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Abstract

Detecting temporal extents of human actions in videos
is a challenging computer vision problem that requires
detailed manual supervision including frame-level labels.
This expensive annotation process limits deploying action
detectors to a limited number of categories. We propose
a novel method, called WSGN, that learns to detect ac-
tions from weak supervision, using only video-level labels.
WSGN learns to exploit both video-specific and dataset-
wide statistics to predict relevance of each frame to an
action category. This strategy leads to significant gains
in action detection for two standard benchmarks THU-
MOS14 and Charades. Our method obtains excellent re-
sults compared to state-of-the-art methods that uses similar
features and loss functions on THUMOS14 dataset. Simi-
larly, our weakly supervised method is only 0.3% mAP be-
hind a state-of-the-art supervised method on challenging
Charades dataset for action localization.

1. Introduction
Action classification (e.g. [2, 5, 10, 15, 17, 30, 37]) is

an extensively studied problem in video understanding with
important applications in surveillance, human-machine in-
teraction and human behavior understanding. Recent ad-
vances in action classification can be attributed to power-
ful hierarchical learnable feature representations [15, 30],
introduction of large video datasets [15, 16], the use of
motion information (e.g. optical flow [30]) and 3D convo-
lutions [35]. While recent methods such as [5, 36] have
shown to obtain good action classification performance in
various benchmarks, a remaining challenges in video un-
derstanding is to localize and classify human actions in
long untrimmed videos. Recent methods [6, 39] address
localization of actions in long videos in a supervised man-
ner and require action labels for each frame. The super-

(a) Video-specific (local) frame selection

(b) Dataset-specific (global) frame selection

Figure 1. Our method makes use of both video specific (i.e. lo-
cal) and dataset specific (i.e. global) score prediction distributions
to identify the most relevant set of frames for a given video in a
weakly supervised manner for action localization and detection.
The likelihood of a frame (shown in green) for an action cate-
gory (“high-jump”) is obtained by comparing it to the other frames
from the same video (local) and frames from other training videos
(global) by using two Gaussian normalization functions.

vised paradigm has two shortcomings. First, frame labels
are significantly more tedious and expensive to obtain than
video-level labels. Second, temporal extent of actions are
not as clear as spatial extents of objects (see Figure 2 for
an illustration). For instance, Sigurdsson et al. [28] report
only 58.7% agreement for temporal boundaries of actions
in MultiTHUMOS datasets among human annotators. To
address these issues, we propose a novel weakly supervised
action detection method using only video-level labels. Our
method is weakly supervised [40] because it does not use



Figure 2. Example videos for action detection contain “tennis-swing” and “hand-wave” in top and bottom rows respectively. Labeling
start and end frames of these actions requires not only a global understanding of these actions but also a local comparison of the candidate
frames with their temporal neighbors in the same video.

any frame-level labels during training, however, it outputs
accurate frame-level labels at test time.

Our model is trained to select and classify relevant
frames for a given action using video-level labels. It selects
relevant frames using a deep neural network named frame
selection module which acts as a proxy for action localiza-
tion. At the same time, it classifies relevant frames using
another deep neural network, namely classification module.
Therefore, our model contains two modules (streams), one
for frame selection i.e., frame selection module, and one for
classifying each frame. Then our model fuses information
from both modules to make a video level prediction and
trains end-to-end using only video-level labels.

Inspired by the challenging task of predicting tempo-
ral boundaries of “hand-wave” action in the bottom row
of fig. 2, we hypothesis that accurate action prediction re-
quires not only global understanding of an action class but
also a closer look at the frames of a video and local compar-
ison between its frames. We build the frame selection mod-
ule on this idea such that it assigns a weight to each frame
prediction based on both local and global statistics. The lo-
cal one is realized by a local Gaussian function that picks
the most likely frames for an action class and ignores out-
liers within a video. The predictions that have smaller and
larger confidences with respect to the local mean prediction
for an action class are normalized (regularized) using a lo-
cal Gaussian function. This operation is local because the
selection involves analysis of predictions among the frames
of a single video. This allows us to find the most robust set
of predictions for a given action class within a video.

Similarly, the global frame selection strategy involves
picking the most relevant frames for an action class from a
video by comparing them to global action statistics that are
learned over all the videos of that action class. This strategy
selects frame predictions that are consistent with globally
learned statistics. The analysis of local and global modules
are combined to obtain a joint distribution over frames and

action classes (see fig. 1). Finally the outputs of the frame
selection and classification modules are combined.

