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Angular momentum of free variable mass systems is
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Abstract

Variable mass systems are a classic example of open systems in classical mechan-

ics with rockets being a standard practical example. Due to the changing mass,

the angular momentum of these systems is not generally conserved. Here, we

show that the angular momentum vector of a free variable mass system is fixed

in inertial space and, thus, is a partially conserved quantity. It is well known

that such conservation rules allow simpler approaches to solving the equations

of motion. This is demonstrated by using a graphical technique to obtain an an-

alytic solution for the second Euler angle that characterizes nutation in spinning

bodies.

1. Introduction

This brief note presents developments central to attitude motion analysis

of free variable mass systems such as space rockets. Whereas the rigid-body

motion of constant mass systems [1] has been scrutinized since the times of

Euler, similar studies on variable mass systems are more recent. Contemporary5

researchers [2, 3] consider the mid-20th century document of Rosser et al [4]

on the rotational behavior of rockets to be the first to address the topic of

rigid-body motion of systems with changing mass. Rosser’s study inspired work

on rocket flight dynamics [5, 6] and general variable mass systems [7] which
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utilized discrete models for mass loss. A control volume approach [8, 9] to10

account for continuous mass variation subsequently emerged which has since

become the modelling standard amongst the community of researchers on rocket

flight dynamics. Recent work using the control volume formulation has focused

on equation of motion formulation for general variable mass systems [10, 11],

modeling and analysis of rocket-type systems[12, 13, 14, 15] and an abstraction15

of the rocket problem [16], and stability of transverse rotational motion in solid

rocket motors [17]. The developments presented here on angular momentum

also utilize this control volume formulation.

Since the Explorer-1 anomaly [18], the angular momentum property of spin-

ning bodies has received significant attention in the field of spacecraft dynamics20

and controls as it provides a platform for attitude stability analysis [19, 20] and

informs innovative attitude control strategies, such as dual-spin satellites [21].

Angular momentum conservation of freely spinning bodies is the backbone that

permits explicit solutions to the second Euler angle, or the nutation angle, of

torque-free axisymmetric systems [22]. However, this is only true in the case25

of constant mass systems. In this paper, we show that the angular momentum

vector of variable mass systems possesses a similar useful property.

We begin by showing that the angular momentum vector of any torque-free

variable mass system has a fixed direction in space and, thus, is a partially

conserved quantity. In comparison to previous analytical studies, the presenta-30

tion here does not assume axial symmetry in the internal mass flow or system

geometry. In other words, the developments here are kept completely general

so as to be applicable to a broad set of systems including, but not limited to,

rockets. Following this conservation result, we demonstrate its utility in graphi-

cally determining the second Euler angle of mass-varying systems. We conclude35

by briefly discussing the availability of analytic and closed-form solutions in the

case of axisymmetric rockets. Thus, our work provides a basis to analyze the

rotational motion of variable mass systems.

The work presented here creates avenues for future work. The conserva-

tion result provides a foundation for developing criteria for motion stability for40
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a variety of mass-varying systems. For example, one can imagine parallels to

Poinsot’s geometric interpretations of motion stability in constant mass systems.

Such stability analyses will naturally lead to informing attitude control system

design and development for a variety of vehicles. Further, mass-varying systems

transcend aerospace applications such as rockets; they are also found in marine45

engineering where vehicles utilize mass variation for propulsion. More broadly,

the conservation property will interest researchers concerned with the identifi-

cation of conservation laws for mass-varying systems [23]. Thus, this result will

impact a wide community of researchers.

2. Angular Momentum of a Variable Mass System50

Figure 1: General Variable Mass System

Figure 1 is that of a system with mass variation comprising a consumable

rigid base B and a fluid phase F . A massless shell C of volume V0 and surface
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area S0 is attached to B. It is assumed that mass can enter or exit C through

the region represented by a dashed ellipse. The shell and everything within it

is considered to be of interest, while any matter outside of it is not. At any55

instant, there is a definite set of matter within the region C which obeys the

laws of mechanics. At another instant, C may contain a different set of matter

but it too must obey the laws of mechanics at that instant. Thus, the angular

momentum principle can be applied to C and its contents to derive the vector

equation of attitude motion that are valid at each instant of time.60

At any general instant of time, there is a definite set of matter within C.

