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Multi-port beam splitters are cornerstone devices for high-dimensional quantum information tasks, which can out-
perform the two-dimensional ones. Nonetheless, the fabrication of such devices has proven to be challenging with
progress only recently achieved with the advent of integrated photonics. Here, we report on the production of high-
quality N x N (with N = 4, 7) multi-port beam splitters based on a new scheme for manipulating multi-core optical
fibers. By exploring their compatibility with optical fiber components, we create four-dimensional quantum systems
and implement the measurement-device-independent random number generation task with a programmable four-arm
binary protocols and attain 1.23 bits of certified private randomness per experimental round. Our result demonstrates
that fast switching, low loss, and high optical quality for high-dimensional quantum information can be simultane-
ously achieved with multi-core fiber technology. © 2020 Optical Society of America under the terms of the OSA Open Access
Publishing Agreement

https://doi.org/10.1364/OPTICA.388912

1. INTRODUCTION

Space-division multiplexing (SDM) is currently the main tech-
nology considered to overcome the actual capacity limitation of

the past couple of years, the first quantum communication experi-
ments based on MCFs have appeared. The first one used a MCF as
a direct multiplexing device: with one core acting as the quantum
channel, while other cores contained classical data [15] (see also
Refs. [16-19]). Later, the fact that all cores are placed in a common
cladding, translating to a long multi-path conduit with intrinsic
phase stability, was explored for demonstrating the feasibility of
high-dimensional (HD) quantum key distribution over MCFs
[20,21]. The relative phase difference between multiple cores of
MCEF fibers has been shown to be more stable than that of multiple
single-mode fibers by at least two orders of magnitude over a 2 km
fiber link [22]. The benefit of MCFs for QI has been further rein-
forced by showing that they can support propagation of entangled

optical telecommunication networks [1]. Basically, it consists of
specially designed fibers that can support distinct optical spatial
modes in order to increase the multiplexing capabilities. The opti-
cal fibers employed in SDM can be divided into two main groups:
multi-core fibers (MCFs) [2,3] and few-mode fibers (FMFs) [4-8].
In the former, several single-mode cores are physically contained
within the same common cladding, with each core being used
independently. A FMF on the other hand consists of a single
core that supports several optical modes, each of them capable of

transmitting data independently.

Arguably, the development of a major part of experimen-
tal quantum information (QI) relies on the fact that it is based
heavily on the same hardware employed by classical optical com-
munication [9-13]. Therefore, it is natural to expect that future
development will take place using SDM hardware [14]. Indeed, in

2334-2536/20/050542-09 Journal © 2020 Optical Society of America

photons [23,24]. Similar research has begun for FMFs [25-30].
HD entanglement is advantageous in this regard, as it can be more
resistant to noise [31].

Additionally, SDM technology has been exploited for building
MCEF-based optical fiber sensors, whose remote interrogation
capabilities make them attractive for industrial applications
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[32-36]. MCF optical sensors have been used for high-
temperature sensing up to 1000°C with a typical temperature
sensitivity as high as 170 pm/°C [35]. The advantage of using
MCFs is that they allow for the fabrication of multi-arm Mach—
Zehnder (MZ) interferometers that have higher sensitivity for
phase changes since the slopes of the resulting interference peaks
are steeper. There has been a large variety of MCF optical sensors
but most of them rely on inefficient techniques to launch light into
the multi-arm MZ, resulting in prohibitive losses for QI process-
ing. Of particular interest is the work of Gan ez a/l. [36], where the
authors develop new tapering techniques to build the multi-arm
MZ directly into a specially designed MCE