In summary, our contributions are twofold: i) we pro-
pose a novel frame selection process for weakly super-
vised action localization using Gaussian normalization, ii)
our Gaussian normalization of scores using both local and
global statistics are effective for action localization. Our
contributions result in a good improvement in action local-
ization and detection in several challenging benchmarks ob-
taining results that are competitive with recent weakly su-
pervised techniques.

2. Related Work

Weakly supervised action localization Weakly supervised
action classification and localization has been studied in
prior work [3, 4, 11, 13, 19, 26, 27, 32]. In [3, 4, 11], the
authors use movie scripts to obtain action labels and their
approximate temporal boundaries from untrimmed videos
and use them as a means of supervision to train action clas-
sifiers with various discriminative clustering algorithms.
Duchenne et al. [11] propose a discriminative learning for-
mulation that simultaneously refines temporal action loca-
tions with classifier parameters. Bojanowski et al. [3, 4]
extend [11] by additionally exploiting the order of actions
in a video clip to ensure that the classifier predictions are
aligned with the orderings in the scripts.

Extended Connectionist Temporal Classification [13]
utilizes weak annotations for action classification by align-
ing each frame with a label in a recurrent network frame-
work. In contrast to [13] that learns from an ordered list
of action labels per video, our method learns to localize ac-
tion categories from weaker supervision, an unordered set
of actions. In principle, such constraints can be incorpo-
rated to our learning formulation as constraints. A sim-
ple method that implicitly learns to find relevant parts of
an object/action after randomly suppressing random parts
of images/videos is presented by Singh et al. [32]. While



this method is shown to be useful for preventing the net-
work to focus only on discriminative segments, the final
model does not achieve a better action classification per-
formance. A more effective weakly supervised action de-
tection method that directly predicts the action boundaries
using outer-inner-contrastive loss to parameterize classifi-
cation loss in terms of temporal boundaries is presented by
Shou et al. [26]. Nguyen et al. [19] propose a loss function
comprised of two terms that minimize the video-level action
classification error and enforce the sparsity of the segment
selection.

Recently Paul et al. [20] proposed to employ an
attention-based mechanism to select relevant frames and
apply pairwise video similarity constraints in a multiple
instance framework. Liu et al. [18] also utilizes an at-
tention module along with multiple classification streams,
each can focus on different discriminative aspects of ac-
tions. As a matter of fact, our model also consists of mul-
tiple specialized streams, however it differs significantly
in terms of temporal modeling functions such as Gaus-
sian and softmax normalization functions to select relevant
frames in a weakly supervised manner. We compare to
[32, 26, 19, 20, 18] quantitatively in section 4.

Wang et al. [38] also employ a two stream method
based on [1] for video action detection and localization.
Our method differs to Wang et al. [38] as our method not
only considers local video statistics but also global-dataset-
specific score distributions which is crucial for accurate ac-
tion localization. As also observed in [19], the frame se-
lection mechanism in [38] is limited to select few examples
due to the exponential term in softmax operator. While such
a mechanism has been shown in [1] to perform well when
there are limited instances for object detection, it is not as
effective to localize actions which typically comprised of
many frames.

Weakly supervised action segmentation [22, 9] is an-
other closely related topic to weakly supervised action de-
tection. It focuses on aligning dense textual descriptions
(e.g. recipes) such as action transcripts with the frames of
the corresponding video (e.g. cooking video) by predicting
temporal boundaries between different actions. Richard et
al. [22] use context modeling with context free grammar to
perform action segmentation. Ding et al. [9] use a temporal
convolutional feature pyramid to find coarse ground truth
labels and a iterative refinement step using transcripts.

Weakly supervised object localization Our work is also
related to the methods in object detection that learn to lo-
calize object instances spatially in still images from image-
level labels only. The recent work in weakly supervised ob-
ject detection propose better deep network architectures [1],
initialization [33], learning strategies [7] that are less prone
to over-fitting, use of various advanced cues such as abject-
ness [8], object size [24] and co-occurrence [25].

3. Problem, approach and model
In this section we present our Weakly Supervised Gaus-

sian Network (WSGN) for action localization. In sec-
tion 3.1, we present our problem definition, and then in sec-
tion 3.2 we present a simple naive approach to weakly su-
pervised action localization. Finally, in section 3.3, we
present our approach and the methodology.

