CO) and those resulting from simulating the model using 138 
the entire published parameter set (29 parameters). As a result, a selective parameter re‐estimation 139 
has been performed for 5 parameters, which pertain to uptake ratios for oxygen consumption (mO 140 
and YX/O) and product formation (µP, Kh, YP/O). MATLAB’s OPTI Toolbox and the fmincon function is 141 
used to minimize the error between state trajectories and the experimental data (Eq. 11), solving for 142 
the parameter vector, θ = [mO YX/O µP Kh YP/O], giving the best fit. 143 

min
θ

� � �
data – model

data������
i

�

2

ji

 (11) 



Processes 2020, 8, x FOR PEER REVIEW 7 of 22 

 

Table 3. Dynamic model kinetic (published + regressed in this study) + fermentor design parameters. 144 
Kinetic Parameters     

Parameter Description Symbol Value Units Source 

Growth pre‐exponent Ag 0.1224 hr‐1 [27] 

Growth energy barrier Eg 60 kJ mol‐1 [27] 

Death pre‐exponent Ad 1.9×10–3 hr‐1 [27] 

Death energy barrier Ed 340 kJ mol‐1 [27] 

Eq. 2 constant K1 1×10–10 (–) [27] 

Eq. 2 constant K2 1.3×10–4 (–) [27] 

Substrate Contois constant KS 0.1828 g L‐1 [27] 

Oxygen Contois constant KO 0.0352 g L‐1 [27] 

Max. substrate concentration XMAX 0.87 g L‐1 [27] 

Monod constant Kd 0.0368 (–) [27] 

Hydrolysis constant Kh 4.0×10–4 hr‐1 This studya 

Substrate maintenance coefficient mS 0.0624 g g‐1 hr‐1 [27] 

Biomass/substrate yield constant YX/S 0.25 g g‐1 [27] 

Product/substrate yield constant YP/S 0.68 g g‐1 [27] 

Specific production rate μP 0.05 g g‐1 hr‐1 This studya 

Production inhibition constant KI 0.1 g L‐1 [26] 

Production inhibition constant KP 2×10–4 g L‐1 [26] 

Oxygen maintenance coefficient mO 4.0×10–3 g g‐1 hr‐1 This studya 

Biomass/oxygen yield constant YX/O 43.5 g g‐1 This studya 

Product/oxygen yield constant YP/O 253.3 g g‐1 This studya 

Design Parameters     

Parameter Description Symbol Value Units Source 

Fermentor volume VF 100 L [26,27] 

Ventilation rate Q 3.0 m3 hr‐1 [26,27] 

Agitation speed n 400 rpm [26,27] 

Stirring power P 1,500 W [26,27] 

Agitator diameter d 0.01 m [26,27] 

Vessel diameter D 0.5 m [26,27] 

aQuality of parameter fit: Niu et al. (2013,2016) [26,27] vs. this study. 

Variable MSE SSE 

 Niu et al. (2013,2016) [26,27] This study Niu et al. (2013,2016) [26,27] This study 

Product, P 4.940×10–1 6.815×10–5 8.398 1.158×10–3 

Dissolved Oxygen, CO 3.700×10+3 4.280×10–5 6.290×10+4 0.728×10–3 

The model fit to P and CO profiles vs. experimental data is greatly improved following 145 
parameter regression of θ, as shown in Figure 4. The model kinetic parameter values (both fitted and 146 
taken from the literature) are listed in Table 3. Design parameters of the bioreactor are taken as those 147 
considered in the literature and are also summarized in Table 3. The improved model fit in product 148 
and dissolved oxygen concentrations are also quantified in Table 3 by their corresponding Mean 149 
Squared Error (MSE) and Sum of Squared Errors (SSE) values for P and CO profiles. 150 

All model parameters are taken from studies by Niu and colleagues (2013,2016) on the same 151 
experimental apparatus, where errors of their parameter fits on different species concentrations are 152 
also reported [26,27]. Our parameter regression showed reduced discrepancy between the 153 
experimental and model results. It is important to validate all results presented in this work (both 154 
model parameter estimates and dynamic optimization runs) vs. further experimental runs on the 155 
apparatus used by Niu and colleagues (2013,2016) [26,27]. 156 
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 157 

Figure 4. Modeled vs. experimental product concentrations from (a) published model [26,27] and (b) 158 
this work and dissolved oxygen concentrations from (c) published model [26,27] and (d) this work. 159 

