
A COVARIANCE FORMULA FOR TOPOLOGICAL EVENTS

OF SMOOTH GAUSSIAN FIELDS

DMITRY BELIAEV1, STEPHEN MUIRHEAD2, AND ALEJANDRO RIVERA3

Abstract. We derive a covariance formula for the class of ‘topological events’ of smooth Gauss-
ian fields on manifolds; these are events that depend only on the topology of the level sets of
the field, for example (i) crossing events for level or excursion sets, (ii) events measurable with
respect to the number of connected components of level or excursion sets of a given diffeomor-
phism class, and (iii) persistence events. As an application of the covariance formula, we derive
strong mixing bounds for topological events, as well as lower concentration inequalities for ad-
ditive topological functionals (e.g. the number of connected components) of the level sets that
satisfy a law of large numbers. The covariance formula also gives an alternate justification of the
Harris criterion, which conjecturally describes the boundary of the percolation university class
for level sets of stationary Gaussian fields. Our work is inspired by [44], in which a correlation
inequality was derived for certain topological events on the plane, as well as by [39], in which a
similar covariance formula was established for finite-dimensional Gaussian vectors.

1. Introduction

In recent years there has been much progress in the study of the topology of level sets of smooth
Gaussian fields. Techniques have been developed to estimate their homology (see [36, 37], and
also [10, 14, 20, 30, 46]), and also their large scale connectivity properties (see [1, 5], and also
[9, 34, 35, 43]) using ideas from Bernoulli percolation. When studying the topology of level sets,
one often has to estimate quantities such as

Cov(A1, A2) := P[A1 ∩A2]− P[A1]P[A2],

where A1 and A2 are events of topological nature. Since the events A1 and A2 in general do not
admit explicit integral representations, the quantity Cov(A1, A2) is often estimated indirectly,
leading to inequalities of varying precision. In the present work we prove an exact formula for
Cov(A1, A2), where A1 and A2 belong to a large class of ‘topological events’.

Let us illustrate our formula with a simple example. Let f be an a.s. C2 centred Gaussian
field on R2, with covariance K(x, y) := Cov(f(x), f(y)), such that, for each distinct x, y ∈ R2,
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(f(x),∇f(x), f(y),∇f(y)) is a non-degenerate Gaussian vector. Let B1 and B2 be two boxes
on the plane R2, not necessarily disjoint, each with two opposite sides distinguished (we call
these ‘left’ and ‘right’, with the remaining sides being ‘top’ and ‘bottom’). For each i ∈ {1, 2},
consider the event Ai that there exists a continuous path in Bi ∩ {f ≥ 0} joining the ‘left’
and ‘right’ sides. This is known as a ‘crossing event’ for the excursion set {f ≥ 0}, and is of
fundamental importance in the study of the connectivity of the level sets [5]. As a corollary of
our general covariance formula, we establish the following exact formula for Cov(A1, A2):

Corollary 1.1. The quantity Cov(A1, A2) is equal to∑
j1,j2=0,1,2,3,4

∫
F 1
j1
×F 2

j2

K(x1, x2)

∫ 1

0
γt;x1,x2(0)Et;x1,x2

[ ∏
i=1,2

|det(Hji
xif

i
t )|1Pivt,ixi (Ai)

]
dtdvF 1

j1
dvF 2

j2
,

where:

• For each i ∈ {1, 2}, F i0 := B̊i denotes the interior of Bi, equipped with its two-dimensional
Lebesgue measure dvF i0

, and (F ij )j=1,2,3,4 denote the sides of Bi, equipped with their

natural length measure dvF ij
; the F ij are therefore disjoint.

• For each t ∈ [0, 1], ft = (f1
t , f

2
t ) = (f1, tf1 +

√
1− t2f2) denotes a Gaussian field on

R2×R2 that interpolates between (f1, f1) and (f1, f2), where f1 and f2 are independent
copies of f . For each distinct x1 ∈ B1 and x2 ∈ B2, γt;x1,x2(0) denotes the density at 0
of the Gaussian vector

(1.1) (f1
t (x1),∇f1

t |F 1
j1

(x1), f2
t (x2),∇f2

t |F 2
j2

(x2)) ∈ R× Tx1F 1
j1 × R× Tx2F 2

j2 ,

where F iji denotes the unique face/interior that contains xi; moreover, Et;x1,x2 [·] denotes

expectation conditional on the vector (1.1) vanishing, and Hji
xif

i
t = ∇2f it |Fji (xi) denotes

the Hessian at the point xi of f it restricted to the face F iji.

• For each i ∈ {1, 2}, t ∈ [0, 1] and x ∈ Bi, Pivt,ix (Ai) denotes the event that there exists
a continuous path in Bi ∩ {f it ≥ 0} joining the ‘left’ and ‘right’ sides, and a continuous
path in Bi ∩ {f it ≤ 0} joining the ‘top’ and ‘bottom’ sides, both of which pass through x
(see Figure 1; central panels). This is a natural analogue of a ‘pivotal event’ in Bernoulli
percolation (see [12, 23]).

Let us make three observations concerning the formula in Corollary 1.1:

• If K is non-negative then so is the integrand in the formula, and we deduce that

P[A1 ∩A2] ≥ P[A1]P[A2].

This is the analogue of the Fortuyn-Kasteleyn-Ginibre (FKG) inequality (see [12, 23]),
originally proven in the Gaussian setting by Pitt [40].
• Assume that f is stationary, let κ(x) = K(0, x) and denote κ(r) = sup|x|≥r |κ(x)|. Since

f is Gaussian, the Hessians Hji
xif

i
t have finite moments and so, by stationarity, the

conditional expectation in the formula is bounded. Thus, if B1 and B2 have sides of
length O(R) and are at distance of order at least R, we deduce a ‘strong mixing’ bound
for crossing events, namely that

(1.2) |P[A1 ∩A2]− P[A1]P[A2]| = O(R4κ(R)).

In particular, as long as κ(R) = o(R−4), the crossing events A1 and A2 are asymptotically
independent, recovering the recent result of Rivera and Vanneuville [44].
• Setting B1 = B2 (and so A1 = A2), Corollary 1.1 also yields a formula for the variance

of (the indicator function of) the crossing event Ai.



A COVARIANCE FORMULA FOR TOPOLOGICAL EVENTS OF SMOOTH GAUSSIAN FIELDS 3

Figure 1. An illustration of the crossing events Ai and the pivotal events
Pivx(Ai) that appear in the covariance formula in Corollary 1.1. Left panels:
Two realisations of a field f which exhibit the left-right crossing event for {f > 0}
in the rectangle B (shown in grey). Right panels: After a small perturbation of
f (compared to the left panel), the left-right crossing event no longer occurs.
Central panels: The ‘pivotal event’ at which the crossing event first fails in this
perturbation; this event can be of two possible types, either involving a level-0
critical point x of f in the interior of B (top figure), or involving a level-0 critical
point x of f restricted to the top side of B (bottom figure).

The main result of this paper (see Theorem 2.14) consists of a vast generalisation of Corol-
lary 1.1 to the class of topological events of smooth Gaussian fields on manifolds of any dimension.
In particular, this permits a generalisation of the mixing bound (1.2) to arbitrary topological
events on manifolds (see Corollary 1.2 for the Euclidean case and Theorem 2.15 for the general
case). Since the statement of Theorem 2.14 requires several preliminary definitions, in this intro-
duction we instead focus on applications of this formula, including (i) the aforementioned strong
mixing bounds, and (ii) lower concentration inequalities for additive topological functionals of
the level sets, such as such as the number of connected components contained in a given domain.

Our work was largely inspired by [44] in which the mixing bound (1.2) was first established,
improving similar bounds that had previously appeared in [5, 8]. Here we extend the techniques
and results in [44] to arbitrary topological events and to higher dimensions; the key difference
in our approach is that we work directly in the continuum, rather than with discretisations of
the field as in [5, 8, 44].

1.1. Topological events. We begin by describing the class of topological events to which our
results apply. Broadly speaking, we study events that depend only on the topology of the level
sets {f = `} (or excursion sets {f > `}) of a Gaussian field f restricted to reasonable bounded
domains B ⊂ Rd. One might think that it would therefore be enough to study homeomorphism
classes of pairs ({f > `} ∩B,B), however, this would in fact not identify crossing events, which
distinguish marked sides of the reference domain B. Moreover, as in the case of a product of
homeomorphic sets, one might wish to distinguish between factors. For these reasons, we work
instead with equivalence classes induced by isotopies that preserve certain subsets of B, using
the formalism of stratifications.

An affine stratified set in Rd is a compact subset B ⊂ Rd equipped with a finite partition
B = tF∈FF into open connected subsets of affine subspaces of Rd, such that for each F, F ′ ∈ F ,
F ∩ F ′ 6= ∅ ⇒ F ⊂ F ′. The partition F is called a stratification of B. When there is no risk of
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ambiguity, we will often refer to B itself as an affine stratified set. For example, a closed cube
in Rd, equipped with the collection of the interiors of its faces of all dimensions, is an affine
stratified set.

Given an affine stratified set (B,F) of Rd and a continuous map H : B × [0, 1]→ B, we say
that H is a stratified isotopy if for each t ∈ [0, 1], H(·, t) is a homeomorphism such that for each
F ∈ F , H(F ×{t}) = F . The stratified isotopy class of a subset E ⊂ B, denoted by [E]B, is the
set of H(E × {1}) where H : B × [0, 1]→ B ranges over the set of stratified isotopies of B with
H(·, 0) = idB. We consider the stratified isotopy class [{f > 0}]B of the excursion set {f > 0},
which captures what we mean by the ‘topology’ of the level set {f = 0} restricted to B. As
we verify in Corollary 5.8, under mild conditions on f the stratified istotopy class [{f > 0}]B is
measurable with respect to f .

A topological event in B is an event measurable with respect to [{f > 0}]B. Important
examples include:

• As in Corollary 1.1, crossing events for level or excursion sets inside a box B, e.g. the
event that a connected component of {f = 0} ∩ B or {f > 0} ∩ B intersects opposite
(d− 1)-dimensional faces of B (Corollary 1.1 concerned the case d = 2).
• Events that depend on the number of the connected components of a level or excursion

set inside a polytope B, or more generally the number of such components of a given
diffeomorphism class (see, e.g., [14, 20, 36, 37, 46]).
• The ‘persistence’ event that {f |B > 0} (see, e.g., [2, 15, 19, 42]).

We write σtop(B) to denote the σ-algebra of topological events on B.

1.2. Strong mixing in the Euclidean setting. The strong mixing of a random field is defined
via the decay, for domains B1 and B2 that are well-separated in space, of the α-mixing coefficient

(1.3) α(B1, B2) = sup
A1∈σ(B1), A2∈σ(B2)

|P[A1 ∩A2]− P[A1]P[A2]|,

where σ(B) denotes the sub-σ-algebra generated by the restriction of f to the domain B. Strong
mixing is a classical notion in probability theory with important connections to laws of large
numbers, central limit theorems, and extreme value theory (see, e.g., [16, 31, 32, 45]) among
other topics. While for general continuous processes there is a rich literature on strong mixing
(see [13] for a review), in the study of smooth random fields the concept of strong mixing is often
far too restrictive. For example, if the spectral density of a stationary Gaussian process decays
exponentially (which implies the real analyticity of the covariance kernel and the corresponding
sample paths), then by [27] there is no strong mixing regardless of how rapidly correlations
decay, unless one restricts the class of events that are controlled by the α-mixing coefficient.
As a first application of our covariance formula we derive conditions that guarantee the strong
mixing of the class of topological events.

Let f be an a.s. C2 stationary Gaussian field on Rd with covariance κ(x) = Cov(f(0), f(x)),
and suppose that, for each distinct x, y ∈ Rd, (f(x),∇f(x), f(y),∇f(y)) is a non-degenerate
Gaussian vector. These conditions ensure that κ is C4, and that the level set {f = 0} is a C2-
smooth hypersurface. For each pair of affine stratified sets B1, B2 ⊂ Rd, define the ‘topological’
α-mixing coefficient

αtop(B1, B2) = sup
A1∈σtop(B1), A2∈σtop(B2)

|P[A1 ∩A2]− P[A1]P[A2]|.

Corollary 1.2 (Strong mixing for topological events). There exist c1, c2 > 0 such that, for every
pair of affine stratified sets (B1,F1) and (B2,F2) in Rd satisfying

max
α∈Nd:|α|≤2

sup
x1∈B1,x2∈B2

|∂ακ(x1 − x2)| < c1,
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it holds that

αtop(B1, B2) ≤ c2 |F1||F2| max
F1∈F1,F2∈F2

∫
F1×F2

|κ(x1 − x2)| dvF1(x1) dvF2(x2).

In particular, recalling that κ̄(s) = sup|x|≥s |κ(x)|, if

(1.4) lim
|x|→∞

|∂ακ(x)| = 0 , for all α ∈ Nd such that |α| ≤ 2,

then for every pair of disjoint affine stratified sets B1, B2 ⊂ Rd there exist c3, c4 > 0 such that

(1.5) αtop(sB1, sB2) ≤ c3s
2d κ̄(c4s) for all s ≥ 1.