3.1. Weakly supervised action localization problem

Let V = 〈I1, I2, · · · It, · · · , IT 〉 be a sequence of frames
where It ∈ I = R3×H×W is the tth frame of the video
V . T denotes the video length which vary from video to
video. Assume that we are given a set of N training videos
and its video-level labels {V i,yi} where y ∈ Y = {0, 1}C
indicates the presence/absence of human action classes as a
C-dimensional ground-truth binary vector for each train-
ing video V . The qth element of the vector y is set to
one when qth human action is present in the video, oth-
erwise it is set to zero. We wish to learn a function that
predicts the presence/absence of human action classes not
at video-level but at frame-level for a testing video i.e. to
predict C-dimensional binary vector yt for each frame It.
The learning becomes weakly supervised as what is being
predicted at test time is more detailed than what is used for
training [40]. We predict frame label vector (i.e. yt) at test
time for each frame using a model that is trained with video-
level labels y. Therefore, our action localization task (i.e.
predicting yt for each frame) is weakly supervised.

Let us denote a trainable feature extractor that returns a
M -dimensional vector for each frame by f(It, θ) : I →
Ω = RM . Here θ are the learned parameters of f . A classi-
fication network h(·, θcls) : Ω→ Y takes the feature vector
f(It, θ) and returns a C-dimensional action classification
score vector. Here θcls are the trainable parameters of h.
Action classification score vector for frame It is then ob-
tained by the joint model h(f(It)). Next, we present a sim-
ple weakly supervised action localization method which we
use as a baseline in our experiments.

3.2. Naive weakly supervised action localization

When frame-level action class annotation vectors yt are
known for the frames of training videos, one can train f
and h to minimize binary cross-entropy loss at frame-level.
As we assume that no ground truth frame-level labels are
available for training, we are limited to use video-level label
vectors y to train our action localization model that predicts
yt at test time.

A simple strategy to obtain a video-level prediction ŷ
from a sequence of frames is to average frame-level predic-
tions over the whole sequence as follows:

ŷ =

T∑
t=1

1

T
σ(h(f(It, θ), θcls) (1)



Figure 3. Illustration of our weakly supervised Gaussian action detection framework (WSGN).

where T is the number of frames in the sequence and can
vary from video to video, σ is the softmax normalization
function over predicted score vector for each frame. To
train such a model, we minimize the binary cross entropy
loss L(y, ŷ) over predicted probability vector (ŷ) and the
ground truth. During testing, we use function h(f(It)) to
label each frame. However, this method naively considers
an equal importance for each frame to obtain a video level
score prediction by simply averaging their scores. We de-
note this approach the Naive Weakly Supervised action lo-
calization. Here we hypothesize that a good model should
carefully choose the “relevant” frames for the action and
then average the scores of only those.

3.3. Our approach

Our approach is to learn another network in addition to
the “classification module” (i.e. σ(h(f(It, θ), θcls)) that can
identify the relevance of each frame for the task of video ac-
tion classification. We call this network “frame selection
module” and denote it by function g(It, V, θg) where θg
is the learnable parameter vector–see fig. 3. This network
function acts as a proxy for action localization and weighs
each frame per action class depending on the relevance of
the frame to recognize the action.

Similar to h, g function also returns a C-dimensional
weight vector for each frame It. However, g function dif-
fers to the classification module function σ ◦ h ◦ f in two
aspects. First, its objective is to find frames that are rele-
vant to each action class. Second, while the classification
module h scores each frame independent of other frames,
the frame selection module scores each frame relatively by
considering frames both from the video V and the entire
dataset. We describe the details of the relative scoring func-
tions in the following paragraphs.

The final video-level prediction is obtained by a
weighted average of all frame classification predictions
where the weights are defined by g as shown in equation 2.
Here � is the element-wise product between weights and
classification probability vectors.

ŷ =
1

T

T∑
t=1

g(It, V, θg)� σ(h(f(It, θ), θcls)) (2)

The video-level prediction ŷ can now be used with a
binary cross entropy loss L(y, ŷ) and enables our action
localization method to be trained with video-level labels.

During inference, we simply skip this temporal averag-
ing step and instead use g(It, V, θg)�σ(h(f(It, θ), θcls) to
obtain frame-level predictions and perform action localiza-
tion by using these scores. In next part, we discuss how to
formulate a good g function for the task of action localiza-
tion.

