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Abstract 
Manufacturers are poorly equipped to manage product transition scenarios, when moving from 

one product to another. Most tools consider a mature system, yet during transition and ramp up 

disturbances and inefficiency are common. The traditional methods, using centralised planning 

and control structures are too rigid and often resort to simple dispatch heuristics in this highly 

dynamic environment. Distributed systems have been proposed to leverage their self-organising 

and flexible traits to manage highly volatile and complex scenarios.  

Anarchic manufacturing, a free market based distributed planning and control system, delegates 

decision-making authority and autonomy to system elements at the lowest level; this system 

has previously been shown to manage job and flowshop style problems. The system has been 

adapted to use a dynamic batching mechanism, where jobs cooperate to benefit from 

economies of scale. The batch enables a direct economic viability assessment within the free 

market architecture, whether an individual machine should changeover production to another 

product type. This profitability assessment considers the overall system state and an agent’s 

individual circumstance, which in turn reduces system myopia. Four experiments, including a 

real-world automotive case study, evaluate the anarchic manufacturing system against two 

centralised systems, using three different ramp-up curves. Although not always best performing 

against centralised systems, the anarchic manufacturing system is shown to manage transition 

scenarios effectively, displaying self-organising and flexible characteristics. The hierarchical 

system was shown to be impeded by its simplifying structure, as a result of structural rigidity. 

Keywords: Simulation, planning and control, distributed systems 

1 Introduction 
Manufacturing transition, when moving from producing one product to another or between 

variants, is a traditional problem facing many manufacturers. The existing planning and control 

structures focus on mature steady state environments for high volume and long term 

performance (Colledani, Tolio, & Yemane, 2018); rather than the volatile transitional state, 

where there are many unforeseen disruptions during ramp up (Surbier, Alpan, & Blanco, 2014). 

Despite the volatile environment, there has been little focus on managing the transition period 

with respects to production planning and control. 

Distributed systems have been proposed as radically alternative decision making structures that 

have self-organising, flexible and highly adaptable characteristics (Ma, Nassehi, & Snider, 

2019a); this self-healing trait is highly desirable during the transition and ramp up phase. Given 
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the rise of smart manufacturing exploiting cyber-physical systems and Internet of Things 

technologies that provide low level computation capabilities (Monostori et al., 2016; Napoleone, 

Macchi, & Pozzetti, 2020), distributed systems for planning and control can be realised. To date, 

there have been no previous studies into applying distributed decision-making architectures to 

the transition problem.  

This paper utilises the anarchic manufacturing system (Ma et al., 2019a) and compares it 

against centralised systems in idealised transition scenarios and a real-world automotive case 

study. The generalised product transition scenario simulated, considers a manufacturing system 

that must move from producing one product to another, following predetermined ramp down 

and up curves over a prolonged duration. Orders of the two products are released weekly, these 

products must complete a series of predetermined operations. There are multiple capable 

machines for each operation, with flexible routing between them, that can fulfil the operations; 

but, changing from producing one product to another requires a changeover task. The 

comparison considers WIP and backlog metrics. The artificial scenarios created provide a 

clearer relative comparison between systems as a parameter is varied. The real-world 

automotive case study validates the artificial scenarios by observing similar outcomes. 

The paper aims to show that the anarchic manufacturing system, a distributed planning and 

control structure, can effectively fulfil product transition scenarios; this indicates whether further 

research could explore how to leverage distributed system traits. Section two covers all relevant 

background literature concerning transition, ramp up, batching and relevant planning and 

control structures. The paper then introduces and explains anarchic manufacturing systems, 

including the dynamic batching adaptations for transition scenarios, before explaining the 

comparative centralised systems in section four. Section five explains the experimental 

framework for both artificial and case study scenarios, the experiment findings are presented 

and analysed in section six, finally a conclusion is provided. 

2 Background 
2.1 Transition 

Manufacturing transition concerns a manufacturing facility transitioning to produce a new 

product family or product iteration that is significantly different to the existing product, with 

regards to manufacturing processes; these new processes require a ramp up phase to reduce 

disturbances and improve production efficiency. Product rollover is the replacement of an old 

product with a new product, the rollover decisions consider when to replace the product and 

whether to offer both old and new products simultaneously (Katana, Eriksson, Hilletofth, & 
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Eriksson, 2017). A dual rollover, offering both products simultaneously, can include a transition 

phase when both products are manufactured simultaneously. 

For all manufacturing facilities producing multiple product families, product changeover at 

machines can significantly hinder performance. Changeover typically uses well developed lean 

manufacturing techniques, most notably SMED (Single Minute Exchange of Die) (Mali & 

Inamdar, 2012). It is assumed for this paper that a tooling changeover is required when 

changing between product families, and this is a non-instantaneous task. 

