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Abstract 19 

 20 

Flood forecasting for early alerts is a challenging task for hydrologists. This is particularly the case in small 21 

catchments due to a lack of upstream gauges and their flashy response. In such catchments, estimating areal 22 

mean rainfall at short intervals by applying spatial interpolation schemes based on rain gauge data in short 23 

time scales is a significant work for accurate flood forecasting. In this study, we compare and evaluate four 24 

commonly used spatial interpolation methods in small catchments, which have small numbers of rain gauges 25 

in South Korea. We investigate the impacts of catchment area on different spatial interpolation schemes. Then a 26 

simulation is done with hypothetical storms to illustrate the limitation of the Thiessen method. Local heavy rainfall 27 

events have been selected for case studies and 10-minute rain gauge rainfall data are used, since short time 28 

scales of rainfall data are generally needed for flash flood forecasting and alerts. Furthermore, we analyse the 29 

characteristics of different spatial interpolation techniques by comparing the results with weather radar rainfall. 30 

The results revealed that mean absolute percentage discrepancy (MAPD) of areal mean rainfall between the 31 

Thiessen polygon method and the other three interpolation schemes (Inverse distance weighting, Multiquadric 32 

interpolation, Kriging) increases rapidly as the catchment area becomes smaller, especially when the 33 

catchment area is less than 500𝑘𝑚2. In addition, regarding the number of rain gauges in a catchment, the 34 

smaller the number of rain gauges used in calculating areal mean rainfall, the larger the MAPD becomes, as 35 

expected. Furthermore, the number of rainfall events with outliers increased as correlation among rain gauge 36 

locations increased, which implies that outliers are more likely to happen when the gauges are located in a 37 

linear format rather than in a cluster. Finally, the temporal distributions of areal mean rainfall obtained from 38 

rain gauge and weather radar data are different depending on the direction of rainfall movement, especially in 39 

sparsely gauged catchments. This study provides a possible guideline for rain gauge number and placement to 40 

estimate areal mean rainfall accurately at small catchments. 41 

 42 

Keywords: spatial interpolation method, Thiessen polygon, Inverse distance weighting, Multiquadric 43 

interpolation, Kriging, radar rainfall 44 

  45 
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1. Introduction 46 

Spatial distribution of precipitation data plays an important role in many environmental applications, 47 

especially for water resources (Chen et al., 2017; Faurès et al., 1995; Li and Heap, 2011; Ly et al., 2011; 48 

Wagner et al., 2012). Hydrologists need accurate spatial rainfall data across a catchment for hydrological risk 49 

assessment and water budget estimates. Most of the precipitation data are collected by geographically 50 

dispersed networks of rain gauges, which are point data. Rain gauges provide comparatively accurate 51 

measurement of precipitation at a point, however, they cannot fully capture the spatial variability of rainfall 52 

with time due to its temporal and spatial variability. The rain gauge data are generally used as inputs to 53 

hydrological models and the model accuracy is influenced significantly by these input data (Beven, 2011). 54 

Especially, the quality of hydrological model result depends on the quality of continuous spatial rainfall data 55 

(Andréassian et al., 2001; Kobold and Sušelj, 2005; Leander et al., 2008; Moulin et al., 2009; Singh, 1997). 56 

The use of a small number of rain gauge data may cause great uncertainties in simulated streamflow (Chaubey 57 

et al., 1999; Faurès et al., 1995), particularly when the rain gauge stations are placed outside the studied 58 

catchment (Schuurmans and Bierkens, 2006).  59 

Various spatial interpolation schemes have been developed and applied ranging from simple methods such as 60 

Thiessen polygons (Thiessen, 1911)  and Inverse Distance Weighting (IDW) (Berndt and Haberlandt, 2018; 61 

Di Piazza et al., 2011; Teegavarapu et al., 2009) to more complex methods such as Kriging which incorporate 62 

secondary information (e.g., elevation, remotely sensed observation, etc) as covariates to improve primary 63 

data. The former and the latter are also known as deterministic methods and geostatistical methods 64 

respectively (Ly et al., 2011). Conditional merging (CM) techniques have been developed which are methods 65 

of spatial interpolation suited for merging spatially continuous grid-based measurements and point 66 

measurements (Pegram, 2001; Sinclair and Pegram, 2005). The CM preserves the spatial covariance structure 67 

of spatially continuous grid-based measurements while maintaining the accuracy of the point-based 68 

measurements. Numerous comparative studies have been done to explore which spatial interpolation method 69 

for rain gauge data is the best, however there were no consistent findings (Dirks et al., 1998; Oke et al., 2009; 70 

Otieno et al., 2014; Price et al., 2000; Vicente-Serrano et al., 2003; Zimmerman et al., 1999), indicating that 71 

more studies are needed in this field. Interpolating rain gauge rainfall is a challenging task since the 72 
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application of different methods may cause different results from the actual spatial distribution of rainfall, 73 

which is of course unknown. 74 

In most studies, spatial interpolation techniques have been applied to daily, monthly and annual time steps of 75 

rainfall data (Ly et al., 2013) and only a few studies have compared interpolation methods using hourly time 76 

steps, e.g., Schiemann et al (2011). Moreover, few studies have compared interpolation schemes based at a  77 

sub-hourly time scale. Normally the spatial variability of rainfall is more obvious at shorter time scales, 78 

therefore simple spatial interpolation of rainfall may not yield an accurate measurement of the real rainfall 79 

field. This was demonstrated by Haylock et al (2008) and Yatagai et al (2009).  80 

Recently, radar rainfall data have been used frequently as inputs for hydrological applications (Fassnacht et al., 81 

2003; Neary et al., 2004; Tetzlaff and Uhlenbrook, 2005), especially in urban hydrology owing to the 82 

advances in technologies, numerical models, and data processing (Thorndahl et al., 2017). Unlike rain gauge 83 

data, weather radars can survey large areas and can better capture the spatial variability of rainfall fields 84 