Inspired by such progress in optical sensing, we report on the
production of high-quality N x N (with N=4, 7) multi-port
beam splitters (MBSs) built in commercially available multi-core
fibers and their usage for building fast, low-loss, and program-
able multi-arm MZ interferometers suitable for QI. In the field
of quantum computing, optical interferometers have attracted
much attention. Since the seminal work of Knill, Laflamme, and
Milburn [37], it has been known that one possible road to uni-
versal quantum computing is through an architecture composed
of single-photon sources, detectors, and linear-optic multi-arm
interferometers. Such interferometers work as quantum circuits
that are especially relevant for efficient processing of HD photonic
quantum systems (qudits), whose generation has now been har-
nessed [38—51]. Nonetheless. the development of MBS devices has
proven to be challenging [52]. Recent progress has been made with
the advent of integrated photonics [21,49,53—55], where multi-
arm interferometers are built resorting to a mesh of conventional
2 x 2 beam splitters [56,57]. In this case, the circuits can present
balanced and unbalanced losses, and depending on the circuit
size, the fidelity of the operations can be compromised [58,59].
By taking a new approach based on MCFs for building multi-arm
interferometers, we present both: (i) a new technology that has
technical advantages and is fully compatible with previous efforts
in integrated photonics [21], and that at the same time (ii) can be
independently used for high-quality processing of QI. It allows one
to exploit the stability and compactness of MCF fibers, and their
compatibility with trends in telecommunication technology, to
build new robust schemes for optical sensing, communication and
information processing. Note that N-arm interferometers can also
be built with 2 x 2 in-fiber beam splitters, but the scaling of the
quantum circuit favors the use of MBSs. While two NV x N MBSs
suffice for a large class of transformations, the number of 2 x 2
50:50 beam splittersis N(N — 1) [56,60,61].

To demonstrate the viability of our approach for HD-QI, we
consider the task of random number generation (RNG), which
finds several applications in cryptography, gambling, and numeri-
cal simulations. In the classical domain, randomness is associated
with our ignorance about the parameters describing a process. This
perspective is not enough for cryptographic protocols, where we
would like to certify that certain data are random for an eavesdrop-
per that could have more knowledge or computational power than
the user [62]. This problem was solved by fully device-independent
(DI) RNG protocols [63], which makes no assumptions about the
source or measurements being used in the protocol [64]. However,
this approach is quite demanding and typically results in very low
random bit rates (see, e.g., [65]). A solution is to consider semi-DI
scenarios [66—71], where partial knowledge of the implementation
is assumed. In our scheme, we assume that we control the source

of quantum states but do not assume anything about the measure-
ments we perform, a situation called measurement-DI (MDI)
RNG [72]. Our implementation resorts to a MCF-based four-arm
interferometer operating at 2 MHz repetition rate, which generates
and measures path encoded four-dimensional qudit states with
fidelities higher than 99.4%. Moreover, we employ theoretical
techniques that allow us to handle the issues with finite statistics,
and use semi-definite programming to estimate the randomness
in this MDI setting. This allows us to attain a generation rate of
1.23 random bits per experimental round, which surpasses the
one-bit limit of binary RNG protocols, thus proving the usefulness
of exploiting qudit states for RNG.

Last, we note that the average insertion loss for the fabricated
4 x 4 (7 x 7) MBSs is only 4.3% (9.0%), which allows for a qudit
transmission of 42% through the programmable circuit and a
corresponding overall detection efficiency that can reach at least
35% with commercially available superconducting single-photon
detectors (efficiency >85%). This result, together with the inter-
ferometer’s fast switching and high optical quality, yields potential
advantages of this technology for quantum communication
[73,74], sensing [75], and computation [76,77].

2. FABRICATION, MODELING, AND VALIDATION
OF MULTI-PORT BEAM SPLITTERS

As mentioned before, the cladding of a MCF is composed of several

cores, which can be exploited for the propagation of path qudit

states defined as the coherent superposition |V) = Lk Zé e’k | k)

[20], where |£) denotes the state of the photon transmitted by
the kth core mode, and ¢ is the relative phase acquired during
propagation over the kth core [see Fig. 1(a)]. High-quality 4 x 4
MBSs are constructed directly in a four-core optical fiber through
a tapering technique recently introduced in [36]. In that work,
the authors were interested in building multi-arm MZ interfer-
ometers for multi-parameter estimation. Their idea was to use

(C)

Outer jacket member

(b)

Fig. 1.  Schematics of a MCF and of the fabricated MBSs. (a) MCF
before tapering and the qudit encoding strategy. (b) The fiber is then
heated along alength L and pulled symmetrically from both ends, stretch-
ing and thinning the fiber. The final device is the MBS and has a length
L with diameter Dyy.
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a heterogeneous multi-core fiber. This fiber is used to minimize
inter-core coupling, as it has lower refractive index “trenches”
around the cores. In such fibers, there are at least two orthogonal
modes propagating over one core of the fiber, which normally never
interfere. Nonetheless, by tapering this fiber, they created an over-
lap between such modes due to strong evanescence effects in the
tapered zone. From the interference observed, parameter estima-
tion was possible. The authors then used each core interference for
estimating different parameters of a sample. The fiber worked asan
instrument composed of several two-path MZ interferometers. In
their tapered region, the inter-coupling between different cores was
severely reduced by such trenches.