2.2. Dynamic Simulation 160 

Exploring the entire dynamic operating design space with respect to attainable productivity and 161 
reactor performance is useful in order to understand in depth the biochemical system behavior prior 162 
to undertaking dynamic optimization [41]. We implement exhaustive dynamic simulation subject to 163 
rules and constraints on the possible control (reactor feedrate) profiles over the batch duration to limit 164 
the number of simulations + total computational effort [41]. A total possible batch duration of tf = 96 165 
hr is considered (as per the experimental demonstrations [26,27]). The control profiles are considered 166 
Piecewise Constant (PWC) with six temporal elements (N = 6) considered, i.e., a time step of Δt = 16 167 
hr. The reactor feed can have initial values considered, F(t = 0) = 0.1 : 0.1 : 0.9 L hr‐1, i.e., nine (9) 168 
possible starting values. After each Δt, the change in reactor feed, ΔF = {0, ±0.1, ±0.2, ±0.3, ±0.4} L hr‐1; 169 
profiles which result in F(t) < 0 or F(t) > 1 (= feed rate bounds), as well as cases where V(t) > 100 (= 170 
fermentation vessel volume) are not considered to respect the bounds imposed as per the 171 
experimental demonstration [26,27]. Figure 5 shows an example of two possible reactor feedrate 172 
profiles considered within the dynamic simulation, with all of the abovementioned restrictions met. 173 
The resulting number of feed profiles considered for dynamic simulation = 625,331. The effects of 174 
different feed profiles on state variables and different trade‐offs therein are then considered. 175 
Thereafter, mathematical dynamic optimization is performed in order to elucidate the optimal reactor 176 
feedrate policy to maximize nosiheptide production. 177 
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 178 

Figure 5. Sample dynamic simulation reactor feedrate profiles. 179 

2.3. Dynamic Optimization 180 

2.3.1. Problem Statement 181 

Determining how any industrial production process shall be operated efficiently typically 182 
involves mathematical optimization in some form [42]. Often this will include an optimal control 183 
problem, where a system of state variables [x] are influenced by an externally manipulated control 184 
variable, u, so the optimal control vector u(t) is sought to minimize an objective, φ. Considering a 185 
generic problem where no running payoff is considered (objective, Eq. 12, evaluated at terminal time 186 
only), the dynamic optimization problem can be defined as follows [43,44]. 187 

min
u(t), tf

φ(x(tf), tf) (12) 

dx

dt
 = f (x(t), u(t)) (13) 

x(t0) = x0 (14) 

h (x(t), u(t)) = 0, g (x(t), u(t)) ≤ 0 (15) 

hf (x(tf)) = 0 (16) 

gf (x(tf)) ≤ 0 (17) 

uL ≤ u(t) ≤ uU (18) 

xL ≤ x(t) ≤ xU (19) 

The Ordinary Differential Equations (ODEs) which dictate the state trajectories (Eq. 13) are 188 
influenced at any time by the current control (u) value, with initial state conditions given by Eq. 14. 189 
Eqs. 3 and 4 represent equality and inequality constraints respectively across the entire time horizon, 190 
t ∈ [t0, tf], with terminal constraints given by Eqs. 16 and 17. Lastly, the state and control boundaries 191 
are constrained within permissible bounds by Eqs. 18 and 19. 192 

2.3.2. Solution Method 193 

A wide range of methodologies exist for solving an optimal control trajectory problem, including 194 
variation methods and finite approximation methods [41,45]. In the former exploiting Pontryagin’s 195 
maximum principle allows the resulting two‐point boundary value problem to be solved, while the 196 
latter uses predefined functional forms to represent the control profile [46]. Finite formulations may 197 
be tackled with simultaneous, sequential or multi shooting strategies which are extensively reviewed 198 
in the literature [43]. The sequential strategy involves discretisation of the control profile with the 199 
ODE system (process model), requiring regular re‐integration during the algorithm to compute 200 
corresponding state trajectories, an approach effective for problems with few decision variables and 201 
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constraints [47], which has been widely applied to engineering problems [48–50]. In contrast, 202 
simultaneous strategies require the ODE system to also be discretized on the time horizon to produce 203 
a large‐scale Nonlinear Programming (NLP) problem requiring no further integration of the 204 
Differential Algebraic Equation (DAE) system, generally using orthogonal collocation techniques. 205 
The later offers numerous benefits, being faster to solve and able to handle problems with a greater 206 
number of decision variables and constraints [51,52]. 207 