WSGN: Gaussian frame selection module. Here we ex-
plain the frame selection module g which is complemen-
tary to the classification module σ(h(f(It, θ), θcls)). To
this end, we design the frame selection module in a way
that it can predict the relevance of a frame by a comparative
analysis to the rest of the frames. In particular g function
consists of three components which are responsible for (i)
extracting features from sequence of frames, (ii) predicting
a C-dimensional score vector for each frame based on the
extracted features, (iii) normalizing those score vectors to
select frames. For the first component, g shares the feature
extractor f with the classification module for computational
efficiency. For the second part, g has a dedicated classi-
fier also denoted by h(·, θdet) which takes the feature f(It)
and returns a C-dimensional action selection score vector
but parameterized a different set of parameters θdet. As
the input and output dimensions of h(·, θdet) are same with
h(·, θcls), we simply use the same function structure h(·, ·)
for brevity. The frame selection score vector obtained by
h(f(It, θ), θdet) is then denoted by xt and the class-specific
score for the qth action class is then denoted by scalar xq

t .
The objective of frame selection module g(·) is to select

relevant frames for a given action. To do so we make use
of both video-specific and dataset-wide statistical informa-
tion to find frame-action predictions that are most probable
using normalization functions. These normalization func-
tions compare predicted scores for each frame against other
frames to obtain a likelihood estimate for each prediction
h(f(It), θdet). However, the aim here is not to obtain an
estimate for the presence of action class q in frame It as
done by the classification module h(f(It), θcls) but to es-



timate a likelihood of each prediction h(f(It), θdet) with
respect to local and global score distributions. Higher the
likelihood estimate of a prediction with respect to others,
a higher weight is given by frame selection module, to the
corresponding classification prediction in eq. (2). Using the
feature extractor f(·, θ), frame selection function h(·, θdet)
and normalization functions, our frame selection module
g(·) finds relevant frames for each action class. Next we de-
scribe three normalization functions including local (ZLoc),
global (GLoc) and softmax (SLoc) that are used with our
WSGN method.
ZLoc: Local variant of WSGN The local variant of
WSGN model uses a Gaussian normalization function to
find weights for each prediction using a likelihood estimate
over the frames of a single video. We estimate the likeli-
hood of frame selection scores xqt for qth class relative to
all other frames within the same video t = {1, 2, · · · , T}
using a Gaussian likelihood function as follows:

zqt = exp(−[
xqt − µq

z

sqz
]2). (3)

Here, µq
z and sqz are the statistical mean and the standard-

deviation of all frame selection scores for qth class obtained
by h(f(·, θ), θdet) for video V . In fact zqt is a probability es-
timate of xqt with respect to all other frame selection scores
within the video. It assigns lower probabilities to those pre-
dictions that are very different from the mean prediction. If
xqt is very large compared to the mean, it is considered as an
outlying prediction. This encourages our model to identify
not only the most salient frame for the action but also the
whole temporal extent of the action.

By using eq. (3), g function assigns a class-specific
weight zqt to each frame It which is further multiplied with
the classification prediction (i.e. from σ(h(f(It, θ), θcls))),
as indicated in eq. (2). Let us denote this normalization
operation by gzloc(·) which takes all action selection score
vectors (xt for all t = {1, 2, · · · , T}) and returns a weight
vector zt for each frame. Then the function g(It, V, θg)
would return a weight vector zt where

g(It, V, θg) = gzloc(·) ◦ h(·, θdet) ◦ f(·, θ)(It, V ). (4)

The gzloc(·) function does not have any learnable parame-
ters, thus learning the local variant of our method (denoted
by ZLoc or Zloc) involves optimizing three sets of parame-
ters θ, θcls and θdet using the sbinary cross-entropy loss.
GLoc: Global variant of WSGN. While ZLoc variant
of our WSGN method considers statistics from frames of
a single video to normalise scores, the global variant one
GLoc compares each frame frame selection score xqt with
the frames from all the training videos. As a direct com-
parison to all frames is computationally expensive and not
even possible within the memory of the standard GPUs, we

instead choose to use dataset-wide or global statistics with a
Gaussian function per action category over the frame selec-
tion scores. To this end we propose to learn a mean vector
(µq

l ) and standard deviation vector (sql ) per action category
jointly along with the other network parameters. The sub-
script l of µq

l is used to indicate that they are learned but not
statistically computed over the scores. Both µq

l and sql are
learned using the training samples and therefore, represen-
tative of the global dataset specific information. Our new
GLoc normalization operation is then given by eq. (5).

