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Abstract
The economic order quantity (EOQ) is the order quantity that minimizes the total
holding costs and ordering costs. In this effort, we propose a design for EOQ by
employing a conformable differential-difference operator, which accepts to minimize
the EOQ.
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1 Introduction
The economic order quantity (EOQ) was introduced by Harris [1] and modified by
Woolsey [2] and Selen and Wood [3]. Ibrahim and Hadid [4] involved the differential term
in its formula. Jaber et al. [5] presented a structure based on a physical scheme called en-
tropy. Many studies have indicated new mathematical modeling of EOQ (see [6–9]).

Ibrahim et al. [10] suggested a model for EOQ by using a fractal idea (local fractional
calculus) with cost functions corresponding to time at a returning time. They used the
formula of Tsallis fractal entropy. The study presented an optimization relaxation prob-
lem for scheming a limited interval covering the optimal series distance. In addition, they
introduced developments to calculate the optimal measure and the optimal order phase.
The estimated EOQ by using a fractal definition did not recognize the error in the EOQ
model. Therefore, one can think about a fractional calculus with a controller.

Anderson and Ulness introduced a new type of conformable calculus (CC) [11] involv-
ing a control term. Moreover, Ibrahim and Jahangiri [12] extended CC to the complex
plane to study the analytic solution of a class of complex differential equations. Based on
CC, we generalize a differential-difference operator, type Dunkl of the first rank (CDD).
Consequently, we employ this CDD to generalize the univex function, which we will utilize
to minimize the EOQ system.

2 Preparing
In this section, we deal with the definitions of the important concepts of this effort.
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2.1 Conformable differential operator
In this place, we introduce the most resent definition of the conformable differential op-
erator (CDO), which can be located in [11].

Definition 1 (Conformable differential operator) A differential operator Dβ , β ∈ [0, 1] is
conformable if and only if D0 is the identity operator and D1 is the ordinary differential
operator. Particularly, the operator is conformable if and only if a differential function χ (t)
satisfies

D0χ (t) = χ (t) and D1χ (t) =
d
dt

χ (t) = χ ′(t).

Moreover, in the theory of control systems, a proportional-differential controller for
controlling resultant υ at time t with two tuning criteria has the setting

υ(t) = νpΣ(t) + νd
d
dt

Σ(t), (1)

where νp is the proportional gain, νd is the derivative gain, and Σ is the error between the
formal variable and the actual variable. Based on (1), Anderson and Ulness [11] presented
the common idea of CDO.

Definition 2 (A special class of conformable differential operators) For two continuous
functions ν0,ν1 : [0, 1] ×R → (0,∞), we attain

Dβχ (t) = ν1(β , t)χ (t) + ν0(β , t)χ ′(t) (2)

such that

lim
β→0

ν1(β , t) = 1, lim
β→1

ν1(β , t) = 0, ν1(β , t) �= 0,∀t,β ∈ (0, 1),

and

lim
β→0

ν0(β , t) = 0, lim
β→1

ν0(β , t) = 1, ν0(β , t) �= 0,∀t,β ∈ (0, 1).

Definition 3 The integral operator corresponding to Dβ is given by the following equal-
ity:

∫
Dβχ (t) dβ t = χ (t) + ℘e0(t, t0), (3)

where ℘ ∈R, dβ t = dt
ν0(t) , ν �= 0, and

e0(t,κ) = exp

(
–

∫ t

κ

ν1(β ,ς )
ν0(β ,ς ))

dς

)
. (4)

In our investigation, we request one of the following formulas of ν1 and ν0:

ν1(β , t) = (1 – β)tβ , ν0(β , t) = βt1–β , t ∈ (0,∞), (5)
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ν1(β , t) = (1 – β)|t|β , ν0(β , t) = β|t|1–β , (6)

ν1(β , t) = cos

(
βπ

2

)
tβ , ν0(β , t) = sin

βπ

2
t1–β , t ∈ (0,∞), (7)

or

ν1(β , t) = cos

(
βπ

2

)
|t|β , ν0(β , t) = sin

βπ

2
|t|1–β , t ∈R\{0}. (8)

Finally, the conformable inner product between two continuous functions χ and ϕ is given
in the following formula:

〈χ ,ϕ〉 =
∫ b

a
χ (t)ϕ(t)e0(b, t) dβ t.