A direct method for dynamic optimization (simultaneous strategy) is performed. Orthogonal 208 
polynomials on finite elements are used to approximate the control and state trajectories, allowing 209 
the continuous problem to be converted to NLP form. The DAE system is converted to a system of 210 
Algebraic Equations (AEs), where decision variables of the derived NLP problem are the coefficients 211 
of the linear combinations of these AEs. Precision varies with collocation point locations and step 212 
sizes used [53,54].  213 

Consider the general problem with N elements (i = 1,…,N), each of which has K collocation points 214 
(j = 1, …, K). The differential profiles (Eq. 13) can be approximated by Eq. 20, where Δti is the length 215 
of element i and dx/dti,j is the derivative of the state variable in element i at the jth collocation point. 216 
Ωj is a jth order polynomial satisfying Eq. 21. Continuity of the state trajectories is ensured by Eq. 22. 217 
The control profile is approximated by Eq. 23, where ψj is a Lagrange polynomial of degree K that 218 
satisfies ψj (ρj) = δj for j = 1,…,K. It is shown in Figure 6 how control variables may have discontinuities 219 
at element boundaries, while continuity in states at these same boundaries is produced. In doing so, 220 
the continuous general problem has been reduced to a discreet DAE system, which can be solved by 221 
a suitable NLP subroutine. 222 

xi = xi–1 + ∆ti � Ωj �
t – ti–1

 ∆ti
�

K

j = 1

dx

dti,j
  (20)

Ωj(0) = 0,  Ω'
j �ρ

j
� = δj for j = 1,…,K (21)

 x(t) = xi–1 + ∆ti � Ωj(1)

K

j = 1

dx

dti,j
  (22)

 u(t) = � ψ
j
�
t – ti–1

 ∆ti
�

K

j = 1

ui,j  (23)

 223 

Figure 6. Collocation method for state and control profiles (based on Biegler, 2007 [44]). 224 

2.3.3. Optimization Objectives and Strategy 225 

There are two obvious objectives for optimal fermentation: reduced duration and maximum 226 
productivity (even if this requires later dilution, it is desirable to enhance yield). A bi‐objective 227 
problem is considered, defined by Eqs. 24–26. Multiple optimization objectives can also be 228 
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formulated as a single objective function by considering a sum of weighted individual objectives as 229 
in other studies by our group [41]; however, such methods can be used studies considering full‐scale 230 
industrial operation with ample experimental and dynamic production data acquisition, whereas for 231 
comparison of modeling and optimization results vs. a relatively small experimental dataset (as is 232 
the case here), a bi‐objective problem defined as a product of individual process objectives is more 233 
appropriate. Operability and model constraints impose bounds on the control profiles (Eqs. 27–29) as 234 
well as the total volume being limited by the reactor size (Eq. 30).  235 

min
T(t), pH(t), F(t)

 f1 f2  (24) 

f1 = tf  (25) 

f2 = –V(tf) P(tf)  (26) 

299 ≤ T(t) ≤ 305 for t ∈ [t0, tf] (27) 

6 ≤ pH(t) ≤ 8 for t ∈ [t0, tf] (28) 

0 ≤ F(t) ≤ 1 for t ∈ [t0, tf] (29) 

V(t) ≤ 100 for t ∈ [t0, tf] (30) 

To elucidate the sensitivity of the model states on manipulated controls (F, T, pH), a sensitivity 236 
analysis was performed. Figure 7 shows the effect of varying constant reactor pH on state profiles, 237 
showing negligible variation over the applicable pH range = 6–8 (Eq. 28); this is due to the pH‐238 
dependent model term (Eq. 2) varying weakly vs. pH for the given model parameters (K1 and K2). 239 
Similarly, the sensitivity of states vs. isothermal reactor temperature (T(t) = 26–32 °C) are compared 240 
in Figure 8. The variation in states vs. temperature is also negligible due to biomass cell growth and 241 
death (numerators of first terms in Eqs. 2 and 3, respectively) varying weakly vs. temperature within 242 
the applicable range. The model dependence of both temperature and pH is as presented in the 243 
literature [26,27]. We illustrate effects to justify selection of only reactor feeding as manipulation 244 
variable for dynamic optimization. It is possible that the growth peak occurs at a higher temperature 245 
than the range of values considered here (bounds chosen to ensure model parameters are 246 
commensurate with experiments), which should be confirmed via experiments in the same apparatus 247 
as that described by Niu and colleagues (2013,2016) [26,27]. 248 

