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Aspect-ratio-constrained Rayleigh-Taylor Instability
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Abstract

In this paper, we study turbulent mixing between two miscible fluids that is induced gravitationally by Rayleigh-Taylor
instability in a tightly confined domain. In our experimental configurations, one lateral dimension is between two and
three orders of magnitude smaller than the other. Our motivation is to examine the relationship between domain width
and certain key flow statistics, as the geometric restriction changes in relative significance. We match our experiments
with carefully-resolved numerical simulations and in order to impose appropriate initial conditions, we extend Taylor’s
linear model of instability growth to characterise the influence of geometry on early modal development and use measured
experimental data to inform our initialisation. We find that our experiments exhibit initial conditions with a k−1 spectral
scaling of interfacial perturbation of volume fraction with a high degree of repeatability, where k denotes wavenumber.
We discovered that our form of geometric restriction couples favourably with the spectral composition of our initial
condition. We observe no early-stage transient relaxation towards self–similarity, because the instability already begins
in that stable self–similar equilibrium, and this important special case has not previously been noticed despite decades of
related research. We present our statistical observations from both experiment and numerical simulation as a validation
resource for the community; such simulations are inexpensive to compute yet capture many dynamically significant
properties.

Keywords:
Rayleigh-Taylor, experiment, geometric confinement, Hele-Shaw, Ekman friction, initial conditions, self-similarity,
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1. Introduction

1.1. History

The flow induced by relaxing the statically-unstable con-
figuration of dense fluid overlying relatively less-dense fluid
has been a phenomenon of considerable interest for over
a century, beginning with a related experimental and the-
oretical contribution by Lord Rayleigh [1]. G.I. Taylor’s
work [2] considered the simplified case of two inviscid, in-
compressible and two-dimensional fluids in an unbounded
domain, separated by a perfectly sharp, nominally hori-
zontal interface, with small sinusoidal perturbations. If the
amplitude were chosen to be much smaller than the wave-
length of the instability, the equations of motion could be
linearised and an analytical expression for modal growth
obtained. Various extensions have been since been pro-
posed to Taylor’s model, in particular the viscous correc-
tion of Davies and Taylor [3] and the model of Duff et
al. [4] accounting for non-ideal interface structure. More
recent literature has focussed on the later-time behaviour
where assumptions of linearity break down, beginning with
Layzer [5]. Much later, Youngs [6] and Read [7] confirmed
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numerically and experimentally that for a broadband ini-
tialisation, non-linear growth of the mixed layer evolves
quadratically with time.

Most historical work relates to unbounded Rayleigh-
Taylor instability: the classical case. Only in isolated cases
has attention been given to geometric confinement and
the dynamical and morphological changes that this may
introduce. Work by Lawrie and Dalziel [8] and Wykes
et al. [9] considered vertical confinement by buoyancy,
while Inogamov and Oparin [10] and Lawrie and Dalziel
[11, 12] considered a tube-like geometry and exploited a
separation of length- and time-scales to simplify the slow-
time dynamics to one dimension, permitting analytical so-
lution. While perfectly two-dimensional flows have been
obtained controllably in the laboratory using soap film as
the fluid medium, there is no known technique for produc-
ing variable-density flows, and especially those requiring
unstable initial conditions. The closest analogue in the
existing literature is based on a Hele-Shaw Cell [13], with
Andrews and Spalding [14] performing an experiment in
an almost-two-dimensional domain by overturning a thin
tank containing a stable density stratification.

1.2. Mechanics of confinement

In the present work we take the same approach as An-
drews and Spalding [14] and overturn a tank that can
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be enlarged in the thin direction by adding spacer ele-
ments. In its thinnest configuration, with respect to the
viscous length-scale, the fluid is everywhere proximate to
the boundary and is substantially influenced by it. Atmo-
spheric flows are ‘shallow’ in the same sense as a Hele-Shaw
cell, and are often treated as quasi-two-dimensional with
contributions from boundary-friction modelled as an ad-
ditional momentum-loss term in the dynamical equations.
Geophysically, this term is known as Ekman friction [15],
and we follow this convention here. Although the rela-
tionship between the magnitude of the Ekman friction and
fluid depth is consistent across the literature,

λ ∼ ν

b2
, (1)

where b is the fluid depth, ν is viscosity and 1
λ is a time–

scale associated with the Ekman friction, there is substan-
tial disagreement in the choice of scaling constant (e.g.
Boffetta et al. [16] and Clercx et al. [17]) that appears to
depend strongly on other specific details of these problems.
We address this concern with regards to our configuration
in §3 by returning to first principles and then validating
our simulations against experiment.

While it is well known that there are morphological dif-
ferences between two-dimensional, quasi-two-dimensional
and fully three-dimensional flows, there are multiple fac-
tors that cause these differences. Ekman friction is only
one such factor. Another, that is more deeply rooted in
the mechanics of inertial flows, is the reversal of the scale-
to-scale energy transfer. The Navier-Stokes momentum
equation can be written in terms of vorticity transport
Dω
Dt as,

Dω

Dt
= ω.∇u+ ν∇2ω − ∇ρ

ρ2
×∇p, (2)

where ρ is density, u is velocity, ω is vorticity, t is time
and p is pressure. The baroclinic source term, −∇ρρ2 ×∇p,
and dissipative sink term, ν∇2ω, respectively add and re-
move vorticity from the system, but ω.∇u acts to redis-
tribute vorticity between scales. A vortex filament with
local vorticity ω may be subject to a strain field ∇u, and
when a principal strain axis aligns with ω the filament
must elongate. Conservation of circulation requires that
the intensity of vorticity must then increase. However, the
reverse process under negative strain (which on average
will occur with equal likelihood as positive strain) can be
shown to be unstable, and promotes breakdown of long
vortical structures to smaller scales. As flows become ge-
ometrically constrained in one direction, velocity vectors
tend to lie predominantly in the remaining plane, whereas
the cross product ω = ∇ × u increasingly points in the
out-of-plane direction. Thus gradients ∇u tend towards
being orthogonal to ω, and the product ω.∇u tends to-
wards zero [18].

In the special case of a field of homogeneous turbulence
in an unbounded planar domain, the volume-averaged en-

strophy,
∫
V

1
2ω

2dV evolves in time as,

d

dt

∫
V

1

2
ω2dV = −ν

∫
V

(∇ω)
2
dV, (3)

and dimensionally the sink term scales as ∼ 1
L4 per unit

volume. The equivalent equation for volume-averaged en-
ergy,

d

dt

∫
V

1

2
u2dV = −ν

∫
V

ω2dV, (4)

scales as ∼ 1
L2 . Energy decay is therefore significantly

weaker at small scales than enstrophy decay, yet both are
direct functions of the same velocity field. In terms of
energy density e on wavenumber shells κ,∫ ∞

0

e(κ)dκ =
1

2

∫
V

u2dV, (5)

it follows that kinetic energy,
∫
e(κ)dκ, must decrease

much more slowly than enstrophy,
∫
κ2e(κ)dκ, and the

only consistent way to satisfy this requirement is for the
function e(κ) to increase over time for low κ and reduce
for high κ. This transfer of energy in scale-space from high
to low wavenumber occurs only when ω.∇u → 0. In the
more general three-dimensional case, the vortex-stretching
mechanism tends to dominate scale-to-scale transfer, but
in the opposite direction: from low wavenumber to high.

