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Abstract

Characterisation of real defects is one of the main challenges in ultrasonic non-

destructive testing (NDT), especially for small defects having irregular shapes.

Traditional methods such as ultrasonic array imaging are limited by the image

resolution, and in this paper, we consider using the scattering matrix which is

extractable from the full matrix of transmit-receive array data. We describe a

procedure in which the experimental measurements are used to perform char-

acterisation and reveal the associated uncertainties. Moreover, we explore per-

formance of this characterisation procedure and propose a robust defect char-

acterisation approach. The performance of the proposed approach is studied

experimentally, and the sizing errors are small (within 0.09λ or 0.23mm for fa-

tigue cracks at 2.5 MHz, and within 0.38λ or 0.24mm for volumetric defects in

an additive manufactured specimen at 10 MHz). In addition, reliable estimation

of defect angle/width is achieved.
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1. Introduction

Ultrasonic inspection is an important technique in non-destructive testing

(NDT) [1] and its use can be found in a range of safety critical applications,

including nuclear [2], railway [3], petroleum [4, 5], and aerospace industries [6].

Besides facilitating detection of defects which can cause catastrophic failure of5

a structure, an ideal inspection technique should also provide the capability to

characterise defects after they are detected. This enables an operator to compare

different defects in terms of their impacts on structural integrity based on an

understanding of the defect size and type and hence, can potentially reduce the

number of unnecessary replacements of components [7].10

Ultrasonic arrays are increasingly used in NDT thanks to their flexibility

and the availability of array controller systems with which one can specify time

delays of individual array elements [8]. One possible data acquisition scheme

for ultrasonic arrays is the full matrix capture (FMC) [9]. The FMC dataset

contains time-domain signals corresponding to all transmitter-receiver pairs of15

an array, and imaging can be performed by post-processing the FMC data [10].

With the help of advanced imaging algorithms such as the total focusing method

(TFM) [9] and plane wave imaging [11], the capability of ultrasonic inspection

has been improved significantly. For example, Shahjahan et al. used the decom-

position of the time reversal operator (DORT [12]) algorithm to filter the FMC20

data for detection of 2mm side drilled holes in a highly scattering medium [13].

Lin et al. proposed a model-based approach to calculate the time delays used

for TFM imaging in multidirectional CFRP laminates for improved detection

and sizing of delamination [14]. The 6dB drop approach [15] is widely used in

ultrasonic NDT as a means to sizing defects and is included in various interna-25

tional standards such as BS EN ISO 16827 [16] and ASTM E2700-14 [17]. The

defect size is determined by the 6dB drop approach as the distance over which

the A-scan amplitude drops by one half (i.e. 6 dB) from the maximum value.

Besides A-scan signals measured from single element transducers, the 6dB drop
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approach can also be applied to images formed using an ultrasonic array. For30

example, Zhang et al. used a rectangular box to cover all image pixels within

−6 dB from the identified peak value, and measured the size and angle of crack-

like defects from the dimensions of such rectangular boxes [18]. However, defect

type information is not considered in the 6 dB drop approach and its perfor-

mance can become poor for defects having irregular shapes and/or unfavourable35

orientations [19]. In addition, the performance of image-based sizing depends

on the imaging resolution and hence, is limited by diffraction.

In this paper, we focus our attention on characterisation of small defects

(i.e. sizes comparable to the wavelength), and in particular, we aim to develop

a robust defect characterisation procedure that is suitable for automated NDT.40

Besides sizing, accurate characterisation also requires the measurement of other

critical parameters such as defect type, aspect ratio and orientation angle. Here,

the scattering matrix [20], extractable from the FMC data, is used in an inver-

sion scheme aimed at retrieving the defect parameters based on Bayes theorem

[21]. In this paper, we define the “distortion” as the difference between the45

experimentally measured and idealised scattering matrices. The importance of

the distortion model on the characterisation performance is demonstrated us-

ing experimental data measured from machined surface-breaking notches. We

also extract experimental data from more realistic defects, including surface-

breaking fatigue cracks [22] and volumetric defects in an additive manufactured50

(AM) Aluminium sample [23] built using the laser powder bed fusion (L-PBF)

technique [24]. Besides the volumetric defects that were deliberately introduced,

the AM sample also contains material discontinuities (e.g. low level porosity,

inter layer delaminations, and small grains [25]) that can occur during the man-

ufacturing process. These material discontinuities act as noise sources when55

performing measurements using ultrasound, and hence, add additional level of

complexity to the characterisation problem. The optimal distortion model is

difficult to determine in advance for these real defects, and we show that robust

defect characterisation is still achievable by combining the results obtained with

different distortion models.60
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2. Characterisation of small defects using the scattering matrix

2.1. Measurement configuration

To begin with, let us consider the machined surface-breaking notches in an

Aluminium sample shown in Fig. 1(a). These notches were manufactured using

electrical discharge machining (EDM) and have smooth surfaces, so they can65

be regarded as the idealised defects (i.e. surface scratches), as opposed to real

defects which are covered in the next section. The shape of these notches is

described by two parameters, width a and depth b (see Table 1 for parameter

values of the manufactured notches). A 2.5 MHz, 64 element array with an

element pitch of 0.5mm is used in experiments under the measurement config-70

uration shown in Fig. 1(b). The TFM is applied to the measured FMC data

of the defects and Figs. 2(a)-2(b) are imaging results of Notches 6 and 7 (a

Gaussian filter having 100% bandwidth is applied to the time-domain signal-

s in post-processing to reduce noise). Note that the ultrasonic wavelength is

2.5mm when the frequency is 2.5 MHz, and the maximum width and depth75

of the notches are 1.5 wavelengths. It can be seen that Notches 6 and 7 are

indistinguishable from their TFM results and hence, the information provided

by imaging is insufficient for characterisation of these small notches.

Table 1: Width a and depth b of Notches 1-8 shown in Fig. 1(a).

Notch 1 2 3 4 5 6 7 8

Width (a, mm) 1.25 1.25 2.5 2.5 2.5 3.75 3.75 3.75

Depth (b, mm) 1.25 2.5 1.25 2.5 3.75 1.25 2.5 3.75

The ultrasonic scattering matrix contains the far-field scattering coefficients

of a defect and is known to contain all the defect information that can be80

measured from an experimental configuration [20, 21]. It can be extracted from

an FMC dataset through a procedure (e.g. sub-array imaging [20] or inverse

imaging approaches [26]) designed to suppress noise/interferences from nearby

defects. We define the scattering matrix in a 2D scenario as
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(a)

(b) (c)

Figure 1: (a) An Aluminium test specimen containing 8 machined notches, (b) measurement

configuration adopted in experiments, and (c) incident and scattering angle definitions for the

transmitter element Tx and receiver element Rx of an array.