(Ochoa‐Rodriguez et al., 2019). However, they are often biased due to various factors such as topography, 85 

climate and spatio-temporal resolution (Ebert et al., 2007; Karimi and Bastiaanssen, 2015; Maggioni et al., 86 

2016). The rain intensity is derived indirectly from the measurement of reflectivity, hence, the data is subject 87 

to systematic and random errors such as instrumental and sampling error especially in mountainous terrain 88 

(Gabella et al., 2005). In addition, radar rainfall amount is normally smaller than the rain gauge rainfall 89 

amounts (Smith et al., 2007) due to the difference in spatial domains. The typical pixel size of conventional 90 

weather radars is 1 × 1 km or 2 × 2 km whereas the sample area of a rain gauge is typically 200-300 cm2. 91 

Flood forecasting for early warning is a challenging task for hydrologists. This is particularly the case in small 92 

catchments due to a lack of upstream stream gauges and flashy rainfall-runoff response (i.e., short lead time). 93 

In such catchments, estimating areal rainfall by applying spatial interpolation schemes using rainfall data from 94 

rain gauges in short time scales (e.g. 10-minute) is valuable for accurate flood forecasting. Recently, there has 95 

been an increasing trend of localized torrential rainfall events in summer in South Korea (Boo et al., 2006; 96 

Chang and Kwon, 2007). In this context, we compare and evaluate spatial interpolation methods in small 97 

catchments which have a small number of rain gauges in South Korea. Local heavy rainfall events have been 98 
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selected for case studies and 10-minute rain gauge rainfall data are used, since short time scales of rainfall 99 

data are generally needed for flash flood forecasting and alerts. Furthermore, we analyse the characteristics of 100 

different spatial interpolation techniques by comparing the results with radar rainfall.  101 

Given this background, this paper explores the following questions: 102 

(1) For flood forecasting, are deterministic spatial interpolation methods appropriate for small 103 

catchments with sparse rain gauge networks? If not, what are the limitations? 104 

(2) What are the effects of rain gauge density, rain gauge distribution and rainfall direction on different 105 

spatial interpolation schemes? Are there any correlations between rain gauge density and outliers in 106 

rainfall data? 107 

(3) Can weather radar rainfall be a useful alternative to rain gauge data at regional-scale catchments with 108 

low densities of rain gauges? 109 

The primary objectives addressed in this paper are to: (1) assess the effects of catchment area, rain gauge 110 

density, rain gauge distribution and direction of rainfall movement on estimating areal average rainfall with 111 

different spatial interpolation methods and (2) suggest guidelines for rain gauge numbers and placement to 112 

estimate accurate areal mean rainfall on small catchments. This investigation has both practical and scientific 113 

value since it allows us to identify not only the importance of physical characteristics (i.e., number and 114 

location) of rain gauges but also the effects of rainfall movement and direction in estimating areal mean 115 

rainfall. 116 

In Section 2, we describe the study area, rain gauge and radar rainfall data used. Spatial interpolation schemes 117 

used in this study are briefly introduced in Section 3. The impacts of catchment area, rain gauge density and 118 

rainfall direction on spatial interpolation methods are presented in Section 4. The main conclusions of this 119 

study are summarized in Section 5.  120 

 121 

2. Catchment and data 122 

2.1 Study area 123 
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The basins (catchments) of South Korea are classified into three groups: 21 large sized areas (Basin), 117 124 

medium sized areas (Sub-basin) and 850 small sized areas (Standard-basin) as shown in Figure 1. Basins are 125 

divided according to the 5 largest rivers (Han River, Nakdong River, Geum River, Seomjin River, and 126 

Yeongsan River), coastal areas and Jeju Island. Each Sub-basin is divided based on the confluences of natural 127 

rivers and the major islands of the southern and western sea. Lastly, Standard-basins are divided on the basis 128 

of the point where national and regional rivers gather, the point where a dam is located and the area where 129 

major facilities that manage waters are located.  130 

 131 

2.2 Precipitation data 132 

2.2.1 Rain gauge data 133 

Two sources of rain gauge data are used in this study. First, Automatic weather stations (AWS) installed by 134 

the Korea Meteorological Administration (KMA) are used. Daily rainfall data from 2001 to 2010 are used to 135 

make 5km × 5km grid rainfall. These data are used to analyse differences among spatial interpolation methods 136 

with regard to catchment area in Section 4.1. Figure 1(a) shows the distribution of 515 AWS and 117 sub-137 

basins.  138 

AWS installed by KMA are quite evenly distributed over South Korea. However, since AWS distribution is 139 

based on administrative district, the AWS network is weak in considering catchment characteristics. Therefore, 140 

another set of rain gauge data from the Ministry of Environment (ME), which are installed based on 141 

catchment size and used in river flood forecasting, are used instead of AWS data in Section 4.2. 10-minute 142 

rainfall data from 2016 to 2018 is used to compare the estimated areal mean rainfall difference between spatial 143 

interpolation methods when the rain gauge density changes. Figure 1(b) shows the locations of 664 standard-144 

basins and 564 rain gauges installed by ME, which are used in river flood forecasting. 145 

[Insert Figure 1] 146 

 147 
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2.2.2 Weather radar rainfall data 148 

Weather radar data are received from 1 single polarization radar (Imjin) and 5 dual polarization radars (Biseul, 149 

Sobaek, Gari, Seodae, Mohu) operated by the Flood Control Office of ME (Ministry of Environment of 150 

Korea), which have temporal and spatial resolutions of 10-minute and 250m respectively. In this study, the 151 

Marshall and Palmer equation (Marshall and Palmer, 1948) is applied for single polarization radar quantitative 152 

precipitation estimation (QPE) and the JPOLE algorithm (Ryzhkov et al., 2005) is used for dual polarization 153 

radar QPE. The coverage and distribution of weather radars in South Korea are shown in Figure 2. 154 