2.2 Ramp up  

The period between development completion and full capacity utilisation is known as production 

ramp up. During this period the production process is poorly understood, causing low yield and 

low production rates (Terwiesch & Bohn, 2001). Ramp up management and control aims to 

achieve rapid time to volume, to ensure fast time to market and full utilisation of production 

capacity, typically the experience gained during production ramp up improves production 

efficiency (Hansen & Grunow, 2015). Ramp up has increasing importance given the rise of 

Reconfigurable Manufacturing Systems (RMS) (Koren & Shpitalni, 2010), product variety and 

volatility entails manufacturing systems need to change product mix more frequently. RMS is 

viewed to improve the ramp up process through rapid reconfiguration using physical 

technologies (Andersen, Nielsen, & Brunoe, 2016), rather than through planning and control 

techniques.  

During production ramp up, product quality and system disturbances are significant and 

common issues. Available quality methods focus on high volume production and long term 

system performance, which lose their effectiveness during system ramp up (Colledani et al., 

2018). On implementing a new production process, whether for a new product, new production 

technology or both, system disturbances are highly likely to lead to unpredictable behaviour 

(Basse, Schmitt, Gartzen, & Schmitt, 2014). These disturbances interrupt production and 

reduce production efficiency and throughput. Insufficient process capabilities of the production 

technology is one of the main reasons for disturbances (Stauder, Buchholz, Klocke, & Mattfeld, 

2014). Ramp up key performance indicators concern throughput time and ramp up efficiency to 

attain quality and quantity targets in a predetermined lead time at the lowest possible cost 

(Surbier et al., 2014). 

Ramp up production is designed, progressing from pilot production to low and then high volume 

production phases (Almgren, 2000), increasing new product volumes whilst decreasing that of 

the old product against defined ramp up and down curves (Surbier et al., 2014). Throughout all 

ramp up phases, learning through experiments is important to achieve a rapid time to volume 
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with high yield. Experience gained can be expressed from the cumulative production volume 

and can be used for production capacity planning (Hansen & Grunow, 2015). Learning aids 

process improvement but reduces capacity in the short-run, resultantly there is a trade-off 

between experiments and production (Terwiesch & Bohn, 2001). Terwiesch and Bohn 

formalised the intertemporal trade-off between short-term opportunity cost of capacity against 

long-term value of learning and examined the trade-off between production speed and quality. 

2.3 Batch production 

Despite the rise of lean manufacturing, there are continuing opportunities and reasons for batch 

production. Batch production manufactures a set of different parts together, designated as a 

batch, where the parts within the batch follow the same production path but each receives its 

own operations (Dolgui, Levin, & Rozin, 2019). The rise in batch production includes 

manufacturers of varying production volumes, batch production provides operational flexibility 

to try out low volumes of new work (Cooney, 2002). These batch production scenarios align 

with the problem faced in transition and ramp up of a new product which require varying volumes 

and requiring operational flexibility. 

The inter-task product changeover at a machine or resource for multi-model production can 

have a significant impact on performance (Nazarian, Ko, & Wang, 2010). Multi-model production 

considers facilities that produce more than one product using the same resources and is not a 

dedicated manufacturing line. In scenarios where there is a significant changeover setup task, 

batch production will reduce the number of changeovers required between product types and 

can improve overall production efficiency. This is likely during transition between two product 

families and extended if the production facility is designed to produce one or the other rather 

than both simultaneously. 

Almgren detailed that batch production was used during the low volume ramp up phase, rather 

than continuous production for developed high volume production phase (Almgren, 2000). This 

is most likely to improve learning during early stage ramp up production and benefit from batch 

production traits. 

2.4 Transition and ramp up production structures 

There are many remedial and investigative methods to improve the ramp up method; for 

example, reducing root cause of instabilities (Basse et al., 2014), pilot programmes (Almgren, 

2000), gamification for learning (Kampker, Deutskens, Deutschmann, Maue, & Haunreiter, 

2014), copy-exactly ramp up strategy for learning (Terwiesch & Xu, 2004). However, these 
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cannot improve the planning and control of a system, they are part of the learning process to 

reduce disturbances and improve production processes.  

Strategic planning methods for transition and ramp up consider temporal plans and task 

allocation; and may use advanced planning simulation tools. Almgren divided the ramp up 

phase into low volume learning to high volume production (Almgren, 2000). More detailed 

methods are used for short-term planning. Kloche et al. used a hybrid stochastic simulation 

model to predict ramp up behaviour for a given scenario for short-term planning(Klocke, 

Stauder, Mattfeld, & Müller, 2016). A full factory simulation tool was used as a decision support 

tool during a transient period of parallel ramp down of one product and the ramp up of a new 

product (Klein & Kalir, 2006). On a network scale, Becker et al. considered a strategic ramp-up 

planning process for automotive production networks. They utilised a hierarchical planning 

framework to strategically determine ramp up and down decisions, and show that their strategic 

ramp up planning model outperforms sequential planning approaches (Becker, Stolletz, & 

Stäblein, 2017).  