 249 

Figure 7. Effect of varying pH(t) = constant (a) on (b) biomass, (c) substrate and (d) product concentrations. 250 
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 251 

Figure 8. Effect of varying T(t) = constant (a) on (b) biomass, (c) substrate and (d) product concentrations. 252 

The results of the sensitivity analysis imply that it is logical to remove temperature and pH 253 
profiles from the optimization problem to reduce the problem size compared to optimizing all three 254 
controls simultaneously. Reactor temperature and pH are fixed as per the literature (see Table 4) to 255 
ensure healthy biomass and allowing the feed profile to be optimized in isolation. Initial conditions 256 
for state variables are assumed to be as in the literature and are also summarized in Table 4. 257 

Table 4. Fixed operating + initial state conditions as per the original experimental study [26,27]. 258 
Operating Variable 

Variable Symbol Initial Value Units 

Temperature T(t0) = T(t) 30 oC 

pH pH(t0) = pH(t) 7 (–) 

State Initial Condition 

Variable Symbol Initial Value Units 

Biomass loading X (t0) 0.05 g L‐1 

Substrate 

concentration 

S (t0) 40 g L‐1 

Product 

concentration 

P (t0) 0 g L‐1 

Culture volume V (t0) 60 L 

Dissolved oxygen 

content 

CO (t0) 0.037 g L‐1 

Any multi‐objective problem, such as the one defined by Eq. 24, will not have a single solution, 259 
but rather an entire optimal front upon which no single objective can be improved without sacrificing 260 
another, i.e., a Pareto front. Numerous approaches can be used to modify a multi‐objective problem 261 
for compatibility with single objective methods such as that proposed in Section 2. Commonly, a 262 
weighted sum objective is used to combine the competing objectives into a single term with weights 263 
defining the relative importance of each. However, weights assigned to the multiple process targets 264 
to produce a single objective function may be considered arbitrary, with decision‐makers not 265 
necessarily able to quantify a priori the relative importance of the competing objectives. Rather, we 266 
elect to consider a ε‐constraint approach. One of the objectives can be considered as a constraint in 267 
the problem formulation, solving the other to optimality. This is repeated, increasing the value of the 268 
objective ε‐constraint and resolving. Repeating this process by incrementally increasing the ε‐269 
constraint value across the entire span of permissible values for that objective. Here, the batch time 270 
is treated as the secondary objective and converted to a constraint (Eqs. 33 and 34). 271 
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min
F(t)

 –V(tf) P(tf) (33)

tf = ε (34)

Solving this modified problem across a range of values for ε produces a Pareto front of optimal 272 
solutions, allowing the trade‐off to be visualized and used for process design and operation decisions. 273 
Generally, Eq. 34 would be an inequality constraint in the ε‐constrained multi‐objective method; 274 
however, as to visualize the performance drop observed in excessively long batches an equality term 275 
is used. Doing so enforces the specific batch time in each case, in place of converging to the optimal 276 
batch length with little indication of the responsible mechanism. We consider ε = {120, 200, 205, 275, 277 
390} hr and varying N = 20. 278 

3. Results and Discussion 279 

3.1. Dynamic Simulation and Design Space Visualization 280 

Figure 9 presents trade‐offs between different state variables from the range of reactor feedrate 281 
profiles for dynamic simulation purposes. The following comparisons are made: product vs. 282 
remaining biomass, volume vs. biomass, product and biomass vs. dissolved oxygen and product vs. 283 
fermentation broth volume and total amount of fed material during fed‐batch production (= Σ F(t)Δt). 284 
Various trade‐offs and trends between states are observed. 285 