(a) (b)

Figure 2: TFM results of (a) Notch 6 and (b) Notch 7, obtained at 2.5 MHz. Both images

show a 15mm×15mm region including the defect.

s(θin, θsc, ω) =
asc(ω)

ain(ω)

√
dsc
λ

exp

(
− iωdsc

c

)
. (1)

In Eq. (1), θin and θsc denote the incident and scattering angles (see Fig.85

1(c)), ain and asc are amplitude of the plane incident wave and the scattered

wave measured at a distance dsc from the defect, ω = 2πf is the angular fre-

quency, and c is the ultrasonic velocity (6300 m/s for Aluminium). Note that
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matrices and vectors are denoted in this paper by bold upper- and lower-case

letters, respectively, and we will use a vectorised version of the scattering matrix90

representation throughout this paper. Figures 3(a)-3(b) show the experimen-

tally measured scattering matrices of Notches 6 and 7 and they are seen to be

different, suggesting that scattering-matrix-based characterisation is possible.

Note that when the probe is right above the small surface defects, the relatively

weak defect signal is overlapped with strong backwall reflections, and in this95

case, it would be very difficult to size it. Using the configuration shown in Fig.

1(b), the defect signal is separated in time domain from backwall reflections,

which facilitates extraction of the defect scattering matrix without interferences

from the backwall. Phase part of the scattering matrix is not considered in this

paper because phase measurements are very sensitive to localisation errors and100

have higher uncertainty than the amplitude [27].

(a) (b)

Figure 3: Scattering matrices of (a) Notch 6 and (b) Notch 7.

2.2. Defect characterisation procedure

The defect characterisation problem can be formulated as calculating the

probability P (p|sn), i.e., the conditional probability of a defect parameter p

given the measurement of a scattering matrix sn [21]. The defect parameter p

consists of the physical quantities that describe the geometry of a given type of

defects, and we have p = [a, b]T for surface-breaking notches. An experimental-

ly measured scattering matrix sn is often contaminated by noise from different
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sources, and in this paper, we define distortion as the difference between the

measurement sn and idealised scattering matrices of reference scatterers. Fol-

lowing this, we have

sn = sp + np, (2)

where sp refers to the scattering matrix of an idealised defect with parameter p

and np is the distortion. Eq. (2) requires a choice as to the division between sp

and np. The approach taken here is to choose the simplest possible model for sp

(e.g. a smooth defect with simple geometry) and include all other complexity

in np. This means that features such as defect roughness, material noise and

many others are included in np. In this way, np can be thought of as encoding

all aspects that distort the measured scattering matrices from the chosen ideal

scattering matrices. According to Bayes theorem [28], we have

P (p|sn) =
P (sn|p)P (p)

P (sn)
. (3)

Here P (sn|p) is the probability that, for some particular distortion np, the

perturbed scattering matrix sp+np will match the experimental measurements

sn. In Eq. (3), P (p) is the prior probability of detecting a defect with parameter

p and can in many cases be assumed to be a constant, i.e., all defects are equally

probable [21]. Similarly, the probability P (sn) of experimental measurement sn

is also assumed to follow a uniform distribution over all possible measurements,

which then gives

P (p|sn) = CP (sn|p). (4)

The normalisation constant C is calculated from the condition that the total

probability of a defect parameter is equal to one,
∫
P (p|sn)dp = 1:

C =

(∫
P (sn|p)dp

)−1
. (5)

From Eq. (2) it follows, that the probability P (p|sn) can be written as

P (sn|p) = P (sp + np|p) = P (np|p). (6)
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For simplicity it is assumed that the probability distribution of distortion,

P (np|p), is independent of the defect parameter p. Therefore, Eq. (6) can be

further simplified as P (sn|p) = P (np), and finally, the characterisation result

is given by

P (p|sn) = CP (np). (7)

Following Eq. (7), we can conclude that the conditional probability P (p|sn)

of a defect parameter p given some experimental measurement sn is determined

by the probability of measuring the distortion np. This counterintuitive result105

follows directly from the definition of distortion np adopted in this paper, and

according to this definition, distortion is linked with choice of idealised scatter-

ing matrix. For the examples considered in this paper, this distortion is not

solely due to noise (e.g. grain backscatterer) but due to a combination of other

effects such as defect roughness, array element output variation, interferences110

from nearby defects/structural features, errors in finite element simulation and

the scattering matrix extraction procedure. If backscatter is dominant and there

is no interaction between the backscatter and the defect, then the distortion can

be extracted from a defect-free region, but in all other cases the distortion is

directly linked to the choice of idealised defects. The statistical distribution of115

distortion, termed the distortion model, plays a key role in defect characterisa-

tion. Based on a proper distortion model, the defect characterisation result can

be obtained by calculating the conditional probability P (p|sn) for every possi-

ble defect parameter p. It is worth pointing out that for extremely high noise

cases, the scattering matrix of a small defect is negligible and we have from Eq.120

(2) that np = sn − sp ≈ sn. Hence, the distortion calculated using Eq. (2)

would have little differences for different defect parameters p and the result of

the characterisation procedure is a uniform distribution over all possible defect

parameters. In other words, the measurement of the scattering matrix does not

provide useful characterisation information in this case.125
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2.3. A Gaussian rough surface model of the distortion

In this section, we introduce a Gaussian rough surface model which can be

used as a general form to capture different sources of coherent noise. The ideal

scattering matrices of the notches shown in Fig. 1(a) can be simulated using a

finite element method [29] given the width and depth values in Table 1. The130

distortion can then be calculated from Eq. (2), see for example, Figs. 4(a)-4(b)

which show this approach applied to Notches 6 and 7. Accurate modelling of

the distortion would require a large number of samples to be tested under the

same measurement configuration in order to calculate the statistics of the dis-

tortion. Manufacturing many samples having the same defects as the inspected135

ones would require considerable time and resources, and more importantly, is

only possible for ideal reference defects whose sizes and types are known. Hence,

we consider using a Gaussian rough surface model of the distortion [21] in this

paper, which can provide similar realisations of the distortion as in actual exper-

iments and is easy to repeat many times to obtain different random realisations.140