Here, we show that by employing the same technique but
with homogeneous MCFs, i.e., fibers where the NV cores are not
bounded by refractive index trenches, one can build high-quality
N x N MBSs. The tapering is performed by locally heating a
small transverse region of the fiber with length Z, while applying
a controlled longitudinal stretching tension. Since the fiber is
mechanically in a partial soft state, it will become thinner with
a final diameter D,, at the center of the region where the heat is
applied. The cores will consequently be brought together, and due
to evanescent coupling, light will leak from one core to the others,
similar to what is obtained in a standard fiber-optical bi-directional
coupler [see Fig. 1(b)]. The splitting ratio can be balanced by mon-
itoring the transmission of a 1550 nm laser beam sent through the
four-core fiber while tapering it. Finally, since the MBS is directly
constructed on a MCEF, it is compatible for connection with other
MCFs by direct contact.

We test the fabricated four-core MBSs by first illuminating
one of the cores of a MCE This fiber is connected to the MBS
under test, and at the output, the light is split across the other cores.
Figure 2(a) shows the image of the output facet of one MBS on an
infrared CCD camera, clearly showing the four-core pattern, as
well as the cores fully illuminated. We then measure the output
power per core individually with p-i-n photodiodes. Figure 2(b)
shows the normalized intensity at each core following the MBS
and its evolution over time. The power at each core is very stable
and the observed average split ratio is (0.248 £ 0.01). The average
insertion loss of the 4 x 4 MBSs s (4.3 & 0.06)%.

In general, symmetric 4 x 4 MBSs are parameterized in terms
of the unitary operation given by [52,56,57]

1 1 1 1
1 ¢ —1 —¢

V‘E 1 -1 1 =1 |- (1)
1 —¢i® —1 ¢i®

Since the cores are equally distant to the center of the four-core
MCE in the tapered zone, they will have the same length Z,,.
So, it is expected that the MCF MBSs should be described by V'
when ¢ = 0. We confirm this by experimentally measuring the
unitary implemented by a 4 x 4 MCF MBS, resorting to the
quantum process tomography technique introduced in [78].
Any unitary device is described by U=3_, uj/eel¢/’f|j)(k|. The
parameters u, for our MBS are obtained from the split ratios
recorded in the procedure described above. The relative phases are
measured by sending states of the form [¢;) = \/Lz(| 1) +¢™] 7))
through the MBS. At the MBS output ports, the probabilities
of recording the photon are given by p(k|j) = 3luf, + uij—l—
2upiug; cos(@ + ¢ — ¢r1)]. Hence, by recording these probabil-
ities with respect to ¢, we acquire the relative phases ¢z — ¢1.
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Fig. 2. Multi-port beam splitter performance. (a) Image of the facet
p P p &

of the output of a MCF 4 x 4 MBS as seen by an infrared CCD cam-
era. (b) Output normalized optical power of each core of the MBS as a
function of time.

Using the scheme in Fig. 3 explained below, we obtain the
experimental matrix U. Nonetheless, due to inherent experi-
mental errors, this matrix is never unitary. In order to obtain
the unitary matrix describing the 4 x 4 MCF MBS, one can
optimize a cost function of the experimental data. For this pur-
pose, the fidelity between two matrices, given by F (4, B) =
#|Tr(ATB)|2 [79,80], is typically used as a figure of merit.
Then, the final MBS matrix is given by the optimization problem:
U= argmin, [1 — F(U, V). Following this procedure, we
determine that our MCF MBS matrix representation is

I_A]:

0.499 0,501 0, 499 0, 499
0,501 0,491+40,08; —0,496—0,06; —0,498 — 0, 017
0,499 —0,495—0, 06/ 0,498+ 0,03 —0,499+40,03; |’
0,499 —0,499 — 0,017 —0,499 40, 03; 0,499 —0,01;

@)

which has a fidelity with the model of Eq. (1) given by
F(U, Vjy—p) = 0.995 4 0.003, confirming the high quality of
the 4 x 4 MCF MBSs. Last, we note that our technique can be
extended to MCFs of more cores for creating MBSs with more
input/output ports. We present the characterization of a 7 x 7
MCF MBS in Supplement 1. The average insertion loss of that
7 x 7MBSis (9.0 + 0.04)%.