1.3. Organisation

In this paper we investigate the Rayleigh-Taylor insta-
bility in the presence of geometric confinement. The con-
figurations we examine address the statistical differences
in behaviour as the classical unconfined case is progres-
sively constrained towards two-dimensionality. We jointly
use numerical simulation and analytical tools to match
and interpret experimental measurement. Our focus here
is the relationship between domain width and statistical
quantities that characterise the flow, in the sensitive range
where a small increase in width changes the morphologi-
cal structure at observable length-scales. Certain statistics
of interest are not available directly from experiment, but
by careful validation we can obtain these by proxy from
simulation. Firstly by extending Taylor’s linear model to
include Ekman friction, we develop a procedure for infer-
ring initial experimental conditions in our thinnest config-
uration so that we can provide these for our simulations.
Secondly, we measure the discrepancy in mid-plane scalar
spectra between comparable simulations and experiments
over the relaxation lifetime of the Rayleigh-Taylor instabil-
ity, and use this measurement as a cost function on which
to optimise the scaling constant of the Ekman friction for
our problem. We also present experimental results from
thicker domains and compare with simulation.

The paper is organised as follows: §2 discusses the ex-
perimental apparatus and its calibration, §3 outlines the
analysis and procedure for obtaining suitable initial con-
ditions in Ekman-dominated flow configurations, §4 sum-
marises the numerical methods used in simulating these
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flows, §5 proposes a theory on morphological features in
an Ekman friction influenced flow and §6 presents our key
findings on the effects of domain thickness, drawn from the
comparison of simulation and experiment.

2. Experimental setup

In this section we describe the experimental apparatus,
outline a method for calibrating for the lens distortion that
is an unavoidable consequence of our configuration, and
detail a colour calibration that is sufficiently sensitive to
reveal manufacturing artefacts in the tank walls.

2.1. Apparatus

Our experiments used a thin tank with dimensions
1000×250×b mm, where b is the thickness dimension var-
ied between experiments. The tank walls consisted of two
10 mm transparent acrylic sheets with suitable grooves ma-
chined to house two sealing O-rings and a pattern of bolt-
holes to distribute compressive sealing load around the
tank perimeter. A metal distributor plate further spreads
the load between bolt holes. The interior dimension for
this slimmest configuration was b ≈ 1 mm, approaching
the limit of production tolerances on the materials used
for this type of experiment. A sequence of acrylic spacer
plates can be added to bring the total interior dimension
up to b ≈ 12 mm.

The canonical Rayleigh-Taylor configuration is not re-
alisable in the laboratory, so we rely on careful quantifi-
cation and good physical understanding to interpret mea-
surements from non-ideal experiments. Particular empha-
sis is placed on the approach to initialise statically un-
stable density stratifications, because subsequent develop-
ment has been shown to be highly sensitive to the spectral
characteristics of the initial interface ([19]). Previous ex-
periments have utilised one of three methods: acceleration
of an initially stable stratification vertically downwards [7];
removal of a barrier at the interface of an unstable strat-
ification [20], [21]; overturning of a stable stratification
[14]. Experiments focussing on the morphology of the flow
require long evolution time-scales relative to their vertical
size, and it is advantageous to use small density differences
between upper, u, and lower, l, layers. It is impractical to
use the small Atwood numbers we desire,

At =
ρu − ρl
ρu + ρl

� 1, (6)

with artificially accelerated reference frames, and barrier
removal introduces undesirable vorticity at low wavenum-
ber that would be particularly potent in planar geome-
tries that restrict the breakdown of vortices by the vortex-
stretching mechanism discussed in §1.2. Overturning the
tank is a pragmatic approach for thin geometries, though it
is well known that inertial forces during overturning cause
the interface to rotate [22], and for a tall tank in the ab-
sence of dissipative contributions, the interface will have

Figure 1: Experimental apparatus - a Hele-Shaw Cell mounted onto
a rotating frame.

rotated away from the horizontal by θ = + tan−1 2π ≈ 81°.
In practice, boundary friction and viscosity suppress the
rotation, so while this behaviour was noticeable in the
thickest of our configurations, b = 12 mm, the statistical
quantities we seek were not unacceptably contaminated.

Our apparatus mounts the tank, backlight and camera
on a large rectangular frame, as shown in figure 1. Weights
attached to rope are released to initiate the rotation and
an elastic bungee cord decelerates the frame before it en-
gages with latches that prevent rebound. There needs to
be sufficient residual angular inertia after deceleration to
overcome the resistance of the latch, so some impulsive ac-
celeration is unavoidably transmitted to the flow. While
this may temporarily induce Richtmyer-Meshkov instabil-
ity, the longer time-scale relaxation is very clearly domi-
nated by Rayleigh-Taylor instability.

The experiments were configured such that the dense
salt-solution layer was dyed with KTC Red Food Colour
powder and the less dense layer left without dye. Cal-
ibration of the dye is described in §2.3. The densities
were measured with an Anton Paar DMA 4500M den-
sity meter. In a typical experiment our Atwood num-
ber was At = 9.7 × 10−3, where the Boussinesq appoxi-
mation is valid. Video sequences were obtained using a
Teledyne DALSA Genie TS-C2500 colour CMOS Bayer
camera transferring data over a gigabit Ethernet link to a
SSD hard-drive using in-house capture software to con-
trol the acquisition. A pair of 50 W LED light panels
provided back-lighting behind a 3 mm opal semi-opaque
acrylic sheet, providing uniform diffuse back-illumination.
The LED panels were powered from a DC power supply
to eliminate 50 Hz mains flicker.

The constraints of a moving reference frame for the
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backlight, tank and camera limited the available distance
between the tank and the camera to 0.5 m, and to capture
a full field of view, we mounted an 8 mm Samyang fisheye
lens on the camera. This introduced considerable spatial
distortion, the handling of which is the subject of the next
section.