Traditionally, hierarchical planning and control structures are used to simplify the overall 

problem into manageable sizes, this often leads to independent manufacturing cells. During 

ramp up, the system’s complexity is the cause of instabilities observed as unpredictable and 

uncontrollable system behaviour (Basse et al., 2014), hence manufacturers aim to reduce 

complexity through structure. For scenarios with a large setup time between product families, 

multiple cells are used and each dedicated to a different product family (Miltenburg, 2001). 

Similar rules can be applied to transition scenarios to simplify the problem, Ford closed their 

Dearborn Truck Plant for 11 weeks to complete the overhaul and ramp up for the new aluminium 

body Ford F-150 pickup (Fleming, 2018). In this example a distinct cut off from one product to 

manufacturing the other was made; simplifying the problem by avoiding parallel manufacture 

through a direct changeover transition.  

Methods and tools used for managing a ramp up phase are not specific to the ramp up 

conditions, rather they consider mature production conditions, resulting in inaccurate resource 

planning (Surbier et al., 2014). This suggests that production engineers are poorly equipped to 

manage transition and ramp up periods, as a long-term steady state perspective is unsuitable. 

Due to time pressures and insufficient data, analytically validated decisions are not feasible, 

inevitably heuristics are applied to decision making which also help to reduce complexity (Basse 

et al., 2014). 

Distributed structures offer a completely different approach to transition and ramp up, given the 

volatile and unpredictable nature the proposed self-organising, flexible and adaptable 
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characteristics of distributed systems (Ma et al., 2019a; Ouelhadj & Petrovic, 2009; Shen & 

Norrie, 1999) would be highly desirable. Distributed systems have been investigated for a 

variety of production scenarios and applications, for example the resource management of 

automated guided vehicles (De Ryck, Versteyhe, & Shariatmadar, 2020) and to integrate 

multiple planning functions for manufacturing (Kumar, Manjrekar, Singh, & Kumar Lad, 2020). 

The distributed management of autonomous reconfigurable manufacturing systems have been 

proposed to reduce ramp up times through modularity of resources (Li, Bayrak, Epureanu, & 

Koren, 2018). However, they do not consider the concurrent production of two products but aim 

to significantly reduce the time between runs of different products, improving through physical 

manufacturing technologies rather than decision making. Distributed decision-making systems 

have not previously been analysed to resolve the transition or ramp up problem for producing 

concurrent products.  

3 Anarchic systems for transition 
3.1 Introduction 

The anarchic manufacturing system is a distributed production planning and control structure 

allowing system elements to autonomously interact and communicate. The system uses a free 

market architecture with a low level permutation of the contract net protocol (Ma et al., 2019a). 

Jobs are provided currency and continuously enter the system and must fulfil predetermined 

operations, they negotiate with resources to fulfil these operations at a cost. Decision making 

authority and autonomy is delegated to the lowest system levels, i.e. to the jobs and resources, 

to determine resource selection and sequence of operations. Individual elements pursue 

personal objectives without any central oversight or control, which globally creates an emergent 

productive society (Ma, Nassehi, & Snider, 2019b).  

The anarchic manufacturing system has been adapted to fulfil the transition scenario. The most 

significant concern in a generic transition scenario, is to determine whether a resource should 

change the product type it is producing, this will typically require a changeover operation for 

retooling and setup. The anarchic system, to determine whether it is worthwhile to changeover 

product, uses temporary syndicate batching agents to achieve collaborative economies of scale; 

by grouping jobs of the same type requiring the same resource capability. The benefit to a 

resource, through profitability, of changing over for a different batch of products is compared 

against market conditions, providing an economic assessment against the global conditions. 

The resource changeover cost is calculated, as an equivalent lost operational revenue, and 

charged to the jobs requesting a changeover. The temporary batch, using pooled currency from 

all jobs within the batch, may overcome the changeover cost, thereby benefiting from 
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economies of scale. This ensures economic viability as the resource charges for the changeover 

operation and globally it ensures that there is sufficient demand to warrant a resource to 

changeover products. 

3.2 Overview and adaptations for transition 

An overview of the anarchic system and its adaptations for transition are detailed below, 

covering; an overview of agent interactions and structure, dynamic batching agents and how 

jobs determine whether to join and adjust the resource costing method. 

Anarchic manufacturing for transition has a structure where dynamic batches of jobs are 

created, as economically appropriate, and these batches negotiate with resources using the 

contract net protocol to assign jobs (within the batch) to a resource. Figure 3-1 diagrammatically 

displays the anarchic system where three jobs of two different types are joining batching agents, 

which in turn negotiate with resources; these resources illustratively reflect the utilisation and 

queue cost and product changeover cost.  