At that instant, the angular momentum of this constant mass system about its

mass center S∗, denoted H∗, is given by

H∗ =

∫
V

ρp× v dV, (1)

where V is the volume occupied by the contents of the constant mass system at

the instant of interest, ρ is the mass density, p is a position vector from S∗ to65

an arbitrary particle P within C, and v is the inertial velocity of P . It is easier

to visualize the motion of particles such as P from B, as opposed to the inertial

frame, and thus the angular momentum expression is reformulated as

H∗ =

∫
V

ρp× [vo + vr + ω × r] dV, (2)

where r is a position vector from O to P , vo is the inertial velocity of O, vr

is the velocity of P relative to B, and ω is the inertial angular velocity of B.70

For spacecraft, the components of the vector terms in Equation (2) are usually

available in the body-fixed frame bi for i = (1, 2, 3); this is assumed to be the

case in the developments presented here. Equation (2) is then expanded as

H∗ =

∫
V

ρp dV × vo +

∫
V

ρp× vr dV

+

∫
V

ρp× (ω × r) dV.

(3)

The first integral on the right-hand side of Equation (3) evaluates to zero by

virtue of the definition of a mass center. Further, from Figure 1, it is evident75

4



that r = r∗ + p where r∗ is the position vector from O to S∗ so Equation (3)

can be rewritten as

H∗ =

∫
V

ρp× vr dV +

∫
V

ρp× (ω × r∗) dV

+

∫
V

ρp× (ω × p) dV.

(4)

The second volume integral on the right-hand side of Equation (4) evaluates to

zero, again, by the definition of a mass center. Equation (4) is now written in

a compact form as80

H∗ =

∫
V

ρh dV, (5)

where h is

h = p× [vr + (ω × p)]. (6)

Equation (5) now gives the instantaneous angular momentum of a constant mass

system. The angular momentum principle applied to this constant mass system

about its mass center is

M∗ =
NDH∗

Dt
, (7)

where M∗ is the sum of all moments due to external forces on the constant mass85

system, and
ND
Dt is the material derivative observed from an inertial frame N .

In the case of torque-free motion, M∗ = 0 which when used in Equation (7)

gives

0 =
ND

Dt

∫
V

ρh dV. (8)

Note that, in Equation (8), H∗ has been expressed in its integral form, given

by Equation (5). The above equation tells us that the angular momentum of90

the constant mass system is invariant. If we choose to switch from the inertial

reference frame to a reference frame attached to B then Equation (8) can be

rewritten as

0 =
BD

Dt

∫
V

ρh dV + ω ×
∫
V

ρh dV. (9)

In the above form, the two terms on the right hand side of Equation (9) focus on

the constant mass system. Attention can be transferred to the control volume95

with fluxing matter via two operations. Firstly, Reynolds Transport Theorem
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is invoked on the first term on the right-hand side of Equation (9). Secondly,

noticing that, at the instant for which the above equation is derived, V = V0.

As a result, Equation (9) becomes

0 =
Bd

dt

∫
V0

ρh dV +

∫
S0

ρh(vr · n) dS

+ ω ×
∫
V0

ρh dV.

(10)

In the above equation, Bd/dt is a time derivative taken in a reference frame100

attached to B, and n is an outwardly directed unit normal from a surface of C

through which mass enters and/or exits; note that the orientation of n is fixed

relative to C. If vr · n = u, where u is a general scalar variable, Equation (10)

can be rewritten as

0 =
BdH∗

0

dt
+

∫
S0

ρhudS + ω ×H∗
0, (11)

where H∗
0 is the angular momentum of the variable mass system and is105

H∗
0 =

∫
V0

ρh dV. (12)

Since V = V0 at a particular instant, H∗ and H∗
0 are identical but their time

derivatives are generally not identical since their evolution in time is associ-

ated with changing sets of matter. Since our interest is in understanding the

behaviour of the variable mass system’s angular momentum from an inertial

frame, we revert the time derivative in Equation (11) to N110

0 =
NdH∗

0

dt
+

∫
S0

ρhudS. (13)

In the above equation, Nd/dt is a time derivative taken in the inertial reference

frame N . Any vector can be expressed as a combination of a scalar and a unit

vector directed along the vector itself. So, h is rewritten as h = hnh, where nh

is a unit vector directed along h whose magnitude is h. As a result, Equation

(12) can be written as115

H∗
o =

(∫
Vo

ρh dV

)
nh (14)
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and Equation (13) as

NdH∗
o

dt
=

(
−
∫
So

ρhu dS

)
nh (15)

Equation (14) asserts that H∗
o is generally not of constant magnitude while

Equations (14) and (15) assert that it is always directed along the nh vector,

which it will now be proved is an inertially fixed vector.