[Insert Figure 2] 155 

 156 

3. Spatial interpolation schemes 157 

We used four common interpolation techniques: Thiessen polygon, Inverse distance weighting, Multiquadric 158 

interpolation and Kriging methods. Brief introductions to the spatial interpolation schemes applied in this 159 

study are provided here, since details on various methods are available from many hydrological and statistical 160 

textbooks. In South Korea, the Thiessen polygon method is officially used for river flood forecasting, hence, 161 

differences of estimated areal mean rainfall between the Thiessen polygon method and the other three 162 

methods are compared in this study. We regenerated 495km (longitude direction) × 725km (latitude direction) 163 

grid rainfall at 5km intervals using 10-minute rainfall data. Four different interpolation schemes are applied 164 

and the areal mean precipitation is estimated by averaging the grid rainfall. 165 

 166 

Thiessen polygon (TSN) 167 

The catchment area is divided into polygons with each polygon containing  a rain gauge (a single point of 168 

sampling) (Chow, 1964). Each polygon represents the entire area covered by that polygon. Although this is a 169 

simple and straightforward method, it has some disadvantages. For example, the estimation is based on only a 170 
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single gauge and does not incorporate the information on neighbouring points. In addition, there are sudden 171 

jumps or discontinuities across the boundaries of polygons. 172 

 173 

Inverse Distance Weighting (IDW)  174 

IDW estimates the value at an unsampled site by the distance weighted average of observed data from all 175 

sampled sites surrounding it. As the distance increases between the unknown value of the estimated point and 176 

the surrounding known sampled points, the weight decreases which means that the interpolant is less 177 

influenced by the sampled value. The weight 𝜆𝑖 is calculated as 178 

𝜆𝑖 = 
𝐷0𝑖
−𝑑

∑ 𝐷0𝑗
−𝑑𝑛

𝑗=1

 179 

where 𝐷0𝑖 is the distance from the sampled point to the estimated point, d is the geometric form of the weight, 180 

n is the number of known value locations. The power d was set to 2, which was found not to be significantly 181 

different from the results realized by optimal power values (Otieno et al., 2014). 182 

 183 

Multiquadric Interpolation (MQI) 184 

The MQI was first developed by Hardy (Hardy, 1971) for the interpolation of irregular surfaces in geophysical 185 

sciences. Then it was applied to rainfall surfaces with the satisfactory result for determining areal rainfall 186 

(Shaw and Lynn, 1972). Multiquadric analysis represents the surface to be approximated as a summation of a 187 

number of individual quadric surfaces. The catchment perimeter is determined by a polygon of m sides whose 188 

vertices are given by the pairs (𝑥𝑘 , 𝑦𝑘), k=1,2,…,m. Inside and outside this polygon are n rain gauges whose 189 

coordinates are (𝑔𝑖 , ℎ𝑖), i=1,2,…,n. A rainfall amount is recorded at each rain gauge, and the amount is given 190 

as 𝑧𝑖. Multiquadric hyperboloids centered at each rain gauge take the following form:  191 

 𝑧𝑖 = ∑ [(𝑔𝑗 − 𝑔𝑖)
2 + (ℎ𝑗 − ℎ𝑖)

2 + 𝑎2]
1/2
𝑐𝑗

𝑛
𝑗=1  192 
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A number of researchers have used MQI (e.g. Pegram and Pegram, 1993) and readers are referred to the 193 

papers cited above for the details about this method.  194 

 195 

Kriging (KRG) 196 

In this study Ordinary Kriging (Wackernagel et al., 1997) is used which is the standard version of Kriging. 197 

KRG is categorized as a univariate approach since no additional information is considered except for one data 198 

source. The KRG estimate at a point 𝑢0 is calculated as follows: 199 

𝑍∗(𝑢0) =∑ 𝜆𝑖𝑍(𝑢𝑖)
𝑛

1
 200 

where, λi is the weight of each of the n adjacent observations taken into account. The weights are obtained by 201 

solving the kriging system: 202 

∑ 𝜆𝑗𝛾(𝑢𝑖 − 𝑢𝑗) + 𝜇 = 𝜆𝛾(𝑢𝑖 − 𝑢0)
𝑛
𝑗=1  for i=1, … ,n,   ∑ 𝜆𝑗 = 1

𝑛
𝑗=1  203 

here, μ is a Lagrange multiplier. Kriging requires a variogram model to estimate its weights. In this study, the 204 

least squares method has been applied due to its computational simplicity and broad availability. The least 205 

squares variogram parameter estimates are those that minimize the squared differences between the 206 

experimental variogram and theoretical model. In this study, the spherical model was adopted to perform a 207 

least squares fit of theoretical variograms to an experimental variogram. In order to perform semivariogram 208 

analysis and subsequent KRG, GSTAT software (Pebesma and Wesseling, 1998) was used. The estimated 209 

correlation distance varies depending on the regions and events. In this study, it was set in the range of 20 to 210 

40 km. 211 

 212 

4. Results and discussion 213 

The first part of this section investigates the impacts of catchment area on different spatial interpolation 214 

schemes. Then a simulation is done with hypothetical storms to illustrate the limitation of TSN by presenting 215 
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the effects of rain gauge distribution and storm direction on estimated areal mean rainfall when TSN is applied 216 

at small catchments. Finally, effects of rain gauge density, distribution and the direction of rainfall movement 217 

on spatial interpolation methods are explored with real recorded rainfall data at small catchments. 218 

 219 

4.1 Effects of catchment area on spatial interpolation schemes 220 

Areal mean annual rainfall (AMAR) in Mid-Sized catchments over South Korea is studied to explore the 221 

impact of catchment area on different spatial interpolation schemes. Mean absolute percentage discrepancy 222 

(MAPD) has been estimated with Equations (1) to (3) to compare against the TSN method. Among 117 Mid-223 

Sized catchments in South Korea, the following types of catchments (66 Mid-Sized catchments) are excluded 224 

for consistent comparison: catchments that contain no rain gauges, catchments near the Demilitarized Zone, 225 

catchments near the complex coastline and catchments where mean elevation is higher than 400m. 226 