lqt = exp(−[
xqt − µ

q
l

sql
]2) (5)

The associated normalization function is denoted by
ggloc(·) which takes the class selection score vector xt as
input. The weight vector returned by global GLoc approach
is denoted by lt = g(It, θg) where

g(It, θg) = ggloc(·, µl, sl) ◦ h(·, θdet) ◦ f(·, θ)(It). (6)

In contrast to local Gaussian approach (ZLoc), in GLoc, we
learn parameter vectors µl and sl in addition to θ, θcls and
θdet. The weight lt is estimated not from a single video
but all the training samples. If the frame selection score
xqt is more likely w.r.t. global score distribution, then lqt
will be higher and the prediction from the classification path
σ(h(f(It, θ), θcls)) for class q is highly weighted.
SLoc: Softmax variant of WSGN. For completeness, we
also propose to use a commonly used normalization func-
tion, softmax but apply it to normalize the video specific
scores xqt over the frames of a video but not over the feature
channels so that the sum of the frame selection scores are
normalized to 1 for a video:

sqt =
ex

q
t∑

i=1 e
xq
i

(7)

The associated normalization function is then denoted by
gsloc.
WSGN: Complete model. We make use of all
three normalization function, namely the local ZLoc,
global GLoc and softmax-based SLoc variants in our
WSGN. To integrate the predictions from three streams,
we propose a simple averaging strategy, i.e. g =
avg(gzloc(·), ggloc(·), gsloc(·)) ◦ h(·, θdet) ◦ f(·, θ), where
avg denotes element-wise averaging over three normaliza-
tion functions. The combined class-specific frame selection
weight for frame It can simply be obtained by the aver-
age of weights i.e. 1

3 (zqt + lqt + sqt ). Now we can finally
combine the predictions of classification module denoted by
σ(h(f(It, θ), θcls)) and the frame selection module by g(·).
A visual illustration of our method is shown in fig. 3. For
action detection and localization, we use the score returned
by g(It, V, θg)� σ(h(f(It, θ), θcls) for each frame.



4. Experiments
4.1. Datasets

We evaluate our WSGN method on two standard ac-
tion localization benchmarks, namely the Charades [29] and
THUMOS14 [14].
Charades [29] is composed of 9,848 indoor videos with an
average length of 30 seconds, comprising 157 action classes
from 267 different people that are recorded in their homes
and performing everyday activities. Each video is anno-
tated with action labels and duration which allow evaluation
for action localization. We use a standard evaluation proce-
dure introduced in [27] for action localization using fixed
train (7985) and validation (1863) splits. As done in [27],
we predict a score for 157 classes for 25 equally spaced
time-points in each video and then report action localiza-
tion mAP.
THUMOS14 [14] dataset consists of very long videos (av-
erage length is 3.5 minutes) having 20 human action classes
for action detection task. In this dataset, we follow the eval-
uation procedure in the previous work [32, 26] to provide a
fair comparison. Concretely, we use the validation set con-
taining 200 untrimmed videos for training and evaluate our
model on the test set containing 213 videos.

4.2. Implementation details

Features and networks: We use two convolutional neural
networks; namely the VGG16 [31] and ResNet34 [12] that
are pretrained for ImageNet classification task [23] for Cha-
rades dataset. These are trained end-to-end. We use Ima-
geNet pre-trained I3D (I3D-I) and UntrimmedNet [38] fea-
tures for THUMOS14 experiments. Furthermore, we eval-
uate our methods using I3D networks [5] that is pretrained
for video action classification on Kinetics dataset [16] (de-
noted by (I3D-K)) for both THUMOS14 and Charades
experiments to obtain competitive state-of-the art results.
These are only fine-tuned and not trained end-to-end. For
all these networks, we take the output before the classifica-
tion layer and include a dropout layer with a dropout rate of
0.5 for image classification networks and a dropout rate of
0.8 for I3D networks. These serve as our feature extractor
network f(, θ). As the feature classification networks (i.e.
h(, θcls) and h(, θdet)), we use a simple two layered neural
network to produce classification scores (hidden layer size
is set to the input feature size).

