

Rivera Lopez, M. Y., Lambas, J., Stacey, J. P., Gamage, S., Suliga, A., Viquerat, A., Scarpa, F., & Hamerton, I. (2020). Development of Cycloaliphatic Epoxy-POSS Nanocomposite Matrices with Enhanced Resistance to Atomic Oxygen. *Molecules*, *25*(7). https://doi.org/10.3390/molecules25071483

Publisher's PDF, also known as Version of record

Link to published version (if available): 10.3390/molecules25071483

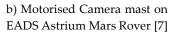
Link to publication record in Explore Bristol Research PDF-document

University of Bristol - Explore Bristol Research General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

Supplementary Materials

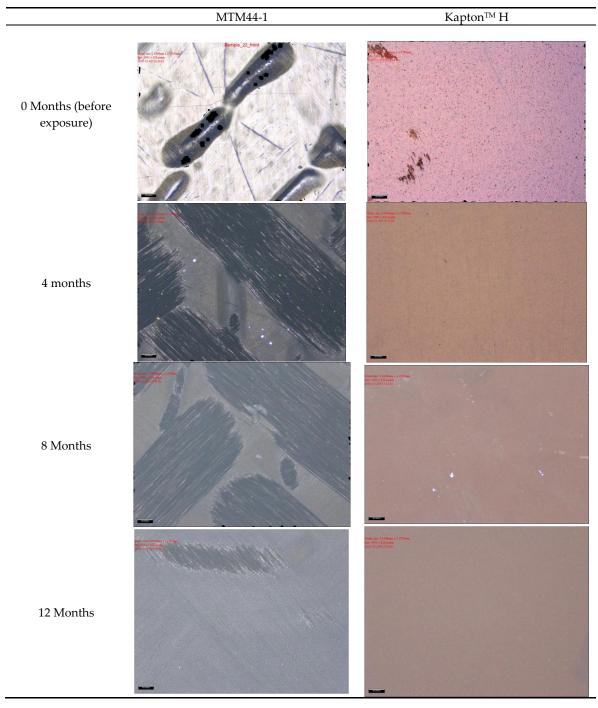
Development of Cycloaliphatic Epoxy-POSS Nanocomposite Matrices with Enhanced Resistance to Atomic Oxygen


Mayra Y. Rivera Lopez¹, Javier Martin Lambas^{1,†}, Jonathan P. Stacey¹, Sachithya Gamage¹, Agnieszka Suliga^{1,‡}, Andrew Viquerat¹, Fabrizio Scarpa¹ and Ian Hamerton^{1,*}

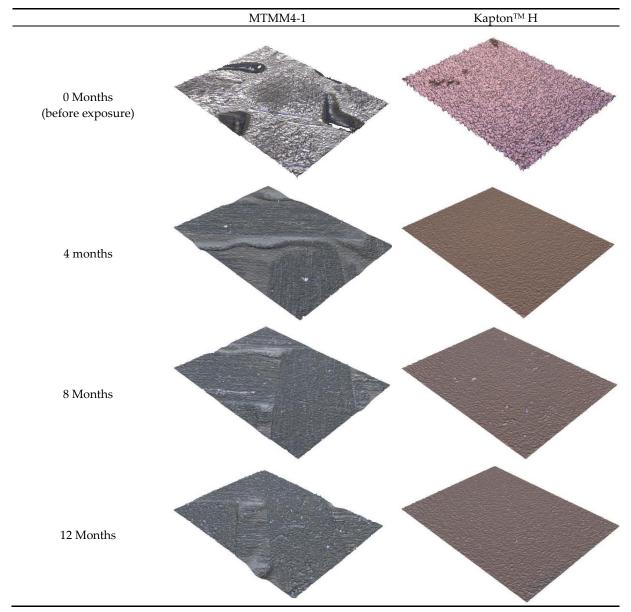
- ¹ Bristol Composites Institute (ACCIS), Department of Aerospace Engineering, School of Civil, Aerospace, and Mechanical Engineering, Queen's Building, University of Bristol, University Walk, Bristol, BS8 1TR, United Kingdom
- ² Department of Mechanical Engineering Sciences, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom
- * Correspondence: ian.hamerton@bristol.ac.uk
- ⁺ Present address: National Composites Centre, Feynman Way Central, Bristol and Bath Science Park, Emersons Green, Bristol BS16 7FS, United Kingdom
- [‡] Present address: European Space and Technology Research Centre, European Space Agency, 2201 AZ Noordwijk, Netherlands.

a) RAMM Integrated Antenna Mast System [7]

c) Mirror Prototype [8]



d) Roll Out Solar Power System [7]



e) Solar Sail components [9]

Figure S1. Examples of applications of deployable structures.