Corollary 1.2 demonstrates that topological events on well-separated boxes B1, B2 ⊂ Rd are
independent up to an additive error that depends (up to a constant) solely on the double integral
of the absolute value of the covariance kernel on the boxes; we expect this result to have many
applications. Later we present a generalisation of Corollary 1.2 to Gaussian fields on general
manifolds (see Theorem 2.15). The proof of Corollary 1.2 is given in Section 6.

Remark 1.3. The constant c1 in Corollary 1.2 can be chosen in a way that depends only on
the dimension d, on κ(0), and on the Hessian of κ at 0, whereas the constant c2 can be chosen
in a way that depends, in addition to these, also on maxj(∂

4κ(0)/∂x4
j ).

Remark 1.4. We do not assume that the field f is centred. Since adding a constant does not
change the covariance kernel, Corollary 1.2 also bounds the strong mixing of topological events
that are defined in terms of non-zero levels. Notably, neither c1 nor c2 depends on the mean
value of the field.

Remark 1.5. As explained above, the mixing bound in Corollary 1.2 was already known in
two dimensions, at least in the case of crossing events [44] (see also (1.2)); our results extends
this mixing bound to arbitrary dimensions and arbitrary topological events. Note also that
an analogue of (1.5) was recently established [35] for a version of the α-mixing coefficient that
controls all events (not necessarily topological) that depend monotonically on f (this includes,
for instance, crossing events for {f > 0}); in this case the factor s2d can be improved to sd.

1.3. Application to lower concentration for topological counts. We next present a simple
application of Corollary 1.2 to give a taste of the utility of mixing bounds. A topological count
is a set of integer-valued random variables N = N(B), indexed by affine stratified sets B ⊂ Rd,
each of which is measurable with respect to the corresponding σ-algebra σtop(B). We call
a topological count super-additive if, for every affine stratified set B and every collection of
disjoint affine stratified sets (Bi)i≤k contained in B,

(1.6) N(B) ≥
∑
i≤k

N(Bi) .

Examples of super-additive topological counts include the number of connected components of
level or excursion sets that are fully contained in a set [37], or more generally the number of
connected components of these sets that have a certain diffeomorphism class [14, 20, 46]. In
one dimension, topological counts reduce to the number of solutions to {f = 0} in intervals, a
quantity studied extensively since the works of Kac and Rice in the 1940s [25, 41]. We say that
a topological count N satisfies a law of large numbers if there exists a cN > 0 such that, for
every affine stratified set B ⊂ Rd, as s→∞

(1.7)
N(sB)

sd Vol(B)
→ cN in probability.

Nazarov–Sodin have shown [36, 37] (see also [7, 30]) that if f is ergodic (and under certain
mild extra conditions) the number of connected components of level or excursion sets satisfies
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a law of large numbers, and in fact, (1.7) converges a.s. and in mean; the same result was later
shown to be true also for the number of connected components of a given diffeomorphism type
[10, 14, 46] (in the one dimensional case this follows immediately from the ergodic theorem). As
was shown in [44], quantitative mixing bounds can be used to deduce the lower concentration
of super-additive topological counts:

Corollary 1.6 (Lower concentration for topological counts). Let N denote a super-additive
topological count that satisfies a law of large numbers (1.7) with limiting constant cN > 0.
Assume that (1.4) holds. Then for every affine stratified set B ⊂ Rd and constants ε, C > 0,
there exist c1, cB > 0 such that, for every s ≥ 1,

(1.8) P
[
N(sB)

sd Vol(B)
≤ cN − ε

]
≤ c1 inf

r∈[1,s]

(
e−C(s/r)d + ecB(s/r)d(rs)dκ̄(r)

)
,

where the constant cB > 0 depends only on the stratified set B. In particular, if there exist
c2, α > 0 such that κ(x) ≤ c2|x|−α for every |x| ≥ 1, then for every ε, δ > 0 we can set

r = c3s/(log s)1/d for a sufficiently large choice of c3 > 0 (depending on cB, α and δ) and apply
(1.8) for C > 0 sufficiently large (depending on c3 and δ) to deduce the existence of a c4 > 0
such that, for every s ≥ 1,

P
[
N(sB)

sd Vol(B)
≤ cN − ε

]
≤ c4s

2d−α+δ.

Similarly, if there exist c2, α, β > 0 such that κ(x) ≤ c2e
−β|x|α for every |x| ≥ 1, then setting

r = c3s
d/(d+α) for a sufficiently large choice of c3 > 0 and then choosing C sufficiently large we

deduce that for every γ > 0 there is c4 > 0 such that, for every s ≥ 1,

P
[
N(sB)

sd Vol(B)
≤ cN − ε

]
≤ c4 exp

(
−γsdα/(d+α)

)
.

Remark 1.7. As for Corollary 1.2, Corollary 1.6 was also already known in two dimensions
(at least in the case of the number of connected components of level sets [44]) but not in
higher dimensions. A stronger version of Corollary 1.6 was also recently established in the
one dimensional case (i.e. for the number of zeros of a one-dimensional stationary Gaussian
process [4]), and also for the number of connected components of the zero level set of random
spherical harmonics (RSHs) [36]; the results in [4, 36] are proven using very different techniques
to ours, and in the latter case relies heavily on the specific structure of the RSHs.

2. A covariance formula for topological events

In this section we present our covariance formula in the general setting of smooth Gaussian
fields on smooth manifolds. We also discuss further applications of the formula beyond those
we gave in Section 1, and give a sketch of its proof.

2.1. The covariance formula. We begin by fixing definitions, starting with the ‘stratified sets’
on which we work; our main reference is [22]. Let (M, g) be a smooth Riemannian manifold of
dimension d.

Definition 2.1 (Stratified set). Let B ⊂ M be a compact subset. Assume there is a partition
of B into a finite collection F of smooth locally closed submanifolds, called strata, satisfying the
following additional properties:

• The strata cover B, i.e. B =
∐
F∈F F .

• Any two strata F1 and F2 satisfy F1 ∩ F2 6= ∅ ⇔ F1 ⊂ F2. This allows us to equip F
with the partial order < defined such that, for any two strata F1 and F2,

F1 ∩ F2 6= ∅ ⇔ F1 = F2 or F1 < F2.



A COVARIANCE FORMULA FOR TOPOLOGICAL EVENTS OF SMOOTH GAUSSIAN FIELDS 7

• For each F1 < F2 the following is true. Consider any embedding of M in Euclidean
space, and let (xk)k∈N and (yk)k∈N be sequences of points satisfying (i) for each k ∈ N,
xk ∈ F2 and yk ∈ F1, (ii) xk and yk converge to a common point y ∈ F1, (iii) the tangent
planes TxkF2 converge to a limit τ , and (iv) the lines λk generated by the vectors xk−yk
converge to a limit λ. Then it holds that λ ⊂ τ . Equivalently, it is enough that this
condition be fulfilled for one fixed embedding of M in Euclidean space. Limits τ of this
kind are called generalised tangent spaces at y.
• For each F1, F2 ∈ F such that F1 < F2, there exists a smooth sub-bundle TF2|F1 of
TM |F2 , whose rank is the dimension of F2, that contains TF1 as a sub-bundle, and such
that (i) the map y 7→ TyF2, with values in the adequate Grassmannian bundle defined
on F2, extends by continuity to F1 together with all of its derivatives, and (ii) for each
sequence of points xk ∈ F2 converging to a limit x ∈ F1, limk→+∞ Tx1F2 = TxF2|F1 . We
call TF2|F1 the generalised tangent bundle of F2 over F1 (see Figure 2).

The collection F is called a tame stratification of B. A stratified set of M is a pair (B,F)
consisting of a compact subset B ⊂M and a tame stratification F of B. When there is no risk
of ambiguity, we will often write that B ⊂ M is a stratified set without explicit mention of its
tame stratification F .

Figure 2. Left: An example of a tame stratification F = {F1, F2} of a compact
set B. Here the generalised tangent bundle TxF2|F1 is well-defined since, as
the points xk converge to x ∈ F1, the respective tangent planes also converge.
Right: A rough depiction of the ‘rapid spiral sheet’, which is an example of a set
that cannot be tamely stratified (see Example 2.6); here tangent planes do not
converge, and so the generalised tangent bundle is not well-defined.

Remark 2.2. A partition F of a compact subset B satisfying the first three properties required
in Definition 2.1 is called a Whitney stratification (see for instance Part I, Section 1.2 of [22]);
indeed, the third property is known as ‘Whitney’s condition (b)’. While Whitney stratifications
have many interesting properties, sometimes the structure of a stratification can force functions
on it to have degenerate stratified critical points (see Example 2.6). To avoid such pathologies,
we add the additional fourth condition which is satisfied in most natural examples. In fact,
this additional ‘tameness’ property is only used at a single place in the proof of the covariance
formula, namely, to prove Claim 4.6.

Let us present several important examples (and one non-example) of stratified sets, beginning
with the trivial stratification:

Example 2.3 (Trivial stratification). Let M be a compact manifold without boundary. Then
F = {M} is a tame stratification of M . Moreover, let Ω ⊂M be a compact subset with smooth

boundary ∂Ω. Then F = {Ω̊, ∂Ω} is a tame stratification of Ω.
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In the case that M = Rd, by gluing boxes and other polytopes together one obtains sets
equipped with a natural stratification that will, in most case, be tame. Our definition of ‘affine
stratified set’, introduced in Section 1, covers all such examples:

Example 2.4 (Affine stratified sets). The affine stratified sets introduced in Section 1 are
stratified sets of M = Rd.

One can also consider individual ‘polytopes’, such as the boxes in Corollary 1.1, to be stratified
sets of M = Rd:

Example 2.5 (Polytopes). A polytope in Rd is naturally equipped with a stratification whose
strata are the faces of the polytope of all dimensions. Though to our knowledge there is no
consensus on the definition of a polytope in Rd, it is easy to check whether or not a specific
example satisfies Definition 2.1.

We also present one non-example, in the form of the ‘rapid spiral’:

Example 2.6 (Rapid spiral). The rapid spiral B = {r = e−θ
2} (see Figure 2) admits a natural

partition that satisfies all the conditions of a tame stratification except the last; in particular,
this partition is a Whitney stratification. The rapid spiral B exhibits certain pathologies that
result from the lack of tameness, for instance, there are no stratified Morse functions on B (see
[22, Part I, Example 2.2.2]).

We next extend the definition of topological events given in Section 1 to the general setting
of stratified sets. Let f be a continuous Gaussian field on M , defined on a probability space Ω.
Let µ : M → R and K : M ×M → R denote respectively the mean and covariance kernel of f .
Assume that f satisfies the following condition (generalising the conditions in Section 1):

Condition 2.7. The field f is a.s. C2. Moreover, for each distinct x, y ∈ M , the Gaussian
vector

(f(x), dxf, f(y), dyf) ∈ R× T ∗xM × R× T ∗yM
is non-degenerate.

This condition ensures that µ is C2 and that K is of class C2,2. Let us now define the class
of topological events on a stratified set B.

Definition 2.8 (Topological events). Let (B,F) be a stratified set of M . A stratified homeo-
morphism of B is a homeomorphism h : B → B such that for each F ∈ F , h(F ) = F . A stratified
isotopy of B is a continuous map H : B× [0, 1]→ B such that for each t ∈ [0, 1], H(·, t) : B → B
is a stratified homeomorphism of B. We say that two stratified homeomorphisms h0, h1 : B → B
are F-isotopic if there exists a stratified isotopy H such that H(·, 0) = h0 and H(·, 1) = h1.

Let D denote the excursion set {f > 0}. The stratified isotopy class of D in B, denoted
[D]B, is the set of h(D ∩ B) where h ranges over all stratified homeomorphisms of B that are
F-isotopic to the identity. As we establish in Corollary 5.8, under Condition 2.7 there are a
countable number of stratified isotopy classes, and we equip the set of classes with its maximal
σ-algebra. We will also verify in Corollary 5.8 that the map [D]B from the probability space
Ω into the set of stratified isotopy classes is measurable. A topological event on B is an event
A ⊂ Ω measurable with respect to the random variable [D]B.

Henceforth we fix two stratified sets (B1,F1) and (B2,F2) of M (not necessarily disjoint).
Our main formula expresses the covariance between topological events on B1 and B2 in terms
of an integral over the ‘pivotal measure’ of the events. This measure is defined in terms of (i)
‘pivotal points’, and (ii) a certain interpolation between f and an independent copy of itself;
we introduce these concepts now. Our definition of ‘pivotal points’ is related to the notion of
‘pivotal sites’ in percolation theory (see [23, Section 2.4]), whereas the interpolation is based on
the classical interpolation argument of Piterbarg [39].
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Definition 2.9 (Pivotal points). Fix Â ⊂ C1(M). For every u ∈ C1(M), we say that x ∈ M
is pivotal for u (with respect to Â) if, for any open neighbourhood W of x in M , there exists a

function h ∈ C2
c (W ) such that for every sufficiently small δ > 0, u+δh ∈ Â and u−δh /∈ Â. Such

a function u is described as having a pivotal point at x ∈M , and we denote by Pivx(Â) ⊂ C1(M)
the set of all such u’s. If h can be chosen so that h ≥ 0, we say that x is positively pivotal for
u, and we denote by Piv+

x (Â) ⊂ C1(M) the set of such u’s. Similarly, x is negatively pivotal for

u if h can be chosen so that h ≤ 0, and we denote Piv−x (Â) ⊂ C1(M) the set of such u’s.