 286 

Figure 9. Trade‐offs at end of batch duration for different reactor feedrate profiles (tf = 96 hr): (a) 287 
Product vs. Biomass concentrations, (b) Culture volume vs. Biomass concentration, (c) Product vs. 288 
Dissolved oxygen concentrations, (d) Biomass vs. Dissolved oxygen concentrations, (e) Product 289 
concentration vs. Culture volume, (f) Product concentration vs. amount of fed material. 290 
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Observing the attained product concentrations vs. biomass at the end of the batch duration 291 
shows that the highest productivities are attained from intermediate biomass values, not necessarily 292 
from the highest. It is also observed that many of the considered reactor feedrate profiles achieve 293 
comparably low productivities for their given biomass present, highlighting the need for process 294 
optimization. Resulting broth volumes are also highest at the low to intermediate range of biomass 295 
concentrations; it should be noted that the model assumes that biomass growth does not affect broth 296 
volume, i.e., that the system is relatively dilute. For adaptation to systems with higher biomass 297 
loading, Eq. 7 should contain a term that describes volumetric changes due to biomass growth. 298 

Biomass concentrations are highest when the system is near oxygen saturation due to cells 299 
requiring oxygen for growth. Most of the considered reactor feedrate profiles approach oxygen 300 
saturation; however, the maximum productivities are obtained for profiles with lower dissolved 301 
oxygen content. It is also observed that the highest product concentrations are observed for 302 
intermediate values of reactor feedrates/final broth volumes. Banding is observed in the product vs. 303 
volume/fed material plots due to the discreet initialized values and step changes considered for 304 
dynamic simulation purposes (see Section 2.2). 305 

Figure 9 shows that the highest nosiheptide product concentrations are attained with very 306 
particular reactor feedrate profiles, i.e., the system performance is very sensitive to the considered 307 
reactor feedrate profiles. The results of this design space investigation + visualization via dynamic 308 
simulation provides an incentive for dynamic optimization to systematically establish the optimum 309 
feed profile. The dynamic simulation results show performances attained for tf = 96 hr (i.e., batch 310 
duration considered in the experimental studies [26,27]) only; observing the effect of varying batch 311 
time is also considered as part of the dynamic optimization. 312 

3.2. Optimal Reactor Reactor Feedrate Policy 313 

The resultant large‐scale NLP problem from DynOpt is solved for each instance using IPOPT 314 
(Interior Point OPTimizer) [51,52] and global optimality is ensured with a multi‐start search via Latin 315 
Hypercube Sampling of the input space for initialization. Analytical state and control Jacobians in 316 
addition to the objective gradients are explicitly defined and input to the solver which drastically 317 
improves runtime due to far fewer function evaluations being required. The problem defined by Eqs. 318 
36 and 37 has been solved for a range of instances, considering an array of initialization strategies 319 
(initial control profile ‘guesses’) as well as for increasing time domain discretization, defined by the 320 
number of control segments, N. Solution attainment is demonstrated as robust with little sensitivity 321 
to the initialization strategy employed, as has been in the case in other dynamic simulation + 322 
optimization studies on biochemical systems implemented by our group [55]. The performance of the 323 
IPOPT NLP solver was compared to the default solver within MATLAB's OPTI Toolbox (fmincon), 324 
with IPOPT equalling or outperforming in all instances. The single objective solution is shown in 325 
Figure 10 where N = 12 and batch time tf = 120 hr. 326 

It is demonstrated that optimal feed trajectory computed is a novel parabolic form. This efficient 327 
strategy initially feeds substrate at a high rate, assisting with the biomass development towards its 328 
maximum value. Lowering this over the first portion of the process prevents restrictive dilution of 329 
both the biomass and the early product formation. After sustaining a feed rate near 0.2 g L‐1 until the 330 
maximum biomass concentration is approached, the feed rate is increased exponentially towards the 331 
end of the process, capitalizing on the reduced inhibition given that less substrate is now present in 332 
the broth. It is noteworthy that the solution suggests the reactor should only be entirely full (V = 100 333 
L) at the very end of the process. The multi‐objective Pareto front of optimal solutions are presented 334 
in Figure 11 where batch time as a secondary objective was constrained by increments of 5 hr between 335 
100 and 400 hr according to Eq. 37. 336 

 337 
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 338 

Figure 10. Optimal feed profile (a) and corresponding model states, ε = 120 hr: (b) Culture volume, 339 
concentrations of (c) Biomass, (d) Substrate, (e) Product, (f) Dissolved oxygen. 340 