𝑀𝐴𝑃𝐷𝐼𝐷𝑊 =
|𝐴𝑀𝐴𝑅𝑇𝑆𝑁−𝐴𝑀𝐴𝑅𝐼𝐷𝑊|

𝐴𝑀𝐴𝑅𝑇𝑆𝑁
 × 100       (1) 227 

𝑀𝐴𝑃𝐷𝐾𝑅𝐺 =
|𝐴𝑀𝐴𝑅𝑇𝑆𝑁−𝐴𝑀𝐴𝑅𝐾𝑅𝐺|

𝐴𝑀𝐴𝑅𝑇𝑆𝑁
 × 100       (2) 228 

𝑀𝐴𝑃𝐷𝑀𝑄𝐼 =
|𝐴𝑀𝐴𝑅𝑇𝑆𝑁−𝐴𝑀𝐴𝑅𝑀𝑄𝐼|

𝐴𝑀𝐴𝑅𝑇𝑆𝑁
 × 100        (3) 229 

where, 𝐴𝑀𝐴𝑅𝑇𝑆𝑁 , 𝐴𝑀𝐴𝑅𝐼𝐷𝑊 , 𝐴𝑀𝐴𝑅𝐾𝑅𝐺 , 𝐴𝑀𝐴𝑅𝑀𝑄𝐼  are areal mean annual rainfall obtained from TSN, IDW, 230 

KRG and MQI respectively. Figure 3 presents mean absolute percentage discrepancy (MAPD) of areal mean 231 

annual rainfall for different spatial interpolation schemes and catchment area. As shown in Figure 3, MAPD 232 

and catchment area are inversely proportional. In addition, the MAPD between TSN and the other three 233 

interpolation schemes increase rapidly as the catchment area becomes smaller, especially when the catchment 234 

area is less than 500𝑘𝑚2 (shaded pink in the figure). This might be because normally small catchments in 235 

South Korea have complicated topography and low density of rain gauges. In the case of large catchments, 236 

differences tend to be less than 2% and almost constant, which means that there are no obvious distinctions 237 

among the four interpolation techniques. 238 

[Insert Figure 3] 239 
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Since the differences between the four spatial interpolation schemes are large in catchments smaller than 240 

500km2, the drawbacks of applying different interpolation methods at small catchments are analysed in the 241 

next section by illustrating a conceptual simulation for an example and presenting the result of real cases. 242 

 243 

4.2 Limitation of the spatial interpolation scheme on small catchments 244 

4.2.1 Effects of rain gauge distribution and rainfall direction on TSN 245 

The flaw of TSN is demonstrated as an example in Figure 4. Let us assume that the four rain gauges (A, B, C 246 

and D) are all located outside the catchment and the storm is moving, i.e. the rainfall direction is from South 247 

West to North East (Case 1) and vice versa (Case 2). In Case 1, although the rainfall pass through the 248 

catchment, the areal rainfall of the white hatched part of the catchment may not be estimated until the storm 249 

arrives at Rain Gauge A, which is placed outside the catchment. As a result, in this case, peak rainfall will be 250 

estimated later than the real peak rainfall. On the other hand, in Case 2, when the storm arrives at Rain Gauge 251 

A, areal rainfall of the white hatched part of the catchment is computed even though the rainfall has not 252 

arrived at the catchment yet. Consequently, in this case, peak rainfall will be estimated beforehand rather than 253 

when the real peak rainfall occurs. 254 

[Insert Figure 4] 255 

As explained in the previous paragraph, TSN has structural limitations in estimating areal mean precipitation. 256 

The following hypothetical example in Figure 5 also demonstrates the drawback of using TSN in calculating 257 

areal mean precipitation. The experimental set up for this example is as follows: 258 

- The unit of time and distance is ignored since this is a hypothetical example. 259 

- The horizontal axis indicates the movement of rainfall and the vertical axis is the time scale. 260 

- A spatial distribution pattern of the hypothetical rainfall is modeled in five horizontal grids, the 261 

intensity of each grid having 5, 7, 10, 13 and the 7mm respectively. The storm is moving from left to 262 

right with constant velocity, two grids at each time step. 263 
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- The distances between rain gauges are set further apart than the size of the storm (five grids) since 264 

the study case in this study is a small catchment with a low density of rain gauges. 265 

- The region is divided into three sub-regions. On the horizontal axis, three hypothetical rain gauges 266 

(green vertical bars) (A, B, C) are in a line. The area of each sub-region is assumed to be the number 267 

of grid squares that each sub-region has. In this case, the area is 16, 11 and 18 for polygon A, B, and 268 

C respectively, as indicated by the red captions at the bottom of the figure. 269 

- Since the total catchment area is 45, the areal proportion of each sub-region A, B and C is 0.36, 0.24 270 

and 0.40 respectively. 271 

Under these conditions, while the rainfall moves from left to right it will pass through rain gauge A, B and C 272 

in order and the areal mean rainfall will be estimated by the ratio of sub-region weight. Since the shape of 273 

storm and rainfall intensity remains unchanged, true areal mean rainfall should be constant regardless of time. 274 

However, when TSN is applied, since the distance between the rain gauges is larger than the size of the 275 

rainfall (5 grid squares), the areal rainfall of each sub-region is estimated only when the rainfall arrives at the 276 

gauge. Therefore, although the true areal mean rainfall is constant (GRD), the estimated areal mean rainfall is 277 

fluctuating sharply in a serrated shape (TSN) as shown in the right panel of Figure 5. For instance, when the 278 

center of the moving rainfall (i.e., the maximum value in this rainfall) just arrives on the rain gauge, areal 279 

mean rainfall may be overestimated with the value close to the point rainfall. On the other hand, if the rainfall 280 

is away from the rain gauge areal mean rainfall may be underestimated with the value of zero. As shown in 281 

this demonstration, TSN has structural limitations in computing areal mean rainfall, and therefore the amount 282 

of estimated areal mean rainfall might be distorted especially when the catchment is small and the rain gauge 283 

density is low. 284 

[Insert Figure 5] 285 

 286 

4.2.2 Effects of rain gauge density and Interpolation method 287 
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To demonstrate the effects of rain gauge density on estimated areal mean rainfall with different spatial 288 

interpolation methods applied, rainfall events in each of 664 Standard-basins between the year 2016 and 2018 289 

were selected and analysed. Six hundred and sixty four Standard basins were chosen from among all 850 290 