2.2 Differential-difference Dunkl operator
Dunkl operator is an assembly of differential-difference operators taking the formula of
first rank (see [13, 14])

�κχ (t) = χ ′(t) + κ

(
χ (t) – χ (–t)

t

)
, κ ≥ 0. (9)

It extended a set of special functions and integral transforms in numerous variables linked
with reflection groups. This type of operators has established many other operators. It is
employed in the analysis of quantum body schemes. Lately, this operator is formulated in
terms of fractional calculus and fractal (see [15, 16]). In this place, we aim to introduce
the conformable Dunkl operator (CDD) by using (2). Therefore, we have the following
operator:

�β
κ χ (t) = Dβχ (t) + κ

(
χ (t) – χ (–t)

t

)

= ν1(β , t)χ (t) + ν0(β , t)χ ′(t) + κ

(
χ (t) – χ (–t)

t

)
, κ ≥ 0. (10)

It is clear that when β → 1, Eqs. (10) and (2) coincide. Moreover, the CDD has the follow-
ing properties.

Proposition 2.1 Let the CDD be given as in (10), where β ∈ [0, 1]. Then, for constants a,
b, c and differential functions χ and ϕ, we have:

(i) �β
κ [aχ + bϕ](t) = a�β

κ [χ (t)] + b�β
κ [ϕ(t)];

(ii) �β
κ c = cν1(β , ·);

(iii) �β
κ [χϕ](t) = χ (t)�β

κ ϕ(t) + ϕ(t)�β
κ χ (t) – χ (t)ϕ(t)ν1(β , t) + κ( Φ(t)–Φ(–t)

t ), where

Φ(t) := χ

(
ϕ

2
– 1

)
+ ϕ

(
χ

2
– 1

)
;

(iv) �β
κ [ χ

ϕ
](t) = ϕ(t)�β

κ χ (t)–χ (t)�β
κ ϕ(t)

ϕ2(t) + χ (t)
ϕ(t) ν1(β , t) + Kκ (t), ϕ �= 0, where

Kκ (t) := κ

( [ χ

ϕ
](t) – [ χ

ϕ
](–t)

t

)
–

κ

ϕ2(t)

(
χ (t) – χ (–t)

t

)
–

κ

ϕ2(t)

(
ϕ(t) – ϕ(–t)

t

)
.
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Proof By using the definition of �β
κ , we have

�β
κ [aχ + bϕ](t)

= Dβ [aχ + bϕ](t) + κ

(
[aχ + bϕ](t) – [aχ + bϕ](–t)

t

)

= ν1(β , t)[aχ + bϕ](t) + ν0(β , t)[aχ + bϕ]′(t) + κ

(
[aχ + bϕ](t) – [aχ + bϕ](–t)

t

)

= a
[
ν1(β , t)χ (t) + ν0(β , t)χ ′(t) + κ

(
χ (t) – χ (–t)

t

)]

+ b
[
ν1(β , t)ϕ(t) + ν0(β , t)ϕ′(t) + κ

(
ϕ(t) – ϕ(–t)

t

)]

= a�β
κ χ (t) + b�β

κ ϕ(t).

This completes the first part. For the second part, a calculation implies that

�β
κ c = Dβc = ν1(β , t)c.

Now, we proceed to proving the multiplication rule under �β
κ . We have

�β
κ [χϕ](t)

= ν1(β , t)[χϕ](t) + ν0(β , t)
[
χϕ′ + ϕχ ′](t) + κ

(
[χϕ](t) – [χϕ](–t)

t

)

= χ (t)
(

ν1(β , t)ϕ(t) + ν0(β , t)ϕ′(t) + κ

(
ϕ(t) – ϕ(–t)

t

))

+ ϕ(t)
(

ν1(β , t)χ (t) + ν0(β , t)χ ′(t) + κ

(
χ (t) – χ (–t)

t

))
– ν1(β , t)χ (t)ϕ(t)

+ κ

( [χ ( ϕ

2 – 1) + ϕ( χ

2 – 1)](t) – [χ ( ϕ

2 – 1) + ϕ( χ

2 – 1)](–t)
t

)

:= χ (t)�β
κ ϕ(t) + ϕ(t)�β

κ χ (t) – ν1(β , t)χ (t)ϕ(t) + κ

(
Φ(t) – Φ(–t)

t

)
.

