Susquehanna University

Scholarly Commons

Senior Scholars Day

Apr 28th, 12:00 AM - 12:00 AM

The Effects of Immigration on Developed Countries

Mayra Perez

Follow this and additional works at: https://scholarlycommons.susqu.edu/ssd

Part of the Economics Commons

Perez, Mayra, "The Effects of Immigration on Developed Countries" (2020). Senior Scholars Day. 40. https://scholarlycommons.susqu.edu/ssd/2020/posters/40

This Event is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in Senior Scholars Day by an authorized administrator of Scholarly Commons. For more information, please contact sieczkiewicz@susqu.edu.

THE EFFECTS OF IMMIGRATION ON DEVELOPED COUNTRIES

Applied Econometrics: Senior Capstone Senior Scholar's Day April 22, 2020 Mayra Perez

Background

- Formation of countries
- Conflicting comments regarding immigration and unemployment and overall GDP
- Opposition based on increase in government provided goods, services, and public assistance and unemployment
- Countries with very low population growth rates
- OECD: United States, Canada, Spain, and Japan
- Second biggest economy in the world

Literature Review

- West, D. (2011) immigrants raised American GDP by \$37 billion per year; greatest fear is the "crowding-out" effect
- Treyz and Evangelakis (2018)- what if immigration were to cease?
- Feridun, M. (2007)- immigration does not cause unemployment
- Islam, F. et al (2012)-immigration and GDP can cause each other in long-run
- Boubtane, E. et al (2016)- growth impact is high even in countries that have non-selective migration policies

Econometric Model

GDP = Gross Domestic Product Per Capita

MS= International Migrant Stock as % of total population

LF= Labor Force Participation Rate ages 15 and up

PGR= Population Growth Rate annual % compared to previous year

TR= Trade as % of total GDP

UNEM= Unemployment Rate % of total labor force

Dependent Variable: GD? Method: Pooled Least Squares Date: 12/17/19 Time: 12:55 Sample (adjusted): 1991 2015

Included observations: 25 after adjustments

Cross-sections included: 5

Total pool (unbalanced) observations: 116

White diagonal standard errors & covariance (d.f. corrected)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	116962.5	17390.89	6.725505	0.0000
LF?	-1376.560	273.5722	-5.031798	0.0000
MS?	0.000719	5.49E-05	13.10577	0.0000
PGR?	-6796.938	1836.520	-3.700987	0.0003
TR?	196.9082	74.17935	2.654488	0.0091
UNEM?	-1405.238	262.4219	-5.354879	0.0000
R-squared	0.463977	Mean dependent var		29230.14
Adjusted R-squared	0.439613	S.D. dependent var		14730.78
S.E. of regression	11027.31	Akaike info criterion		21.50448
Sum squared resid	1.34E+10	Schwarz criterion		21.64690
Log likelihood	-1241.260	Hannan-Quinn criter.		21.56229
F-statistic	19.04305	Durbin-Watson stat		0.086140
Prob(F-statistic)	0.000000			

Dependent Variable: MS? Method: Pooled Least Squares Date: 11/14/19 Time: 10:18 Sample (adjusted): 1960 2015

Included observations: 56 after adjustments

Cross-sections included: 5

Total pool (unbalanced) observations: 279

White diagonal standard errors & covariance (d.f. corrected)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C GD? TR?	1856019. 2.40E-06 -30289.10	741466.2 1.45E-07 17950.79	2.503174 16.47758 -1.687341	0.0129 0.0000 0.0927
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.671224 0.668841 6225054. 1.07E+16 -4759.078 281.7381 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		6605136. 10817450 34.13676 34.17580 34.15242 0.010055

REGRESSION RESULTS

Conclusions

- Migrant stock does seem to have a positive correlation to GDP per capita growth
- Developed nations could benefit from pro-growth immigration policies, especially if there is a crisis of a shrinking population