2.2. Spatial calibration

An accurate mapping of image intensity I from cam-
era pixel space to scalar concentration c in the moving
reference frame is essential for our detailed comparison of
simulation and experiment. A 25 × 91 calibration grid
of regularly-spaced white dots on a black background was
used to measure the relatively severe distortion induced by
the fisheye lens and to define the geometric component of
the mapping I(χ, ζ) → c(x, z). Unfortunately the distor-
tion causes very large spatial variation in the projected
light intensity falling on the camera sensor, so reliably
identifying the dots was challenge in itself, since simple
thresholding of intensity would fail to isolate them. In-
stead, a procedure based on a Markov process in graphs
was used to binarise the image. There are many such ap-
proaches; we chose to classify light and dark by associating
a local stochastic transition probability T ij with local in-
tensity gradient between the i’th pixel and an neighbour-
ing j’th pixel, then defining a set p of initial probabilities
of particles being located in various positions around the
image (though always starting in the background). By re-
peatedly updating the probability vector according to the
linear system,

pk = T kp0, (7)

for some large k, we obtain the equilibrium probability
distribution of particle location; a discrete analogue of the
steady-state solution to the diffusion equation. For suit-
ably chosen transition probabilities T , the likelihood of a
particle crossing from dark to light is very small, so bi-
nary classification is then straightforward. Individual dots
were then identified as isolated clusters of pixels using the
well-known DBSCAN algorithm ([23]). Once a few adja-
cent dots had been identified, a local Taylor’s expansion
predicted the location of the next search region for a new
cluster, greatly reducing the computational cost.

A reliable mapping will remain smooth in the presence
of image noise and any uncertainties in dot position, have
continuity in several derivatives and handle curvature in
both x and y directions in the physical coordinate space.
We developed a multi-variate extension of Legendre poly-
nomials to use as an orthogonal basis on which to obtain
a best-fit projection of the distances between dots. We
satisfy the inner product in two-dimensions,

〈p, q〉 =

∫ 1

−1

∫ 1

−1
p(x, y)q(x, y)dxdy = 0, (8)

for suitable orthogonal basis functions p and q, evaluat-
ing polynomials of the form a + bx + cy + dxy + . . . up
to fourth order and applying a Gram-Schmidt adjustment

order by order to ensure mutual orthogonality in the func-
tion space. The optimal coefficients βi for each of the 15
Legendre basis functions were calculated by forming an
over-determined linear system,

Lβ = χ′ (9)

where each column of a matrix L is generated by a single
basis function, and each row represents a chosen point in
space. The right-hand-side vector χ′ represents discrete
evaluation of a function describing the relative rates of
change of grid lines in the (χ, ζ) and (x, y) coordinate sys-
tems. On a uniformly spaced calibration grid, derivatives
such as ∂χ

∂x can be evaluated by measuring the apparent
distances in pixel space between adjacent dots. By organ-
ising the polynomial evaluation locations to coincide with
the dots in the calibration grid, a least-squares solution for
β can be found and the Gaussian best-fit transformation
thus determined.

2.3. Colour calibration

Images captured by the camera record the attenuation
of light intensity from the back-light due to the presence
in the tank of red food colouring dye dissolved as a visible
proxy for fluid density. For the dye to appear red, green
and blue parts of the visible spectrum are preferentially at-
tenuated. Green light is spectrally compact and so should
respond close to linearly with respect to changing dye con-
centration. Furthermore our colour camera has a Bayer
array of dichroic colour filters containing twice as many
green pixels as red or blue, so it is especially convenient
to interrogate the green channel in our video sequences.
The colour calibration method used here is informed by
the work of Cenedese and Dalziel [24].

A key parameter in our experiments is the tank thick-
ness, so we seek a robust interpretation of observed light
intensity in terms of upper and lower bounds on thickness-
averaged dye concentration. The Lambert-Beer rule,

∂I

∂s
= −η(c)I, (10)

describes how light intensity I reduces along a ray path
s according to a dye response function η(c) that depends
on concentration. For passage of a ray through dye of two
different concentrations c1 and c2 for respective distances
s1 and s2, we have

I(s1 + s2) = I(0)e−η(c1)s1e−η(c2)s2

= I(0)e−(η(c1)s1+η(c2)s2).
(11)

Provided the dye response is linear, i.e. η(c) = d1c + d2
for suitable coefficients d1 and d2, then the exponent can
be expressed in the following form,

η(c1)s1 + η(c2)s2 = η

(
c1s1 + c2s2
s1 + s2

)
(s1 + s2) , (12)
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Figure 2: Dye behaviour for 1 mm thick experiments compared to
the ideal linear behaviour, where c is dye concentration and Igreen is
the light intensity value on the green channel in the RGB calibration
images.

showing that the observed attenuation would measure the
along-ray average of the dye concentration. Calibration
with several known and uniform concentrations of dye pro-
duces the curve shown in figure 2, and for fitted coefficients
d1 and d2 there is a good linear match at low dye con-
centrations, though the range over which this is a good
approximation decreases with increasing ray path length
(and hence with tank thickness). In our thinnest config-
uration experiments we seek to remain in the dye regime
c < 2g/l as dye behaviour is seen to closely follow the
linear ideal within this range in figure 2.

With very thin geometries, small changes in experimen-
tal setup can have unexpectedly large consequences. The
calibrations cover a much broader range of dye concentra-
tions than any experiment, and a minor change in the tank
filling procedure for calibration decreased the internal fluid
pressure relative to experiment and therefore contracted
the tank appreciably. We modify our calibration values to
account for the reduced ray-path length by assuming that
the attenuation of light in fresh water across the thick-
ness of the tank is negligible, hence the coefficient d2 ≈ 0.
For an identical uniform dye concentration once an exper-
iment has fully relaxed, the Lambert-Beer relation can be
rearranged to give a ratio of tank thicknesses,

sexp
scal

=
ln(Iexp)

ln(Ical)
, (13)

that maps colour values from the calibration measure-
ments to equivalents for experiment. We compute bespoke
colour mappings for each physical position.

A further complication that arises in experiment is that
the acrylic sheeting used for the tank walls deforms under
load. The thickness of the tank in its slimmest configura-
tion is of order 1 m, set by the pressure exerted on a pair

of rubber O-rings that lie in concentric grooves. Spatial
distortion in the tank thickness is significant enough to be
measurable, simply by calibrating the ray-path attenua-
tion through a uniformly concentrated dye. The thickness
profile we obtain has slight but noticeable hallmarks of
the bolt-holes at regular intervals along the sides of the
tank (see figure 3), despite the clamping load being dis-
tributed through a stiff metal bar. Other features visible
in the thickness profile are most likely due to artefacts of
the acrylic casting process.

Figure 3: Variation in tank thickness, b, determined by light atten-
uation through uniform concentration dye.

While it is remarkable to have sufficiently sensitive diag-
nostics to observe artefacts of manufacturing processes, it
clearly indicates that our experiment is operating close to
the limit of material tolerances. Since the Ekman param-
eter λ scales as 1

b2 , any small thickness variation in the
b = 1 mm tank configuration may be fluid-mechanically
significant and we account for these effects in our numeri-
cal simulations by supplying measured point-wise data.