Definition 2.10 (Interpolation). Let f̃ be an independent copy of f . For each t ∈ [0, 1], define
the Gaussian field on M ×M

(2.1) ft(x) = (f1
t (x), f2

t (x)) := (f(x), t(f(x)− µ(x)) +
√

1− t2(f̃(x)− µ(x)) + µ(x)).

Observe that f1
t and f2

t have the same law as f , and Cov(f1
t (x1), f2

t (x2)) = tK(x1, x2); in
particular, f1

0 and f2
0 are independent, while f1

1 = f2
1 . Also, observe that f1

t and f2
t both satisfy

Condition 2.7. For each x1 ∈ F1 ∈ F1 and x2 ∈ F2 ∈ F2, denote by γt;x1,x2(0) the density at
zero of the Gaussian vector

(2.2) (f1
t (x1), dx1f

1
t |F1 , f

2
t (x2), dx2f

2
t |F2)

in orthonormal coordinates of R × T ∗x1F1 × R × T ∗x2F2, and denote by Et;x1,x2 [·] expectation
conditional on the vector (2.2) vanishing; this conditional expectation is well defined and de-
scribed by the usual Gaussian regression formula ([3, Proposition 1.2]) since the vector (2.2)
is non-degenerate. Note that, since x1 and x2 correspond to unique strata F1 and F2, to ease
notation we have dropped the explicit dependence of γt;x1,x2(0) and Et;x1,x2 [·] on F1 and F2.

We are now ready to define the pivotal measure, or more precisely, two ‘signed’ pivotal

measures. Fix topological events A1 and A2 on B1 and B2 respectively. Denote by Ã1, Ã2

the measurable sets of stratified isotopy classes in B1 and B2 respectively that define these
topological events, and let Â1 (resp. Â2) be the set of functions u ∈ C1(M) such that [{u >
0}]B1 ∈ Ã1 (resp. [{u > 0}]B2 ∈ Ã2).

Denote by dvg the Riemannian volume measure onM . Similarly, for each stratum F ∈ F1∪F2,
denote by dvF the Riemannian volume measure induced by gF , the restriction of g to F . If
u ∈ C2(M) and x is a critical point of u, we denote by Hxu the Hessian of u at x (which is
well defined since x is a critical point of u; see for instance [38, Chapter 1]). More generally, if
F ⊂M is a smooth submanifold of M and dxu|F = 0, then let HF

x u be the Hessian of u|F at x.

Definition 2.11 (Pivotal measures). For each t ∈ [0, 1] and σ ∈ {−,+}, define the signed
pivotal intensity function Iσt (x1, x2) on B1 ×B2 to be

(2.3)
∑

σ1,σ2∈{−,+},
σ1σ2=σ

γt;x1,x2(0)Et;x1,x2
[
|det(HF1

x1 f
1
t ) det(HF2

x2 f
2
t )|; f1

t ∈ Pivσ1x1(Â1), f2
t ∈ Pivσ2x2(Â2)

]
where F1 and F2 denote the (unique) strata in F1 and F2 that contain x1 and x2 respectively,
and the determinants are taken with respect to orthonormal bases of TxiFi. The signed pivotal
measures dπσ(x1, x2) on B1 ×B2 are defined, for σ ∈ {−,+}, as

dπσ(x1, x2) =
(∫ 1

0
Iσt (x1, x2) dt

)
dvF1(x1)dvF2(x2).

We emphasise that, although the ‘pivotal measures’ depend on both (i) the stratified sets
Bi, and (ii) the topological events Ai, to ease notation we have left these dependencies implicit.
Observe also that dπσ is a sum of measures of different dimensions that are supported on pairs of
strata (F1, F2) ∈ F1×F2. On each such pair, the measures dπ± are singular with respect to each
other and mutually continuous with respect to the product of Riemannian volume measures.
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Remark 2.12. By definition, the Hessian on 0-dimensional strata is always equal to zero. This
implies that, when at least one of xi belongs to a 0-dimensional stratum, the corresponding term
is zero independently of how we interpret dvF for 0-dimensional F . Hence in (2.3), as well as
in all subsequent formulae of similar type, we can discard the contribution from 0-dimensional
strata.

Remark 2.13. If A1 and A2 are both increasing events (meaning that, for i ∈ {1, 2}, if u ∈ Âi
and h is a non-negative function, then u + h ∈ Âi), then the negative pivotal measure dπ−

is identically zero since Piv−xi(Âi) is empty by definition. The same is true if A1 and A2 are

both decreasing events, since then Piv+
xi(Âi) is empty. Similarly, if A1 is increasing and A2 is

decreasing, then dπ+ is identically zero.

We are now ready to present our covariance formula in full generality:

Theorem 2.14 (Covariance formula for topological events). Let (B1,F1) and (B2,F2) be strat-
ified sets of M . Let f be a Gaussian field on M satisfying Condition 2.7. Then the covariance
of topological events A1 and A2 on B1 and B2 respectively can be expressed as

P [A1 ∩A2]− P [A1]P [A2] =

∫
B1×B2

K(x, y)
(
dπ+(x, y)− dπ−(x, y)

)
,

where dπ+ and dπ− denote the pivotal measures introduced in Definition 2.11.

Let us offer some intuition behind the covariance formula in Theorem 2.14. The starting point
of our analysis is the observation that

P [A1 ∩A2] = P[f1 ∈ Â1 × Â2] and P [A1]P [A2] = P[f0 ∈ Â1 × Â2],

and hence

P [A1 ∩A2]− P [A1]P [A2] =

∫ 1

0

d

dt
P[ft ∈ Â1 × Â2] dt.

As we explain in Section 2.3, the structure of the Gaussian measure allows us to express

d

dt
P[ft ∈ Â1 × Â2]

as an integral, over pairs of strata (F1, F2) ∈ F1 × F2, of the (signed) two-point intensity
functions Iσt of critical points that are ‘pivotal’ for the events A1 and A2 respectively, weighted
by a term that is the inner product of the outward normal vectors at the boundary of the events
A1 and A2; by the properties of the Gaussian measure (in particular, the reproducing property
of the covariance kernel), this inner product is just (a normalisation of) the covariance kernel K.

To understand the form of the intensity functions Iσt , notice that pivotal points are necessarily
critical points at the zero level. Hence we can understand Iσt as a restriction to pivotal points
of the standard two-point intensity function for critical points of ft on (F1, F2) at the zero level,
which by the well-known Kac-Rice formula (see [3, Chapter 6]) is given by

γt;x1,x2(0)Et;x1,x2
[
| det(HF1

x1 f
1
t ) det(HF2

x2 f
2
t )|
]
.

Note that our intensity functions are signed; this is because we must distinguish pairs of pivotal
points that are pivotal ‘in the same direction’, in the sense that a local increase in f causes the
events A1 and A2 to both occur or to both not occur, from those that are pivotal ‘in opposite
directions’.

It is possible that some variant of Theorem 2.14 remains true for a wider class of smooth
random fields. The Kac-Rice formula applies far beyond the Gaussian setting, and in principle
one can also express the intensity of pivotal points for non-Gaussian fields. As for the initial
interpolation step, by formulating it using the Ornstein-Uhlenbeck semigroup (as in, say, [?] or
as suggested in [?]) the setting could perhaps be extended to measures related to other Markov
semigroups. We leave this for future investigation.
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2.2. Applications. We next present applications of the covariance formula in Theorem 2.14;
some of these have already been discussed (see Corollaries 1.2 and 1.6), but here we give ex-
tensions to more general settings. The proofs will be deferred to Section 6. Throughout this
section we assume that f satisfies Condition 2.7.

2.2.1. Strong mixing for topological events. Our first application generalises the strong mixing
statement in Corollary 1.2 to the set-up in Section 2.1. For a stratified set B ⊂M , let σtop(B)
denote the σ-algebra consisting of topological events in B, and for a pair of stratified sets
B1, B2 ⊂M , define the corresponding ‘topological’ α-mixing coefficient

(2.4) αtop(B1, B2) = sup
A1∈σtop(B1), A2∈σtop(B2)

|P[A1 ∩A2]− P[A1]P[A2]|.

Theorem 2.15 (Strong mixing for topological events). There exists a constant cd > 0, depending
only on the dimension of the manifold M , such that for every pair of stratified sets (B1,F1) and
(B2,F2) of M ,

αtop(B1, B2) ≤ cd
∑

F1∈F1,F2∈F2

cF1,F2

∫
F1×F2

|K(x1, x2)| dvF1(x1) dvF2(x2),

where cF1,F2 is equal to the maximum, over i, j, k ∈ {1, 2}, of

sup
x1∈F1,x2∈F2

(
E
[
‖HFi

xi f‖
2
op | dxif |Fi = 0

])di√
det(∆(x1, x2))

max

{
1,
(K(xj , xj) det(dxk ⊗ dxkK|Fi×Fi)√

det(∆(x1, x2))

)2di

}
,

and where ‖ · ‖op denotes the (L2-)operator norm, di = dim(Fi), and ∆(x1, x2) is the covariance
matrix, in orthonormal coordinates, of the (non-degenerate) Gaussian vector

(f(x1), dx1f |F1 , f(x2), dx2f |F2).

Remark 2.16. All the terms in the definition of cF1,F2 can be written as a quotient of powers
of polynomials of partial derivatives of K of order at most (2, 2). This means that (i) cF1,F2

depends continuously on the C2,2 norm of K, and (ii) cF1,F2 is homogeneous in K (the degree
of homogeneity is easily seen to be −1, which compensates the presence of K(x1, x2) in the
integral).

2.2.2. Sequences of fields: The Kostlan ensemble. In Corollary 1.2 we stated a quantitative
mixing bound for rescaled (affine) stratified sets sB1 and sB2 as s → ∞. In the setting of
compact manifolds M , it is often more appropriate to work with a sequence of Gaussian fields
on M that converge to a local limit, and consider the topological mixing between fixed disjoint
stratified sets B1, B2 ⊂ M (in fact, this includes the setting in Corollary 1.2 as a special case,
by rescaling the field rather than the sets).

Rather than work in full generality, here we work only with the Kostlan ensemble, which is
the sequence (fn)n∈N of smooth centred isotropic Gaussian fields on Sd with covariance kernels

K(x, y) = cosn(dSd(x, y)) = 〈x, y〉n,
where dSd(·, ·) denotes the spherical distance; it is easy to check that each fn satisfies Condi-
tion 2.7. The sequence fn converges to a local limit on the scale sn = 1/

√
n, in the sense that

for any x0 ∈ Sd the rescaled field

(2.5) f(expx0(x/
√
n)) , x ∈ Rd

converges on compact sets to the smooth stationary Gaussian field on Rd with covariance κ(x) =

e−‖x−y‖
2/2; here expx0 : Rd → Sd denotes the exponential map based at x0. The Kostlan

ensemble is a natural model for random homogeneous polynomials (see [28, 29]), and its level
sets have been the focus of recent study [9]. Its local limit is known as the Bargmann-Fock field.



12 A COVARIANCE FORMULA FOR TOPOLOGICAL EVENTS OF SMOOTH GAUSSIAN FIELDS

Corollary 2.17 (Strong mixing for the Kostlan ensemble). For each pair of disjoint stratified
sets B1, B2 ⊂ Sd that are contained in an open hemisphere, there exist c1, c2 > 0 such that, for
each n ≥ 1,

αn;top(B1, B2) ≤ c1e
−c2n,

where αn;top denotes the ‘topological’ mixing coefficient (2.4) for the field fn.

Remark 2.18. Since fn are homogeneous polynomials, they are naturally defined on the real
projective space rather than the sphere, which makes it natural to restrict B1 and B2 to be
contained in an open hemisphere. Indeed, fn is degenerate at antipodal points.

The lower concentration result in Corollary 1.6 can also be generalised to the setting of
sequences of Gaussian fields on manifolds; again we focus just on the Kostlan ensemble (fn)n∈N
on Sd. We define a topological count N = Nn(B) for fn analogously to in Section 1, after
substituting affine stratified sets B ⊂ Rd with general stratified sets B ⊂ Sd; these counts are
now indexed by B ⊂ Sd and n ∈ N. A topological count N is called super-additive if (1.6) holds
for each Nn. We say that a topological count N satisfies a law of large numbers if there exists
a cN > 0 such that, for every stratified set B ⊂ Sd, as n→∞,

(2.6)
Nn(B)

nd/2 Vol(B)
→ cN in probability;

the scale nd/2 can be understood as the natural volume scaling induced by the rate sn = 1/
√
n

at which the Kostlan ensemble converges to a local limit in (2.5).

Corollary 2.19 (Lower concentration for topological counts of the Kostlan ensemble). Let N
denote a super-additive topological count that satisfies a law of large numbers (2.6) with limiting
constant cN > 0. Then for every stratified set B ⊂ Sd and every ε > 0, there exist c1, c2 > 0
such that, for every n ≥ 1,

(2.7) P
[

Nn(B)

nd/2 Vol(B)
≤ cN − ε

]
≤ c1e

−c2nd/(d+2)
.