3. MULTI-ARM INTERFEROMETERS BASED ON
MULTI-CORE FIBERS

A programmable quantum circuit allows one to prepare differ-
ent quantum states and measure them with different bases in a
controllable way. Now, we show (i) how the MCF MBSs can be
used to build a multi-arm MZ interferometer, and (ii) how off-the-
shelf telecommunication components can be incorporated into it
for implementing an efficient quantum circuit.

In our scheme (see Fig. 3), the light source is composed of a
semiconductor distributed feedback telecom laser (A = 1546 nm)
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Research Article

Vol. 7, No. 5 / May 2020 / Optica 545

connected to an external fiber-pigtailed amplitude modulator
(FMZ). Driven by a field programmable gate array electronic unit
(FPGA1), we use the FMZ to externally modulate the laser to
generate optical pulses 5 ns wide. Optical attenuators (AT Ts) are
then used to create weak coherent states [9].

Following the ATT, we use a commercial spatial demulti-
plexer/multiplexer unit (DEMUX) [81,82], with insertion losses
around 3.2%. This device is composed of four independent single-
mode fibers connected to a four-core MCE Each single-mode fiber
is mapped to one of the cores of the MCF fiber. In our system, after
the first DEMUX, only one of the MCF cores is illuminated, which
is shown schematically in Fig. 3. This MCF fiber is then connected
toa4 x 4 MBS as the starting point of the programmable four-arm
MZ interferometer. A second DEMUX unit (identical to the initial
one but connected in reverse) is then used to separate the cores in
individual single-mode fiber outputs, allowing access to each core.
Each path contains two fiber-pigtailed LINbO3 phase modulators
(PMs) with 10 GHz bandwidth. This allows us to prepare and
measure a more general class of path qudit states. Each PM has an
internal polarizer used to align the photon polarization state such
that in the interferometer there is no path information available
[83,84], which would compromise the visibility of the observed
interference. Fiber-based polarization controllers (not shown)
are used in each path to maximize transmission through the PMs.
The first set of PMs is also controlled by the FPGA1 unit and are
used for state preparation. The general form of the states that are

prepared is
1 . . ) )
0 =S 010) + %1 1) + 1) + 3. )
where ¢! is the phase applied by the first modulator in mode .
Finally, the state projection is done by another 4 x 4 MBS,
whose input is first converted from the four individual single-
mode arms to a single four-core fiber by a third DEMUX unit.
Considering the 4 x 4 MCF MBS matrix representation, and the

action of the second set of PMs, one can show that the form of the
measurement basis states at the end of the circuit are given by

1 . . . .

o) = 5<el¢5‘ 10) + 7 |1) + 797 2) + £7%5'|3)),
1 . . . .

1Y) = 5@”’5 10) + ¢7 1) — 47 2) — £797 |3)),
1 X . . X

I¥2) = 5(/"’03 10) — 7 1) + 7 2) — ¢797 |3)),

|¥3) = %(«“’5‘ 0) — 97 1) — 7 12) + 6797 [3)),  (4)

Source
P . FMZ ATT )|
5 K> ‘
1
% v

MCF MBS

&

= o
- .
2) g2 s

FPGA

where ¢ is the phase applied by the second modulator in the core
mode 4. The second set of PMs is independently controlled by a
second FPGA2 unit. In order to connect the second 4 x 4 MBS
to single-photon detectors (D;) and conclude the measurement
process, a fourth DEMUX unit is employed to split the four-core
fiber into four single-mode fibers. They are each connected to
commercial InGaAs single-photon detection modules, working in
gated mode and configured with 10% overall detection efficiency,
and 5 ns gate width. The detectors’ counts are simultaneously
recorded by the FPGA2 unit. Through the control of the clock-
synchronized FPGA units, one can program the generated path
qudit states and measurements to be implemented by the circuit.
Last, we note that while only three PMs are needed for each set, we
opted to maintain the fourth one for easily matching the paths for
future applications.