 

Figure 3-1: Anarchic system for transition with dynamic batching 

Jobs join an unassigned batch of the same product type looking for the same resource capability 

where available. As the batch has not successfully negotiated a resource, it suggests that further 

jobs are required to pool resources and benefit from economies of scale, overcoming any 

possible changeover cost. Jobs cannot join assigned batches; therefore, a highly efficient 

system would process jobs in batches of one, achieving single piece flow through the system.  

Batches negotiate with resources using a contract net protocol framework, with up to five rounds 

of bidding; using Ma et al.’s anarchic manufacturing system (Ma et al., 2019a), except for an 
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adjusted resource cost calculation, explained below. Batches ask resources with suitable 

capability to bid for the operations within the batch, resources reply with a cost for all the 

operations, considering any product changeover cost. Each job calculates a threshold, which is 

the currency held divided by the number of operations remaining. Batches evaluate whether the 

lowest bid is below the total threshold for all jobs and assigns the jobs to the resource if so, 

otherwise the batch will ask the resources for a rebid for up to four further rounds. The increase 

and decrease of job threshold and resource bids follows that of Ma et al.’s anarchic 

manufacturing system (Ma et al., 2019a). Additionally, if a job is unable to contract a resource 

it is periodically provided more currency. This ensures that the job can progress and not get 

stuck as its currency and buying power increases. This negotiation process is summarised in 

Figure 3-2 and displayed as a decision flowchart. 

 

Figure 3-2: Anarchic manufacturing negotiation process 

The resource bidding cost calculation considers the number of jobs to be processed, utilisation 

and queue at the resources, efficiency of processing the product, the changeover cost and 

recent history of tendering batches. Equation 1 defines the bidding cost for resource 𝑗 for 

product 𝑝 at time 𝑡, 𝛽!	#(𝑡), where 𝑛$ is the number of jobs in the tendering batch, 𝐶𝑜𝑝!	#(𝑡) is 

the cost per operation for resource 𝑗 and product 𝑝 at time 𝑡, 𝜓!	#	(𝑡) is the changeover discount 

factor and 𝐶%&'()* is the cost of changeover. 
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𝛽!#(𝑡) = 𝑛$ ⋅ 𝐶𝑜𝑝!	#(𝑡) + 𝜓!	#(𝑡) ⋅ 𝐶%&'()*       (1) 

The cost per operation, 𝐶𝑜𝑝!	#(𝑡), resource 𝑗 and product 𝑝 at time 𝑡 is calculated as: 

𝐶𝑜𝑝!#(𝑡) = 𝐶𝑜𝑝%	+,# /𝜔!(𝑡) +
-!(/)⋅/"	$	%
/%&'(

1       (2) 

Where 𝐶𝑜𝑝%	+,# is the expected operational cost for capability 𝑐, 𝜔!(𝑡) is the utilisation of 

resource 𝑗 at time 𝑡, 𝑄!(𝑡) is the queue at resource 𝑗, 𝑡2	%	# is the nominal duration of an operation 

of capability 𝑐 for product 𝑝 and 𝑡#3'( is the planning horizon. 

The changeover discount factor, 𝜓!	#(𝑡), for product 𝑝 at time 𝑡, is calculated as: 

𝜓!	#(𝑡) = 4
0

𝑖𝑓	𝑝𝑟𝑜𝑑𝑢𝑐𝑡	𝑖𝑠	𝑡ℎ𝑒	𝑠𝑎𝑚𝑒	𝑎𝑠	𝑡ℎ𝑒	𝑙𝑎𝑠𝑡
𝑖𝑛	𝑡ℎ𝑒	𝑞𝑢𝑒𝑢𝑒	𝑜𝑓	𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒	𝑗

𝑚𝑖𝑛 /1, 2 −
4(	!%	)*$*(+(/)
(!	)*$*(+(/)

	1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3) 

Where  𝑛!	#	5*%*(/(𝑡) is the number of recent jobs of product 𝑝 processed by resource 𝑗 at time 

𝑡, and 𝑛!	#	5*%*(/(𝑡) is the total number of recent jobs processed. 