Let nf and ng be two unit vectors which form a dextral set with nh such120

that nf × ng = nh and so on. This dextral set of unit vectors are attached to

an imaginary reference frame Q whose inertial angular velocity is expressed as

ωQ = Ω1nf +Ω2ng +Ω3nh. (16)

The time rate of change of nh in the inertial frame is

Ndnh

dt
=

Qdnh

dt
+ ωQ × nh (17)

where the first term on the right-hand side of Equation (17) evaluates to zero

since nh is fixed in Q. Then, substituting for ωQ from Equation (16) in Equation125

(17) gives
Ndnh

dt
= Ω2nf − Ω1ng. (18)

Further, Equation (15) is rewritten as

Nd

dt

∫
Vo

ρh dV nh =

(
−
∫
So

ρuhdS

)
nh (19)

or
d

dt

(∫
Vo

ρh dV

)
nh +

(∫
Vo

ρh dV

)
Ndnh

dt

=

(
−
∫
So

ρuh dS

)
nh.

(20)

The result from Equation (18) is substituted in Equation (20) to give

d

dt

(∫
Vo

ρh dV

)
nh +

(∫
Vo

ρh dV

)
(Ω2nf − Ω1ng)

=

(
−
∫
So

ρuh dS

)
nh.

(21)

The above equation, when rewritten in component form, leads to Ω1 = Ω2 = 0.130

Using these values for Ω1 and Ω2 in Equation (18) gives
Ndnh

dt = 0, which
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explains that nh is an inertially fixed unit vector thus, also making Q an inertial

frame. By extension, it is also evident that the angular momentum of a variable

mass system is also an inertially fixed vector as it is directed along nh.

3. Discussion135

b3

Figure 2: Graphical Evaluation of Nutation Angle

As mentioned in the introductory section, this directional conservation of

the angular momentum vector is extremely useful in attitude determination.

Figure 2 shows the setup of the angular momentum vector H∗
0 relative to the

body-fixed principal directions bi(i = 1, 2, 3). The angular momentum vector

is seen to lie in the plane made by b3 and b12, the latter is a unit vector in the140

b1-b2 plane. The angular momentum vector can then be expressed as a linear

combination of two vectors in the b12 − b3 plane as

H∗
0 = H12 +H3 = H12b12 +H3b3 (22)
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where

b12 =
H12

H12
. (23)

Our interest here is in evaluating θ, the angle between b3 and nh. Since nh is

an inertially fixed vector, θ gives attitude information about the system from145

an inertial reference frame and, for the 3-1-3 Euler sequence of rotations, it is

the second Euler angle.

From fig. 2, it is clear that

θ = tan−1

(
H12

H3

)
. (24)

In the case of variable mass systems, the difficulty lies in evaluating H12 and

H3 because the internal flow pattern of the fluid phase is not known everywhere150

inside the control volume. However, for systems such as space-rockets, it is rea-

sonable to assume that the fluid flow relative to the rigid base is axisymmetric.

Consequently, the expression to the angular momentum in eq. (12) simplifies to

H∗
0 =

∫
V0

ρp× (ω × p) dV . Further, it is reasonable to assume that the rocket

is axisymmetric about b3. Then, the angular momentum can be expressed as155

H∗
0 = I∗0 · ω = Iω12b12 + Jω3b3, (25)

where ω12 is the angular speed in the b12 direction, ω3 is the spin rate in the

b3 direction, and I and J are moment of inertia scalars. The angular speeds

and moments of inertia are known parameters; in the case of the axisymmetric

cylinder [24], these parameters are known explicitly for a variety of idealized

models of mass loss. Thus, θ is also known explicitly and is given by160

θ = tan−1

(
Iω12

Jω3

)
. (26)

The expression for θ in eq. (26) is identical to that for an axisymmetric constant-

mass system [22], but the properties of the parameters are inherently different

due to mass variation; in the constant mass case all these parameters are con-

stant and, thus, θ is constant.

In the classical mechanics literature, θ is referred to as the nutation angle [1]165

and b3 is the spin axis. In the case of spacecraft, growths in this angle have an
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undesirable effect on its heading direction. A control strategy for this nutation

instability, suggested by eq. (26), is to impart a high spin rate to an axisymmetric

rocket, thus, increasing the angular momentum in the spin direction. Such

nutation instabilities have been observed in solid rocket motors [25] but the170

cause for the instability remains an open problem.

In summary, it has been shown that the angular momentum of a free variable

mass system is inertially fixed and is, thus, a partially conserved quantity. This

result can serve as the foundation for analytical and geometric examinations

of the rotational motions of variable mass systems. Further, the utility of this175

result has been demonstrated with a brief discussion on graphically evaluating

the second Euler angle without integrating the differential equation of motion.

This analytical result provides footing for investigating nutation stability and

developing control algorithms for a variety of systems with mass variation.
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