More specifically, distortion is modelled as a two-dimensional random Gaussian

rough surface [30], and the same parameters describing a Gaussian rough sur-

face are used as parameters defining the distortion model. These parameters

include the RMS roughness σ and the correlation lengths λ1, λ2, and given a

set of parameter values, a random realisation of distortion can be obtained from145

[21]

ngen(θin, θsc) = (c(θin, θsc)⊗ ng(θin, θsc)− µ′)
σ

σ′
, (8)

where ⊗ is the convolution operator and µ′ and σ′ are mean and standard devia-

tion of the convolution term c⊗ng [31]. In addition, ng represents uncorrelated

unit variance and zero mean Gaussian white noise, and the correlation function

c is given by150

c(θin, θsc) = exp

(
−ϕ

2
1

λ21
− ϕ2

2

λ22

)
, (9)
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(a) (b)

Figure 4: Distortions [defined in Eq. (2)] of (a) Notch 6 and (b) Notch 7.

where an additional parameter φ is used to rotate the shape of the 2D correlation

function such that ϕ1

ϕ2

 = R

 θin

θsc

 , R =

 cosφ sinφ

−sinφ cosφ

 . (10)

Figures 5(a)-5(h) show random realisations of the distortion obtained with

different parameter values from Eqs. (8)-(10), where the range of the incident

and scattering angles are the same as that in Fig. 3. It can be seen that pa-

rameters λ1 and λ2 determine the shape of the distortion and as a result, the

Gaussian rough surface model can be used to simulate different types of dis-155

tortion in different measurement scenarios. However, as will be discussed later,

selection of the parameter values for the distortion model can, in some cases,

have significant impact on the characterisation result and should be treated with

care.

Since the Gaussian rough surface model enables fast simulation of different

realisations of distortion, it is straightforward to calculate the statistics such

as the mean and covariance matrix from the simulated data. The simulated

database of distortion Ndb = [n1,n2, . . . ,nM ] (here M = 1000 is the number

of the random realisations) can also be used for principal component analysis

(PCA) [32] of the dataset, so that the statistics are actually calculated in a much

lower dimensional space which helps to avoid the “curse of dimensionality” [33].

10



Figure 5: Random realisations of distortion obtained using the Gaussian rough surface model.

(a), (e) λ1 = λ2 = 2.5◦. (b), (f) λ1 = 30◦, λ2 = 5◦. (c), (g) λ1 = 5◦, λ2 = 30◦. (d), (h)

λ1 = λ2 = 30◦. σ = 0.1 and φ = −45◦ are kept the same in these figures.

The PCA process is based on eigendecomposition of the covariance matrix of

the distortion database which can be expressed as

Ncov = V DV T , (11)

where the covariance matrix is estimated by Ncov = (Ndb − Nm)(Ndb −160

Nm)T /(M − 1) and the matrix Nm has the same size as Ndb with its columns

equal to the mean distortion vector nm =
∑M
i=1 ni/M [21]. The column vec-

tors of the matrix V define the axes of a new coordinate system termed the

distortion PC-space, and critically, only the first few carry useful information

since the corresponding eigenvalues (the diagonal elements of D) are normally165

much larger than the rest (see Fig. 6). In the case of white Gaussian noise,

the eigenvalues of the distortion database would be a constant (i.e. variance of

the noise). However, in practice, this kind of random noise can be removed by

simple averaging or filtering.

After PCA, distortion n can be transformed into the PC-space by

n(pc) = V T (n− nm). (12)

It can be shown that the components of n(pc), corresponding to the dis-170

tortion n obtained from the Gaussian rough surface model using Eq. (8), are

11



Figure 6: Normalised eigenvalues of the distortion database where the parameters of the

Gaussian rough surface model are σ = 0.1, φ = −45◦, λ1 = 30◦, λ2 = 5◦ (solid line) and

σ = 0.1, φ = −45◦, λ1 = λ2 = 30◦ (dashed line).

independent in the distortion PC-space [21]. Hence, n(pc) follows a multivariate

normal distribution and the probability P (n(pc)) given the considered distortion

parameters can be written as

P (n(pc)) =
1

(2π)Ns/2|D|1/2
exp

(
−n(pc)TV D−1V Tn(pc)

)
, (13)

where Ns denotes the number of components within n(pc). Note that n(pc)
175

needs to be truncated (e.g. by using a certain threshold) in practice to prevent

the result from being dominated by small eigenvalues.

The effect of the distortion model on defect characterisation is clearly seen

in Eq. (13), where V and D are calculated from the distortion database Ndb

through the PCA process. To select optimal parameter values for the Gaussian

rough surface model, one can consider using the maximum-likelihood estimation

method [21], i.e.:

[σ̃, λ̃1, λ̃2, φ̃] = argmax
σ,λ1,λ1,φ

P (n(pc)|σ, λ1, λ1, φ). (14)

In the above equation, n(pc) is the actual distortion [e.g. the measurements

shown in Figs. 4(a)-4(b)] in the PC-space, and the probability of measuring the

distortion is calculated for different distortion models. The optimal distortion180

model is then selected as the set of parameters which give the maximum value

for the probability P (n(pc)).
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2.4. Results

For the distortion of the surface-breaking notches, the maximum-likelihood

estimation process described by Eq. (14) gives suitable parameter values σ =185

0.1, λ1 = 30◦, λ2 = 5◦, φ = −45◦, and hence, these values are used for charac-

terisation in this section. The result of maximum-likelihood estimation is also

seen to be reasonable if we visually compare Figs. 4(a)-4(b) to Fig. 5, since

distortion obtained from the optimal parameters [Figs. 5(b), 5(f)] are clearly in

better match to the experimental data than the other parameters. Note that190

the distortions (and scattering matrices) shown in this paper are at the array

centre frequency and are estimated for discrete incident/scattering angles deter-

mined by the locations of the defect and array elements. Based on the selection

of parameters for the distortion model, validation procedure for the proposed

characterisation approach can be described as follows:195

Step 1. Prepare the scattering matrix database for ideal reference defects.

Step 2. For each defect parameter p in the database, calculate the dis-

tortion np = sn − sp.