In particular, taking B = Sd with its trivial stratification F = {Sd}, the conclusion of Corol-
lary 2.19 is true for Nn the number of connected components of {fn > 0} or {fn = 0} on the
sphere Sd (see [37] for a proof of the law of large numbers for Nn).

2.2.3. Decorrelation for topological counts. In the classical theory of strong mixing, a major
application of mixing bounds is to prove central limit theorems (CLTs) (see, e.g., [16, 31, 45]).
Although establishing CLTs for topological counts is beyond the scope of this work, we illustrate
here how mixing bounds can be used to deduce the ‘decorrelation’ of topological counts, a key
intermediate step in proving a CLT.

For simplicity we return to the Euclidean setting of Section 1. We say that a topological count
N has a finite two-plus-delta moment on an affine stratified set B ⊂ Rd if there exist δ, c > 0
such that

(2.8) E[N(B)2+δ] < c <∞.

Although the finiteness of two-plus-delta moments is not known for the topological counts dis-
cussed in Section 1 (except in the one-dimensional case), in principle one can bound (2.8) by
the purely local quantity

E[(# of critical points of f in B)2+δ],

which we suspect is finite in great generality.
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Corollary 2.20 (Decorrelation for topological counts). Fix affine stratified sets B1, B2 ⊂ Rd
and suppose that N1 and N2 are topological counts that have finite two-plus-delta moments (2.8)
on B1 and B2 with constants δ, c > 0. Then

(2.9) Cov
(
N1(B1), N2(B2)

)
≤ 8 c2/(2+δ) αtop(B1, B2)δ/(2+δ).

We expect that standard methods (i.e. [18, 45]) should allow one to deduce, from Corol-
lary 2.20, a CLT for rescaled topological counts that satisfy a law of large numbers whenever
strong enough two-plus-delta moment bounds can be established, at least as long as κ(x) decays
at a high enough polynomial rate (with the polynomial exponent depending on δ).

2.2.4. Positive association for increasing topological events. Recall that a random vector is said
to be ‘positively associated’ if increasing events (or equivalently decreasing events) are positively
correlated. To state an analogous property for continuous random fields some care must be
taken to specify an appropriate class of increasing events, and here we restrict the discussion to
topological events. An important example of topological events that are increasing are crossing
events for the excursion set {f > 0} (but not crossing events for the level set {f = 0}), and the
fact that crossing events are positively correlated is crucial in the analysis of level set percolation
[5, 9, 35, 43].

In the setting of Gaussian fields, it is known that the class of increasing topological events
on a stratified set are positively correlated if and only if the covariance kernel K is positive.
The standard approach is to invoke a classical result that (finite-dimensional) Gaussian vectors
are positively associated if and only if they are positively correlated [40], and then to apply an
approximation argument (see [44]). Here we deduce, directly from our exact formula, a quanti-
tative version of this result, whose proof is immediate from Theorem 2.14 and the observation
in Remark 2.13.

Corollary 2.21 (Positive associations). Let A1 and A2 be topological events on stratified sets
B1 and B2, and suppose that A1 and A2 are both increasing. Then

(2.10) P [A1 ∩A2]− P [A1]P [A2] =

∫
B1×B2

K(x, y) dπ+(x, y),

where dπ+ is the measure defined in Definition 2.11. In particular, A1 and A2 are positively
correlated if K|B1×B2 ≥ 0.

The fact that positive associations fails in general if a Gaussian field is not positively cor-
related is a serious limitation to many applications; for example, the current theory of level
set percolation for Gaussian fields fails more or less completely unless K ≥ 0 (see however [6]
for recent progress in this direction). One advantage of (2.10) is that the failure of positive
associations can be quantified, which gives hope that the errors that arise might be controllable.

2.2.5. The Harris criterion. Lastly, we present an informal discussion of the ‘Harris crite-
rion’ (HC), demonstrating in particular that Theorem 2.14 can be used to give an alternative
derivation of this criterion.

In its original formulation (see, e.g., [47]), the HC was a heuristic to determine whether long-
range correlations influence the large-scale connectivity of discrete critical percolation models.
Translated to the setting of Gaussian fields on Rd (see [11]), the HC claims that the connectivity
of the level set of smooth centred Gaussian fields will, at the critical level `c ≤ 0 (known to be
zero if d = 2, but believed to be strictly negative if d ≥ 3), be well-described on large scales by
critical (Bernoulli) percolation (the ‘percolation hypothesis’) if and only if

(2.11) s2/ν−2d

∫
Bs×Bs

κ(x− y) dxdy → 0 as s→∞,
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where Bs denotes the ball of radius s centred at the origin, and ν is the correlation length
exponent of critical percolation, widely believed to be universal and satisfy

ν =


4/3, d = 2,

∈ (1/2, 1), d = 3, 4, 5,

1/2, d ≥ 6.

In the positively-correlated case κ ≥ 0, (2.11) is roughly equivalent to demanding that κ has
polynomial decay with exponent at least 2/ν. The original argument of Harris (as translated to
our setting in [11]) goes as follows. Define

ms =
1

|Bs|

∫
Bs

f(x) dx

to be the average value of f on the ball Bs. The fluctuations of ms are of order

(2.12)
√
E[m2

s] =
1

|Bs|

(∫
Bs×Bs

κ(x− y) dxdy

)1/2

.

Recall now that the behaviour of critical (and near-critical) percolation follows a set of power-
laws with certain universal exponents, one of which is the correlation length exponent ν. Roughly
speaking, this claims that the connectivity of percolation with probability p ∈ [0, 1] closely

approximates the connectivity of critical percolation on the ball Bs as long as |p− pc| � s−1/ν ,
where pc is the critical probability. Under the assumption that f can be replaced by ms + f
on Bs, the ‘percolation hypothesis’ therefore generates a contradiction unless ms � s−1/ν ,
and combining with (2.12) gives (2.11). Note that the HC should really be understood as a
necessary condition for the ‘percolation hypothesis’, since the argument assumes the ‘percolation
hypothesis’ and derives a contradiction.

We now demonstrate that Theorem 2.14 yields an alternative criterion, more or less equivalent
to (2.11), that we claim is also a necessary condition for the ‘percolation hypothesis’. Fix a pair
of disjoint boxes B1, B2 ⊂ Rd and, for each s ≥ 1 and i ∈ {1, 2}, let Asi denote the crossing events
for the critical level set in sBi. Note that pivotal points for crossing events roughly correspond
to four-arm saddles at distance s, i.e. saddle points x such that all four arms of the level set
{f = f(x)} hit the ball of radius s around x. Putting this approximation into Theorem 2.14,
we deduce that

P [As1 ∩As2]− P [As1]P [As2] ≈ cκ
∫
sB1×sB2

κ(x− y)Is(x, y) dxdy

≈ cκ Is(0)2

∫
sB1×sB2

κ(x− y) dxdy.

where Is denotes the intensity of four-arm saddles at distance s, and where in the last step we
used stationarity and an (unjustified) factorisation of this intensity. Consider now the universal
exponent ζ4 that is believed to describe the decay of the probability of critical ‘four-arm’ events
for all percolation models. If the ‘percolation hypothesis’ is true, then Is(0) ≈ s−ζ4 , and since
under the ‘percolation hypothesis’ the events As1 and As2 decorrelate, we end up with the following
criterion for this hypothesis:

(2.13) s−2ζ4

∫
sB1×sB2

κ(x− y) dxdy → 0 as s→∞.

To compare to (2.11), recall that by the ‘Kesten scaling relations’ [26] ζ4 = d− 1/ν, and so the
exponents 2/ν − 2d and −2ζ4 in (2.11) and (2.13) match. The only difference is the domain of
integration, but as s → ∞ this difference is negligible under mild assumptions on the decay of
covariance.
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2.3. Proof sketch. Theorem 2.14 can be considered as a generalisation to topological events
of a simple formula, essentially due to Piterbarg [39], that gives a covariance formula for finite-
dimensional Gaussian vectors. This lemma is both the inspiration for Theorem 2.14, and also
one of the key ingredients in the proof. We state Piterbarg’s formula in the simplest case of
standard Gaussian vectors, since this is all that we need, but a similar statement exists for
general non-degenerate Gaussian vectors; for completeness, we give the proof in Appendix B.

Lemma 2.22 (Piterbarg’s formula; see [39, Theorem 1.4]). For each t ∈ [0, 1], let Xt and Yt be
jointly Gaussian vectors in Rm, not necessarily centred, whose covariance matrix is(

I tI
tI I

)
;

that is, Cov(Xt,i, Xt,j) = Cov(Yt,i, Yt,j) = δi,j and Cov(Xt,i, Yt,j) = tδi,j. Let γt(x, y) denote
the density of Zt = (Xt, Yt) ∈ R2m. Let A and B be domains in Rm whose boundaries are
piecewise smooth, and which have surface areas, inside the ball of radius R, that grow at most
polynomially in R. Denote by νA and νB the outward unit normal vectors on the boundaries of
A and B respectively. Then P [Zt ∈ A×B] is differentiable in t ∈ (0, 1), and

d

dt
P [Zt ∈ A×B] =

∫
∂A×∂B

〈νA(x), νB(y)〉γt(x, y) dx dy,

where by
∫

dx dy we understand integration with respect to the natural m− 1 dimensional mea-
sures on ∂A and ∂B respectively.

In particular, if X denotes an arbitrary translation of a standard Gaussian vector in Rm, then

P[X ∈ A ∩B]− P[X ∈ A]P[X ∈ B] =

∫ 1

0

∫
∂A×∂B

〈νA(x), νB(y)〉γt(x, y) dx dy dt;

the integral converges since the integral
∫ s

0 dt on the right-hand side exists for all s < 1, and
converges as s→ 1 to the left-hand side.

Let us now give a brief sketch of the proof of Theorem 2.14, showing how Piterbarg’s formula
plays an essential role. We begin by considering the case of finite-dimensional Gaussian fields, i.e.
the case in which f is a Gaussian vector in a finite-dimensional space of continuous functions V
(see Proposition 3.9). More precisely, we fix 〈·, ·〉 a scalar product on V and take f to be a
translation of the standard Gaussian vector in V . The scalar product also induces a volume
measure du on V , and allows us to identify V with Rdim(V ) up to isometries. Hence, we can
apply Piterbarg’s formula in V and deduce that

(2.14)
d

dt
P
[
ft ∈ Â1 × Â2

]
=

∫
∂Â1×∂Â2

〈νA1(u1), νA2(u2)〉γt(u1, u2) du1du2 ,

where ft = (f1
t , f

2
t ) has covariance

(
I tI
tI I

)
in orthonormal coordinates of V ×V equipped with

the product scalar product (this coincides with the definition of ft in (2.1)).

The next step is to analyse the boundaries of Âi. The path (f it )t∈[0,1] is a generic deformation
of f . By standard arguments in Morse theory, along this deformation the topology of the set
{f it ≥ 0} changes only when f it passes through a non-degenerate critical point at level 0 (which

can cause f it to either enter or exit Âi); if such a change in topology occurs we say that this

critical point is pivotal for the event Âi and the function f it . We will see (in Lemma 3.10) that,

if we exclude a subset E ⊂ ∂Âi of positive codimension containing the functions with multiple
stratified critical points at level 0, we can define a surjection

Ξ : ∂Âi \ E � Bi,
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that induces submersions on each stratum of Bi, by associating to each ui ∈ ∂Âi \E its unique
critical point at level 0. The fibre Ξ−1(xi) is an open subset of the subspace of functions for

which xi is a stratified critical point at level 0. We will see that it is equal to Pivxi(Âi) up to a
negligible set.

Using the map Ξ, the coarea formula allows us to switch from an integral over ∂Â1×∂Â2 ⊂ V
to a sum of integrals over pairs of faces of B1 and B2. We obtain that (2.14) is equal to

∑
F1∈F1,F2∈F2

∫
F1×F2

(∫
Ξ−1(x1)×Ξ−1(x2)

〈ν∂Â1
(u1), ν∂Â2

(u2)〉
Jac⊥F1

(u1)Jac⊥F2
(u2)

γt(u1, u2) du1du2

)
dvF1(x1)dvF2(x2)

where, in the inner integral, the measures dui are the natural volume measures on the fibres of
Ξ−1(xi) and the terms Jac⊥Fi(ui) are the normal Jacobians of Ξ at ui.

We then turn our attention to the unit normal vectors in the integrand (see Lemma 3.12).

Consider ui ∈ ∂Âi \E such that Ξ(ui) = xi. Since xi is the only place at which the topology of

{ui ≥ 0} can change by infinitesimal perturbations, Tui∂Âi is the subspace of functions v ∈ V
such that v(xi) = 0. Since K is the reproducing kernel of V , K(xi, ·) is orthogonal to Tui∂Âi.
Thus,

〈ν∂Â1
(u1), ν∂Â2

(u2)〉 = ± K(x1, x2)√
K(x1, x1)K(x2, x2)

,

where the sign depends on whether a small positive perturbation of ui at xi makes ui enter or
exit Âi.