Finally, we impose

�β
κ

[
χ

ϕ

]
(t)

= ν1(β , t)
[
χ

ϕ

]
(t) + ν0(β , t)

[
ϕχ ′ – χϕ′

ϕ2

]
(t) + κ

( [ χ

ϕ
](t) – [ χ

ϕ
](–t)

t

)

=
ν1(β , t)[ϕχ ](t) + ν0(β , t)[ϕχ ′ – χϕ′](t)

ϕ2(t)
+ κ

( [ χ

ϕ
](t) – [ χ

ϕ
](–t)

t

)

=
ϕ(t)[ν1(β , t)χ (t) + ν0(β , t)χ ′(t) + κ( χ (t)–χ (–t)

t )]
ϕ2(t)

–
χ (t)[ν1(β , t)ϕ(t) + ν0(β , t)ϕ′(t) + κ( ϕ(t)–ϕ(–t)

t )]
ϕ2(t)
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+ κ

( [ χ

ϕ
](t) – [ χ

ϕ
](–t)

t

)
–

κ

ϕ2(t)

(
χ (t) – χ (–t)

t

)
–

κ

ϕ2(t)

(
ϕ(t) – ϕ(–t)

t

)

+ ν1(β , t)
(

χ

ϕ

)
(t)

:=
ϕ(t)�β

κ χ (t) – χ (t)�β
κ ϕ(t)

ϕ2(t)
+

χ (t)
ϕ(t)

ν1(β , t) + Kκ (t). �

Proposition 2.2 The integration by parts of �β
κ satisfies the following integral:

∫ b

a
ϕ(ς )�β

κ χ (ς )e0(b,ς ) dβς = ϕ(ς )χ (ς )e0(b,ς )|ba –
∫ b

a
χ (ς )

[
Dβϕ(ς )

– ν1(β ,ς )ϕ(ς )
]
e0(b,ς ) dβς + κ〈ϕ,Λ〉, (11)

where Λ(ς ) = χ (ς )–χ (–ς )
ς

.

Proof By the definition of �β
κ , we have

∫ b

a
ϕ(ς )�β

κ χ (ς )e0(b,ς ) dβς

=
∫ b

a
ϕ(ς )

[
Dβχ (ς ) + κ

(
χ (ς ) – χ (–ς )

ς

)]
e0(b,ς ) dβς

=
∫ b

a
ϕ(ς )

[
Dβχ (ς )

]
e0(b,ς ) dβς +

∫ b

a
ϕ(ς )κ

(
χ (ς ) – χ (–ς )

ς

)
e0(b,ς ) dβς

:=
∫ b

a
ϕ(ς )

[
Dβχ (ς )

]
e0(b,ς ) dβς + κ

∫ b

a
ϕ(ς )Λ(ς )e0(b,ς ) dβς .

By using Lemma 1.9 in [11] and the definition of the conformable inner product between
two continuous functions, we have the desired conclusion. �

In this place, we note that the CDD is not commute operator, because the conformable
operator Dβ is not commute operator [11] for a real case, while it is commute operator
in a complex domain [12] for some classes of conformal function (has no zero derivative).
Moreover, CDD is not invariant because the conformable operator Dβ is not invariant for
a real case, while for the set of conformal functions in the open unit disk, the operator Dβ

is invariant [12]. In the next subsection, we shall use the CDD to generalize the definition
of the univex functions. These functions are useful in optimization analysis to minimize
the EOQ.

2.3 Generalized univex function
A class of univex functions is a generalized class of convex functions [17]. This type of
functions is usually used to solve multi-objective problems, especially in control theory.
Multi-objective difficulties are reflected in control of space constrictions, aeronautical
control scheme, and industrial development control, control of production, impulsive con-
trol problems and inventory, mechanics, economics, and mechanical engineering diffi-
culties. Here, we aim to employ the CDD to introduce the conformable univex function
(CUF).
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Definition 4 For a real-valued function, χ is a univex function if and only if there are
real-valued functions Ψ , f , and g satisfying the differential inequality

g(t, τ )Ψ
[
χ (t) – χ (τ )

] ≥ f (t, τ )χ ′(t), g �= 0. (12)

Now, by using the conformable operator Dβ defined in (3), we have the following con-
formable univex function (CUF).

Definition 5 For a real-valued function, χ is called a β-conformable univex function
(CUF of order β ∈ [0, 1]) if and only if there are real-valued functions Ψ , f , and g satisfying
the differential inequality

g(t, τ )Ψ
[
χ (t) – χ (τ )

] ≥ f (t, τ )Dβχ (t), g �= 0. (13)

Consequently, by utilizing the CDD (�β
κ ), we have the generalized conformable univex

function as follows.