A typical raw camera image I(χ, ζ) and corresponding
post-processed volume fraction field Φ(x, z) are shown in
figure 4.

3. Initial condition spectra

In this section, we derive an appropriate model for Ek-
man friction that we will subsequently include in our nu-
merical simulations. We also extend Taylor’s linear model
to the case with Ekman friction so that we can determine
what the t = 0 spectral signature must have been from
some early-time contours of the experimental scalar field,
and show that this closely matches a k−1 spectral slope.
Later we will use these conditions to initialise our simula-
tions.

3.1. Plane Poiseuille flow

In thin-layer quasi-two-dimensional flows, no-slip
boundaries are everywhere proximate and have a profound
influence on the evolution of the flow. The appropriate
model for the flow between two plates is plane Poiseuille
flow. If we restrict the Navier-Stokes to steady incom-
pressible flow in a single direction but account for a ve-
locity profile in the out-of-plane direction, then we have

5



0 640 1280 1920 2560
0

512

1024

χ (pixels)

ζ
(p

ix
el
s)

(a)

(b)

Figure 4: The image processing input and output: (a) the raw ex-
perimental image processed to give (b) the volume fraction Φ.

momentum and mass conservation,

0 = −1

ρ

∂p

∂x
+
µ

ρ

∂2u

∂y2

0 =
∂u

∂x
,

(14)

respectively. Wall friction acts to retard the flow, and
so a continuously decreasing pressure in the streamwise
direction is needed to maintain velocity and thus sat-
isfy mass and volume conservation in this one-dimensional
flow. If the pressure gradient were removed, then the ve-
locity would decay at a rate determined by the wall friction
but the problem would be neither incompressible in 1D nor
time-invariant. However, by application of equal and op-
posite forces, we can use the steady case to estimate the
instantaneous rate of decay that would occur in the ab-
sence of other constraints. We thus treat ∂p

∂x as a constant
and obtain a simple ordinary differential equation,

d2u

dy2
= − 1

µ

dp

dx
. (15)

Integrating twice in y over the gap between the bounding
planes and applying no-slip boundary conditions u(0) = 0
and u(b) = 0 yields a velocity profile,

u(y) =
1

2µ

dp

dx
(b− y)y. (16)

Our goal is to determine the decay rate of in-plane velocity
due wall to friction and so in our steady-state model we
must compute the pressure gradient dp

dx required to bal-
ance this wall force. The total momentum M across the

thickness is given by,

M = ρSub = S

∫ b

0

ρu(y)dy, (17)

where S is a (unit constant) area parameter accounting for
the cross-sectional area in the x and z directions. The vari-
able u is the mean velocity across the thickness b between
the boundaries, the velocity we would aim to compute cor-
rectly in analysis or numerical simulation. Substituting for
the parabolic velocity profile we have,

ρSub =
Sρ

2µ

dp

dx

∫ b

0

(by − y2)dy

ub =
1

12µ

dp

dx
b3,

(18)

so we expect the pressure gradient required to maintain
velocity u to behave as,

dp

dx
=

(
12µ

b2

)
u. (19)

Conversely, by substitution for the pressure in the one-
dimensional momentum equation, we would expect the ve-
locity to decay exponentially according to,

ρ
du

dt
= −

(
12µ

b2

)
u, (20)

and can therefore quantify the Ekman friction rate,

λ =

(
12ν

b2

)
. (21)

Reassuringly, this has the same ν
b2 scaling as the sin-

gle walled case in [17] and a larger value of Ekman con-
stant, reflecting the additional curvature of the velocity
field due to the additional wall. Although the value we
obtain here is around 5 times larger than the comparable
value for a semi–infinite domain, it should be stressed that
the framing of the problem embeds certain assumptions.
In particular our analysis assumes that a linear relation-
ship between stress and strain rate remains valid close to
a no–slip boundary in our very thin flows. Motivated by
the inconsistencies in the available literature, we sought in
this study to confirm our selection of Ekman time–scale
by minimising discrepancy in spectral energy between our
simulations and experimental data, as discussed in §4.2.

3.2. Taylor’s linear growth model

The linear model for Rayleigh-Taylor growth due to Tay-
lor [2] is constructed by considering a sinusoidal perturba-
tion of an interface between a denser upper fluid and a less
dense lower fluid. The flow is assumed to be described by
velocity potentials,

φu = −ae−kz+nt cos(kx)

φl = aekz+nt cos(kx),
(22)
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for upper and lower layers respectively, with the strength
of the potential decaying in the vertical (z) direction away
from the interface. The temporal growth rate n is the key
unknown. A consistent interfacial profile ζ(x) is given by
a matching condition on the vertical velocity w,

w =
∂φ

∂z
=
∂ζ

∂t
, (23)

and it follows that,

ζ = a
k

n
ent cos(kx), (24)

where for small amplitudes we neglect ekz terms in ζ. Tay-
lor integrated the Euler equation for vertical velocity with
respect to z to evaluate total pressures in both the upper
and lower layers separately, and then employed a match-
ing condition at the interface to close the problem. To
account for the influence of Ekman friction on early-stage
Rayleigh-Taylor growth, our derivation begins with,

ρ
Dw

Dt
= −∂p

∂z
+ ρg − ρλw. (25)

We neglect the non-linear transport terms, substitute for
velocity potential φ and integrate to obtain,

ρ
∂φ

∂t
= −p+ ρgz − ρλφ− p, (26)

where the constant of integration can be interpreted as a
gauge pressure p. The sign convention in upper and lower
layers is critical, and we find the following expressions,

pu = p− ρugz + ρuφ̇u + ρuλφu

pl = p− ρlgz − ρlφ̇l − ρlλφl.
(27)

The interfacial pressure balance is given by,

pu|z=ζ = pl|z=ζ
p− ρugζ + ρuφ̇u + ρλφu = p− ρlgζ − ρlφ̇l − ρλφl,

(28)

and substituting for the velocity potential we have,

−ρugζ + ρlgζ = −ρu
n2

k
ζ − ρl

n2

k
ζ − ρuλ

n

k
ζ − ρlλ

n

k
ζ

−g (ρu − ρl) = −n
2

k
(ρu + ρl)−

n

k
(ρu + ρl)λ.

(29)

Noting the definition of the Atwood number (6), we obtain
a quadratic relationship for the growth exponent,

Atgk = n2 + λn, (30)

which we note in passing reduces to the zero-Ekman
case found by Taylor. Only the positive root given by
the quadratic formula is consistent with unstable growth.
Making the convenient substitution 2λ̂ = λ we have,

n = −λ̂+

√
λ̂2 +Atgk. (31)

Figure 5: Wind-back of late-linear-regime contour spectra yields ex-
perimental initial conditions with a k−1 spectrum.