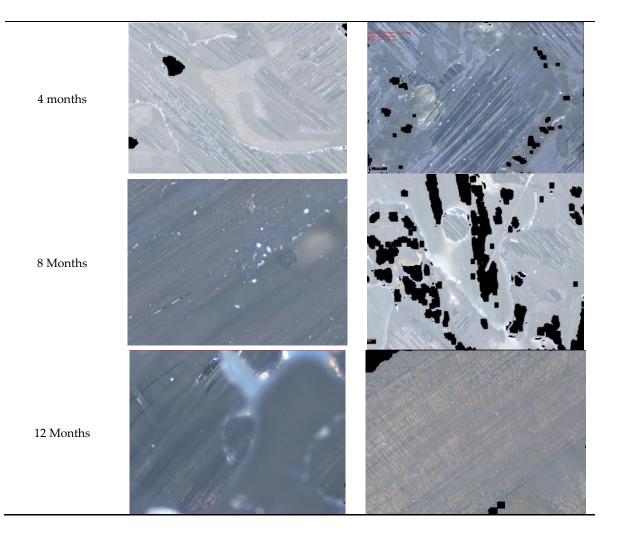

Table S1. Microscopy for cured laminate surface with MTMM4-1 content and virgin KaptonTM H following exposure to AO in simulated space conditions for a period of 12 months.

Table S2. 3D Topographical analysis for cured laminate surface with MTMM4-1 content and virgin Kapton[™] H following exposure to AO in simulated space conditions for a period of 12 months.

Time of AO	15025030	14824835
0 Months (before exposure)		
4 months		
8 Months		
12 Months		
	145245310	140240320
0 Months (before exposure)		

Table S3. Microscopy for cured laminate surfaces as a function of POSS content following exposure to AO in simulated space conditions for a period of 12 months.

Table S4. 3D Topographical analysis for cured laminate surfaces as a function of POSS content following exposure to AO in simulated space conditions for a period of 12 months.

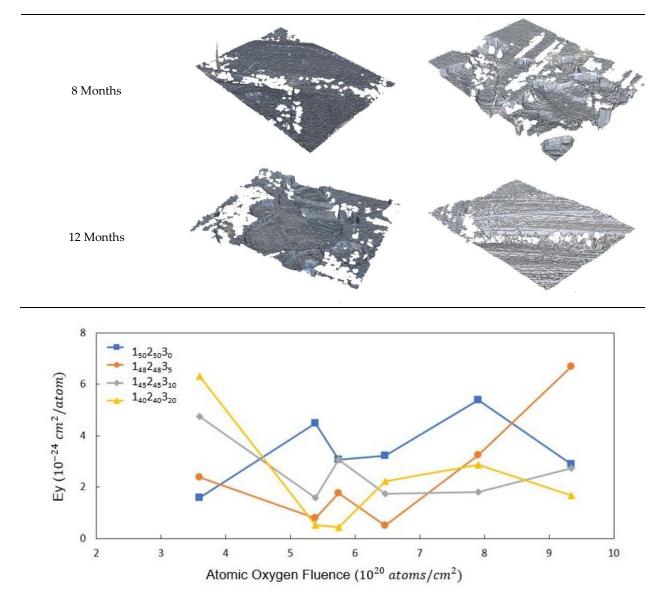


Figure S2. Erosion yield obtained for all the POSS content samples after exposure.

Table S5. Characteristic FTIR of the absorbance bands for the cured 1₄₅2₄₅3₁₀ samples before and after 12 months of exposure in simulated LEO.

Wavenumber (<i>cm</i> ⁻¹)	Intensity	Functional Group
1100	Medium	POSS Cage Si-O-Si, asymmetric stretch
1450	Medium, Sharp	Aromatic ring, C=C stretch
1725	Strong, Sharp	Saturated carbonyl, C=O stretch
2850	Medium	Oxirane ring, C-H stretch
2920	Medium	Aliphatic amine, N-H stretch
3500	Strong, Broad	Secondary alcohol, O-H stretch