Standard-basins, since they are used for flood forecasting in South Korea. Rainfall events that meet the 291 

following two conditions in each Standard-basin are considered as outliers and have been excluded: (1) 292 

cumulative areal mean rainfall using radar rainfall data is less than 10mm; (2) estimated areal mean rainfall 293 

difference between using rain gauge data and radar rainfall data is larger than a factor of three. Finally, 528 294 

Standard-basins and 1404 rainfall events were chosen for areal mean rainfall analysis in this study. Figure 6 295 

shows the distribution of catchment area over the 528 standard-basins. 296 

[Insert Figure 6] 297 

Figure 7 shows how areal mean rainfall was modelled. To evaluate the effects of rain gauge density on areal 298 

mean rainfall calculated from four different interpolation methods, reference areal mean rainfall is needed. In 299 

this study areal mean rainfall estimated using radar rainfall data is set as a reference since radars can survey 300 

large areas and can better capture the spatial variability of rainfall fields (Ochoa‐Rodriguez et al., 2019). Here, 301 

the bias of radar data was not adjusted by rain gauges for the following reasons: (1) the key process of 302 

correcting the bias of radar includes matching underlying statistical properties between the radar and rain 303 

gauge data. Therefore, the result of comparing different spatial interpolation methods may be distorted by a 304 

bias adjustment process, (2) adjusting radar rainfall estimates by rain gauge observations may not remove the 305 

bias entirely. Rainfall data is collected from rain gauges, and the corresponding radar rainfall estimate is taken 306 

from the radar grids, at a very large difference of scale, which is used to calculate areal mean rainfall. The 307 

mean absolute percentage error (MAPE) is commonly used in model evaluation, due to its intuitive 308 

interpretation in terms of relative error. Therefore, MAPE of four different interpolation methods is estimated 309 

as in Equation 4. 310 

𝑀𝐴𝑃𝐸𝐼𝑇𝑃
𝑅𝐷𝑅 =

|𝐴𝑀𝑅𝐺𝑅𝐷
𝑅𝐷𝑅−𝐴𝑀𝑅𝐼𝑇𝑃

𝑅𝐷𝑅|

𝐴𝑀𝑅𝐺𝑅𝐷
𝑅𝐷𝑅  × 100       (4) 311 

where, the superscript RDR represents radar and ITP represents interpolation methods. TSN, IDW, KRG and 312 

MQI. 𝐴𝑀𝑅𝐼𝑇𝑃
𝑅𝐷𝑅 are areal mean rainfall estimates obtained from radar grids at corresponding rain gauge points 313 
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using TSN, IDW, KRG and MQI interpolation methods respectively. 𝐴𝑀𝑅𝐺𝑅𝐷
𝑅𝐷𝑅 is areal mean rainfall estimated 314 

from radar grid rainfall.  315 

[Insert Figure 7] 316 

Figure 8 shows the MAPE with regard to the number of gauges used in estimating areal mean rainfall. The 317 

box height represents the 25th percentile (1st quartile) to the 75th percentile (3rd quartile) of MAPE sets, which 318 

is generally called as interquartile range (IQR).  The mid horizontal line that goes through each box represents 319 

the median and the black circle represents the mean value. The whiskers are the two lines outside the box that 320 

extend to the highest and lowest value (1.5 × IQR). The range of IQR and 1.5 IQR of IDW and KRG is less 321 

than those of MQI and TSN when the number of rain gauge is less than two. However, when the number of 322 

rain gauge is more than three, the differences among the four methods are not large. An interesting thing is 323 

that, for MQI, when the rain gauge number is less than two, the range of IQR is the widest and the mean value 324 

is the largest, while the median value is not that different from the other methods. This indicates that there are 325 

some big storm events that affect MAPE and the mean value when MQI is applied, but in general, MAPE is 326 

not that large compared with the other three methods.  327 

[Insert Figure 8] 328 

Analogous to other studies (Bárdossy and Pegram, 2013; Borga and Vizzaccaro, 1997), the performance of 329 

the interpolation methods is dependent on the rain gauge density. As can be seen in Figure 9, areal mean 330 

rainfall differences between the interpolation methods decrease as the number of rain gauges increase. The red 331 

line with circular dots in Figure 9 shows the best fit line (the second degree polynomial equation) of the mean 332 

value of MAPE. MAPE shows 20% when a single rain gauge is used in estimating areal mean rainfall. The 333 

MAPE decreases by about 10% as the number of gauges increase until 5, then decrease by about 5% as the 334 

number of gauges increase until 8. In addition, more than 8 rain gauges in Standard-basins make the effect of 335 

the number of rain gauges small in estimating areal mean precipitation. 336 

 [Insert Figure 9] 337 
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The mean percentage error (MPE) is estimated as in Equation 5 and the results are presented in Figures 10 and 338 

11: 339 

𝑀𝑃𝐸𝐼𝑇𝑃
𝑅𝐷𝑅 =

𝐴𝑀𝐴𝑅𝐺𝑅𝐷
𝑅𝐷𝑅−𝐴𝑀𝐴𝑅𝐼𝑇𝑃

𝑅𝐷𝑅

𝐴𝑀𝐴𝑅𝐺𝑅𝐷
𝑅𝐷𝑅  × 100        (5) 340 

In common with MAPE results, as the number of rain gauges used in calculating areal mean annual rainfall 341 

increases, the MPE between areal mean annual rainfall estimated from radar grid rainfall and four 342 

interpolation methods decreases. However, unlike MAPE, MPE shows a clear trend according to the number 343 

of rain gauges. IDW tends to underestimate (maximum mean 6.0%), while TSN tends to overestimate 344 