The interferometer occupies a 30 cm X 30 cm area and is
thermally insulated to minimize additional random phase drifts
between the single-mode fibers. Nevertheless, long-term phase
drifts are present, and we implemented a control system to actively
compensate for them. The control is implemented by FPGA2 and
based on a perturb and observe power point tracking method [85].
More specifically, each applied phase ¢ can be decomposed as
¢F = ¢ + ¢4, where the employed voltage driver is capable
of supplying the sum of two independent voltages Vs and Viyod-
Vbias is 2 low-speed signal used to control ¢,Eias, and this is intended
to compensate for a given phase drift ¢}. Vo4 is the high-speed
signal for modulating the desired phase ¢"°. Since the total rel-
ative phase at the Ay, arm is qb,f = ¢Zias + qb,':“’d + ¢}, the phase
drift compensation algorithm running in FPGA2 will perturb the
kth PM to make (f)}jm = —¢}, such that the phase noise is elimi-
nated. This is done by maximizing the number of photo counts
at detector Dy, which corresponds to a situation where there is
constructive interference. The algorithm does this sequentially to
each PM at the measurement stage. The multi-arm interferometer
works with a repetition rate of 2 MHz and has an integration time
of 0.1 s. When the system is initialized, the stabilization control
typically takes around 15 s to align the interferometer, as shown in
the experimental data in Fig. 4(a), where the control system is acti-
vated at # = 50 s. When this point is achieved, the quantum circuit
automatically prepares the desired states and performs the required
measurements over experimental blocks of 0.1 s. The control
system monitors the phase stabilization of the interferometer in
real time, such that it stops the measurement procedure every 0.2 s
to check the stabilization. The circuit can realign itself and run for
several days continuously. To show the quality of the MCF-based
multi-arm interferometer, we gradually generate the quantum

4 Out ome measu

MCF MBS

Fig.3. Schematics of the experimental setup implementing the programmable quantum circuit for HD quantum information processing. Please see the

main text for details.
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Fig. 4. Phase stabilization and interference fringes of the four-arm

programmable circuit. (a) Active stabilization of the multi-arm inter-
ferometer (integration time 0.1 s). Inset shows a zoom between 50 and
65 s showing the settling time of the control system after turning it on.
(b) Detection rate as a function of modulated phases ¢;! (integration time
1s).

states associated with each outcome of the interferometer when all
@F s are set to zero, obtaining the traditional interference curves
in Fig. 4(b). The average visibility recorded is 0.992 £ 0.0015,
showing that path qudit states can be prepared and measured with
high fidelities in our scheme.

One last point is related with the overall detection efficiency
of the circuit, which is a crucial parameter for many fundamental
studies and applications in QI science. In our circuit, the transmis-
sion of the generated ququarts through the measurement stage is
(43 £ 0.1)%, which is limited mainly by the second set of PMs
that add an average 2.05 dB of insertion losses. Note, however,
that this value represents a gain of up to two orders of magnitude
compared with some aforementioned HD experiments, where
filtering techniques drastically reduce the transmission of the
employed schemes (see [20], e.g.). Considering that new commer-
cially available superconducting detectors can reach more than
85% of detection efficiency, one can see that our system is capable
of reaching at least 35% of overall detection efficiency. Moreover,
PMs with smaller insertion losses (<5%) based on poled fibers
[86,87] have recently been developed which could be incorporated
to the system, and we estimate that an optimized circuit could
reach 65% overall efficiency.

4. MEASUREMENT-DEVICE-INDEPENDENT RNG:
THEORY

In the scenario of MDI RNG, an end-user in need of random
numbers possesses a characterized preparation device and an
uncharacterized measurement device M [72]. This scenario is
relevant nowadays, as single-photon detectors are prone to side-
channel attacks, which has motivated the development of similar
approaches in quantum key distribution [88]. The preparation
device is used to prepare quantum states, {w, }, that are measured
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by the uncharacterized measuring device M, leading to a classical
outcome . By repeating the process, one estimates the probabili-
ties p(a|w,). Importantly, M could have been constructed by an
eavesdropper (named Eve), who aims to predict the outcome 2. Eve
in principle can even be quantum-correlated with M, by holding
half of an entangled state p*£, the other half of which is inside the
device. M performs a measurement on the input state w, and a
part of p£, while Eve makes a measurement on her part of p%£ to
guess the bit generated.