Step 3. Transform distortion into the PC-space [Eq. (12)].

Step 4. Calculate the probability of measuring the distortion [Eq. (13)].200

Step 5. Compare the characterisation result obtained at Step 4 with the

actual defect parameter.

Figures 7(a)-7(h) show the characterisation results of Notches 1-8. The max-

imum characterisation errors, measured by the differences between the actual

defect parameters (marked as red dots) and those corresponding to the maxi-205

mum probability points, are 0.36λ (Notch 8) and 0.17λ (Notch 4) for parameters

a and b. Moreover, the characterisation results of the notches are seen to have

higher uncertainty in the width parameter a than the depth parameter b, and

in particular, the depth results of Notches 5 and 8 are highly accurate with

13



small variance (i.e. within [1.32λ, 1.48λ] and [1.40λ, 1.50λ], while the maxi-210

mum probability points correspond to the depth 1.45λ in both cases). Given

the measurement configuration shown in Fig. 1(b), the measured ultrasonic ar-

ray data is dominated by reflections from the vertical side of a notch facing the

array, and this can explain why the depth sizing has a higher accuracy than the

width sizing. The distortion model was obtained using the maximum-likelihood215

estimation method based on all 8 notch data and is used for calculating results

for all the notches. It is suggested that this might have caused the poor width

sizing for Notch 8, and the characterisation result can potentially be improved

by using a different set of distortion parameters which are more suitable for

Notch 8. In addition, as the defect size becomes larger, the phase part of the220

scattering matrix also carries important characterisation information, and this

extra information can potentially be used to reduce the sizing error for Notch

8.

Figure 7: Characterisation results (width a and depth b) of the surface-breaking notches,

where (a)-(h) are the results of Notches 1-8. The colour bar shows the normalised probability,

and dots and crosses correspond to the true defect parameters and projection points on the

defect manifold, respectively. Parameter values of the Gaussian rough surface model used in

these results are σ = 0.1, λ1 = 30◦, λ2 = 5◦ and φ = −45◦.

It is worth pointing out that one of the main advantages of the charac-

terisation method proposed in this paper is that it gives probability density225

14



distribution of the defect parameters [21] as the characterisation result, as op-

posed to a fixed point in the defect parameter space that would be obtained by

nearest neighbour methods. This facilitates quantification of the characterisa-

tion uncertainty, and it is desirable for real experimental measurements that are

always contaminated by different sources of noise. Using the L2 norm metric,230

one can project the experimental data onto the defect manifold [21] to obtain

the nearest point in the database. The results of this nearest neighbour ap-

proach are shown in Fig. 7 as the crosses. We find that although the projection

points are close to the maximum probability points in many cases, they can also

lead to large characterisation errors as shown in Fig. 7(f).235

2.5. Effects of the distortion model on the characterisation performance

We have shown in Section 2.4 that characterisation results of the small

surface-breaking notches are reasonably accurate by adopting the optimal dis-

tortion model. It is also important to understand the effect of different distor-

tion models on the characterisation performance because determining the exact240

distortion model for an unknown defect can be difficult in practice. Figures

8(a)-8(f) show the characterisation results of Notches 6 and 7 obtained using

different parameter values of the Gaussian rough surface model. The correlation

lengths studied here are λ1 = λ2 = 2.5◦ [Figs. 8(a), 8(d)], λ1 = 5◦, λ2 = 30◦

[Figs. 8(b), 8(e)], and λ1 = λ2 = 30◦ [Figs. 8(c), 8(f)], and σ = 0.1 and245

φ = −45◦ are kept unchanged. We can observe from Fig. 5 that none of the

correlation length combinations gives similar realisations of the distortion as the

actual experimental data shown in Figs. 4(a)-4(b). The results shown in Fig.

8 are thus examples of the characterisation results obtained using non-optimal

distortion models. Interestingly, we find that these distortion models have pro-250

duced both “accurate” [Figs. 8(c), 8(d)] and “inaccurate” [Figs. 8(a), 8(f)]

characterisation results.

In order to quantitatively evaluate the characterisation performance of d-

ifferent distortion models, a proper distance metric is needed to compare the

characterisation result l = [P (p1|sn), P (p2|sn), . . . , P (pNd
|sn)]T obtained with

15



Figure 8: Characterisation results obtained with different parameter values of the Gaussian

rough surface model: (a) Notch 6 with λ1 = λ2 = 2.5◦, (b) Notch 6 with λ1 = 5◦, λ2 = 30◦,

(c) Notch 6 with λ1 = λ2 = 30◦, (d) Notch 7 with λ1 = λ2 = 2.5◦, (e) Notch 7 with

λ1 = 5◦, λ2 = 30◦, and (f) Notch 7 with λ1 = λ2 = 30◦. The colour bar shows the normalised

probability and red dots represent the true defect parameters. The same σ (= 0.1) and

φ (= −45◦) are used in all these results.

a certain distortion model (Nd is the number of reference defects in the database)

to that obtained with the optimal distortion model (denoted as lref). Here, we

adopt the correlation distance for this purpose which is defined as

d(l, lref) = 1− ρ(l, lref). (15)

In the above equation, ρ is the correlation coefficient [34, 35] of two vectors:

ρ(l, lref) =

∑Nd

i=1

(
l(i)− l̄

) (
lref(i)− l̄ref

)√(∑Nd

i=1(l(i)− l̄)2
)(∑Nd

i=1(lref(i)− l̄ref)2
) , (16)

where l̄ = l̄ref = 1/Nd are mean values of the vectors l and lref. Although the

correlation lengths λ1 = λ2 = 30◦ have produced “accurate” characterisation

result for Notch 6 as shown in Fig. 8(c), it is noted that the characterisation un-255

certainty is indeed underestimated and hence, characterisation results obtained

using the same distortion model can potentially have large errors in some cas-

es [see Fig. 8(f)]. The correlation distance defined in Eq. (15) quantifies the

16



amount of deviation from lref for a characterisation result l (smaller values indi-

cate better matches to lref), and the distance values are 0.81 (caused by a large260

characterisation error), 0.76 (caused by a large characterisation error), and 0.49

(caused by an underestimation of the characterisation uncertainty) for the re-

sults shown in Figs. 8(a)-8(c), respectively. For the results of Notch 7 [Figs.