(maximum mean 11.9%). KRG and MQI tend to overestimate a little when less than two rain gauges are used, 345 

but when more than two rain gauges are used there is no clear bias trend overall. Figure 11 illustrates the mean 346 

value of MPE extracted from Figure 10. Among 528 standard-basins, the proportion of the basins that have 347 

rain gauges less than or equal to 4 per standard-basin are 70.5% and the rain gauges less than or equal to 6 per 348 

standard basins are 94.9%. This indicates that, for example, when the TSN method is used, the error of the 349 

estimated areal rainfall is about 5% in about 70% of standard-basins, and the error of the estimated areal 350 

rainfall is about 3% in about 95% of standard-basins. 351 

[Insert Figure 10] 352 

[Insert Figure 11] 353 

 354 

4.2.3 Effects of rain gauge distribution 355 

It is evident from Figure 8 that MAPE decreases as the number of rain gauge used in calculating areal mean 356 

rainfall increases. However, the mean value of MAPE (circle marks in Figure 8) appears irregularly at similar 357 

numbers of rain gauges. From this, it can be assumed that there might be some other factors than the density 358 

of rain gauges that affect areal mean rainfall estimation. Since the shape of catchments and locations of rain 359 

gauges are fixed, it is reasonable to assume that this might be attributed to characteristics of rainfall that vary. 360 

Although catchment shape and the number of rain gauges used are similar as illustrated in Figure 6, areal 361 

mean rainfall could be substantially different due to the placement of rain gauges. The reason is that the 362 
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weight of each rain gauge differs according to the shape and movement of the areal distribution of rainfall. 363 

Moreover, as discussed in section 4.2.1, interpolation methods based on rain gauges such as TSN, areal mean 364 

rainfall could be overestimated due to a specific rain gauge rainfall if the density of rain gauge is low (i.e. rain 365 

gauges are far apart compared with cloud width) and the rainfall area is located over a particular rain gauge. 366 

On the other hand, in an area where there are no rain gauges, its area mean rainfall is likely to be poorly 367 

estimated. As a result, over- and underestimation of rainfall results, so that outliers occur repeatedly. 368 

To summarize, in this section, we examined the effects of rain gauge distribution patterns on estimated areal 369 

mean rainfall. In other words, the number of rainfall events that include outliers (i.e. extremely over- and 370 

under estimated values) are examined for different distributions of rain gauges. The linearity of a rain gauge 371 

distribution is measured by Spearman’s correlation coefficient between the locations (i.e. latitude and 372 

longitude) of rain gauges. Figure 12 represents a schematic of the rain gauge distribution. When rain gauges 373 

are radially distributed as Figure 12(a), linear correlation coefficient among gauge locations is small, while in 374 

the case that rain gauges are linearly distributed as Figure 12(b), the linear correlation coefficient among 375 

gauge locations is large but, in the end, it is a function of interstation distance between them. 376 

[Insert Figure 12] 377 

To investigate whether or not outliers occur depending on the distribution of rain gauges, the relationship 378 

between frequency of outlier occurrence and rain gauge locations was estimated. An outlier is defined based 379 

on the so-called ‘three sigma rule of thumb’, i.e. estimated areal mean rainfall that lie within three standard 380 

deviations about the mean value are assumed as outliers. Sixty-one rainfall events at 664 Standard-basins, 381 

which are used in flood forecasting, were analysed. 382 

In Figure 13, the green bar graph shows the number of rainfall events that include outliers (left y-axis) 383 

according to the correlation coefficients of the geometric distribution of gauges (x-axis) in the Standard-basin. 384 

The solid red lines represent the empirical cumulative distribution function (ECDF, right y-axis) of this bar 385 

graph series, and the pink dotted line represents 95% confidence interval of ECDF. The number of rainfall 386 

events with outliers increases as the correlation among rain gauge locations increases. This implies that 387 

outliers are more likely to happen when the gauges are located in a linear format. Especially, the slope of 388 

outlier occurrence changes from 0.83 to 1.44 before and after when the correlation coefficient is 0.7, which 389 
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means that the stronger the linearity of rain gauge distribution is, the bigger the tendency of the frequency of 390 

outliers’ occurrence grows. Therefore, as expected, not only the rain gauge density but also the distribution of 391 

rain gauges influences the accuracy of areal mean rainfall estimation. In addition, the reason for the difference 392 

of MAPE between similar numbers of rain gauges in Figure 8 might be due to the problem of rain gauge 393 

distribution. This implies that the shape and distribution of rain gauges is important in order not to over- or 394 

underestimate areal mean rainfall at small catchments, as expected. 395 

[Insert Figure 13] 396 

4.2.4 Effects of rainfall direction 397 

The distribution of rain gauges and movement of rainfall events not only affect the magnitude of areal mean 398 

rainfall but also the temporal distribution of areal mean rainfall. To investigate this, the occurrence time of 399 

peak rainfall was compared between time series of rain gauge based areal mean rainfall and radar based areal 400 

mean rainfall, at 10 minute intervals. Figure 14 shows an example of the time lag of peak rainfall occurrence 401 

depending on rain gauge placement and rainfall movement. The rain gauge is located outside the catchment on 402 

the bottom right of the 4 colored maps (black circle) in this Standard-basin (102307). The white arrows 403 

indicate the direction of rain storm. The storm happened between 00:00 (AM) to 12:00 (AM) on May 16, 404 

2018. In the beginning of the rainfall event (time t and t+1), the storm is moving from right to left. Therefore, 405 

the peak areal mean rainfall from rain gauge (𝐺𝑡,𝐺𝑡+1) is estimated earlier than from radar data (𝑅𝑡 , 𝑅𝑡+1). 406 