In Ref. [72], it was shown that the maximal probability P, (x*)
that Eve guesses correctly the outcomes « for a given input x*,
compatible with p(a|w,), can be estimated by the solution of a
semi-definite program [89]. Finally, the amount of randomness
that is certified per round under the assumption that Eve carries out
individual attacks is given by the min-entropy of 2, :

Hinin (x™) = —log, Py (x™). )

A drawback of the approach proposed in [72] is that it relies on
having exact knowledge of the probabilities p(2|w,). In any real
experiment, we have access to only a finite number of experimental
rounds, which allows us to estimate the frequencies &(a|w,) at
which different measurement results are observed. To account
for finite-statistics effects we adapt the semi-definite program
described in Ref. [72] to make use of the Chernoff-Hoeffding tail
inequality [90]. This inequality asserts that with high probability,
p(a|w,) isbounded by the observed frequencies & («|w, ) via

s(ﬂ|wx) - tx(é) = P(ﬂ|wx) =< E(a|wx) + l’x(E), (6)

where 7, (€) = depends on a confidence parameter € and

log(1/€)

2y
the total number of measurement rounds 7, in which the input
is w,. The confidence parameter corresponds to the probability
that Eq. (6) is not satisfied. In our analysis, we choose e= 107 (see
Supplement 1 for details).

An implementation of the MDI RNG protocol with four-
dimensional quantum states involves the state preparation
device that can randomly prepare five different states. Four of
them, {|w,)}>_,, are orthogonal to each other, and the fifth,
|wg), is mutually unbiased with respect to the first four, so that
oy |ws)|> =1/4 Vx =0, ..., 3. The measuring device is set to
measure in the basis spanned by {|w,)}>_,, so that the measure-
ment outputs are uniformly random whenever the state |wy) is
measured. The min-entropy Eq. (5) for this ideal implementation
gives Hyin(x = 4) = 2, showing that two bits of randomness per
round can be generated.

5. MEASUREMENT-DEVICE-INDEPENDENT RNG:
IMPLEMENTATION

As previously explained, our source consists of an attenuated
pulsed laser that produces weak coherent states. The probability
of emitting j photons per pulse is characterized by the mean pho-
ton number, 4, such that p(j) = e *u//j!. We consider states
with average mean photon numbers of ;4 =0.2 and ©u=0.4,
while recording the single, double, and triple coincidence counts
between the four detectors D;. Typically, for the experiment
working with u = 0.4, we observe ~50000 =% 225 single counts
per second, ~90 & 9 double coincidences, and only 1+ 1 triple
coincidence count. For & = 0.2, we have not observed any triple
coincidences. Thus, in our randomness analysis, we consider
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a multi-photon Hilbert space truncated up to two photons.
Moreover, we adopt the fair sampling assumption and post-select
on having at least one photon detected. Then, the set of input states
has the following form:

px = p(lwe) (el + p 21D (92, @)

where p(1) + p(2) =1, |wy=0) =0}, ..., |wy=3) = |3) are the
states corresponding to one photon traveling in each mode (labeled
by x), lwg) = (10) —|1) +12) + |3))/2 is the mutually unbiased
state, and [¢?)) refers to states where two photons are generated
in a single pulse. These states are given in Supplement 1. Notice
that in our experiment, we observe 10 measurement outcomes:
four single clicks corresponding to photon detection at one of the
four detectors D; (: =0, ..., 3), and six coincidence detections
between detectors D; and D; with 7 # j. The statistics of all these
events are taken into consideration in the randomness estimation.