Three distinct regions on the Pareto plot can be identified. In the left most, region (100–200 hr) a 341 
near linear relationship exists between attainable product mass and permitted batch time. Once batch 342 
time tf > 200 hr a dramatic shift is observed, whereby a much larger product mass is produced. This 343 
continually increases at a less than linear rate until a maximum production is observed when the tf ≈ 344 
330 hr. After this a dramatic drop in production is shown when batch time is excessively long. To 345 
better understand these observed trends, solution profiles of the model states corresponding to the 346 
solutions on the Pareto plot can be inspected. Figure 12 represents the solution for the scenario tf = 347 
200 hr, with the same for tf = 205 hr shown in Figure 13. 348 

 349 
Figure 11. Product mass vs. batch time Pareto front (N = 12). 350 
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 351 
Figure 12. Optimal feed profile (a) and corresponding model states, ε = 200 hr: (b) Culture volume, 352 

concentrations of (c) Biomass, (d) Substrate, (e) Product, (f) Dissolved oxygen. 353 

Figure 12 shows similar behaviour to Figure 10: initially promoting biomass growth before 354 
lowering the feed rate for the intermediate batch portion, prior to increasing substrate feed to 355 
capitalise on the favourable reactor state. The large transition in Figure 10 may be understood from 356 
the tf = 205 hr solution (Figure 13). This represents the first time at which the initial reactor substrate 357 
content is completely consumed. This allows the substrate to deplete (feeding biomass growth and 358 
maintenance), and the moment that the substrate concentration approaches zero the feed rate is 359 
drastically increased. In doing so there is essentially no inhibitory mechanism and extremely efficient 360 
fermentation may be performed for the remainder of the batch, generating an elevated mass of 361 
product. This is similarly observed in Figure 14 for ε = 275 hr, with a sustained feed period at the end 362 
of the process at a precise level to prevent accumulation while still feeding rapid product growth. 363 

 364 

Figure 13. Optimal feed profile (a) and corresponding model states, ε = 205 hr: (b) Culture volume, 365 
concentrations of (c) Biomass, (d) Substrate, (e) Product, (f) Dissolved oxygen. 366 
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 367 

Figure 14. Optimal feed profile (a) and corresponding model states, ε = 275 hr: (b) Culture volume, 368 
concentrations of (c) Biomass, (d) Substrate, (e) Product, (f) Dissolved oxygen. 369 

Figure 15 highlights the mechanism for the performance drop once the batch time becomes 370 
excessively long. Here the batch time is too long for the finite reactor volume and substrate mass that 371 
may be fed. Now the product hydrolysis becomes prohibitive with the nosiheptide produced earlier 372 
being later consumed in the reaction timeframe, where overfilling the reactor would be necessary to 373 
maintain a production rate greater than the hydrolysis rate in the late stages of the process. As such 374 
a critical batch time is identified, after which yield is reduced. This also highlights that the product 375 
state must be rapidly changed once the maximum production is observed, to prevent undesirable 376 
product losses.  377 

 378 

Figure 15. Optimal feed profile (a) and corresponding model states, ε = 390 hr: (b) Culture volume, 379 
concentrations of (c) Biomass, (d) Substrate, (e) Product, (f) Dissolved oxygen. 380 
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Care must be taken when interpreting these results. The optimal scenario appears to be to 381 
promote biomass growth prior to depleting the substrate concentration entirely, after which further 382 
substrate additions may be instantly converted to nosiheptide in the absence of an accumulated 383 
inhibitory substrate content in the reactor. While the model authors do not suggest the model is not 384 
valid under these conditions, the portion of their data used in the parameterization, which is 385 
presented in the corresponding publications, do not show such behaviour. The model validity under 386 
these conditions (no substrate accumulated) must first be ensured. The considered dynamic fed‐batch 387 
fermentation model for nosiheptide production was developed by Niu and colleagues (2013,2016) 388 
and based on their experimental setup [26,27]. While experimental runs are out with the scope of this 389 
study, it is important to validate regressed model parameters and corroborate dynamic optimization 390 
results presented here with experimental campaigns of the pilot fermentation process. 391 