Training details: We use a learning rate of 10−4 for
ResNet34, and I3D and a learning rate of 10−3 for VGG
and trained for a maximum of 80 epochs. We use a batch
size of 128 videos and 32 sub-batches and a weight decay
of 0.0005. Because some videos are very long, we sample
every 5th frame and perform a temporal data augmentation
(vary the start of the sampled sequence from 1st to 15th
frame). Only for THUMOS14, during inference, we use all

VGG16 Resnet34 I3D-K

Supervised 9.0 10.1 18.7

Naive W. Sup. (eq. (1)) 5.2 5.2 13.7
WSGN - SLoc 6.0 7.1 14.9
WSGN - ZLoc 8.7 9.0 16.8
WSGN - GLoc 8.5 9.3 17.2
WSGN - SLoc + GLoc 8.7 9.4 18.2
WSGN - ZLoc + GLoc 8.8 9.4 18.2
WSGN - Complete 8.9 9.7 18.3

Table 1. Action localization performances in mAP(%) for super-
vised and weakly supervised methods with different base networks
on Charades by using only RGB input. WSGN - SLoc: Soft-
max normalization, WSGN - ZLoc: local Gaussian normalization,
WSGN- GLoc: global parametric Gaussian normalization. 2

frames, however we set the mini-batch size to one to make
sure we fit videos in GPU memory of (4×16GB). We use
standard, data augmentation at video frame level (flipping,
random cropping, etc.) but apply the same augmenting op-
eration for the entire video to obtain a temporally smooth
video after data augmentation.

4.3. Ablation study on Charades dataset.

In this section we compare several baselines and vari-
ants of weakly supervised models presented in section 3 on
Charades dataset. We experiment with three network archi-
tectures, namely VGG16, Resnet34 and I3D-K. For I3D-K,
we use bi-linear interpolation to obtain frame-wise feature
representation and fine-tune with video level annotations.

We analyze the impact of different normalization func-
tions i.e. ZLoc, GLoc and SLoc of our WSGN. We compare
our method with (1) RGB-based naive weakly supervised
baseline (Naive) which corresponds to eq. (1). (2) We also
report results for weakly supervised action localization only
with Softmax normalization denoted by SLoc, (3) weakly
supervised action localization only with local Gaussian nor-
malization denoted by ZLoc (4) weakly supervised action
localization only with global parametric Gaussian normal-
ization denoted by GLoc. Our complete model shown
in Figure 3 is denoted by WSGN-Complete. We also report
results for fully Supervised case where we train a model us-
ing frame level annotations. In this case, we minimize the
a combinations of losses L(y, ŷ) +

∑
t

1
T L(yt, ŷt) where

ŷ = 1
T

∑
t σ(h(f(It, θ), θcls) and ŷt = σ(h(f(It, θ), θcls).

Results are shown in Table 1.
Several interesting observations can be listed based on

these results. First, we obtain considerable improvements
in action localization using our WSGN-Complete method
over naive approach (improvement of 3.7 mAP for VGG16,
4.5 mAP for Resnet34, and 4.6 mAP for I3D). Interest-
ingly, our method seems to gain more when much richer
network architectures are used as the best improvement over
Naive Weak Supervision (eq. (1)) is obtained with I3D net-
work. Secondly, as an individual method, global Gaussian-



based WSGN-GLoc seems the most effective one. Local
Gaussian-based normalization method (ZLoc) is also as ef-
fective as GLoc method. Because SLoc uses softmax selec-
tion, its output is sparse and thus it could select only few
important frames rather than entire coverage of an action.
This leads to relatively low performance for Sloc. Combi-
nation of both ZLoc and GLoc is considerably more effec-
tive. Combination of all normalization methods seems to
be the most beneficial in this dataset for action localization.
Our weakly supervised results are surprisingly as good as
the fully supervised method on all three network architec-
tures indicating the effectiveness of our novel frame selec-
tion module. We conclude that WSGN weakly supervised
action localization is effective on Charades dataset across
wide variety of base network architectures.

4.4. Ablation study on THUMOS14.

In this section we evaluate our method on THUMOS14
dataset using ImageNet pretrained I3D (I3D-I). We extract
features from both RGB and optical flow streams follow-
ing the protocol used in [5] and then use bi-linear interpo-
lation to obtain frame-wise feature representation and fine-
tune with video level annotations. We evaluate varying the
detection IoU threshold using the standard evaluation pro-
tocol as in [14]. As our method is only weakly supervised,
to generate action detection boundaries i.e. start and end
of each action, we make use of two heuristics. First, we
threshold scores to find candidate frames and then generate
candidate segments using those consecutive frames that has
a score greater than the threshold. It should be noted, be-
cause we use local/global Gaussian normalization, returned
scores are already managed to get rid of outliers and very
small scores. Secondly, we use only those candidate seg-
ments that are longer than one second for evaluation. We
report results in Table 2.