The experiment operates at the repetition rate of 2 MHz. Over
the course of one integration sample of 0.1 s, 90% of the rounds
are randomly chosen by FPGALI to send p4. The other 10% of
samples are uniformly chosen between py—o, ..., px=3. In this
way, we prioritize the generation of random bits, while still having
enough statistics to certify the amount of private randomness cre-
ated. We continuously verify that the protocol is working properly
through the average success probability of identifying the states
o, (e, p=137_ p(xlp.). If > 0.992, then the random
bit sequence is recorded. Otherwise, the control system starts a
realignment procedure automatically. This threshold value has
been chosen to maintain the system producing more than one bit
of randomness per experimental round, the maximum thata RNG
protocol based on dichotomic outcomes (and post-processing of it)
would achieve.

Figure 5 shows a fragment of the recorded data while the ran-
dom number generator is operating with © = 0.4. The points
in Fig. 5(a) represent the single-photon detection rate in kHz.
There are discontinuities that arise from the fact that only the
results when p > 0.992 are displayed. E; withi ={1, 2, ..., 13}
represent small zones, between which the realignment procedure
occurs. The system is continuously realigning itself, but sometimes
it does not quickly achieve a visibility higher than the given thresh-
old. The experiment ran over a total of 103.7 h. The corresponding
average success probabilities per zone E; are shown in Fig. 5(b).
The total average success probability is p, =0.9946 % 0.0001.
From all the recorded data, the minimum entropy is estimated.
The experimental H.y is bounded by 1.133 < Hop® < 1.232,
with its maximum value obtained at zone E4 [see Fig. 5(c)]. The
average value is Ho = 1.153 & 0.007, which implies that the
generator works with an average private random bit key rate of
~57650 =% 350 bits/s. With additional improvements in temporal
width of the pulses, and faster clock rates of the detectors, it should
be possible to increase this by at least two orders of magnitude.
For the case with u = 0.2, we obtain similar results. In this case,
H.isbounded by 1.134 < H.X < 1.178, with the average value
given by AF =1.156 £ 0.003. Thus, we have demonstrated the
robustness of the MDI RNG method while being implemented
with weak coherent states. Importantly, these results show that the
random number generator has been able to exploit the advantages
provided by HD quantum systems, since it always produces a
min-entropy greater than one bit per experimental round. We
notice thata theoretical upper bound to the private random bit key
rate is given by the min-entropy of the most likely measurement
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Fig.5. Fragment ofthe data recorded over time. (a) Single count detec-

tion rate considering only the selected samples (please see text for details).
E; withi={1, 2, ..., 13} represent small zones, mostly between or with
long realignment procedures. (b) Observed average success probability for
each zone E;. Error bars lie within the experimental point representation.
(c) Average obtained randomness per experimental round for each zone
E;. Error bars lie within the star symbols. The dashed line represents the
theoretical upper bound allowed for binary RNG protocols.

outcome, which corresponds to an attack where an eavesdrop-
per always bets on this outcome. In our case, this corresponds
to HU ~2.03 for t =0.4 and HU ~2.02 for £ =0.2 (see
Supplement 1).

6. CONCLUSION

We have reported on the production and characterization of high-
quality N x N MBS devices built directly within a MCE This is
an important step towards the construction of universal photonic
QI processing circuits based entirely on the new MCF platform,
which will take advantage of the high phase stability provided by
these fibers. We use a 4 x 4 device to experimentally show that a
programmable quantum circuit for efficient four-dimensional QI
processing can be built using MCE-based technology. Since it is
constructed with commercially available components, it can be
easily integrated with telecom fiber networks. To demonstrate the
versatility and advantages of this circuit, we have demonstrated a
MDI quantum random number generator using four-dimensional
photonic states, which yield a maximum of 1.23 private certified
random bits generated per experimental round, surpassing the one-
bit limit of binary protocols. To achieve these results, we employ
a theoretical approach that allows for the evaluation of available
private randomness using semi-definite programming and taking
into account finite statistics of events. Furthermore, our program-
mable circuit operates at 2 MHz repetition rate (scalable to several
GHz), generating about 6 x 10 random bits/s. With scalability
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taken into account, our results compare favorably in terms of gen-
eration rate to other state-of-the-art quantum certified randomness
generators, while providing better scalability to even higher dimen-
sions. These results are critical in demonstrating a new robust and
versatile HD-QI processing platform for implementing universal
programmable optical circuits. In this regard, note that MCF BS
technology has very recently been used to implement a quantum
computational circuit based on a quantum N-switch [91].
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