Finally, in Lemmas 3.11 and 3.14 we (i) compute the Jacobian of Ξ at ui ∈ Ξ−1(xi) and (ii)
reinterpret the integral over Ξ(x1)−1 × Ξ−1(x2) as an expectation in ft = (f1

t , f
2
t ) conditioned

on the fact that for i = 1, 2, xi is a critical point of f it at level 0, containing the indicators that
the xi are pivotal for f it . This process involves some standard computations of Jacobians of
evaluation maps and a careful study of the relations between the different metrics on the spaces
V × V and F1 × F2. As a result, we get exactly the term which appears in the definition of the
pivotal intensity functions (see (2.3)), namely

〈ν∂Â1
(u1), ν∂Â2

(u2)〉
Jac⊥F1

(u1)Jac⊥F2
(u2)

= ±K(x1, x2)
∏
i=1,2

∣∣det
(
HFi
xi ui

)∣∣ ,
which completes the proof in the finite-dimensional case.

To extend Theorem 2.14 to the general case, it remains only to argue that f can always be
approximated by finite-dimensional fields and that we can successfully pass to the limit in the
covariance formula. This latter step is mainly technical, and requires us to show, among other
things, that the boundary of Ξ−1(xi) = Pivxi(Âi) is a null set for the field f conditioned on the
existence of critical points at x1 and x2.

3. Heart of the proof: the finite-dimensional case

In this section we state and prove a reinterpretation of our covariance formula in the case where
the space V is finite-dimensional (see Proposition 3.9). As discussed in the proof sketch above,
we prove this proposition by applying Piterbarg’s formula (Lemma 2.22) and then obtaining a
rather explicit description of boundaries of topological events (see Lemma 3.10).

Throughout this section, and indeed for the remainder of the paper, (B,F) denotes an arbi-
trary stratified set of M .
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3.1. Restating the formula in terms of the discriminant. In this subsection we state the
finite-dimensional version of the formula (Proposition 3.9). For this we introduce an alternative
notion of ‘pivotal sets’ defined in terms of the ‘discriminant’.1

Definition 3.1 (Critical points). Let u ∈ C1(M). A stratified critical point of u in B is a point
x ∈ B such that dxu|F = 0, where F ∈ F is the (unique) stratum containing x. When there is
no ambiguity we will refer to stratified critical points as critical points for brevity. The level of
a critical point refers to its critical value.

Assume now that u ∈ C2(M). A stratified critical point x of u is said to be a non-degenerate
if (i) HF

x u is non-degenerate, and (ii) for each F ′ ∈ F such that F ′ > F , dxu does not vanish
on TxF

′|F (see Definition 2.1). Roughly speaking (ii) means that dxu vanishes on TxF but not
on tangent spaces to higher dimensional strata. Note that we define non-degeneracy in terms of
the generalised tangent bundle TxF

′|F ; this is since all strata are open and disjoint, so TxF
′ is

not defined.

In the following definitions V ⊂ C2(M) denotes an arbitrary linear subspace (i.e. not nec-
essarily finite-dimensional). To define the discriminant, it will be convenient to introduce the
following subsets of V :

Notation 3.2. For each x ∈ M , Vx ⊂ V denotes the linear subspace of u ∈ V such that
u(x) = 0. Moreover, V ′x denotes the linear subspace of Vx such that also dxu|F = 0, where F
is the (unique) stratum containing x; in other words, V ′x contains the functions that possess a
stratified critical point at x ∈ B at level 0. Similarly, for each F ∈ F , V ′F = ∪x∈FV ′x denotes the
functions that possess a stratified critical point on F at level 0.

Definition 3.3 (Discriminant). The discriminant associated to B in V is the set DB(V ) =
∪F∈FV ′F , that is, the set of functions that possess a stratified critical point in B at level 0. For
each u ∈ V \DB(V ), the B-discriminant class of u (in V ), written as [u](B,V ) is the connected

component of V \DB(V ) containing u. By Lemma C.1 the discriminant is closed; since C1(M) is
separable, the number of classes is therefore at most countable. We will denote by σ̃discr (B, V )
the complete σ-algebra of all collections of B-discriminant classes.

Before defining the alternate notion of ‘pivotal sets’ in terms of the discriminant, we introduce
further subsets of V ′x and V ′F defined above; as we verify later (see Proposition 4.1), these subsets
are of full measure:

Notation 3.4. For each x ∈ M , Ṽ ′x ⊂ V ′x denotes the set of u ∈ V such that x is a non-
degenerate stratified critical point at level 0 and there are no other stratified critical points in

B at this level. Similarly, for each F ∈ F , Ṽ ′F = ∪x∈F Ṽ ′x denotes the subset of V ′F consisting of
functions that have a non-degenerate stratified critical point on stratum F at level 0, and no
other stratified critical points in B at this level.

Definition 3.5 (‘Pivotal sets’ in terms of the discriminant). Let Ã be an element of σ̃discr (B, V ).

We denote by Â ⊂ V the set of functions whose B-discriminant class is in Ã, and by σ̂discr(B, V )

the σ-algebra of all possible sets Â of this type. For Â ∈ σ̂discr(B, V ), we define the ‘pivotal

sets’ P̃ivx(Â) = ∂Â ∩ Ṽ ′x and P̃ivF (Â) = ∂Â ∩ Ṽ ′F ; note that these are subsets of the discrimi-

nant DB(V ). For each σ ∈ {+,−}, let P̃iv
σ

x(Â) be the set of u ∈ P̃ivx(Â) such that there exists

h ∈ V with h(x) > 0 such that, for all small enough values of η > 0, u+ σηh ∈ Â.

Finally, we introduce the key conditions on the space V :

1In fact, in the cases that matter to us, this alternative notion of ‘pivotal sets’ coincides with that of Definition
2.9 up to null sets. See Remark 5.3.
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Condition 3.6. For each distinct x, y ∈ M , let V ′x,y ⊂ V denotes the set of u ∈ V such that
(u(x), dxu, u(y), dyu) vanishes. Then the following map is surjective:

V ′x,y → Sym2
(
T ∗yM

)
u 7→ Hyu .

Condition 3.7. For each distinct x, y ∈M , the following map is surjective:

V → R× T ∗xM × R× T ∗yM
u 7→ (u(x), dxu, u(y), dyu) .

Remark 3.8. For every smooth M there exists a finite-dimensional subspace V ⊂ C∞(M)
satisfying Conditions 3.6 and 3.7. Indeed, given a smooth mapping G : M → RN for some
N ∈ N, the coordinates of G generate an N -dimensional subspace of C∞(M) which we denote by
V G. For any distinct x, y ∈M , the set of G such that V G does not satisfy Conditions 3.6 and 3.7
at x and y has codimension arbitrarily large as N →∞. Therefore, by the multijet transversality
theorem (see Theorem 4.13, Chapter II of [21]), applied to the multijet (x, y) 7→ (j1G(x), j2G(y)),
the set of G such that V G satisfies Conditions 3.6 and 3.7 is a residual subset of C∞(M,RN )
for sufficiently large N . In particular, such spaces exist.

We are now ready to present our finite-dimensional restatement of the covariance formula:

Proposition 3.9. Recall the notation introduced in Section 2.1. Let V be a finite-dimensional
subspace of C2(M) that satisfies Conditions 3.6 and 3.7, and assume that the support of f is
exactly V , so that f is a non-degenerate Gaussian vector in V . Let (B1,F1) and (B2,F2) be

stratified sets of M . For each i ∈ {1, 2}, let Âi ∈ σ̂discr (Bi, V ) and let Ai be the event {f ∈ Âi}.
Then, for each t ∈ [0, 1),

d

dt
P
[
ft ∈ Â1 × Â2

]
=

∑
σ1,σ2∈{−,+}

∑
F1∈F1, F2∈F2

∫
F1×F2

K(x1, x2)× γt;x1,x2(0)

× σ1σ2 Et;x1,x2
[
1

P̃iv
σ1
x1

(Â1)×P̃iv
σ2
x2

(Â2)
(f1
t , f

2
t )
∣∣det

(
HF1
x1 f

1
t

)∣∣∣∣det
(
HF2
x2 f

2
t

)∣∣]dvF1(x1)dvF2(x2).

3.2. Proof of Proposition 3.9. Throughout this section we assume that V , f and Âi are as in
the statement of Proposition 3.9, in particular V is finite-dimensional and satisfies Conditions 3.6
and 3.7 (although all the notation that is introduced applies equally to arbitrary linear subspaces
V of C2(M)). We continue to use (B,F) to denote an arbitrary stratified set of M , and we

also define an arbitrary Â ∈ σ̂discr (B, V ). We rely on four technical lemmas (namely Lemmas
3.10–3.12 and 3.14), whose proofs are deferred to Section 4.

The starting point of the proof is to apply Piterbarg’s formula to the events Â1 and Â2; for
this we need to study the regularity of their boundaries. The structure of ∂Âi is described by
the following lemma:

Lemma 3.10. For each F ∈ F , the set P̃ivF(Â) (from Definition 3.5) is a smooth (immersed)

conical hypersurface of V . If x is the unique level-0 stratified critical point of some u ∈ P̃ivF(Â),

then TuP̃ivF(Â) = Vx (see Notation 3.4). Moreover, there exists a subset E ⊂ ∂Â of zero N − 1
dimensional Hausdorff measure such that

∂Â = E ∪
⊔
F∈F

P̃ivF(Â).

By Lemma 3.10, the boundaries of the sets Â1 and Â2 are smooth up to null sets, which
implies that their N − 1 dimensional volume inside any finite ball is finite. Since they are
conical, the volume of the boundary inside a ball of radius R is of order RN−1, ensuring that
Piterbarg’s formula applies to these sets.
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Figure 3. Outside of a null set, the boundary of Â is a hypersurface Ṽ ′F which

is covered by the disjoint union over x ∈ F of the Ṽ ′x . Left (functional view): A

small neighbourhood U of u in V is split by Ṽ ′F into two parts, C1 and C2, which

are inside two different topological classes (one of them belongs to Â and one

does not). Right (spatial view): When u changes continuously within U ∩ Ṽ ′F ,
the corresponding level-0 stratified critical point x changes continuously within

F . Central panels shows three functions in Ṽ ′F and their critical points. Small
perturbations of these functions all belong to the same topological class, for
perturbations positive near the critical point they belong to C1 (right panels)
and for negative perturbations to C2 (left panels).

Now, consider a coordinate system orthonormal with respect to the scalar product 〈·, ·〉 in-
duced by f . We typically denote u = (u1, . . . , uN ) to be the set of coordinates of an element
of V . For each t ∈ [0, 1), let γt : RN × RN → R be the density of the Gaussian vector with
covariance (

IN tIN
tIN IN

)
and mean (µ, µ), where µ ∈ RN is such that E[f ] =

∑
µiu

i. This density gives the distribution
of ft as defined in (2.1). Piterbarg’s formula (Lemma 2.22) implies that

(3.1)
d

dt
P
[
ft ∈ Â1 × Â2

]
=

∫
∂Â1×∂Â2

〈νÂ1
(u1), νÂ2

(u2)〉γt(v1, v2) dHN−1(u1)dHN−1(u2),

where the integral is taken on the product of the smooth part of the boundaries of Â1 and Â2,
which are seen as subsets of RN through the coordinate system fixed above, and where νÂ1

(resp. νÂ2
) is the outward unit normal vector to Â1 (resp. Â2) defined on the smooth part of

its boundary. Applying the expression for the smooth part of the boundary of Â1 and Â2 in
Lemma 3.10, we have

(3.2)

d

dt
P
[
ft ∈ Â1 × Â2

]
=

∑
F1∈F1, F2∈F2

∫
P̃ivF1 (Â1)×P̃ivF2 (Â2)

〈νÂ1
(u1), νÂ2

(u2)〉γt(u1, u2) dHN−1(u1)HN−1(u2) .
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The next step is to to apply the coarea formula to the integrals in (3.2). For each F ∈ F ,

let ΞF denote the function Ṽ ′F → F which maps u ∈ Ṽ ′F to the unique x ∈ F such that u has a
stratified critical point on F at level 0. We note that

P̃ivx(Â) = (ΞF )−1(x) ∩ P̃ivF(Â),

which means that we can parametrise Ṽ ′F by pairs (x, u) where x ∈ F and u ∈ P̃ivx(Â). The
next lemma shows that ΞF is a submersion and gives an expression for its normal Jacobian:

Lemma 3.11. For each F ∈ F , the map ΞF is a submersion. Moreover, for each u ∈ P̃ivF(Â),
if x := ΞF (u) then the normal Jacobian of ΞF at u is

JF (u) := Jac⊥ [ΞF ] (u) =
Jac⊥(Lx)

|det (HF
x u)|

,

where Lx : Vx → T ∗xF denotes the linear operator u 7→ dxu|F , and where the determinant is
taken in orthonormal coordinates of TxF .