However, at the end of the rainfall event (time 𝑡′  and 𝑡′+1), storm is moving from left to right. Therefore, the 407 

peak areal mean rainfall from radar data (𝑅𝑡
′
, 𝑅𝑡

′+1) is estimated earlier than from rain gauge (𝐺𝑡
′
, 𝐺𝑡

′+1). In 408 

this case, the point rainfall is the same as the areal mean rainfall since only one rain gauge is located outside 409 

the catchment. Therefore, when the center of the storm passes the rain gauge, areal mean rainfall might be 410 

overestimated. This result could be another reason for irregular MAPE in Figure 8 among a similar number of 411 

rain gauges. It can be concluded from this result that in order to calculate accurate areal mean rainfall from 412 

gauges, not only the number of rain gauges but the isotropic and uniform placement of rain gauges is 413 

important. 414 

[Insert Figure 14] 415 
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5. Conclusions 416 

The main objective of this study was to assess the influence of catchment area, rain gauge density, rain gauge 417 

distribution and direction of rainfall movement on estimating areal mean rainfall, by comparing the result of 418 

four different spatial interpolation methods. The main results and conclusions can be summarized as follows: 419 

(1) MAPD (mean absolute percentage discrepancy) and catchment area are inversely proportional. In 420 

addition, MAPD between TSN (Thiessen polygons) and the other three interpolation schemes 421 

increase rapidly as catchment area becomes smaller when the catchment area is less than 500𝑘𝑚2.  422 

(2) Regarding the influence of rain gauge density (i.e. the number of rain gauges in the catchment), the 423 

fewer the number of rain gauges used in calculating areal mean rainfall are, the larger the MAPD 424 

becomes. In our study, MAPD has a value of 20% when only one rain gauge is used in estimating 425 

areal mean rainfall. MAPD decreases to about 10% as the number of rain gauges increase to 5, then 426 

decreases to about 5% as the number of rain gauges increase to 8. In addition, more than 8 rain 427 

gauges per basin will only improve the estimation of mean annual precipitation discrepancy below 428 

5%, which will be impractical.  429 

(3) The IDW method tends to underestimate areal mean rainfall while TSN tends to overestimate and is 430 

spatially biased in relatively sparse networks. Therefore, KRG and MQI are recommended in 431 

estimating areal mean rainfall on small catchments. 432 

(4) The number of rainfall events with outliers increases as the correlation among rain gauge locations 433 

(linearity of rain gauge distribution) increases. Especially, outliers increase steeply when correlation 434 

coefficients are over 0.7. This implies that outliers are more likely to happen when the gauges are 435 

located in a linear pattern. Therefore, considerations of spatial distribution of rain gauges is important 436 

in order not to over- or underestimate areal mean rainfall.  437 

(5) Depending on the direction of rainfall movement, temporal distributions of areal mean rainfall are 438 

different when comparing rain gauge and weather radar data, especially when catchments have sparse 439 

rain gauges if Thiessen polygons are used as interpolants. 440 

In South Korea, the Thiessen polygon method, which is out-dated, is officially used for river flood forecasting. 441 

This study clearly demonstrates that there are practical limitations in estimating areal mean rainfall when rain 442 
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gauge rainfall data is obtained from small catchments. A possible solution of limitations in estimating areal 443 

mean rainfall could be merging radar and gauge data. Neither of them is accurate, but the combination is 444 

better than working with only the one or the other (Pegram, 2001; Sinclair and Pegram, 2005). In addition, 445 

differences in areal mean rainfall have been presented when different interpolation methods are applied, which 446 

can provide guidelines for which interpolation method should be selected for different conditions and how the 447 

rain gauges should be distributed to improve the accuracy of areal mean rainfall estimates.  448 
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Appendix I. List of Acronyms 449 

AWS  Automatic weather stations 450 

AMAR  Areal mean annual rainfall 451 

IDW  Inverse distance weighting 452 

IQR  Interquartile range 453 

KMA  Korea Meteorological Administration 454 

KRG  Kriging 455 

MAPD  Mean absolute percentage discrepancy 456 

MAPE  Mean absolute percentage error 457 

ME   Ministry of Environment 458 

MPE  Mean percentage error 459 

MQI  Multiquadric interpolation 460 

QPE  Quantitative precipitation estimation 461 

TSN  Thiessen polygon 462 

  463 
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  579 
(a) Sub-basins and KMA rain gauges       (b) Standard-basins and ME rain gauges 580 

 581 

Figure 1. (a) 117 Medium sized Sub-basins (black polygons) and Automatic Weather Stations (AWS) of the 582 

Korea Meteorological Administration (KMA) (left red dots) for water management. (b) 850 Small sized 583 

Standard-basins for flood forecasting. Red polygons (664 Standard-basins) represent the basins which are 584 

used in river flood forecasting and blue dots are rain gauges installed by Ministry of Environment (ME). 585 

  586 
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 587 

Figure 2. Locations and observation ranges of ME weather radars. Gari, Yebong, Sobaek, Seodae, Mohu, 588 

Biseul are S-band dual-polarization radars, Imjin(C) is a C-band single-polarization radar, and Samchuk, Uljin 589 

are small X-band radars for gap-filling large S-band radar networks. 590 

 591 

 592 

 593 

 594 

 595 

Figure 3. Mean absolute percentage discrepancy (MAPD) of areal mean annual rainfall for different spatial 596 
interpolation schemes and catchment areas. IDW, KRG and MQI represent Inverse Distance Weighting, 597 
Kriging and Multiquadric Interpolation respectively. The pink shading covers the smaller areas. 598 
. 599 
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 603 

Figure 4. Illustration of the drawback of the Thiessen polygon method (TSN). An example of four rain gauges 604 