Definition 6 For a real-valued function, χ is called a (β ,κ)-conformable univex function
of order β ∈ [0, 1] and index κ ≥ 0 if and only if there are real-valued functions Ψ , f , and
g satisfying the differential inequality

g(t, τ )Ψ
[
χ (t) – χ (τ )

] ≥ f (t, τ )�β
κ χ (t), g �= 0. (14)

2.4 Economic order quantity
The pattern of EOQ for the first time was produced by Ford W. Harris [1] as follows:

Q =
√

2AB
C

, (15)

where A indicates the annual demand quantity, B represents the fixed cost for each unit,
and C takes the annual holding cost for each unit. In [4], the authors studied the marginal
ordinary continuous case taking the form

Q′(t) = Θ
(
Q(at), Q(bt), Q(ct)

)
, (16)

where a, b, and c are nonnegative EOQ model constants indicating to the regular varia-
tions in A, B, and C, while the fractal case of EOQ was studied in [10]. Here, we consider
the CDD in Eq. (10) to generalize (16) as follows:

�β
κ Q(t) = ν1(β , t)Q(t) + ν0(β , t)Q′(t) + κ

(
Q(t) – Q(–t)

t

)

= ν1(β , t)Q(t) + ν0(β , t)Θ
(
Q(at), Q(bt), Q(ct)

)
+ κ

(
Q(t) – Q(–t)

t

)
. (17)

Because of a state in which the consumer uses an EOQ system to control the account
of a failing item, when the shortage is not allowed (see [18]), we consider the following
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modification:

�β
κ Q(t) = ν1(β , t)Q(t) + ν0(β , t)Θ

(
Q(at), Q(bt), Q(ct)

)

+ κ

(
Q(t) – Q(τ )

t – τ

)
, t > τ . (18)

We need to estimate the optimal solution of units according to (17). That is, we minimize
the total cost connected with the purchase, distribution, and storing of the manufactured
goods. In the existence of a planned customer, who reacts optimally to discount program,
the strategy of optimal quantity discount structure by the provider is complex and has
to be done sensibly. This is principally happening when the request of the customer is
itself unclear. An exciting result called the “reverse bullwhip” takes place where a rise in
consumer request uncertainty really decreases order quantity indecision at the provider.
There are different methods and theorems to minimize the total cost functions (minimize
EOQ) such as the planning horizon theorem [19], stochastic processing [20], and fixed
point theorem [4].

From the above information, one can reduce the EOQ model in (18) into the following
optimization problem:

Minimize �β
κ Q(t), t ∈ J = [0, T]

subject to Q0 = q ≤ 0,
(19)

where q is the initial value of EOQ and Q is continuous for all t ∈ J . For this purpose, we
need the following definitions.

Definition 7 For any solution Q(t) for (19), a point η ∈ J := {η ∈ J : Q(η) → 0} is called an
efficient point of (19) if there occurs no other point satisfying the inequality Q(t) ≤ Q(η).
Furthermore, it is a weak efficient point if Q(t) < Q(η), ∀t ∈ J .

Definition 8 A couple (β ,κ) – (χ ,Υ ) is called conformable univex of order β if and only
if there are real-valued functions f1, f2, g1, and g2 such that

g1
[
χ (t) – χ (τ )

] ≥ f1(t, τ )�β
κ χ (t), g1 �= 0,

and

–g2
[
Υ (t) – Υ (τ )

] ≥ f2(t, τ )�β
κ Υ (t), g2 �= 0.

Remark 1 The EOQ model accepts stable demand of a business, product, and immediate
availability of items to be re-stocked. It does not account for regular or economic fluc-
tuations. It accepts fixed costs of inventory units, ordering charges, and holding charges.
Therefore, this term refers to the contraction in the economy. Consequently, the suggested
model is the first model describing this issue by using Dunkl operator.

3 Results
In this section, we present some sufficient optimal hypotheses for a point to be an efficient
solution of (19) under the conformable (β ,κ)-univexity.
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Theorem 3.1 Let η be an initial point of the solution of the multi-objective problem (19)
and ε1 and ε2 be two nonnegative constants achieving the following assumptions:

(A) Q(η) = 0 (the initial value of EOQ);
(B) ε1f1(t, τ )�β

κ Q(t) + ε2f2(t, τ )�β
κ q(t) > ε1‖g1‖ + ε2‖g2‖;

(C) A couple (β ,κ) – (χ ,Υ ) is a conformable univex of order β ;
Then η is an efficient solution to minimize (19).