Using Lemma 3.11 we can apply the coarea formula to the integrals in (3.2), converting them
from integrals over part of the boundary of the events to integrals over the faces of the stratified
sets. As a result, each integral in (3.2) can be written as

(3.3)

∫
F1×F2

Γ(t;x1, x2) dvF1(x1)dvF2(x2),

where, for each x1 ∈ F1, x2 ∈ F2 and t ∈ [0, 1),

(3.4) Γ(t;x1, x2) =

∫
P̃ivx1 (Â1)×P̃ivx2 (Â2)

〈νÂ1
(u1), νÂ2

(u2)〉γt(u1, u2)

JF1(u1)JF2(u2)
dvV ′x1

(u1)dvV ′x2
(u2),

and where P̃ivx1(Â1) × P̃ivx2(Â2) is viewed as an open subset of V ′x1 × V
′
x2 . Here we have

identified the spaces V ′xi with their images in RN in the coordinate system fixed previously. The
measures dvV ′xi

are defined as the canonical N − dim(Fi) − 1 dimensional volume measures on

the affine spaces V ′xi of RN .

We next interpret the normal vectors in (3.4) in more tractable terms (using the sets from
Definition 3.5):

Lemma 3.12. The fibre P̃ivx(Â) is the disjoint union of the two subsets P̃iv
+

x (Â) and P̃iv
−
x (Â).

Moreover, for each σ ∈ {+,−} and each u ∈ P̃iv
σ

x(Â), the outward unit normal vector of Â at
u is

νÂ(u) = −σ K(x, ·)
‖K(x, ·)‖

= −σ K(x, ·)√
K(x, x)

.

Remark 3.13. Since K is the reproducing kernel in V , the evaluation map Evx defined by
v 7→ v(x) is equal to the map v 7→ 〈v,K(x, ·)〉. Hence K(x, ·) is orthogonal to Vx, and so
‖K(x, ·)‖ can also be interpreted as Jac⊥(Evx), the normal Jacobian of the evaluation operator.

Since K is the reproducing kernel in V , it satisfies 〈K(x1, ·),K(x2, ·)〉 = K(x1, x2). Hence

(3.5) 〈νÂ1
(u1), νÂ2

(u2)〉 = σ(u1, u2)
K(x1, x2)

‖K(x1, ·)‖ ‖K(x2, ·)‖
= σ(u1, u2)

K(x1, x2)√
K(x1, x1)K(x2, x2)

,

where σ(u1, u2) = + if either (u1, u2) ∈ P̃iv
+

x1(Â1) × P̃iv
+

x2(Â2) or (u1, u2) ∈ P̃iv
−
x1(Â1) ×

P̃iv
−
x2(Â2), and σ(u1, u2) = − otherwise. Thus, by Lemma 3.11 and (3.5),

(3.6) Γ(t;x1, x2) =

∫
P̃ivx1 (Â1)×P̃ivx2 (Â2)

Υx1,x2(u1, u2)γt(u1, u2) dvV ′x1
(u1)dvV ′x2

(u1),
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where

(3.7) Υx1,x2(u1, u2) =
σ(u1, u2)K(x1, x2)√
K(x1, x1)K(x2, x2)

×
∣∣det

(
HF1
x1 u1

)∣∣ ∣∣det
(
HF2
x2 u2

)∣∣
Jac⊥(Lx1)Jac⊥(Lx2)

,

and where Lxi : Vx → T ∗xiFi denotes the linear operator u 7→ dxiu|Fi . The integral in the
definition of Γ can be interpreted as a conditional expectation:

Lemma 3.14. For each t ∈ [0, 1) and each distinct x1 ∈ F1 and x2 ∈ F2,

Γ(t;x1, x2) = K(x1, x2) γt;x1,x2(0)×

Et;x1,x2
[
σ(f1

t , f
2
t )1

P̃ivx1 (Â1)×P̃ivx2 (Â2)
(f1
t , f

2
t )
∣∣det

(
HF1
x1 f

1
t

)∣∣ ∣∣det
(
HF2
x2 f

2
t

)∣∣] .
Combining (3.2), (3.3) and Lemma 3.14 yields the formula in Proposition 3.9.

4. Proof of the auxiliary lemmas

In this subsection we prove the auxiliary lemmas from Section 3, namely Lemmas 3.10–3.12,
and Lemma 3.14. While we make use of the notation from Section 3, we do not rely on results
from that section.

4.1. Differential topology in the space of functions: Proof of Lemmas 3.10–3.12.
Throughout this section V denotes a linear subspace of C2(M); moreover, with the exception
of the statement of Proposition 4.1, we will assume that V is finite-dimensional and satisfies
Conditions 3.6 and 3.7. Again we fix an arbitrary stratified set (B,F) in M and Â ∈ σ̂discr(B, V ).

We begin with a couple of definitions; for the time being we work independently of the choice

of Â. Let F ∈ F , and recall from Section 3 the subsets Ṽ ′F ⊂ V ′F ⊂ V and the map ΞF (u) which

sends u ∈ Ṽ ′F to its unique non-degenerate stratified critical point at level 0. Let IF be the set of
pairs (u, x) ∈ V ×F such that x is a stratified critical point of u at level 0 (so that in fact u ∈ V ′F),

and let ĨF be the set of pairs (u, x) ∈ IF such that x is the unique non-degenerate stratified

critical point of u at level 0 (so that u ∈ Ṽ ′F). By Condition 3.7, the map (u, x) 7→ (u(x), dxu)
is a submersion on V × F , and so IF is a smooth submanifold of V × F whose codimension is
one plus the dimension of F . Moreover, for each (u, x) ∈ IF ,

(4.1) T(u,x)IF =
{

(v, τ) ∈ V × TxF : v(x) = 0, dxv|F +HF
x u(τ, ·) = 0

}
.

Let pr1
F : IF → V and pr2

F : IF → F be the projections onto the first and second coordinates.

Note that V ′F = pr1
F (IF ) and Ṽ ′F = pr1

F (ĨF ), and observe also that the map ΞF (u) completes
the following commutative diagram:

(4.2)

ĨF

Ṽ ′F F

pr1F pr2F

ΞF

Lemmas 3.10 and 3.11 both pertain to elements of this diagram: for Lemma 3.11 this is explicitly

so, whereas for Lemma 3.10 it is since, as we shall see, P̃ivF(Â) is an open subset of Ṽ ′F . In
the proof of Lemmas 3.10 and 3.11, we use the following proposition (whose proof is postponed
until the very end of the subsection):

Proposition 4.1. Let F ∈ F . Then the set ĨF is open in IF and the set Ṽ ′F is open in DB.
Moreover, if V has finite dimension N ∈ N and satisfies Conditions 3.6 and 3.7, then

HN−1
(
V ′F \ Ṽ ′F) = 0.
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Remark 4.2. Although we only apply Proposition 4.1 to finite-dimensional V , we state it in
full generality so as to clarify which tools are used to prove each point.

Remark 4.3. Roughly speaking, Proposition 4.1 ensures that if the field f is conditioned to
have a stratified critical point at level 0, then a.s. this critical point is non-degenerate, and there
are no other stratified critical points at level 0.

Proof of Lemma 3.10. To show that P̃ivF(Â) is a smooth (immersed) conical hypersurface of V ,

we first show that Ṽ ′F is a smooth immersed (although maybe not embedded) hypersurface of V .

By Proposition 4.1, ĨF is a smooth submanifold of V ×F with the same tangent space as IF at

each point. The mapping pr1
F : ĨF → V is one-to-one, and we claim that it has constant rank.

To see this, let us take (u, x) ∈ ĨF and check that

d(u,x)pr1
F

(
T(u,x)IF

)
= Vx .

The inclusion ⊂ is clear by (4.1). For the reverse inclusion, let v ∈ Vx and define λ = −dxv|F .

Since (u, x) ∈ ĨF , HF
x u is non-degenerate, and so there exists τ ∈ TxF such that HF

x u(τ, ·) = λ.
Therefore, (v, τ) ∈ T(u,x)IF and d(u,x)pr1

F (v, τ) = v, which proves the reverse inclusion. To sum

up, pr1
F is a mapping of corank one on ĨF , and so its image Ṽ ′F is a smooth immersed (although

maybe not embedded) hypersurface of V with the tangent space

(4.3) TuṼ
′
F = d(u,x)pr1

F

(
T(u,x)IF

)
= Vx.

Next, we show that P̃ivF(Â) is open in Ṽ ′F . Indeed, by Proposition 4.1, Ṽ ′F is open in DB.

Moreover, Ṽ ′F is a smooth submanifold of V , which implies that, for each u ∈ Ṽ ′F , there exists

U ⊂ V containing u such that (u, U ∩ Ṽ ′F , U) ' (0,RN−1 × {0},RN ) and such that U ∩DB =

U ∩ Ṽ ′F . Hence there exist exactly two B-discriminant classes C1, C2 that intersect U and

(4.4) C1 ∩ Ṽ ′F ∩ U = C2 ∩ Ṽ ′F ∩ U = Ṽ ′F ∩ U

as illustrated in Figure 3. In particular, if u ∈ P̃ivF(Â) then Ṽ ′F ∩U ⊂ P̃ivF(Â), and so P̃ivF(Â)

is an open subset of Ṽ ′F .

To sum up, since P̃ivF(Â) is open in Ṽ ′F and since Ṽ ′F is a smooth (immersed) hypersurface

of V , P̃ivF(Â) is also a smooth (immersed) hypersurface of V . Noting also that Â is conical

hence so is ∂Â, and observing moreover that, by (4.3), TuP̃ivF(Â) = Vx for every (u, x) ∈ ĨF ,
we complete the proof of the first two statements of the lemma.

For the third statement of the lemma, we define

E = ∂Â \
( ⊔
F∈F

Ṽ ′F

)
.

By the definition of P̃ivF(Â) = ∂Â ∩ Ṽ ′F , we have

(4.5) ∂Â = E ∪
⊔
F∈F

P̃ivF(Â).

Moreover, we claim that HN−1(E) = 0. To see this, observe that ∂Â ⊂ DB :=
⋃
F∈F V

′
F .

Indeed, since the discriminant DB is closed (see Lemma C.1), the B-discriminant class of any

u ∈ V \ DB forms a neighbourhood of u; in particular, u /∈ ∂Â. Hence we have an alternate
expression for E:

E =
⊔
F∈F

∂Â ∩
(
V ′F \ Ṽ ′F

)
.

Since by Proposition 4.1 the N − 1 dimensional Hausdorff measure of each term of the union on
the right-hand side vanishes, it follows that HN−1(E) = 0. �
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Proof of Lemma 3.11. We first show that ΞF is a submersion. Let (u, v) ∈ T Ṽ ′F , so that there

exist x ∈ F and τ ∈ TxF such that ((u, x), (v, τ)) ∈ T ĨF . In particular, by (4.1) we have dxv|F +
HF
x u(τ, ·) = 0. Since HF

x u is non-degenerate, τ is uniquely determined by v. More precisely,

let ȞF
x u be the image of HF

x u by the canonical isomorphism (T ∗F )⊗2 ' Hom(T ∗F, TF ). Then

τ = −
(
ȞF
x u
)−1

(dxv|F ). Since the diagram (4.2) commutes, we have proven that

duΞF (v) = −
(
ȞF
x u
)−1

(dxv).

By Condition 3.7, the map v 7→ dxv is surjective when restricted to Vx. Hence ΞF is a submersion,
which proves the first statement of the lemma.

Let us now show that the Jacobian of ΞF is as claimed in the lemma. Let g−1
F be the metric

induced on T ∗F by the metric gF on TF . Since (ȞF
x u)−1 is an isomorphism (T ∗xF, g

−1
F,x) →

(TxF, gF,x), the normal Jacobian of ΞF is the product of the Jacobian of (ȞF
x u)−1 and of the

normal Jacobian of the map Lx : (Vx, 〈·, ·〉)→ (T ∗xF, g
−1
F,x), defined in the statement of the lemma

to be Lx(v) = dxv. Since the first Jacobian is the absolute value of the inverse of det(HF
x u), i.e.

the determinant of the matrix of the bilinear form HF
x u in a g−1

F,x-orthonormal basis of TxF , the
proof is complete. �

Remark 4.4. Although for our purposes we do not need to compute Jac⊥(Lx) explicitly (since
it eventually cancels out in the main formula), for completeness we have

Jac⊥(Lx) =
√

det (LxL∗x) =
√

det (dx ⊗ dxKx|F,F ),

whereKx(y1, y2) = K(y1, y2)−K(x, y2)K(y1, x)/K(x, x) is the covariance kernel of f conditioned
on f(x) = 0 or, equivalently, of the orthogonal projection of f onto Vx ; this follows from the
same routine computation as in Remark 3.13. More generally, if L : V → Rk is a linear operator,
the orthogonal Jacobian of Lf is the square root of the determinant of the covariance of Lf .

Let us now complete the proof of Lemma 3.12; for this we rely on elements from the proof of
Lemma (3.10):

Proof of Lemma 3.12. Let u ∈ P̃ivF (Â), x = ΞF (u), and take U , C1 and C2 as in (4.4). By

Lemma 3.10, we have TuP̃ivF (Â) = Vx. In particular, for any such v, 〈K(x, ·), v〉 = v(x) = 0,

so K(x, ·) is orthogonal to TxP̃ivF (Â). Moreover, 〈K(x, ·),K(x, ·)〉 = K(x, x), which must be
positive (otherwise all functions in V vanish at x which contradicts Condition 3.7). Therefore,
the outward unit normal vector νÂ(u) to A at u is plus or minus

(4.6) vx :=
K(x, ·)√
K(x, x)

.