If we consider a circle of radius λ̂ and a tangent to that cir-
cle with length

√
Atgk, then we may form a right-angled

triangle whose hypotenuse exceeds the radius of the cir-
cle. The distance by which it exceeds the radius is the
remaining growth exponent after Ekman friction is taken
into consideration. When Ekman friction is negligible, the
circle is small relative to the tangent length and very little
growth is lost to friction. With this positive root, for no
choice of radius will the tangent ever lie inside the circle
so growth, however slow, is always possible.

3.3. Generation of initial conditions

It is well documented that the initial conditions have a
significant influence on the growth of Rayleigh-Taylor in-
stability. Close matching of numerical simulation initial
conditions with those in the experiments is therefore im-
perative in order to best match simulation and experiment.
The key difficulty lies in measuring experimental condi-
tions at early time, which are not visible at the resolution
of a digital camera. Furthermore, experiments are known
to become contaminated with low wavenumbers of moder-
ate amplitude at early time, and these have the tendency
to dominate later-time behaviour, so it is desirable to cap-
ture such effects in simulations that are intended to be
an accurate match. As Taylor’s linear analysis indicates,
eigenmodes of unstable growth directly associate interfa-
cial perturbations with velocity perturbations, however by
convention numerical simulations are initialised with only
the density field perturbed around the interface and the
velocity field is held static. Thus to follow convention we
require very low amplitude initial perturbations so that we
maximise the inner product of the initial system state and
the corresponding unstable eigenmode. Our solution is to
take images from experiment at a sufficiently early time
that the interface has not yet become multi-valued in each
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x ordinate but for which we have a good signal to noise
ratio, compute the Fourier transform of a scalar contour
ζ(x, t) and mode by mode ‘wind back’ time to compute
a lower amplitude ζ(x, 0) that is suitable for the initial
condition of a numerical simulation.

Given a per-wavenumber estimate of the linear growth
rate, we have a simple relationship:

ζk(0) =
ζk(t)

ent
, (32)

utilising the growth rate n derived for Ekman friction influ-
enced Rayleigh–Taylor in (31). Linearity over the spatial
spectrum allows us to superpose contributions we obtain
from each wavenumber,

ζ(x, 0) = <

(∑
k

ζk(0)eikx

)
. (33)

The spatial variation in Ekman friction discussed in §3.1
is potentially also significant for the wind-back from ob-
servable perturbation of the interface to a suitable ini-
tial condition. We therefore take a window-averaged lo-
cal thickness b to estimate the local temporal growth
rate n(k, b), and apply the wind-back locally and to each
wavenumber, then compute the superposition over all
wavenumbers.

For all quasi-two-dimensional experiments conducted in
our study, our inferred initial condition produces a spectral
slope of k−1, as indicated in figure 5. Relatively few ex-
perimental studies report initial conditions, since these are
difficult to obtain directly; Wilson et al. [25] is one of the
few that does and they report, using Taylor’s hypothesis to
convert between temporal and spatial scales, a k−5 spec-
tral slope. We note that their mid-plane scalar spectra are
measured shortly after flow has left a flat-plate boundary
layer, whereas our experimental interface has been accel-
erated and decelerated rapidly shortly before we measure
our early-time contours.

4. Numerical methods

4.1. MOBILE

The calculations described in this article were per-
formed using MOBILE, a parallelized, 3D variable den-
sity, finite volume incompressible flow solverhl, and has
been validated in detail across a range of mixing flows
[11][12][26][27][28]hl, used both to compute direct numer-
ical simulations (DNS) and implicit large eddy simula-
tions (ILES). Mass and momentum are conserved subject
to an incompressibility constraint, and a fractional step
approach is employed, decoupling hyperbolic (advective
transport), parabolic (viscous dissipation and scalar dif-
fusion), and elliptic (pressure/velocity correction) compo-
nents.

Following ideas of Youngs [29] and Andrews [30] each 1D
advection sub-problem is Total Variation Bounded (TVB),

both eliminating unphysical oscillations around steep ma-
terial gradients and maintaining numerical stability for the
full 3D problem, even when gradients themselves are not
properly resolved. The local Riemann problem across cell
faces is solved with Godunov's exact solution, which for
this contact discontinuity wave system is trivial, and high
spatial order is achieved by modifying the left and right
states of the Riemann problem using piecewise polynomial
reconstruction of the spatial field. The most obvious lin-
ear gradient, m, to choose for a linear reconstruction in the
cell located at xi−1 has the standard MUSCL form [31],

mi−1 =
ψi − ψi−1

2∆x
, (34)

where ψ represents any of the conserved quantities. A
higher order estimate of the gradient can be constructed
by using the fluxed volume per unit area ui− 1

2
∆t as a

weighting that biases the mi−1 gradient as far towards a
central difference over the cell face as possible. This more
sophisticated gradient has the form,

mi−1 =

(
1 +

ui− 1
2
∆t

∆x

)
ψi−1 − ψi−2

3

+

(
2−

ui− 1
2
∆t

∆x

)
ψi − ψi−1

3
,

(35)

which is the default choice in MOBILE. Empirical tests
have shown that the error scales approximately with
O(∆xn), 2 < n < 3, even though the stencil retains the
spatial compactness of the standard stencil for second or-
der. The order of the method is spatially varying accord-
ing to local velocity gradients, and a slope limiter of the
van-Leer type interpolates the flux between low and high
order.

Mutually staggered grids are used for all quantities (ve-
locity and scalar) so there is no co-location of information
and maximal coupling for numerical stability. Further-
more, scalar fluxes are computed accurately while requir-
ing only one elliptic pressure solve because scalar quanti-
ties are stored at cell centres, while face-normal velocities
are stored on their respective faces. Multiple dimensions
are decomposed into sequential X-Y-Z-Z-Y-X updates, fol-
lowing the approach of Strang [32] to improve temporal
orders of convergence. The projection of this intermedi-
ate velocity field onto the nearest vector field in the space
of divergence-free fields follows the well-known Hodge-
Helmholtz decomposition [33], and exactly conserves dis-
crete angular momentum (a quantity of considerable inter-
est in baroclinic flows), though by construction local con-
servation of linear momentum cannot be satisfied through
the projection. The pressure Poisson equation intrinsic to
this projection technique is solved by a highly optimised
parallel multigrid algorithm. A parallel macrolanguage in-
terpreter supports convenient on-the-fly computation of
turbulent statistics for post-processing and visualization.