4 Centralised systems 
For comparison simple centralised systems are used, following a flexible flowshop style 

structure and a hierarchical cell structure; both of which use simplifying structures to manage 

operational complexity. The flexible flowshop structure prioritises older batches, to evenly 

manage backlogs by product, and nominally processes jobs for product A then B; as 

diagrammatically shown in Figure 4-1. The flowshop cells contain all the machine tools (MT, i.e. 

resources) of a particular capability. Jobs at each stage are allocated to applicable cell and 

assigned to the next available MT on arrival to a cell, i.e. the MT with the shortest queue. This 

enables flexibility on MT failure, as jobs will be reassigned to the next available MT. 
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Figure 4-1: Illustrative centralised flexible flowshop structure 

The hierarchical cell structure has cells that contain one MT of each capability, and therefore 

they can complete all operations, jobs cannot move between cells. On arrival of a new batch, 

at the beginning of each week, the hierarchical system splits the jobs by product A and B and 

assigns each cell a product, with one cell processing a mix of A and B, each cell gets an equal 

share of jobs; as diagrammatically shown in Figure 4-2. This system minimises changeovers, 

as only one cell processes a mix of both product types, and processes these in an A then B 

sequence. For a MT that is shared between cells, e.g. only 1 MT of a particular capability shared 

between 2 cells, the MT will prioritise queued jobs by older jobs and secondarily product A over 

B of jobs within the same batch. This simplifies the allocation problem by dedicating cells to a 

product, however on MT failure jobs must wait for repair before continuing as they cannot be 

reassigned between cells. 

 
Figure 4-2: Illustrative centralised hierarchical cell structure 

5 Experimental framework 
Idealised scenario experiments were conducted to understand the characteristics of the 

anarchic and centralised systems, additionally a validatory experiment using an industrial case 

study confirmed conclusions. The idealised scenarios used artificial parameter settings, 
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although these do not relate directly to industry, they have suitable ballpark values and still 

enabled a relative comparison between systems as parameter levels changed. The relative 

comparison is suitable to characterise the systems as a factor became more severe. All 

experiments conducted used stochastic operation durations and failure rates; therefore, each 

parameter setting was repeated for 50 runs for suitable confidence and statistical significance. 

All simulations models were created as agent-based models, using the AnyLogic platform. 

For all systems and experiments, resources are impacted by ramp up issues, most notably high 

inefficiency and failure rate until learning is achieved through experience. To model inefficiency 

the operation duration, considering resource j operating on product p at time t, is divided by the 

efficiency rating, 𝐸!	#	(𝑡), which for a new product type starts at 0.3. Learning through experience 

improves the efficiency rating, improving by 0.1 for every 𝑘𝑒#	% number of operations for that 

product completed globally and locally, for product p by resource capability c. 100% efficiency 

can be reached, as this is the mature operational state and efficiency after ramp up. Resource 

𝑗, at time 𝑡 processing product 𝑝, has a chance of failure before every operation dependent on 

the failure rate, 𝐹!	#(𝑡), which improves through learning and experience, similar to efficiency. 

The start failure rate, 𝐹6/'5/, is a probability of 0.4 and similarly improves by 0.1 for every 𝑘𝑓#	% 

operations completed for the product p by the capability c; there is a minimum failure rate of 

0.01 regardless of improvement through learning. 

For all experiments, product A was replaced by product B in various ramp up curves, these 

changed the volume of production over time; the ramp-up curve used is noted as parameter RC 

and displayed in Figure 5-1. Gradual transition (RC = 1) reflects an increasing new product 

volume and decreasing old product to a predefined ramp up curve (Surbier et al., 2014). 

Concurrent production (RC = 2) maintained equal product volumes for a prolonged duration, to 

represent equally demanded products. The direct changeover transition (RC = 3) has a hard 

cutover from product A to B, representing a simplified solution of zero concurrent production. At 

the beginning of each week, orders were released as jobs. The facility operates two shifts in a 

six-day week providing 96hrs of production.  
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Figure 5-1: Ramp-up curves, (a) gradual transition, (b) concurrent production and (c) direct 

changeover 

5.1 Idealised scenario experiments 

The idealised scenarios fabricated data to evaluate a generalised transition scenario within a 

nominally balanced production environment, providing clarity of results for the parameter varied. 

Three experiments were run to evaluate the impact of: rates of learning, different ramp up 

curves, severity of failure and the structural flexibility of the system. 

For these initial experiments, jobs for both product types were required to complete four 

operations in the same sequence (i.e. A-B-C-D). This could be fulfilled by any capable resource, 

allowing flexible routing. Each operation had the same nominal duration which was uniformly 

randomly varied by 20%. For the first two experiments, varying learning rates and failure 

severity, there were 16 resources; four resources for each capability. The third experiment 

varying the structural flexibility of the system varied the number of resources from six to eight.  

5.1.1 Experiment 1, learning rates 

Learning is the focus of much of the ramp up and transition literature. Learning rates (LR) were 

varied in the first experiment, by adapting the number of operations completed, 𝑘𝑒#	% and 𝑘𝑓#	%, 

to improve efficiency and failure rates by 0.1; see Table 1 for variable parameter levels. All three 

ramp-up curves were evaluated, the severity of failure was maintained at 20 hrs repair time.  