Proof Assume that η is not an efficient solution of (19). Therefore, there occurs x ∈ J such
that Q(x) ≤ Q(η). By utilizing assumption (C), we obtain

ε1
(
f1(x,η)�β

κ Q(x)
)

< ε1‖g1‖ (20)

and

ε2
(
f2(x, ξ )�β

κ q(x)
) ≤ ε2‖g2‖. (21)

By taking the summation of (20) and (21), we have

ε1
(
f1(x,η)�β

κ Q(x)
)

+ ε2
(
f2(x,η)�β

κ q(x)
) ≤ ε1‖g1‖ + ε2‖g2‖,

which contradicts assumption (B). Hence, η is an efficient solution which minimizes prob-
lem (19). This completes the proof. �

Theorem 3.2 Suppose that the following hypotheses are achieved:
(A) η is a weakly efficient point of the solution Q(t) of the optimal problem (19);
(B) A couple (β ,κ) – (Q, q) is conformable univex of order β ∈ [0, 1] in the direction of

η ∈ J. Moreover, for some x̄ ∈ J with q(x̄) < 0,
there occur two constants ε1 ≥ 0 and ε2 ≥ 0 satisfying

ε1
(
f1(x,η)�β

κ Q(x)
)

+ ε2
(
f2(x,η)�β

κ q(x)
) ≥ 0.

Proof We aim to show that the system

f1(x,η)�β
κ Q(x) < 0, f2(x,η)�β

κ q(x) < 0

has no solution for all x ∈ J. If the system has at least one solution y ∈ J, then in view of
Definition 8, we get

Q(η + ρ1y) < Q(η) and q(η + ρ2y) < q(η)

for sufficient small arbitrary constants ρ1,ρ2 > 0. By letting x̄ := η + ρ2y, which leads to
x̄ ∈ J∩ Nρ2 (η), in view of assumption (B), one can get

q(η + ρ2y) = q(x̄) < 0,

which is a contradiction with assumption (A), where η is a weak solution (q(η) ≥ 0). Hence,
the above inequalities are nonnegative. Consequently, there exist two nonnegative con-
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stants ε1 and ε2 achieving the conclusion

ε1
(
f1(x,η)�β

κ Q(x)
)

+ ε2
(
f2(x,η)�β

κ q(x)
) ≥ 0,

with the property ε2q(η) ≥ 0.
This completes the proof. �

Remark 2
• In Theorem 3.2, x̄ is called a feasible point, which appears in the solution space. This

space represents the initial set of candidate solutions to the optimal problem;
• The optimal problem (19) is a generalization of recent works such as [21–23];
• Minimizing problem (19) is equivalent to minimizing the problem

Minimize DβQ(t), t ∈ J = [0, T]

subject to Q0 = q ≤ 0;
(22)

• Theorems 3.1 and 3.2 can be generalized to R
n.

3.1 Numerical examples
Consider the following data: Ψ (υ) = υ , f (t, τ ) = t – τ , g(t, τ ) = 1, β = κ = 0.5 and ν1(β , t) =
(1 – β)tβ , ν0(β , t) = βt1–β , t ∈ [0, 5]. To minimize problem (19), we have the following cal-
culation:

�β
κ Q(t) = �β

κ

√
t3 ≈ t4 + 0.7t2 + 0.7

√
t, t ∈ [0, 5],

where A = B = C = 1. It is clear that Q(0) = 0, and for arbitrary constants ε1 > 0 and ε2 > 0,
we get

f (t, τ )�β
κ Q(t) = 5 ∗ t4 + 0.7 ∗ t2 + 0.7 ∗ t0.5 > 1.

Thus, in view of Theorem 3.1, the minimization can be recognized when t → 0 (see Fig. 1).

Figure 1 Minimization of 1D and 2D- problem (19) for f (t,τ ) = t – τ . It is clear that minimization appears
when t → 0
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Figure 2 Minimization of 1D and 2D-problem (19) for f (t,τ ) = (et–τ – 1) respectively. It is clear that
minimization appears when t ∈ (0, 1]

Suppose that f (t, τ ) = (et–τ – 1), t – τ ≥ 1. Then we obtain

f (t, τ )�β
κ Q(t) = 1.5 ∗ t4 + 0.7 ∗ t2 + 0.7 ∗ t0.5 > 1.

Hence, in view of Theorem 3.1, the minimization can be seen in Fig. 2. Similarly, one can
optimize problem (19) by using Theorem 3.2.
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