For the present simulations of quasi-two-dimensional
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Figure 6: The bin structure in frequency-time space, which is used
to calculate mid-plane spectral error between experiment and simu-
lation and in turn to optimise Ekman constant.

flow, a scaling analysis of the viscous stresses,∣∣∣∣∂2u∂y2
∣∣∣∣� ∣∣∣∣∂2u∂x2 +

∂2u

∂z2

∣∣∣∣ (36)

shows that curvatures in the out-of-plane direction far ex-
ceed those in the plane, and following the analysis in §3 we
account in our numerical models for the dominant source
of dissipation. Thus our simulations are a credible approx-
imation to a DNS of the in-plane flow that in this work we
term quasi-DNS.

4.2. Simulation calibration

With little convergence in the literature on a universal

scaling coefficient λb2

ν for Ekman friction, proposed values

include 0.05 ([16]), π2

4 ([34] and [17]), and our analysis
of plane Poiseuille flow in §3.1 suggests 12. Rather than
trusting our model blindly, we decided to calibrate our
(inexpensive 2D) simulations by searching over the Ekman
parameter space for a suitable match with experiment.

Digital camera sensors introduce Gaussian random
noise, which unavoidably contaminate our experimental
measurements. No such difficulties arise for simulation
data, but well-known consequences of finitely truncating
Taylor’s series - as well as more fundamental consider-
ations of strongly non-linear systems - would cause the
system state of even the most carefully initialised simu-
lations to diverge over time from a corresponding experi-
mental measurement. Thus we do not seek eddy-for-eddy
overlays; instead our focus here is to characterise key sta-
tistical quantities from experiment and devise strategies
for simulation that can reliably reproduce them, so that
other, more accessible, simulation variables can be taken
with confidence. Our experiments provide a close proxy

Figure 7: Optimisation of cumulative difference between experiment
and simulation mid-plane spectra to give the optimum Ekman con-
stant of 2.2 for the 1 mm thick experiments. Error bars represent the
95% confidence interval, obtained from an ensemble of 10 simulations
for each value of Ekman constant.

for full-field fluid density. Broadly speaking there are two
classes of post-processing of the density field that could
characterise the instability growth: integral measures of
mixing-layer width, and spectral measures of the density
field. Spectral statistics are a more challenging target,
since they capture aspects of interior morphology that are
closely related to instability growth.

We selected the mid-plane transect from the density field
because it continuously has a good signal to noise ratio
throughout the relaxation lifetime of the instability. By
Fourier-transforming to obtain the power spectrum of the
density on this transect, and performing the equivalent cal-
culation on the simulations, we can compare whole-lifetime
spectra, which may be captured in surfaces P (k, t).

Our penalty function to determine the goodness of fit be-
tween experiment and simulation is simply the root-mean-
square error between the prediction Psim and measurement
Pexp, integrated over k and t. Discrete Fourier transforms
are widely known to exhibit unwanted artefacts, and a
fairer comparison of the spectral surface is found once aver-
aged in wavenumber space and over short periods of time.
These reduced-resolution spectral surfaces were compared
over a range of simulated values of Ekman parameter, as
shown in figure 6.

The results of this calibration are shown in figure 7 and
demonstrate sensitivity of our penalty function to varia-
tion in the Ekman parameter. The data obtained suggests
that for our b = 1 mm experiments,

λ =
2.2ν

b2
, (37)

is the appropriate value. The mid-plane spectrum, to-
gether with frames of the domain at selected instants in
time, is shown in figure 8 for both experiment and the
optimal simulation. To further minimise discrepancy be-
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Figure 8: 1D mid-plane volume fraction spectrum development with time for (a) 1 mm thick experiment and (b) corresponding optimised 2D
simulation. Volume fraction plots shown again in (c) and (d) respectively for clarity.
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tween experiment and simulation, we model the forces on
the fluid due to rotation of the experimental apparatus
while overturning. The value of Ekman constant given
by the optimisation can be considered valid for geometries
with similar aspect ratios to ours, in particular those with
very small out–of–plane dimension and bounded by two
smooth walls. We surmise that in these very thin flows,
the assumption of linearity in macroscopic shear stress vs
strain rate may be violated near the boundary, so the out–
of–plane velocity profile will deviate from predictions of
Poiseille.

5. The morphology of Ekman friction

Our measurements from the 1 mm domain have a num-
ber of morphological features that bear the hallmarks of
Ekman friction. Within this type of experiment there is
no way to eliminate Ekman friction, but in simulation we
can simply omit the relevant source term to compare the
development. A qualitative comparison is shown in fig-
ure 9, including insets of enlarged details. We observe
very consistently that in these thinnest domains, Ekman
friction prevents the classical Rayleigh-Taylor bubble and
spike structures from forming in the conventional manner.
Instead, as shown in the inset figures, we see claw-like
structures. We explain these observations by considering
how advected material surfaces must respond to Ekman
forcing,

du

dt
= −λu, (38)

imparted by the boundaries. Examining only the vertical
component of the velocity, uz and integrating twice over
some short time-scale τ , we obtain the vertical displace-
ment of a material surface,

z(τ) =
uz(0)

λ

(
1− e−λτ

)
+ z(0), (39)

which we may characterise by a constant factor λ̄ as
follows: z(τ) = uz(0)λ̄ + z(0). yy a horizontal material
surface propagating vertically by passive advection will
be exponentially and uniformly retarded and thus retain
its shape. However, Rayleigh-Taylor instability is charac-
terised by curved material surfaces penetrating into oth-
erwise quiescent flow. Kinematically the structures are
baroclinically induced vortex rings in 3D, and manifest as
dipole structures in 2D. In a low-Atwood-number miscible
flow these material surfaces emerge from the interior of a
rising bubble at the top and are then stretched around the
outside surface as they undergo shear against the adjacent
descending spike. Thus they travel faster in the absolute
reference frame than the bubble itself, and the sides of the
bubble travel more slowly. If in the absence of Ekman
friction the steady-state propagation of a bubble’s dipole
or vortex ring at speed uz is characterised by a persistent
velocity differential uz + ε between its axis and uz − ε at
its fringe, then with Ekman friction the velocity difference

will reduce from 2ε to 2λε. This corresponds to a reduc-
tion in vorticity, and in the reference frame of the bubble,
material surfaces will travel shorter vertical distances and
the bubble structure will become progressively squashed
into an elliptical shape, The strongest injection of baro-
clinic vorticity to a bubble is at its fringes where density
and pressure gradients are least closely aligned. Provided
the bubble has an approximately unit aspect ratio, then
it can maintain its structure because along its symme-
try plane significant contributions to the induced velocity
come from both sides. However the larger the aspect ratio
of a bubble, in relative terms the more laterally distant
from its centreline become these regions of strong vortic-
ity, until eventually they behave like independent sources
of vorticity. The velocity they induce advects the bound-
ing material surface upwards locally to form protrusions,
but preserves a relatively shallow gradient near the sym-
metry plane. Both protrusions are themselves Rayleigh-
Taylor-unstable, so form claw-like bifurcations of the bub-
ble and halve the characteristic length-scale. Rayleigh-
Taylor instability is understood to develop towards larger
length-scales by mode-coupling mechanisms [35], and our
geometric constraints limit the down-scale coupling of vor-
ticity and velocity. However, in §6.2 we show that once
established, the spectral slopes found in our experiments
are remarkably invariant over time, and qualitatively the
examples of figures 8 and 9 show tall finger-like structures
that persist until late time with little apparent change
in the largest lateral length-scales. We anticipate that
there may be approximate cancellation of the up-scale and
down-scale transfers.