Table 1: Experiment 1, learning rates variable parameter level 

Parameter level No. operations for efficiency 
improvement, 𝑘𝑒#	%, of 0.1 

No. operations for failure rate 
improvement, 𝑘𝑓#	%, of 0.1 

LR = 1 100 50 

LR = 2 150 100 

LR = 3 200 150 
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5.1.2 Experiment 2, failure severity 

During production ramp up of a new product, production failures are more frequent and are the 

most significant disturbances to production. For experiment 2 the severity of these failures is 

varied by changing the repair time (RT); Table 2 details the variable parameters. Learning rates 

were maintained at LR=2 from the first experiment, 𝑘𝑒#	%=150 operations and 𝑘𝑓#	%=100 

operations. 

Table 2: Experiment 2, repair time on failure variable parameter level 

Parameter level Repair time on failure 

RT = 1 20 hrs 

RT = 2 40 hrs 

RT = 3 80 hrs 

5.1.3 Experiment 3, structural flexibility 

Reducing the structural flexibility of a system reflects planning and control problem of real 

systems, bottleneck resources can imitate this scenario; reducing the structural flexibility of the 

system if there is only one resource of a particular capability. Experiment 3 reduces the 

structural flexibility of the system (SF), for the first level there are two resources for each 

capability and no bottleneck resources, for level two the second capability has only one resource 

and for the third level the second and fourth have only one resource; these variable parameter 

levels are summarised in Table 3. Learning rates were maintained at LR=2 from the first 

experiment, 𝑘𝑒#	%=150 operations and 𝑘𝑓#	%=100 operations. Additionally, repair time on failure 

was maintained at RT=2, 40 hours. 

Table 3: Experiment 3, number of single resourced operations variable parameter level 

Parameter level No. capabilities with one 
resource only 

SF = 1 0 

SF = 2 1 (2nd operation) 

SF = 3 2 (2nd and 4th operation) 
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5.2 Validatory industrial case study 

An automotive industrial case study was used to validate previous experiments and relevant 

findings, by applying the systems against a real-world problem and considering how similar the 

performance was between fabricated and real-world experiments. This was achieved by 

reflecting an automotive factory setup and associated operational restrictions in the simulation 

experiments. The case study utilises a flexible flowshop facility, where jobs can select any of 

the unrelated parallel machines in a production stage, to produce small automotive components 

for a medium sized manufacturer (Frantzén, 2013). The manufacturing facility produces 

approximately 7,000 units per week and has 10 production stages; which have between one 

and seven parallel machines; products do not require all production stages.  

The case study, which informs the mature steady state environment, was simplified for the 

purposes of this research, ignoring machine settings, safety stocks, buffers and inter-machine 

transferring, and the two most produced products were considered. Key data provided include: 

product specific operation durations, sequence dependent setup / changeover durations, 

machine specific mean time between failure (MTBF) and mean time to repair (MTTR) 

exponential distribution means. Additionally, unavailable data was fabricated to reasonable 

industry values, these included: learning rates impacting production efficiency and failure rates, 

and the long-term transition time horizon. The number of operations to improve learning rates 

𝑘𝑒#	% and 𝑘𝑓#	% are 75,000 and 40,000 operations respectively for a 0.1 improvement. Table 4 

summarises the case study experimental parameters for production stages taken from Frantzén 

(Frantzén, 2013). 

Table 4: Automotive case study production facility data (Frantzén, 2013) 

Production 
stage 

No. MTs/ 
stage 

Op 
duration A 
(s / unit) 

Op 
duration B 
(s / unit) 

Product 
changeover 
duration (s) 

MTBF 
(min) 

MTTR 
(min) 

1 5 99 125 60 55-72 8-15 

2 1 - - - - - 

3 2 - 48 300 80 8 

4 3 59 - 1200 50 8-12 

5 3 40 43 1440 60-80 8-14 

6 7 94 133 900 50-68 7-25 
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7 3 33 44 2700 68-70 10-12 

8 1 14 14 0 150 5 

9 2 32 - 24 140 6-7 

10 2 27 37 24 72 8 

The experiment varied the transition ramp up curves and the overall demand on the system. 

The transition ramp up curves are identical for the experiments above (RC = 1, 2 & 3), using a 

gradual, concurrent and direct change transitions; as shown in Figure 5-1. The transition period 

is modelled over 18 months, which is representative for the automotive case study. The overall 

system demand was varied from the nominal 7,000 units / week produced to 11,000 units / 

week; these are detailed in Table 5.  

Table 5: Automotive case study, demand variable parameter level 

Parameter level Demand, units / week 

Dmd = 1 7,000 

Dmd = 2 10,000 

Dmd = 3 11,000 

6 Results and discussion 
6.1 Idealised scenario results and discussion 

Simulation experiment results were predominately analysed by plotting the 95% confidence 

interval of the backlog, directly comparing the three operating systems; 50 runs at each 

parameter setting provides suitable confidence. Further analysis was conducted if appropriate. 