8(d)-8(f)], the correlation distance is calculated as 0.45 (caused by an underesti-

mation of the characterisation uncertainty), 0.47 (caused by the discrepancy in265

the characterisation uncertainty compared to lref), and 1.01 (indicating a large

characterisation error).

The characterisation performance of different distortion models is further

investigated and Figs. 9(a)-9(b) show the distance maps (i.e. correlation dis-

tances of different distortion models) for Notches 6 and 7. In Figs. 9(a)-9(b),270

the top and bottom rows correspond to φ = 0◦ and φ = −45◦, and each column

represents a fixed value of σ between 0.05 and 0.2. It can be seen that there

exist areas where the correlation distance is large (e.g. over 0.7) in both cases,

indicating poor characterisation results. We also find that the effect of σ and

λ1 is relatively small as long as near-optimal values of λ2 and φ are used (see275

red boxes in Fig. 9 which highlight regions where the characterisation results

are most desirable). It is worth emphasizing that the effect of distortion mod-

els on characterisation depends on the measurement configuration, sources of

experimental noise and size/type of a defect. The same distortion model can

potentially have significantly different characterisation performance in different280

measurement scenarios, and this issue is further explored in the next section.

3. Robust defect characterisation and experimental results of real

defects

We aim to characterise more realistic defects having irregular shapes in this

section. The studied defects have small sizes (less than 2λ) and can be detected285

from an image, and as in the case of practical inspection scenarios, the actual

defect geometry (and thus the idealised scattering matrix) is unknown. One
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(a)

(b)

Figure 9: Distance maps showing the correlation distances [see Eq. (15)] between the

characterisation results obtained with different distortion models and those obtained with the

optimal distortion model for (a) Notch 6 and (b) Notch 7. In both results, the top and bottom

rows correspond to φ = 0◦ and φ = −45◦, respectively, and each column represents a fixed

value of σ between 0.05 and 0.2. Red boxes show regions where the parameters λ2 and φ are

near-optimal.

of the main advantages of the defect characterisation approach introduced in

Section 2.2 is that it can be applied to different types of defects as long as

the defect geometry is described by a small number of parameters such as size,290
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orientation angle and aspect ratio. To illustrate this, we selected fatigue cracks

[Fig. 10(a)] and volumetric defects in an additive manufactured (AM) sample

[Fig. 10(b)] to evaluate the performance of the characterisation approach on real

defects. In Fig. 10(a), the fatigue crack was grown from an EDM starter notch in

a fatigue testing machine (Instron 8801) under 3-point bending tests [22]. Six295

specimens with cracks of varying sizes were manufactured and measurements

were performed on these specimens using a 2.5 MHz, 64 element array with an

element pitch of 0.5mm (the EDM starter notches were removed by machining a

layer away before array measurements). The same measurement configuration

as in Fig. 1(b) was adopted except that the distance between the crack and300

array is now approximately 35mm [see Fig. 11(a) for TFM image of one of the

cracks]. The sample shown in Fig. 10(b) was built using a Realiser SLM50 from

Aluminium powder feedstock, with standard Realiser 10mm Aluminium build

plate. The built was 40×20×10 mm3. The built design included six side through

holes. The holes were designed to replicate cylindrical side drilled holes, while305

having similar characteristics to defects found within PBF components, such as

internal surface roughness and backfilling. The smaller defects (designed to be

0.5mm in diameter) were chosen to replicate the same order of magnitude found

in classic PBF defects. The larger defects (designed to be 1mm in diameter)

were chosen to replicate small features commonly manufactured using processes310

such as PBF. The holes were equally spaced at increments of 5mm horizontally.

The shallowest hole was placed 6mm from the base of the build and the defects

following that were placed at depths increasing by 2mm per hole. A 10 MHz,

128 element array (element pitch: 0.3mm) was attached to the top of the 10mm

built plate to measure the FMC data of the defects, and Fig. 11(b) shows the315

TFM image of the AM sample.

Both the TFM results in Fig. 11 confirm the need for scattering-matrix-

based characterisation as it is difficult to determine the sizes/types of the defects

from these images. We note that determination of the optimal distortion model

cannot be carried out as in the previous section because the idealised defect320

scattering matrix is unknown. In order to fully consider all possible distortion
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(a) (b)

Figure 10: (a) An Aluminium sample containing a fatigue crack grown under 3-point bending

tests [22], and (b) additive manufactured (AM) Aluminium specimen containing six volumetric

defects [23]. In (b), the array was attached to the build plate (top) which has a smooth surface.

(a) (b)

Figure 11: TFM images of: (a) a small fatigue crack, and (b) volumetric defects in the AM

specimen. The size of the crack in (a) was determined as 2mm from TFM result in a previous

study using a 10 MHz array [22]. In (b), the design sizes of Defects 1, 3, and 5 are 1mm, and

those of Defects 2, 4, and 6 are 0.5mm.

models given an experimental data sn, it is proposed here that the final result

can be taken as the weighted sum of the characterisation results obtained with

different distortion models as
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Pavg(p0|sn) =
∑

P (σ, λ1, λ2, φ)P (p0|sn;σ, λ1, λ2, φ)

=
∑

P (σ, λ1, λ2, φ)C(σ, λ1, λ2, φ)P (sn − s0;σ, λ1, λ2, φ)

=
∑

P (σ, λ1, λ2, φ)C(σ, λ1, λ2, φ)P (n
(pc)
p0 ;σ, λ1, λ2, φ),

(17)

where P (σ, λ1, λ2, φ) denotes the prior probability of a distortion model and325

is assumed to be a constant for a specific experimental configuration. The

last term P (n
(pc)
p0 ;σ, λ1, λ2, φ) of Eq. (17) is the same as in Eq. (13) and

the normalisation constants C(σ, λ1, λ2, φ) can be determined for individual

distortion models separately using Eq. (5).