(A, B, C, D) located outside the catchment and the storm moving from South West to North East (Case 1) and 605 

vice versa (Case 2). 606 

 607 
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 608 

Figure 5. Schematic example of rainfall movement and Thiessen polygon (TSN) method. This figure is an example showing the characteristics of 609 

precipitation calculated by the TSN when the distance between rain gauges are set further apart than the storm size. The example consists of hypothetical 610 

rainfall (rainfall distribution 5, 7, 10, 13, 7mm), three catchments (Sub-basin A, B, C) and three rain gauges (Gauge 1, 2, 3). The horizontal axis represents 611 

distance and the vertical axis represents time. Here, the units of time and distance are ignored because it is a hypothetical example. The figure represents that 612 

the imaginary rainfall at the top shifts by 2 steps in a unit time from 0 to 20 time steps. Red boxs 1, 2, and 3 indicate rainfall gauges, respectively. The line 613 

graph on the right panel shows areal mean rainfall over time calculated by the TSN method and the grid mean rainfall (GRD) method. The GRD is constant 614 

over time, while TSN is fluctuating sharply. 615 

Imaginary rain storm Gauge 1 Gauge 2 Gauge 3

5 7 10 13 7 1 2 3 Imaginary basin

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

A B C TSN GRD 1 2 3

0 0.0 0.0 0.0 0.0 0.9 5 7 10 13 7 Gauge Gauge Gauge

1 0.0 0.0 0.0 0.0 0.9 5 7 10 13 7

2 0.0 0.0 0.0 0.0 0.9 5 7 10 13 7

3 4.7 0.0 0.0 4.7 0.9 5 7 10 13 7

4 2.5 0.0 0.0 2.5 0.9 5 7 10 13 7

5 0.0 0.0 0.0 0.0 0.9 5 7 10 13 7

6 0.0 0.0 0.0 0.0 0.9 5 7 10 13 7

7 0.0 0.0 0.0 0.0 0.9 5 7 10 13 7

8 0.0 0.0 0.0 0.0 0.9 5 7 10 13 7

9 0.0 3.1 0.0 3.1 0.9 5 7 10 13 7

10 0.0 1.7 0.0 1.7 0.9 5 7 10 13 7
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 616 

Figure 6. Areal distribution of 528 standard-basins. The mean value of 528 standard-basins area is 126 km2. 617 

 618 

 619 

 620 

Figure 7. Schematic illustration of estimating areal mean rainfall with different interpolation methods using 621 

radar rainfall data. TSN, IDW, KRG and MQI are interpolation methods respectively. 𝐴𝑀𝑅𝐺𝑅𝐷
𝑅𝐷𝑅 is areal mean 622 

rainfall estimated from radar grid rainfall. 623 
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 624 

 625 

Figure 8. Boxplots of mean absolute percentage error (MAPE, %) with respect to different number of rain 626 

gauges (Ng) and different spatial interpolation methods. The horizontal line in the box represents the median 627 

value and the black circle represents the mean value. The  box height represents the 25th percentile (1st 628 

quartile) to the 75th percentile (3rd quartile) of MAPE sets.The whiskers are the two lines outside the box that 629 

extend to the highest and lowest values. IDW, KRG, MQI and TSN represent Inverse Distance Weighting, 630 

Kriging, Multiquadric Interpolation and Thiessen polygon respectively. 631 
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 634 
Figure 9. Mean value of MAPE (%) with respect to each number of rain gauges (Ng) in Figure 8. MAPE 635 

decreases for all interpolation methods as number of rain gauges increase. 636 
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 638 
 639 

Figure 10. Boxplots of Mean percentage error (MPE, %) with respect to different number of rain gauges (Ng) 640 
and different spatial interpolation methods. The horizontal line in the box represents the median value and the 641 
black circle represents the mean value. The  box height represents the 25th percentile (1st quartile) to the 75th 642 
percentile (3rd quartile) of MPE sets. The whiskers are the two lines outside the box that extend to the highest 643 
and lowest values. IDW, KRG, MQI and TSN represent Inverse Distance Weighting, Kriging, Multiquadric 644 
Interpolation and Thiessen polygon respectively. 645 
 646 
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 647 

Figure 11. Mean value of MPE is extracted from Figure 10. Yellow line show MPE of TSN with respect to Ng, 648 

blue line show MPE of IDW, green line show MPE of KRG and black line show MPE of MQI. Red histogram 649 

shows the number of standard-basins. Blue dotted line is the fitted curve of MPE of IDW and yellow dotted 650 

line is the fitted curve of MPE of TSN. 651 

 652 

 653 

 654 

 655 

(a) radially located rain gauges                (b) linearly located rain gauges 656 

Figure 12. Schematic of rain gauge distribution. Black line is the boundary of hypothetic basin and red dots 657 

are rain gauges. 658 
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 661 

Figure 13. Relationship between number of areal mean rainfall outliers in 61 rainfall events and correlation 662 

coefficients of rain gauge geographic locations based on latitude and longitude in 664 Standard-basins. The 663 

solid red line represents the empirical cumulative distribution function (ECDF, right y-axis) of this bar graph 664 

series, and the pink dotted lines represent the 95% confidence interval of ECDF. The slope of outlier 665 

occurrence changes from 0.83 to 1.44 before and after when the correlation coefficient is 0.7. 666 
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 668 

 669 

Figure 14. An example showing the time lag of peak rainfall occurrence depending on the distribution of rain 670 

gauges and rainfall movement on 15 May, 2018. The rain gauge is located outside the catchment on the 671 

bottom right of the 4 colored maps (black circle in the upper panel). In the beginning of the rainfall event 672 

(time t and t + 1, the sampling time interval is 10-minutes), the storm is moving from right to left , as shown 673 

in the first two of the 4 panels above the time series, but changes direction about 9 hours later.  The time-shift 674 

in the two periods are lagged by distance as can be seen the lower panel.. The white arrows indicate the 675 

direction of rainfall movement. TSN and RDR represent the areal rainfall using the Thiessen polygon method 676 

and radar areal mean rainfall, respectively. TSNc and RDRc represent the cumulative areal rainfall using the 677 

Thiessen polygon method and cumulative radar areal mean rainfall over the catchment, outlined in grey in  the 678 

upper 4 panels, respectively.  679 
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