6.1.1 Experiment 1, learning rates 

The first experiment analysed rates of learning, increasing the number of operations required 

to obtain efficiency gains and reduce failure rates. Figure 6-1 displays the 95% confidence 

interval of the backlog for each parameter setting in the hashed area around the mean line, 

directly comparing anarchic to centralised cell and flexible systems. The plots increase the 

learning rate (LR) variable horizontally, and the three ramp up curves (RC) change vertically. It 
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is evident that the anarchic manufacturing system degrades as learning rates become slower 

for the gradual transition and direct changeover (RC=1 and 3); as backlog increases at a greater 

rate than the centralised systems. However, for the concurrent production system, the anarchic 

is comparable to the centralised flexible system. The two centralised systems perform similarly 

for gradual (RC=1) and direct changeover (RC=3) scenarios, for the concurrent production 

scenario (RC=2), the centralised hierarchical cell system performs the best. For the prolonged 

period of equal production volumes, the centralised cell system divides the resources into two 

independent operating systems, where there is no need to changeover between products. 

 

Figure 6-1: Experiment 1 learning rates confidence interval backlog plots 

6.1.2 Experiment 2, failure severity 

The second experiment evaluating an increasing failure severity by increasing repair time (RT) 

maintained the gradual transition ramp up curve (RC = 1), these backlog plots at the 95% 

confidence interval are displayed in Figure 6-2. As the impact of failure becomes more severe, 

by increasing repair time, it is evident that the anarchic system becomes superior as it less 

sensitive to the disruption and can flexibly manage the scenario; adapting to disruptions and 

exploiting available flexibility. This is particularly apparent at the most severe parameter level, 
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RT=3, where there is clear separation between 95% confidence interval ranges for a significant 

proportion of the simulation and at the peak levels of backlog. Similarly, the centralised flexible 

system has a similarly degrading performance as repair time increases, however the fixed 

hierarchical cell system performs very poorly as the parameter level increases. Highlighting the 

rigidity and lack of flexibility in the cell structured system. 

The anarchic system has the best robustness to disruption, through adaptability. This is 

achieved through embracing the complexity of the system and maximising the flexibility 

available, as it is not constrained to a simplifying structure. 

 

Figure 6-2: Experiment 2 failure severity confidence interval backlog plots 

6.1.3 Experiment 3, structural flexibility 

Experiment 3 changed the number of bottleneck shared resources in a reduced manufacturing 

system reducing the structural flexibility (SF). This was compared against all three ramp up 

curves. Figure 6-3 displays the backlog confidence interval plots for all parameter settings, 

directly comparing the three systems. Figure 6-4 to Figure 6-6 similarly displays the backlog 

confidence interval but compares the three structural flexibility levels against each other for a 

particular system and ramp up curve (RC). 

Backlog and overall performance show that as shared resources go from 0 to 1 (SF 0 to 1) there 

is a significant degradation in performance for most systems and ramp up curves. The anarchic 

is very poor at the direct changeover scenario, RC=3. During concurrent production, RC=2, the 

cell system significantly reduces performance as 1 resource is shared. Generally, the 

centralised systems perform similarly whilst the anarchic is worse for all scenarios. 
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Figure 6-3: Experiment 3 failure severity confidence interval backlog plots 

On evaluating the performance differences between parameter levels more closely, shown in 

Figure 6-4 to Figure 6-6, further characterisation can be elicited. Comparing the system 

performance as the number of shared resources increases directly, using the 95% confidence 

interval, indicates the response to a scenario with reduced flexibility.  

Considering the gradual transition and the concurrent production ramp-up curves. The anarchic 

system for SF=2 and 3 (1 and 2 shared resources) does not have a significant difference in 

performance at the 95% confidence interval; observed through overlapping confidence interval 

ranges. This is in contrast to the hierarchical cell system, displayed in Figure 6-5, which shows 

a significant difference, at the 95% confidence interval, between each level of shared resources. 

Performance reduces as there are more shared resources. This indicates that the hierarchical 

cell system degrades at a faster rate and is less robust to this structural change. The hierarchical 

system is less effective at adapting to a more constrained system, reducing the effectiveness 

of the hierarchical cell structure. The centralised flexible system adapts similarly to the anarchic 

system, with little difference when at least one resource is shared. 
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Figure 6-4: Experiment 3 anarchic system confidence interval backlog plots 

 

Figure 6-5: Experiment 3 centralised cell system confidence interval backlog plots 

  

Figure 6-6: Experiment 3 centralised flexible system confidence interval backlog plots 

6.2 Case study results and discussion 

The automotive case study experiment varied the demand (Dmd) put on the system, increasing 

system utilisation, which was run against the three ramp up curves (RC). Figure 6-7 plots the 

mean work in progress within a week, including its 95% confidence interval; the confidence 

intervals are very small but can be seen on the magnification inset for RC=1 and Dmd=2. There 

was no backlog created for gradual and concurrent transition ramp up curves, therefore WIP 

was plotted. This metric provided some insight, with a lower WIP indicating a better 

performance. 