We term the characterisation approach described above robust defect char-330

acterisation, because it can avoid poor characterisation results caused by in-

accurate assumptions about the distortion and produce more reliable defect

characterisation. For characterisation of the fatigue cracks, because the mea-

surement configuration including the array and the inspection material are the

same as those used for the machined notches in Section 2.1, we fixed the RMS335

value σ and rotation angle φ to be 0.1 and −45◦, respectively. From Figs. 5(d),

5(h), we find that distortion models with large correlation lengths represent

near-constant errors among all the transmit-receive channels and thus indicate

a systematic error in the array measurement system. On the other hand, as the

correlation lengths λ1 and λ2 converge to 0 [see for example, Figs. 5(a), 5(e)340

where λ1 = λ2 = 2.5◦], the resultant distortion becomes incoherent with the

defect scattering matrix and is easy to remove. The range of the correlation

lengths used for characterisation is chosen to be between 5◦ and 30◦ based on

the above considerations. For the AM specimen, we also varied the RMS value

σ between 0.15 and 0.3 as measurements were taken at a higher frequency.345

The characterisation results of the fatigue cracks calculated using Eq. (17)

are shown in Fig. 12 (the angle of a surface-breaking crack is defined with

respect to the backwall normal direction and is positive if measured clockwise).

The dashed lines correspond to crack sizes measured from TFM images (i.e.

the distances between the crack tip and mouth indications) using a 10 MHz350
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Figure 12: Characterisation results of the fatigue cracks using scattering matrices measured at

2.5 MHz. The colour bar shows the normalised probability, and dashed lines represent crack

sizes measured from TFM images at 10 MHz [22].

array in a previous study [22]. It can be seen that although the results of the

fatigue cracks have a degree of uncertainty, the maximum probability point is

close to the dashed line in all the cases and the maximum sizing error is 0.09λ

or 0.23mm [Fig. 12(f)]. These results also show that the fatigue cracks have

relatively small orientation angles [less than 15◦ except the result in Fig. 12(c)].355

This suggests that the crack growth directions from the EDM notches were near

vertical under the 3-point bending tests, and it is in good agreement with the

optical image of the crack shown in Fig. 10(a).

Figures 13(a)-13(f) show the characterisation results of Defects 1-6 in the

AM sample. Besides size, aspect ratio is selected as the second defect parameter360

which quantifies the width of an elliptical defect (e.g. 0 for an ideal crack and 1

for a side-drilled hole). The red dots in these results correspond to the average

defect size and aspect ratio, and they are calculated from 231 cross section im-

ages of the defects which are obtained from X-ray CT data (histogram plots of

the size and aspect ratio distribution can be found in the supplemental mate-365

rial). It can be seen that accurate sizing has been achieved using the proposed

robust defect characterisation approach, and errors are within 0.09mm (0.15λ)
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except for Defect 5 [Fig. 13(e)]. However, the aspect ratio results consistently

show high uncertainty, and in particular, the probability of the defect being

crack-like is high for the smaller defects [Figs. 13(b), 13(d), and 13(f)]. Hence,370

these results show that defect type classification is fundamentally challenging

for defects whose sizes are only comparable to half a wavelength. The maximum

probability points give aspect ratio values near 0.5 for the larger defects [Figs.

13(a), 13(c), and 13(e)] and their widths are thus underestimated. The actual

defect parameter points (red dots) do fall within the shown probability distri-375

butions, and it demonstrates the robustness of our method. It is worth pointing

out that the defect model (i.e. scattering matrix database) is too simplistic in

this case because defect geometry (see the supplemental material) cannot be

adequately described by an ellipse with two parameters. Moreover, it is not-

ed that the simple averaging of the characterisation results (i.e. all distortion380

models considered are equally probable) is a potential cause for the inaccuracy

in the width sizing of the larger defects. The use of more precise distortion

models, tailored to the rough shapes of the manufactured defects, is expected

to improve the characterisation accuracy.

Table 2: Summary statistics of the correlation distances of individual distortion models used

for characterisation of the fatigue cracks. Here, length refers to the crack size determined from

TFM images at 10 MHz [22].

Length (mm) Mean Standard deviation Minimum Maximum

2.0 0.11 0.07 0.02 0.34

2.4 0.05 0.03 0.01 0.19

2.9 0.22 0.11 0.08 0.51

3.6 0.14 0.10 0.03 0.47

4.2 0.29 0.20 0.05 0.75

4.6 0.26 0.17 0.04 0.74

Summary statistics of the correlation distance values of individual distortion385

models are given in Tables 2 and 3, respectively, for characterisation of the

fatigue cracks and defects in the AM sample. Note that for these real defects,
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Figure 13: Characterisation results of the volumetric defects shown in Fig. 10(b) using scat-

tering matrices measured at 10 MHz. The colour bar shows the normalised probability, and

the red dots represent average defect size and aspect ratio values extracted from X-ray CT

data.

Table 3: Summary statistics of the correlation distances of individual distortion models used

for characterisation of the defects in the AM sample.

Defect Mean Standard deviation Minimum Maximum

1 0.27 0.16 0.04 0.98

2 0.05 0.03 0.01 0.17

3 0.19 0.13 0.03 0.67

4 0.05 0.05 3.5× 10−3 0.25

5 0.07 0.06 4.9× 10−3 0.26

6 0.19 0.15 0.02 0.80

the optimal result lref in Eq. (15) is replaced by lavg which represents the output

of robust defect characterisation [see Eq. (17)]. We can see that correlation

distances of the individual distortion models are in general lower than those390

shown in Fig. 9, because characterisation results of all distortion models have

contributed to the result lavg. However, we still find large correlation distances

(over 0.7) for fatigue cracks of sizes 4.2mm and 4.6mm, suggesting that the

characterisation result is indeed very poor in certain cases. Because we varied
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the value of σ (between 0.15 and 0.3) when characterising defects in the AM395

sample, larger correlation distance values are found in Table 3. However, the

mean correlation distance is consistently small, so the contribution from very

“poor” distortion models to the final result is relatively small.

4. Conclusions

A robust defect characterisation approach is proposed in this paper which400

can be implemented in a fully automated way. This approach is based on the

finding that the conditional probability of a defect parameter given some mea-

surement is proportional to the probability of observing the “distortion”, defined

as the difference between the experimentally measured scattering matrix and it-

s idealised counterpart(s). Following this definition, distortion is linked to the405

choice of the reference defects in the database and it encodes all the aspects

that can potentially affect accurate measurement of a scattering matrix. The

Gaussian rough surface model of the distortion with parameters σ (RMS am-

plitude), λ1 and λ2 (correlation lengths), and φ (the rotation angle) is suitable

to model different types of distortion by using different parameter values. It410

is shown through experiments that optimal parameters of the Gaussian rough

surface model can be obtained by adopting a maximum-likelihood estimation

method for idealised defects.