We observe a similar trend to Charades dataset where all
variants of our WSGN is effective than Naive Weak Super-
vision (eq. (1)) method. Interestingly, even if our supervised
results are far better than our weakly supervised method,
obtained results are very encouraging. The improvement
we obtain over Naive Weak Supervision (eq. (1)) method
is comparatively greater than the gap between supervised
performance and our WSGN (SLoc + ZLoc + GLoc). We
conclude that our method is very effective for weakly su-
pervised action detection in THUMOS14 dataset.

4.5. Comparison to prior state-of-the art.

We compare with several weakly supervised action de-
tection methods that have been evaluated on THUMOS14
dataset [34, 32, 38, 26, 19, 20, 18] in Table 3. In particular,
some very successful recent methods such as STPN [19],
W-TALC [20] and Comp [18] use I3D pretrained on Ki-
netics (I3D-K). Therefore, we report results with I3D-K

Method 0.1 0.2 0.3 0.4 0.5

Supervised 59.7 51.9 47.4 40.1 32.8
Naive W. Sup. (eq. (1)) 42.9 36.6 28.0 20.9 14.2
WSGN - SLoc 45.3 38.9 31.0 23.5 16.3
WSGN - ZLoc 54.5 47.8 38.8 28.9 20.0
WSGN - GLoc 45.2 38.8 30.2 22.4 14.6
WSGN - SLoc + GLoc 48.4 42.5 34.1 26.0 18.0
WSGN - ZLoc + GLoc 54.7 48.6 39.4 29.4 20.7
WSGN - Complete 55.3 47.6 38.9 30.0 21.1
Gap 4.4 4.3 8.5 10.1 11.7
Improvement 12.4 11 10.9 9.1 6.9

Table 2. Action detection performance on THUMOS14 dataset
using I3D-I for variants of our weakly supervised WSGN ac-
tion detection method. We change IoU threshold from 0.1 to
0.5 and report results. WSGN - SLoc: Softmax normalization,
WSGN - ZLoc, local Gaussian normalization, WSGN- GLoc:
global parametric Gaussian normalization. The Gap between the
supervised results and our WSGN (SLoc + ZLoc + GLoc) is
shown. The improvement obtained over Naive Weak Supervision
(eq. (1)) method is also shown.

Method 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Supervised faster-rcnn [6] 59.8 57.1 53.2 48.5 42.8 33.8 20.8
W

ea
k

Su
pe

r.
LAF [34] 12.4 11.0 8.5 5.2 4.4 – –
Hide-and-seek [32] 36.4 27.8 19.5 12.7 6.8 – –
UntrimmedNets [38] 44.4 37.7 28.2 21.1 13.7 – –
AutoLoc [26] – – 35.8 29.0 21.2 13.4 5.8
STPN [19] (I3D-K) 52.0 44.7 35.5 25.8 16.9 9.9 4.3
W-TALC [20] (I3D-K) 55.2 49.6 40.1 31.1 22.8 7.6
Comp- [18] (I3D-K) 57.4 50.8 41.2 32.1 23.1 15 7.0
Our (I3D-K) 55.3 48.8 37.2 30.2 21.1 13.8 8.2
Our+CASL (I3D-K) 57.9 51.2 42.0 33.1 25.1 16.7 8.9
W-TALC [20] (UNTF) 49.0 42.8 32.0 26.0 18.8 – 6.2
WSGN (UNTF) 51.1 44.4 34.9 26.3 18.1 11.6 6.5

Table 3. Action detection performance on THUMOS14 dataset
for various weakly supervised state-of-the-art methods. We also
show results for supervised state-of-the-art method [6] as a refer-
ence. We also compare with s.o.a. W-TALC [20] with Untimmed-
Net [38] features (UNTF).