Figure 9: Volume fraction plots showing the structures in the
thinnest configuration for (a) 1 mm experiment, (b) 2D simulation
with optimised Ekman friction and (c) 2D simulation with no Ekman
friction.
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6. Domain thickness and instability relaxation

6.1. Probability density functions

The experimental scalar data provides a direct mea-
sure of line-of-sight-averaged volume fraction across the
domain. The evolution of the volume fraction field from a
two-layer unstable stratification to a state that approaches
complete mixing is shown in figure 10 for our b = 1 mm
and b = 12 mm experiments, the extremal cases permitted
by our experimental approach. Using volume fraction as a
suitably accurate proxy for density, we compute its aver-
age value for each horizontal z-plane, and plot its evolution
over time as a surface Φ(z, t). Beside this, and in the same
orientation on a common t-axis, we provide snapshots of
the probability density function (PDF) in the value of vol-
ume fraction, once again evaluated for each horizontal z-
plane. Especially at early times, the frequency of occur-
rence of certain values of density is very large, so we show
the natural logarithm in the colour scale. The spread of
non-zero density values in every z-plane is a measure of the
available baroclinic work that can be done to drive further
mixing at some time in the future.

At late times it is clear that a broad range of values in
the PDF persists for significantly longer in the 1 mm case
than in the 12 mm case, indicating that here, considerably
more time is required to expend the available energy be-
fore the instability relaxes to a well-mixed state. With ge-
ometric confinement suppressing down-scale energy trans-
fer, energy remains for longer at larger scales, as shown in
figures 8 and 9. By contrast the three-dimensionality ac-
cessible to the 12 mm experiment, in particular the mech-
anism of vertex stretching outlined in §1.2, more rapidly
leads to energetic activity at small scales and associated
enhancement of molecular-scale mixing, so the range of
densities collapses towards the mean over a shorter time-
scale, and the instability reaches its relaxed state relatively
soon. It is quite surprising how sensitive the dynamics ap-
pear to be to changes in overall domain aspect ratio.

6.2. Scalar spectra

A Boussinesq fluid, a good approximation for those stud-
ied here, has the property of statistical symmetry about
the midplane and spectral behaviour at the midplane may
be taken as indicative of structure across the whole do-
main. We compare development of the midplane spectra
for experiment and simulation for 1 mm, 6 mm and 12 mm
cases in figures 11, 12 and 13. The 1 mm experiment shares
the k−1 initial spectrum obtained in §3.3 and both the
experiment and corresponding simulation maintain a k−1

slope throughout. The 6 mm and 12 mm thick test cases
see convergence at later time, with the spectral slope in
both cases approaching k−

5
4 . The similarity in spectral

slope between experiment and simulation at each domain
thickness serves to validate the use of MOBILE simulations
for modelling these spectral characteristics. However, the
differences in the evolution of spectral energy between ex-
periment and simulation at 6 mm and 12 mm thicknesses

illustrates the difficulty in matching the two for highly
non-self-similar flows.

The spectral surfaces plotted in figure 8 for our 1 mm
experiments and discussed in §4.2, indicate a steady accu-
mulation of spectral density at low wavenumbers k over the
time-period observed, consistent with the mode selectivity
of the Rayleigh-Taylor instability and the up-scale energy
transfers prevalent in thin domains when vortex stretch-
ing is suppressed. Eventually, all kinetic energy will be
dissipated by viscous action, but once bubbles and spikes
have reached the vertical extremities of the domain, the
characteristic features of developing Rayleigh-Taylor in-
stability cease to be discernible. On the time-scale of our
observations, the 6 mm and 12 mm cases shown in figure 14
show an increase in spectral density at low wavenumbers,
followed by reduction in low wavenumber components to-
wards the end of our observation period. To characterise
this process we consider the development in three phases.
The first phase resembles the classic unconstrained three-
dimensional Rayleigh-Taylor growth, where the height of
the instability is small compared to any of the lateral di-
mensions. When the growth is of a comparable length
scale to the smallest lateral dimension we lose the original
form of self-similar behaviour because subsequent growth
becomes dependent on a fixed length scale as well as in-
creasing time, so length- and time-scales can no longer
increase in proportion. It is evident from the time-slices of
domain volume fraction in figure 14 that large structures
then develop, consistent with the growth observed in low-
wavenumber parts of the spectrum. In order for these
structures to form and for their growth to exceed the do-
main thickness, fluid motions must be primarily in-plane.
However, in the third, final, phase, vortex-stretching ac-
tion becomes sufficiently strong for diffusive processes to
rapidly reduce the scalar variance and with it the baro-
clinic engine that drives further kinematic activity.

6.3. Velocity spectra and growth rate α

Having validated MOBILE simulations for use as a suit-
able proxy for our experiments, we may now extract data
from our simulations that our experimental diagnostic
does not make available. We use simulated velocity data to
generate energy spectra, shown in figure 15. One striking
feature is the similarity between our 6 mm and 12 mm spec-
tra. All spectra have been sampled at a Rayleigh-Taylor
development that has reached h = 20 mm (though the evo-
lution time at which this arises differs in each case). This
strongly suggests that there is a rapid transition away from
an Ekman-dominated regime somewhere between 1 mm
and 6 mm. Earlier analysis of probability density functions
supports the contention that vortex-stretching rapidly be-
comes active even if geometric confinement continues to
constrain the motion beyond the feasible thickness range
of our experiments. We observe k−3 spectral slopes for
energy in the 1 mm case, in–line with expectations from
Kraichnan [36] and this persists when out-of-plane degrees
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Figure 10: Volume fraction field evolution in time. Φ(z, t) is plotted as a surface, with volume fraction on the vertical axis, and the probability
density function at each z-plane sampled over 100 discrete bins. (a) 1 mm experiment, (b) 12 mm experiment

Figure 11: Mid-plane line-of-sight-averaged scalar spectra through-
out time for 1 mm thick experiment and 2D simulation, showing close
comparison between experiment and simulation.