The sign of this vector depends on which of the Ci belongs to Â. More precisely, a perturbation
u+ηh (with η � 1) enters Â whenever 〈vx, h〉 = h(x) has the right sign. In particular, this shows

that the sets P̃iv
+

x (Â) and P̃iv
−
x (Â) form a partition of P̃ivx(Â) and that, for each σ ∈ {+,−}

and each u ∈ P̃iv
σ

x(Â), νÂ(u) = −σ K(x,·)√
K(x,x)

. �

Finally, we prove Proposition 4.1. For this we use the following standard fact which we state
without proof:

Lemma 4.5. Let h : M →M ′ be a Lipschitz map and let S ⊂M be a k-dimensional submanifold
of M . Then the Hausdorff dimension of h(S) is at most k. In particular, Hd(h(S)) = 0 for
every d > k.
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Proof of Proposition 4.1. Let us first give some intuition. The set DB \ Ṽ ′F consists of functions
which, in addition to having a level-0 critical point on F , are degenerate in some way. We
express the five different cases of degeneracy as the vanishing of five explicit smooth functionals
of pairs (u, x) ∈ V ×F or triplets (u, x, y) ∈ V ×F ×F2 for some F2 ∈ F . From this we deduce

both that ĨF is open in IF and that its complement has positive codimension. We then conclude
by projecting the vanishing loci onto V .

Recall that V ⊂ C2(M) is a linear space. Let d1 denote the dimension of F , and let F2, F3 ∈ F
be strata of dimensions d2 and d3 respectively. We consider the following five subsets:

(1) If F < F2, let I1
F,F2

be the set of pairs (u, x) ∈ IF such that dxu ∈ T ∗F2
M |x.

(2) Let I2
F be the set of pairs (u, x) ∈ IF such that Hxu is singular.

(3) If F2 < F3, let I3
F,F2,F3

be the set of triplets (u, x, y) ∈ IF × F2 such that x and y are

distinct, y is also a stratified critical point of u and dyu ∈ T ∗F3
M |y.

(4) Let I4
F,F2

be the set of triplets (u, x, y) ∈ IF × F2 such that x and y are distinct, y is

also a stratified critical point of u and HF2
y u is singular.

(5) Let I5
F,F2

be the set of triplets (u, x, y) ∈ IF × F2 such that x and y are distinct and y
is also a stratified critical point of u with critical value 0.

Claim 4.6. Each of the five subsets defined above is a closed subset of V ×F (resp. V ×F ×F2,
as appropriate). Moreover, if we assume in addition that V has finite dimension N ∈ N and
satisfies Conditions 3.6 and 3.7, then each of these subsets is a finite union of submanifolds of
codimension at least N + d1 + 1 (resp. N + d1 + d2 + 1).

Remark 4.7. The proof of Claim 4.6 is the only place in the paper where we use the fact that
F is a tame stratification of B, rather than merely a Whitney stratification.

Proof. We begin with a couple of definitions. For each F ∈ F , let T ∗FM be the conormal bundle
to F , that is, for each x ∈ F , T ∗FM |x is the set of ξ ∈ T ∗xM such that ξ|TxF = 0. This is a
smooth vector bundle whose rank is exactly the codimension of F in M . In particular, T ∗FM has
codimension d in T ∗M . Recall from the definition of a tame stratification that, given F1, F2 ∈ F
such that F1 < F2, the set of limit points of TF2 with basepoints on F1 defines a vector bundle
over F1, denoted by TF2|F1 , which we call the generalised tangent bundle of F2 over F1. This
allows us to extend the definition of conormal bundle as follows: the conormal bundle to F2

over F1, denoted T ∗F2
M |F1 , is the set of (x, ξ) ∈ T ∗M |F1 such that ξ vanishes on T ∗F2|x. This

defines a smooth vector bundle over F1 whose rank is the codimension of F2 in M . Thus, a
point x ∈ F1 is a non-degenerate stratified critical point of some u ∈ C2(M) if and only if it is a
non-degenerate critical point of u|F1 and for each F2 ∈ F such that F1 < F2, (x, dxu) /∈ T ∗F2

M |F1 .

Now, assume first that V has finite dimension N ∈ N and satisfies Conditions 3.6 and 3.7.
Since the proofs all follow the same structure, we cover in detail only the case of I1

F,F2
, and then

indicate what changes need to be made in the other cases.
Consider the map Φ1 : IF → T ∗M |F defined by (u, x) 7→ dxu, and recall the expression of the

tangent spaces of IF given in (4.1). By Condition 3.7, the map Φ1 is a submersion. Moreover,
the set T ∗F2

M |F is a smooth submanifold of T ∗M |F of codimension 1 + d2 that is also a closed

subset, and therefore I1
F,F2

= Φ−1
1

(
T ∗F2

M |F
)

is a smooth submanifold of IF of codimension d1

as well as a closed subset of this space. We have thus covered the case of I1
F,F2

.

For I2
F we consider the map Φ2 : IF → Sym2 (T ∗F ) defined by (u, x) 7→ HF

x u, which is a
submersion by Condition 3.6. Instead of T ∗F2

M |F , we consider the zero set of the determinant

map det : Sym2 (T ∗F )→ R induced by some auxiliary metric. Its zero setWF is closed and can
be partitioned into the spaces of matrices of fixed rank in {0, . . . , d1 − 1} so it is a finite union
of smooth submanifolds of positive codimension. Since I2

F = Φ−1
2 (WF ), we are done.
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The cases I3
F,F2,F3

and I4
F,F2

are analogous to the first two cases. The maps Φ1 and Φ2 should

be replaced by maps Φ3 and Φ4 defined on IF,F2 = {(u, x, y) ∈ V ×F ×F2 : u(x) = 0, dxu|F =
0, dyu|F2 = 0} which is a smooth submanifold of IF ×F2 of codimension d2 and whose tangent
space at (u, x, y) is

{(v, τ1, τ2) ∈ V × TxF × TyF2 : v(x) = 0, dxv|F +Hxu(τ1, ·) = 0, dyv|F2 +Hyu(τ2, ·) = 0} .

They should be defined as follows: Φ3 : (u, x, y) 7→ (u(x), dxu, dyu) and Φ4(u, x, y) 7→ Hyu. As
for I2

F , Condition 3.7 should be replaced by Condition 3.6 in the case of I4
F,F2

.

Finally, for I5
F,F2

we can consider the map Φ5 : IF,F2 → R that maps each triple (u, x, y) to

u(y). This map is a submersion by Condition 3.7. The conclusion follows accordingly.
This ends the proof of the finite-dimensional part of the claim. Consider now the general case.

Observe that we still have I1
F,F2

= Φ−1
1

(
T ∗F2

M |F
)
, which is the preimage of a closed subset by

a continuous map; in particular it is also closed. Since the same argument works with the four
other cases, we also deduce the infinite-dimensional case of the claim. �

Let us now use Claim 4.6 to prove that ĨF is open in IF . Consider (uk, xk) ∈ (IF \ ĨF )N that

converges in IF ; we claim its limit (u, x) belongs to IF \ ĨF . Observe that IF \ ĨF is the union
of the following sets:

(1) The union over the {F2 ∈ F : F < F2} of the sets I1
F,F2

.

(2) The set I2
F .

(3) The union over {F2, F3 ∈ F : F2 < F3} of the images of the projections I3
F,F2,F3

→ IF .

(4) The union over F2 ∈ F of the images of the projections I4
F,F2
→ IF .

(5) The union over F2 ∈ F of the images of the projections I5
F,F2
→ IF .

Since the above union is over a finite set, one of them contains an infinite number of terms of
the sequence (uk, xk)k∈N. We can and will thus assume, up to extraction, that the sequence
(uk, xk) belongs to one of the sets just described. We now describe what happens in each case:

(1) By Claim 4.6, I1
F,F2

is closed in IF , so (u, x) ∈ I1
F,F2
⊂ IF \ ĨF .

(2) We reason likewise.
(3) By construction, for each k ∈ N, (uk, xk) is the projection of a triplet in I3

F,F2,F3
. By

compactness of B, we can extract a subsequence for which the third coordinate of the
triplet converges in F2. Since the subsequence must have the same limit in the projection
as the full sequence, we just denote it by (uk, xk, yk)k∈N ∈ (I3

F,F2,F3
)N so that the third

coordinate converges to some y ∈ F2. If y ∈ F2 then (u, x, y) ∈ IF × F2. Then by
Claim 4.6, I3

F,F2,F3
is closed in IF × F2 so (u, x, y) ∈ I3

F2,F3
, which implies that (u, x)

belongs to its projection onto IF . If, on the other hand, y /∈ F2, (by Definition 2.1),
y must belong to some F4 such that F4 ∈ F such that F4 < F2. Then dyu ∈ T ∗F2

M |y
(actually we even have dyu ∈ T ∗F3

M |y). If y 6= x, we must then have (u, x, y) ∈ I3
F,F4,F2

so

(u, x) belongs to its projection onto IF . Otherwise, if y = x, then, (u, x) = (u, y) ∈ I1
F,F4

.

(4) We reason as in the third case. As before, up to extraction, we can find (yk)k∈N ∈ F2

converging to some y ∈ F2 such that for each k ∈ N, (uk, xk, yk) ∈ I4
F,F2

. Again, as

before, if y belongs to some face F3 < F2, we have dyu ∈ T ∗F2
M |y so (u, x, y) ∈ I4

F,F3
.

Otherwise, if y ∈ F2, using Claim 4.6 we deduce that (u, x, y) ∈ I4
F,F2

.

(5) We reason as in the fourth case.

We have therefore proven that IF \ ĨF is closed in IF .

Next, we show that Ṽ ′F is open in DB. By construction, DB is the union of the projections

onto the first coordinates of the sets IF1 for F1 6= F and of the sets I1
F , I2

F , I3
F,F2,F3

, I4
F,F2

and I5
F,F2

defined above, taken over all the adequate F2 and F3. As before we take (uk)k∈N ∈
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(DB \ Ṽ ′F)N converging to some u ∈ V ′F and, up to extraction, there exist two strata F1 ≤ F2

and a sequence (xk)k∈N ∈ FN
2 and x ∈ F1 such that for each k ∈ N, (uk, xk) ∈ IF \ ĨF2 and

limk→∞(uk, xk) = (u, x). By Lemma C.1, x is a stratified critical point of u. Let us prove that

u ∈ DB \ Ṽ ′F . From now on, the reasoning is analogous to that used for IF \ ĨF .

(1) If F1 6= F , then, (u, x) ∈ IF1 so u /∈ Ṽ ′F .

(2) If F2 > F1 = F , then, as before dxu ∈ T ∗|F2M |x and so (u, x) ∈ I1
F,F2

and u /∈ Ṽ ′F .

(3) If F2 = F1 = F then for each k ∈ N, (uk, xk) belongs to IF \ ĨF which is closed in IF so

that (u, x) /∈ ĨF and so u /∈ Ṽ ′F .

This proves that DB \ Ṽ ′F is closed in DB as announced.

To finish, assume that V has finite dimension N ∈ N and satisfies Conditions 3.6 and 3.7. By

(the finite-dimensional case of) Claim 4.6, V ′F \ Ṽ ′F is a finite union of projections of submanifolds
of V ×F and V ×F×F2 for F2 ∈ F of codimensions at least dim(F )+2 and dim(F )+dim(F2)+2

respectively. By Lemma 4.5, we must therefore have HN−1(V ′F \ Ṽ ′F) = 0. �

4.2. Conditional expectation computation: Proof of Lemma 3.14. In this section we
prove Lemma 3.14, that is, we rewrite the function Γ defined by (3.4) (see also (3.6)) in terms
of a conditional expectation.

Fix t ∈ [0, 1) and distinct x1 ∈ F1 and x2 ∈ F2. In the first part of the proof the exact
expression of Υx1,x2 , defined by (3.7), will not play any role except through the fact that it is
bounded by a polynomial in u1, u2. Let Px1,x2 be the orthogonal projector in V × V (equipped

with the product metric) onto the subspace V ′x1 × V ′x2 , and let P⊥x1,x2 = I − Px1,x2 be the
complementary orthogonal operator onto the orthogonal complement, which we denote by (V ′x1×
V ′x2)⊥. We write (u1, u2) = w + w⊥ where w = Px1,x2(u1, u2) and w⊥ = P⊥x1,x2(u1, u2). Let us
define

jx1,x2 : V × V → R× T ∗x1F1 × R× T ∗x2F2

by

jx1,x2(u1, u2) = (u1(x1), dx1u1|F1 , u2(x2), dx2u2|F2).