5. Conclusions 392 

The fed‐batch production of nosiheptide is considered to circumvent mass transfer inhibition at 393 
excessive substrate concentrations in the reactant broth, where the reactor is only partially filled 394 
initially and substrate supplemented over time. Design space investigation and visualization via 395 
dynamic simulation of a large set of possible reactor feedrate profiles illustrated trade‐offs and the 396 
need for systematic dynamic optimization due to the high process sensitivity to the chosen reactor 397 
feedrate policy. Dynamic optimization has been performed for minimization of batch time and 398 
inverse yield (for maximization). A ε‐constraint approach has been implemented, treating batch time 399 
as a secondary objective which is converted to an inequality constraint that is gradually relaxed as 400 
the problem is re‐solved to maximize nosiheptide production. Orthogonal polynomials on finite 401 
elements are used to approximate the control and state trajectories allowing the continuous problem 402 
to be converted to NLP form. Optimal operation requires the feed rate to be manipulated in such a 403 
way that the inhibitory mechanism of the substrate can be avoided; however, the model validity 404 
under these conditions (no substrate accumulated) must first be ensured to realize these results. 405 
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Nomenclature 415 
Acronyms 416 
AE   Algebraic Equation 417 
ANN  Artificial Neural Network 418 
API   Active Pharmaceutical Ingredient 419 
CHO   Chinese Hamster Ovary 420 
DAE   Differential Algebraic Equation 421 
IPOPT  Interior Point Optimizer 422 
mAb   Monoclonal antibody 423 
MRSA  Methicillin‐Resistant Staphylococcus Aureus 424 
NLP   Nonlinear Programming 425 
ODE   Ordinary Differential Equation 426 
UTI   Urinary Tract Infection 427 
VRE   Vancomycin‐Resistant Enterococci 428 

Variables 429 

Latin Letters 430 
Ad   Death pre‐exponent (–) 431 
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Ag   Growth pre‐exponent (–) 432 
CO   Dissolved oxygen concentration (g L‐1) 433 
CO*   Saturation dissolved oxygen concentration (g L‐1) 434 
D   Fermentation vessel diameter (m) 435 
d   Agitator diameter (m) 436 
Ed   Energy barrier to death (J mol‐1) 437 
Eg   Energy barrier to growth (J mol‐1) 438 
F   Reactor feeding rate (L hr‐1) 439 
g   Inequality constraint vector 440 
gf   Terminal inequality constraint vector 441 
h   Equality constraint vector 442 
hf   Terminal equality constraint vector 443 
K   Number of collocation points 444 
K1, K2  Constants in Eq. 2 445 
Kd   Monod constant (g L‐1) 446 
Kh   Equilibrium constant (hr‐1) 447 
KO   Contois saturation constant of dissolved oxygen (–) 448 
KS   Contois saturation constant of substrate (–) 449 
KLa   Volumetric oxygen transfer coefficient (hr‐1) 450 
mO   Maintenance coefficient of dissolved oxygen (g g‐1 hr‐1) 451 
mS   Maintenance coefficient of substrate (g g‐1 hr‐1) 452 
MSE   Mean Squared Error 453 
N   Number of control elements 454 
n   Stirring rate (rpm) 455 
P   Product concentration (g L‐1) 456 
Pi   Stirring power (W) 457 
Q   Fermentor ventilation volume (m3 hr‐1) 458 
R   Universal gas constant (= 8.314 J mol‐1K‐1) 459 
S   Substrate concentration (g L‐1) 460 
SSE   Sum of Squared Errors 461 
T   Temperature (K) 462 
t   Time (hr) 463 
∆t   Time step (hr) 464 
tf   Final time (hr) 465 
t0   Initial time (hr) 466 
u   Control variable vector 467 
uL   Control variable lower bound vector 468 
uU   Control variable upper bound vector 469 
V   Fermentation broth volume (L) 470 
VF   Fermentor volume (L) 471 
X   Biomass concentration (g L‐1) 472 
x   State variable vector 473 
XMAX   Maximum biomass concentration (g L‐1)  474 
xL   State variable lower bound vector 475 
x0   State initial condition vector 476 
xU   State variable upper bound vector 477 
YP/O   Yield constant of product vs. dissolved oxygen (g g‐1) 478 
YP/S   Yield constant of product vs. substrate (g g‐1) 479 
YX/O   Yield constant of biomass vs. dissolved oxygen (g g‐1) 480 
YX/S   Yield constant of biomass vs. substrate (g g‐1) 481 

Greek Letters 482 
β   Specific production rate (g g‐1 hr‐1) 483 
ε   Batch duration constraint (hr) 484 
θ   Parameter vector 485 
φ   Objective function 486 
Ωj   jth-order polynomial 487 
ψj   jth-order Lagrange polynomial 488 
µd   Specific death rate (hr‐1) 489 
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µg   Specific growth rate (hr‐1) 490 
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