Figure 12: Mid-plane line-of-sight-averaged scalar spectra through-
out time for 6 mm thick experiment and simulation. Late time spec-
tral slopes are well matched but differences in the evolution of spec-
tral energy are apparent.
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Figure 13: Mid-plane line-of-sight-averaged scalar spectra through-
out time for 12 mm thick experiment and simulation. Late time
spectral slopes are well matched but differences in the evolution of
spectral energy are apparent.

of freedom are introduced to the simulations, so we con-
clude that this is a property of the geometry. However, it
remains unclear why 6 mm and 12 mm cases show steeper
rather than shallower slopes reported in [37]. We antic-
ipate that at larger thicknesses than we are able to ac-
commodate, the inertial range slope will revert to k−

5
3 ,

consistent with previous MOBILE simulations [26] in un-
constrained domains.

There is typically a close correspondence between en-
ergy and scalar spectra in turbulent flows, but in our 1 mm
experiments there has arisen is a very particular set of cir-
cumstances. From figure 15 we show that the developed
energy spectrum follows an e(k) = k−3 scaling. Following
the arguments laid out in §1.2, the corresponding enstro-
phy spectrum is given by k2e(k) = k−1. In figure 5 we
demonstrate very clear adherence to a k−1 initial scalar
spectrum. The crucial connection to make here is that
baroclinically generated vorticity must also have an initial
spectral scaling of k−1, ensuring that the initial state of the
system is perfectly balanced with the geometric constraint
that we know from simulation will constrain energy spec-
tra to k−3 scaling at later time. Thus, until the bubble and
spike structures reach the vertical extrema of the domain,
the flow remains in a stable self-similar equilibrium.

It would be reasonable in this special circumstance to
expect near-perfect quadratic growth h(t) = αAtgt

2, and
in-so-doing provide incontrovertible experimental evidence
of self-similarity in the non-linear phase of Rayleigh-Taylor
instability. Although on dimensional grounds the scaling
cannot be disputed, it has been the work of decades to
refine our understanding of the role initial conditions play,

and to seek convergence on the scaling parameter α. Since
the seminal work of Youngs [6] and Read [7] first posed the
question, many experimentalists and computational scien-
tists have sought to claim self-similarity, as summarised
by Zhou [38] [39]. The present study, we believe, is the
first to convincingly demonstrate it, by a combination of
coincidental initial condition and geometric construction.
Figure 16 plots an integral measure of mixing-region devel-
opment, ĥ(t), and we note the marked disparity between
the self-similar profile for the 1 mm case (with a quadratic
curve for comparison fitted at α = 0.012) and the non-self-
similar adjustments that strongly perturb the growth pro-
files away from the quadratic ideal for the 6 mm and 12 mm
cases. In figure 17 we plot the curves for b = 1 mm on a
re-scaled time axis to illustrate more clearly that there is
no early–stage transient relaxation towards self-similarity.
Initial transients routinely arise when the spectral com-
position of the initial condition is in disequilibrium with
the long-term self-similar development. Our experiments
are truncated by upper and lower boundaries so we de-
part from self-similarity at late time as the mixing region
approaches the constraints.

We note that the standard integral measure h(t) =
6
∫

Φ(1 − Φ)dz [14] recovers a positive value at t=0 for
all experimental initial conditions, misleadingly suggest-
ing that significant mixing may have occurred before the
experiment begins. A combination of factors are responsi-
ble in addition to molecular-scale diffusion of the volume
fraction field, amongst them Gaussian camera noise across
the entire image and line-of-sight averaging of interface tilt
that occurs during initial rotation. By examining 1% and
99% volume fraction contours from fields at t < 0 we es-
timate the contribution to h(0) from interface diffusion to
be no greater than 5.4 mm, an order of magnitude smaller
than the value computed by this integral measure. Accord-
ingly we present an offset metric ĥ = 6

∫
Φ(1−Φ)dz−h(0)

in figures 16 and 17, with h(0) determined from our b=1
mm experiments, and post-process our simulations in a
similar manner for direct comparison.

7. Conclusions

We have presented a detailed hybrid experimental-
numerical study on Rayleigh-Taylor instability constrained
in one lateral dimension to be almost two-dimensional. In
our slimmest configuration, the out-of-plane velocity gra-
dients are dominated by Ekman friction against the bound-
aries and this exponentially drains vorticity from the sys-
tem. We have discussed the morphological consequences
of this action, and highlighted deviation from the conven-
tional models for Rayleigh-Taylor instability. Our exper-
iments were performed over a sequence of domain thick-
nesses in the most dynamically sensitive range, where two
changes occur simultaneously. Firstly Ekman friction re-
duces inversely with the square of the thickness, and sec-
ondly the vorticity vector has more freedom to deviate
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Figure 14: 1D mid-plane volume fraction spectrum development with time for (a) 6 mm thick experiment and (b) 12 mm thick experiment.
Volume fraction plots shown again in (c) and (d) respectively for clarity. The horizontal bands at zero time arise due to line-of-sight averaging
of shear on the interface during overturning.
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Figure 15: Full velocity field energy spectra for two-dimensional sim-
ulation with Ekman friction at 1 mm thickness and three-dimensional
simulation at 6 mm and 12 mm thicknesses. Spectra extracted at
h = 20 mm, corresponding to times where classic Rayleigh-Taylor
bubble and spike structures are exhibited.

Figure 16: Comparison of mixing region height ĥ(t) = 6
∫

Φ(1 −
Φ)dz − h(0) through instability relaxation for a range of domain
thicknesses.

Figure 17: Mixing region height ĥ(t) = 6
∫

Φ(1 − Φ)dz − h(0)
through instability relaxation for 1 mm experimental case plotted
on a quadratic time axis. True quadratic growth is a straight line
on this plot and the experiments match this growth for up to 10
seconds.

from the out-of-plane normal, introducing down-scale cas-
cade dynamics that are not significant in our slimmest con-
figurations. By extending Taylor’s linear model of insta-
bility growth to account for Ekman friction, we have been
able to estimate with some precision the initial condition
spectra of our experiments, and find that these very closely
follow a k−1 spectrum. We then used this spectrum to ini-
tialise closely matching simulations, and found an Ekman
parameter of 2.2ν

b2 optimally matches mid-plane spectral
data through the lifetime of instability relaxation. We were
then able to use our MOBILE simulations as a quasi-DNS
proxy for our experiments, and extract more detailed sta-
tistical and spectral information than is available through
our experimental diagnostics. Using this proxy informa-
tion we have argued that our 1 mm experiments have k−3

scaling of energy and therefore k−1 scaling of enstrophy,
precisely matching the spectral composition of the initial
condition. An important and novel consequence of this
match is that our configuration eliminates any early-time
transient relaxation to the long-term self-similar equilib-
rium, because it is already aligned with this equilibrium.
By expanding the domain from 1 mm to 6 mm and then
12 mm, spanning the feasible range of our experimental
approach, we show the structural changes in spectra and
instability growth that occur in this most sensitive range,
making available to the community a validation resource
tightly coupled to an experimental ground-truth.
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