The true defect geometry is unknown in practice and the robust defect char-

acterisation approach calculates the weighted sum of the results obtained with415

different distortion models. This is particularly desirable for inspection of AM

specimens as there exist a wide variety of “natural” defects (i.e. sources of

distortion) which are introduced during the manufacturing process. Robust de-

fect characterisation is shown to perform reliably by characterising volumetric

defects in an AM sample and real fatigue cracks. The relatively long processing420

time (needed to compute results for multiple distortion models) is one of the

main limitations of this approach, but this can potentially be overcome by us-

ing parallel processing. It is possible to introduce additional defect parameters
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which describe the detailed defect geometry in order to consider multiple defect

types. On one hand, our approach is generalisable to higher defect parameter425

spaces because of the analytic expression for the probability shown in Eq. (13),

i.e., calculating the conditional probability of a defect parameter simply requires

an evaluation of the probability density of a multivariate Gaussian function at

a given point. On the other hand, as the number of idealised defects increases

exponentially with the increase of the dimensionality of the defect database, we430

note that there is a trade-off between the computational burden of the approach

and the achievable characterisation performance. Future work will aim to estab-

lish more accurate prior distribution for different distortion models which can

help avoid underestimation/overestimation of the characterisation uncertainty.
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for the computation of ultrasonic fields and their interaction with defects

in realistic NDT configurations, Nucl. Eng. Des. 180 (3) (1998) 271–283.445

doi:10.1016/S0029-5493(97)00299-9.

[3] O. Zahran, W. Al-Nuaimy, Automatic segmentation of time-of-flight d-

iffraction images using time-frequency techniques application to rail-track

defect detection, Insight 46 (6) (2004) 338–343. doi:10.1784/insi.46.6.

338.56384.450

26

http://dx.doi.org/10.1016/S0020-7683(99)00074-8
http://dx.doi.org/10.1016/S0029-5493(97)00299-9
http://dx.doi.org/10.1784/insi.46.6.338.56384
http://dx.doi.org/10.1784/insi.46.6.338.56384
http://dx.doi.org/10.1784/insi.46.6.338.56384


[4] G. P. Gunarathne, R. W. Keatch, Novel techniques for monitoring and en-

hancing dissolution of mineral deposits in petroleum pipelines, Ultrasonics

34 (2–5) (1996) 411–419. doi:10.1016/0041-624X(96)00016-9.

[5] B. Shakibi, F. Honarvar, M. D. Moles, J. Caldwell, A. N. Sinclair, Resolu-

tion enhancement of ultrasonic defect signals for crack sizing, NDT E Int.455

52 (2012) 37–50. doi:10.1016/j.ndteint.2012.08.003.

[6] S. P. Kelly, R. Farlow, G. Hayward, Applications of through-air ultrasound

for rapid NDE scanning in the aerospace industry, IEEE Trans. Ultrason.

Ferroelectr. Freq. Control 43 (4) (1996) 581–591. doi:10.1109/58.503780.

[7] D. Robinson, Identification and sizing of defects in metallic pipes by remote460

field eddy current inspection, Tunn. Undergr. Sp. Tech. 13 (1998) 17–27.

doi:10.1016/S0886-7798(98)00090-X.

[8] B. W. Drinkwater, P. D. Wilcox, Ultrasonic arrays for non-destructive e-

valuation: A review, NDT E Int. 39 (7) (2006) 525–541. doi:10.1016/j.

ndteint.2006.03.006.465

[9] C. Holmes, B. W. Drinkwater, P. D. Wilcox, Post-processing of the full

matrix of ultrasonic transmit-receive array data for nondestructive evalua-

tion, NDT E Int. 38 (8) (2005) 701–711. doi:10.1016/j.ndteint.2005.

04.002.

[10] L. Le Jeune, S. Robert, E. L. Villaverde, C. Prada, Plane wave imaging for470

ultrasonic non-destructive testing: Generalization to multimodal imaging,

Ultrasonics 64 (2016) 128–138. doi:10.1016/j.ultras.2015.08.008.

[11] G. Montaldo, M. Tanter, J. Bercoff, N. Benech, M. Fink, Coherent plane-

wave compounding for very high frame rate ultrasonography and transien-

t elastography, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56 (3)475

(2009) 489–506. doi:10.1109/TUFFC.2009.1067.

27

http://dx.doi.org/10.1016/0041-624X(96)00016-9
http://dx.doi.org/10.1016/j.ndteint.2012.08.003
http://dx.doi.org/10.1109/58.503780
http://dx.doi.org/10.1016/S0886-7798(98)00090-X
http://dx.doi.org/10.1016/j.ndteint.2006.03.006
http://dx.doi.org/10.1016/j.ndteint.2006.03.006
http://dx.doi.org/10.1016/j.ndteint.2006.03.006
http://dx.doi.org/10.1016/j.ndteint.2005.04.002
http://dx.doi.org/10.1016/j.ndteint.2005.04.002
http://dx.doi.org/10.1016/j.ndteint.2005.04.002
http://dx.doi.org/10.1016/j.ultras.2015.08.008
http://dx.doi.org/10.1109/TUFFC.2009.1067


[12] C. Prada, S. Manneville, D. Spoliansky, M. Fink, Decomposition of the

time reversal operator: Detection and selective focusing on two scatterers,

J. Acoust. Soc. Am. 99 (4) (1996) 2067–2076. doi:10.1121/1.415393.

[13] S. Shahjahan, A. Aubry, F. Rupin, B. Chassignole, A. Derode, A random480

matrix approach to detect defects in a strongly scattering polycrystal: How

the memory effect can help overcome multiple scattering, Appl. Phys. Lett.

104 (23) (2014) 234105. doi:10.1063/1.4882421.

[14] L. Lin, H. Cao, Z. Luo, Total focusing method imaging of multidirectional

CFRP laminate with model-based time delay correction, NDT E Int. 97485

(2018) 51–58. doi:10.1016/j.ndteint.2018.03.011.

[15] J. Blitz, G. Simpson, Ultrasonic methods of non-destructive testing, Chap-

man & Hall, London, UK, 1996.

[16] British Standards Institution, Non-destructive testing - Ultrasonic testing

- Characterisation and sizing of discontinuities, BS EN ISO 16827, London,490

UK, 2014.

[17] ASTM International, Standard practice for contact ultrasonic testing of

welds using phased arrays, ASTM E2700-14, West Conshohocken, PA,

2014.