and UntimmedNet [38] features (UNTF). Additionally, we
make use of CASL loss presented in [20] to further im-
prove our results. Our method trained with the CASL loss
outperforms all other methods. Also our method without
CASL loss is better than recent effective methods such as
STPN [19] which relies on feature attention over frame
features similar to us. Indeed, the idea of co-activity loss
presented in W-TALC [20] is effective and complimentary
to our method. In-fact, state-of-the art methods such as
recently presented [18] might be complimentary to us as
well. We leave the use of diversity loss [18] for future
work. We obtain better results with UNTF features com-
pared to [20]. Especially, for IoU of 0.1, our method is
only 1.9 mAP behind state-of-the-art faster-rcnn-temporal-
localization [6]. However, supervised methods perform
way better than weakly supervised methods for larger IoU
thresholds. This is not surprising as the task becomes dif-
ficult with larger IoUs. Nevertheless, we obtain somewhat



Method Network Input Loc.
Su

pe
rv

is
ed

Temporal Fields [27] VGG16 RGB 9.0
Two Stream++ [30] VGG16 RGB+OF 10.9
Temporal Fields [27] VGG16 RGB+OF 12.8
Super-Events [21] I3D RGB 18.6
Super-Events [21] I3D RGB+OF 19.4

W
k.

Su
p. WSGN (ours) VGG16 RGB 8.9

WSGN (ours) ResNet34 RGB 9.7
WSGN (ours) I3D RGB 18.3

Table 4. Comparison to the state-of-the action localization meth-
ods on Charades dataset. All other methods we compare with
are fully supervised in which frame level annotations of Charades
dataset are at disposal during the training process. Our method is
only “Weakly Supervised” (WS) and obtain competitive results.

encouraging results even compared to state-of-the-art super-
vised methods for smaller IoU thresholds while obtaining
some encouraging results even for very large IoU of 0.7–
see Table 3.

To the best of our knowledge, no prior weakly supervised
method have evaluated on challenging Charades dataset for
action localization. Therefore, we only compare with super-
vised methods, which actually used frame level annotations.
Results are reported in Table 4. Notably, our method obtains
competitive results compared to fully supervised methods
using both VGG16 and I3D architectures. Effective Tem-
poral Fields [27] method obtains 9.0 mAP using VGG16
and RGB stream while our weakly supervised method is
slightly worse (8.9 mAP). Similarly, our WSGN with I3D
feature extractor performs only 0.3 mAP worse than super-
vised Super-Events [21] method. This is an indication of the
impact of our novel Gaussian normalization-based frame
selection module. However, our results are 1.1 mAP lower
than Super-Events [21] when used with both RGB and op-
tical flow (although we don’t use optical flow for Charades
dataset). We conclude that our weakly supervised method
is effective for video action localization (Charades dataset)
and detection (THUMOS14 dataset).

4.6. Analysis of localization components.

Our WSGN method has several computational outputs
that predicts categorical information. For example the ac-
tion classification score h(, θcls) ◦ f(, θ), and action selec-
tion score h(, θdet) ◦ f(, θ). The global normalization func-
tion outputs ggloc(), the local normalization outputs gzloc()
and softmax normalization outputs gsloc() also returns C-
dimensional weights. Overall, the frame selection module
g(·) outputs C-dimensional weight vector for each frame by
taking average of all normalization functions. Finally, both
classification and frame selection module g(·) outputs are
multiplied to get the frame-wise final prediction which we
use for action localization. We perform an analysis on these
outputs and report action detection performance in Figure 4
using THUMOS14 dataset.

First, we see that all normalization outputs do not per-

Figure 4. Dissecting the model outputs for action detection.

form as good as classification output h(, θcls) ◦ f(, θ). This
is not surprising as the goal of normalization is simply
frame selection for each action. However, the classification
module outputs performs satisfactorily and already obtains
better results than Naive Weak Supervision (eq. (1)) method
indicating in-fact the addition of frame selection module it-
self helped to improve the classification parameters as well.
This indirectly indicates that, our frame selection module
g(·) help to improve the video representation f(·, θ). The
best results are obtained by the final output indicating the
advantage of having two separate functions for frame selec-
tion and classification.

5. Conclusion

In this paper we propose a weakly supervised action lo-
calization method where both frame selection and classi-
fication are learned jointly with a deep neural network in
an end-to-end manner. We show that accurate action lo-
calization require both video-level and dataset-wide frame
comparison. As demonstrated in our experiments, com-
bination of both local and global strategies result in bet-
ter performance and obtains state-of-the-art results in two
challenging datasets. Importantly our method further nar-
rows down the gap between the supervised and weakly su-
pervised paradigms. For future work we plan to extend
our weakly supervised localization method from temporal
to spatio-temporal domain by exploring higher dimensional
normalization strategies.
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