For the gradual and concurrent changeovers, RC=1 and 2, all systems can manage the scenario 

and have zero backlog. For the direct changeover scenario, RC=3, the anarchic system 

performs very poorly and cannot overcome the sharp change at high demand levels; a large 
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backlog is created. This is due to the anarchic system being influenced by the recent past, its 

perception of the current market conditions is very different to the current and future reality. The 

market conditions are not fast enough to respond to a sudden and very different change; a 

forecasting mechanism that pro-actively influences the market conditions would correct this. 

Subsequently, the system is unable to effectively price according to new market conditions, 

impacting allocative efficiency. 

For gradual and concurrent changeovers, the anarchic system performs worse during the 

changeover period but manages the scenario and maintains WIP at a manageable level, to 

eliminate any backlog and ultimately recover. Additionally, at the highest demand level, Dmd=3, 

and concurrent ramp up curves, RC=2, the anarchic performs better than the fixed centralised 

system. This highlights the anarchic system’s flexibility as demand and high utilisation stress 

the system. 

The flexible centralised system performs best overall for all scenarios. The hierarchical (pre-

planned and fixed) centralised system performs well, however for the highest demand, Dmd=3, 

the performance deteriorates and recovery is slow. For the concurrent high demand scenario, 

RC=2 and Dmd=3, the pre-planned hierarchical system is very poor. This is due to high resource 

sharing and cross over resulting in an inability to implement an effective hierarchical or cell 

structure. This indicates the downfall of the hierarchical fixed system, suffering from high rigidity 

and inflexibility, in a real-world scenario. 

This automotive case study provides real world validation to the previous simulation 

experiments, as observed by similar outcomes and zero backlog for most scenarios. It can be 

concluded that the anarchic manufacturing system is functional against a real-world case study, 

but not the best performing. Flexible dispatch heuristics perform well, and for most scenarios 

the anarchic manufacturing system can maintain a good performance, which at times of high 

stress exceeds the hierarchical structure. Due to the lack of backlogs and instead a WIP metric 

being used for this experiment, further analysis and insight is cautioned against beyond stating 

the anarchic manufacturing system is functional in this real-world scenario.  
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Figure 6-7: Automotive case study WIP with confidence interval plots 

7 Conclusion 
The research presented in this paper evaluates whether a distributed system can perform in a 

product transition scenario. The anarchic manufacturing system, using a free market 

architecture, was evaluated against two simple centralised systems; with a flexible and a 

hierarchical cell structure.  

From the four experiments conducted, there was no overall best performing system. The 

centralised systems had mixed performances, although the hierarchical cell system was the 

most allocatively efficient in the simplest of scenarios. The simplification methods, implemented 

as a hierarchical cell structure, reduced flexibility. This was evident through relative low 

performance as structural flexibility reduced and severity of failure increased. 

The anarchic manufacturing system is shown to perform well in all scenarios using a gradual 

and concurrent production transition ramp up curve, leading to the conclusion that distributed 

systems can manage a product transition scenario effectively. The self-organising anarchic 

system performed best when flexibility was provided, particularly for the second experiment 
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which increased failure severity. However, when there was a direct changeover transition, 

without concurrent production of products, the anarchic system performed relatively worse and 

for some scenarios very poorly. This was due to a latency in the agent’s interpretation of the 

environment in a shock change. The speed of reaction is managed to reduce volatility, however, 

due to a lack of forecasting the distributed agents cannot react appropriately. 

The automotive case study validated the anarchic system’s performance in a real-world context 

for concurrent production scenarios; showing comparable performance, which in high demand 

and high stress scenarios could outperform the hierarchical manufacturing system. The 

dynamic batching mechanism maintains distributed decision making and anarchic freedom. It 

leverages economies of scale and enables effective decision making by directly evaluating the 

profitability of a changeover and processing a batch of alternate products. This profitability 

assessment is relatable to the overall environment and an agent’s individual circumstance, this 

in turn reduces system myopia; whilst aligning to the free market paradigm and individual 

decision-making autonomy. 

The anarchic manufacturing system was shown to manage the product transition scenario 

effectively and warrants further investigation as to whether the benefits of distributed systems 

can be leveraged in the volatile transition scenario. This paper used an industrial case study to 

validate simulation experiments. However, all scenarios assumed flexible routing and ignored 

transportation issues and safety stock levels. Further work to evaluate the benefits of distributed 

systems in product transition will compare the anarchic to advanced centralised systems, as 

well as the anarchic system’s ability to incorporate pilot production and advanced learning 

methodologies. 
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