[18] J. Zhang, B. W. Drinkwater, P. D. Wilcox, The use of ultrasonic arrays to495

characterize crack-like defects, J. Nondestruct. Eval. 29 (4) (2010) 222–232.

doi:10.1007/s10921-010-0080-6.

[19] X. Li, Y. Wang, P. Ni, H. Hu, Y. Song, Flaw sizing using ultrasonic C-

scan imaging with dynamic thresholds, Insight 59 (11) (2017) 603–608.

doi:10.1784/insi.2017.59.11.603.500

[20] J. Zhang, B. W. Drinkwater, P. D. Wilcox, Defect characterization using an

ultrasonic array to measure the scattering coefficient matrix, IEEE Trans.

Ultrason. Ferroelectr. Freq. Control 55 (10) (2008) 2254–2265. doi:10.

1109/TUFFC.924.

28

http://dx.doi.org/10.1121/1.415393
http://dx.doi.org/10.1063/1.4882421
http://dx.doi.org/10.1016/j.ndteint.2018.03.011
http://dx.doi.org/10.1007/s10921-010-0080-6
http://dx.doi.org/10.1784/insi.2017.59.11.603
http://dx.doi.org/10.1109/TUFFC.924
http://dx.doi.org/10.1109/TUFFC.924
http://dx.doi.org/10.1109/TUFFC.924


[21] A. Velichko, L. Bai, B. W. Drinkwater, Ultrasonic defect characterization505

using parametric-manifold mapping, Proc. R. Soc. A 473 (2202) (2017)

20170056. doi:10.1098/rspa.2017.0056.

[22] C. Peng, L. Bai, J. Zhang, B. W. Drinkwater, The sizing of small surface-

breaking fatigue cracks using ultrasonic arrays, NDT E Int. 99 (2018) 64–71.

doi:10.1016/j.ndteint.2018.06.005.510

[23] T. Stratoudaki, Y. Javadi, W. Kerr, P. D. Wilcox, D. Pieris, M. Clark, Laser

induced phased arrays for remote ultrasonic imaging of additive manufac-

tured components, in: 57th Annual Conference of the British Institute of

Non-Destructive Testing, NDT 2018, 2018, pp. 174–182.

[24] S. K. Everton, M. Hirsch, P. Stravroulakis, R. K. Leach, A. T. Clare,515

Review of in-situ process monitoring and in-situ metrology for metal ad-

ditive manufacturing, Mater. Design 95 (2016) 431–445. doi:10.1016/j.

matdes.2016.01.099.

[25] N. T. Aboulkhair, N. M. Everitt, I. Ashcroft, C. Tuck, Reducing porosity

in AlSi10Mg parts processed by selective laser melting, Addit. Manuf. 1520

(2014) 77–86. doi:10.1016/j.addma.2014.08.001.

[26] A. Velichko, P. D. Wilcox, Reversible back-propagation imaging algorithm

for postprocessing of ultrasonic array data, IEEE Trans. Ultrason. Ferro-

electr. Freq. Control 56 (11) (2009) 2492–2503. doi:10.1109/TUFFC.2009.

1336.525

[27] L. Bai, A. Velichko, B. W. Drinkwater, Ultrasonic defect characterisation

- Use of amplitude, phase, and frequency information, J. Acoust. Soc. Am.

143 (1) (2018) 349–360. doi:10.1121/1.5021246.

[28] T. Hastie, R. Tibshirani, J. Friedman, The elements of statistical learning,

2nd Edition, Springer-Verlag, New York, NY, 2009.530

29

http://dx.doi.org/10.1098/rspa.2017.0056
http://dx.doi.org/10.1016/j.ndteint.2018.06.005
http://dx.doi.org/10.1016/j.matdes.2016.01.099
http://dx.doi.org/10.1016/j.matdes.2016.01.099
http://dx.doi.org/10.1016/j.matdes.2016.01.099
http://dx.doi.org/10.1016/j.addma.2014.08.001
http://dx.doi.org/10.1109/TUFFC.2009.1336
http://dx.doi.org/10.1109/TUFFC.2009.1336
http://dx.doi.org/10.1109/TUFFC.2009.1336
http://dx.doi.org/10.1121/1.5021246


[29] A. Velichko, P. D. Wilcox, A generalized approach for efficient finite ele-

ment modeling of elastodynamic scattering in two and three dimensions, J.

Acoust. Soc. Am. 128 (3) (2010) 1004–1014. doi:10.1121/1.3467775.

[30] F. Shi, W. Choi, M. J. Lowe, E. A. Skelton, R. V. Craster, The validity of

kirchhoff theory for scattering of elastic waves from rough surfaces, Proc.535

R. Soc. A 471 (2178) (2015) 20140977. doi:10.1098/rspa.2014.0977.

[31] D. J. Whitehouse, Surface characterization and roughness measurement in

engineering, in: Photomechanics, Springer, Berlin, Heidelberg, 2000, pp.

413–461.

[32] I. T. Jolliffe, Principal component analysis, 2nd Edition, Springer-Verlag,540

New York, NY, 2002.

[33] R. E. Bellman, Adaptive control processes: A Guided Tour, Princeton

Univ. Press, Princeton, NJ, 1961.

[34] K. Pearson, Contributions to the mathematical theory of evolution-iii. re-

gression, heredity, and panmixia, Philos. Trans. R. Soc. Lond. A 187 (1896)545

253–318.

[35] L. Bai, A. Velichko, B. W. Drinkwater, Ultrasonic characterization of crack-

like defects using scattering matrix similarity metrics, IEEE Trans. Ultra-

son. Ferroelectr. Freq. Control 62 (3) (2015) 545–559. doi:10.1109/TUFFC.

2014.006848.550

30

http://dx.doi.org/10.1121/1.3467775
http://dx.doi.org/10.1098/rspa.2014.0977
http://dx.doi.org/10.1109/TUFFC.2014.006848
http://dx.doi.org/10.1109/TUFFC.2014.006848
http://dx.doi.org/10.1109/TUFFC.2014.006848

	Introduction
	Characterisation of small defects using the scattering matrix
	Measurement configuration
	Defect characterisation procedure
	A Gaussian rough surface model of the distortion
	Results
	Effects of the distortion model on the characterisation performance

	Robust defect characterisation and experimental results of real defects
	Conclusions