Note that the space V ′x1 ×V
′
x2 is exactly the kernel of jx1,x2 , hence jx1,x2 is a linear isomorphism

from (V ′x1 × V
′
x2)⊥ onto R× T ∗x1F1 × R× T ∗x2F2. With this notation we can rewrite the integral

in (3.6) as

(4.7) Γ(t;x1, x2) =

∫
V ′x1×V

′
x2

1
P̃ivx1 (Â1)×P̃ivx2 (Â2)

(w)Υx1,x2(w) γt(w) dw,

where dw = dvV ′x1
dvV ′x2

. In the same spirit we write gt = Px1,x2ft and g⊥t = P⊥x1,x2ft so that

ft = gt + g⊥t . The density of ft, conditioned on g⊥t = 0, at w = (u1, u2) ∈ V ′x1 × V
′
x2 is given by

γft|g⊥t =0(w) =
γt(u1, u2)

γg⊥t
(0)

,

where γg⊥t
(0) is the density of g⊥t evaluated at 0. Notice that for ft, conditioning on g⊥t = 0 is the

same as conditioning on (f1
t (x1), dx1f

1
t |F1 , f

2
t (x2), dx2f

2
t |F2) = 0. Since by definition (u1, u2) = w

on V ′x1 × V
′
x2 , (4.7) becomes

Γ(t;x1, x2) = γg⊥t
(0)

∫
V ′x1×V

′
x2

1
P̃ivx1 (Â1)×P̃ivx2 (Â2)

(w)Υx1,x2(w)γft|g⊥t =0(w) dw(4.8)

= γg⊥t
(0)Et;x1,x2

[
1

P̃ivx1 (Â1)×P̃ivx2 (Â2)
(ft)Υx1,x2(f1

t , f
2
t )
]
.
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In the above expression, the density γg⊥t
(0) is with respect to the orthogonal coordinates in

(V ′x1 × V
′
x2)⊥, and we need to express it in terms of K. Let Q̃t;x1,x2 be the covariance matrix of

g⊥t in some orthonormal system of coordinates in (V ′x1 ×V
′
x2)⊥. Let Qt;x1,x2 be the covariance of

(f1
t (x1), dx1f

1
t |F1 , f

2
t (x2), dx2f

2
t |F2) = jx1,x2(ft) = jx1,x2(gt)

in any orthonormal coordinate system of R × T ∗x1F1 × R × T ∗x2F2 equipped with the product

metric. Treating jx1,x2 as an isomorphism from (V ′x1 ×V
′
x2)⊥ onto R×T ∗x1F1×R×T ∗x2F2 we see

that the covariances Q̃t;x1,x2 and Qt;x1,x2 are linked by the following relation

Q̃t;x1,x2 =
(
j∗x1,x2

)−1
Qt;x1,x2j

−1
x1,x2 .

In particular, det(Q̃t;x1,x2) = det(Qt;x1,x2)/ det(jx1,x2j
∗
x1,x2)−1. Recalling that γt;x1,x2(0) is the

density of jx1,x2(ft) at 0, we have

γg⊥t
(0) = γt;x1,x2(0)

√
det
(
jx1,x2j

∗
x1,x2

)
.

It remains to compute
√

det
(
jx1,x2j

∗
x1,x2

)
. Notice first that jx1,x2 factors as the direct product

of the two linear maps jxi : V ′⊥xi → R× T ∗xiFi for i ∈ {1, 2} defined as jxi(u) = (u(xi), dxiu|Fi),

(4.9) det
(
jx1,x2j

∗
x1,x2

)
= det

(
jx1j

∗
x1

)
det
(
jx2j

∗
x2

)
.

To compute det
(
jxij

∗
xi

)
note that, since jxi is 0 on V ′xi , this determinant does not depend on

whether jxi acts on V ′⊥xi or the entire V ; we treat it as an operator on V . Next, we write V as
orthogonal sum of Vxi which is the space of functions such that v(xi) = 0 and its orthogonal
complement which is spanned by K(xi, ·) (see the discussion preceding (4.6)). Let us choose
orthonormal coordinates in V that are adopted to this decomposition, that is K(xi, ·)/‖K(xi, ·)‖
must be one of the basis vectors. In this coordinates jxi factors as u 7→ u(xi) acting on the span
of K(xi, ·) (this is the operator Evxi from Remark 3.13) and u 7→ dxiu |Fi on Vx (which is the
operator Lxi). The factorisation implies that√

det
(
jxij

∗
xi

)
=
√

det
(
EvxiEv∗xi

)
det
(
LxiL

∗
xi

)
= Jac⊥(Evxi)Jac⊥(Lxi).

Plugging this computation into (4.8) we see that Γ is equal to

γt(x1, x2)
√
K(x1, x1)K(x2, x2)Jac⊥(Lx1)Jac⊥(Lx2)

× Et;x1,x2
[
1

P̃ivx1 (Â1)×P̃ivx2 (Â2)
(w)Υx1,x2(f1

t , f
2
t )
]
.

Recalling the definition of Υx1,x2(u1, u2), and in particular pulling the terms
√
K(xi, xi) and

Jac⊥(Lxi) from this definition out of the expectation (since they do not depend on ui) so that
they cancel with those already present, we deduce the result.

Remark 4.8. The cancellations in the above derivation are not so mysterious, since the relevant
terms are Jacobians of evaluations of f and its differential and they appear, first, when we switch
from space coordinates to functional coordinates, and then once again when we move back.

5. Proof of the main theorem: from the finite to the infinite-dimensional case

In this section we complete the proof of the covariance formula in Theorem 2.14. The basic
idea is to (i) reinterpret topological events in terms of the discriminant, (ii) approximate the
field f by a sequence of fields fk taking values in a finite-dimensional spaces Vk, and then (iii)
pass to the limit in the formula of Proposition 3.9.

In Section 5.1 we show that the boundary of pivotal events is well behaved, which will allow
us to take limits of the expectations in the right-hand side of Proposition 3.9. In Section 5.2 we
verify that topological events are encoded by the discriminant. Next, in Section 5.3 we construct
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the finite-dimensional approximation and state an abstract continuity lemma for expectations
that we use in the proof. Finally in Section 5.4 we assemble these elements into a proof of
Theorem 2.14.

At the end of the section we also verify that Corollary 1.1 is indeed a special case of Theo-
rem 2.14, as claimed in Section 1.

5.1. On the boundary of pivotal events. In this section we compare pivotal events in dif-
ferent subspaces of C2(M), link the two distinct notions of pivotal events we have introduced,
and study the boundary of pivotal events.

Recall that (B,F) denotes an arbitrary stratified set of M . Fix a linear subspace V ⊂ C2(M),

not necessarily finite-dimensional. Also fix Ã ∈ σ̃discr(B,C
2(M)), and let Â ∈ σ̂discr(B,C

2(M))

be the set of u ∈ C2(M) whose discriminant class (in C2(M)) belongs to Ã. Observe that the

set ÂV = Â ∩ V belongs to σ̂discr(B, V ), i.e. it is encoded by the V -discriminant. Indeed, it is

the set of functions u ∈ V whose discriminant class in C2(M) belongs to Ã. Recall also the

definition, for x ∈ B and Â ∈ σ̂discr(B, V ), of the sets P̃ivx(Â) and P̃iv
σ

x(Â) from Definition 3.1.

The main result of this section is the following:

Lemma 5.1 (On pivotal events). Suppose that V contains the constant functions on M . Then

(1) P̃ivx(ÂV ) = P̃ivx(Â) ∩ V and, for each σ ∈ {+,−}, P̃iv
σ

x(ÂV ) = P̃iv
σ

x(Â) ∩ V .

Moreover, let f be a Gaussian field on M satisfying Condition 2.7. Then, conditionally on x
being a stratified critical point of f with f(x) = 0, a.s.

(2) f ∈ P̃ivx(Â) if and only if (i) f ∈ Pivx(Â) and (ii) HF
x f is a non-degenerate bilinear

form. Moreover, for each σ ∈ {+,−}, the same is true if we replace P̃ivx(Â) by P̃iv
σ

x(Â)

and Pivx(Â) by Pivσx(Â).

(3) If x is a non-degenerate critical point then f /∈ ∂P̃ivx(Â), where P̃ivx(Â) is seen as a
subset of the space V ′x.

Remark 5.2. Note that we only apply Lemma 5.1 to approximations of the field f (as opposed
to f itself), so it is irrelevant that the constant functions will not belong to the Cameron-Martin
space of f in general.

Remark 5.3. If we had been willing to impose a non-degeneracy condition on the Hessian of f ,
we could have concluded from Lemma 5.1 that, conditionally on x being a level-0 stratified

critical point of f , a.s. f ∈ P̃ivx(Â) if and only if f ∈ Pivx(Â), and this is the sense in which

we think of P̃ivx(Â) and Pivx(Â) as equal up to null sets. Since non-degeneracy of the Hessian
is unnecessary for the result to hold, we do not do this.

In order to prove Lemma 5.1, we use the following result:

Lemma 5.4. Let u ∈ C2(M) be such that u has a unique non-degenerate stratified critical point

x at level 0 (c.f. the set ∪F∈F Ṽ ′F). Then

(1) For ε > 0 small enough, neither u + ε nor u − ε have a stratified critical point at
level 0. Moreover, let C1 = C1(u) and C2 = C2(u) be the connected components in
C2(M) \ DB(C2(M)) of u + ε and u − ε respectively. Then, C1 ∪ C2 (resp. C1, C2) is
a neighbourhood of u in C2(M) (resp. in the set of functions u′ ∈ C2(M) such that
u(x) ≥ 0, in the set of functions u′ ∈ C2(M) such that u(x) ≤ 0).

(2) Let U ⊂ M be a neighbourhood of x. Then there is a neighbourhood U of u in the
discriminant DB(C2(M)) such that, for each u′ ∈ U , u′ has exactly one stratified critical
point at level 0, which is non-degenerate and belongs to U . Moreover, we have C1(u′) =
C1(u) and C2(u′) = C2(u) (defined as in (1)).
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Remark 5.5. If we were working in a finite-dimensional space, we could think of u as belonging
to the smooth part of the discriminant. Since this discriminant is a hypersurface, this would mean
that in a small neighbourhood of u the discriminant would be diffeomorphic to a hyperplane,
separating the ambient space into two connected components C1 and C2, and moreover small
perturbations of u would yield the same C1 and C2. Lemma 5.4 encodes (part of) this intuition.

Remark 5.6. The first point of Lemma 5.4 implies that the definition of P̃iv
σ

x(Â) does not

change if one takes, in the definition of this set, h ∈ C2(M) instead of merely h ∈ V . Similarly,
the definition does not change if one requires h to be a positive constant (which assists in showing

a function does not belong to P̃iv
σ

x(Â)).

Proof of Lemma 5.4. We start by showing that the property that u has a stratified critical point
near x is stable under C2 perturbations; this involves isolating x as a critical point in a uniform
way. Fix a neighbourhood U of x. Since x is a non-degenerate critical point, it is isolated in
the set of critical points of u (see Lemma C.2), which is compact by Lemma C.1. Thus, the
critical value u(x) is isolated in the set of critical values of u. In particular, for each ε > 0, both
u+ ε and u− ε belong to C2(M) \DB(C2(M)), which justifies the existence of C1 and C2. Let
us show that C1 ∪ C2 is a neighbourhood of u in C2(M). Let F ∈ F be the stratum containing
x. For each r > 0, let Br be the Riemmanian ball of radius r > 0 in F centred at x. Since x
is a non-degenerate critical point at x, the section du, which is C1, vanishes transversally at x
on the stratum F and stays bounded from below on the higher strata near x. Therefore, there
exist r = r(u) > 0 and η = η(u) > 0 such that for each w ∈ C2(M) such that ‖w‖C2(B) ≤ η, the
following holds:

• The ball Br is included in U ;
• The section d(u+ w)|F vanishes exactly once on Br;
• For any F ′ 6= F , d(u+ w)|F ′ does not vanish on Br;
• u+ w has no stratified critical points with critical value in [−10η, 10η] outside of Br;
• If moreover ‖w‖C2(B) ≤ η/8 then |u+ w| ≤ η/4 on Br.

In particular, for each s ∈ (0, η], u± s does not belong to the discriminant. Let w ∈ C2(M) be
such that ‖w‖C2(B) ≤ η/8. Let us show that u+ w ∈ C1 ∪ C2, and that if u+ w ∈ DB(C2(M))
then u+w has a unique stratified critical point at level 0 which belongs to Br. To this end, we
will first consider a path (vt)t from u to u+w where w is a small perturbation. Along this path
we will find further perturbations vt,s = vt + s of vt, for suitable choices of s, that do not belong
to the discriminant and that belong to the two connected components C1 and C2.

More precisely, for each t ∈ [0, 1] and each s ∈ [−η/2, η/2], let vt,s = u + tw + s. Then, for
each t ∈ [0, 1] and each s ∈ [−η/2, η/2], ‖vt,s − u‖C2(B) ≤ η and ‖vt,0 − u‖C2(M) ≤ η/8. In
particular, vt,s has a unique stratified critical point in Br, which we call yt (since it does not
depend on s) and no other stratified critical points with critical value in [−9η, 9η]. Moreover,
supBr |vt,0| ≤ η/4 so that minBr vt,η/2 ≥ η/4 and maxBr vt,−η/2 ≤ −η/4. In particular, for

each t ∈ [0, 1], vt,±η/2 /∈ DB(C2(M)). Thus, v1,±η/2 ∈ C1 ∪ C2. Now, for each s ∈ [−η/2, η/2],
v1,s = u + w + s. In particular, if u(y1) + w(y1) ≥ 0, v1,s does not belong to the discriminant
for s ∈ (0, η/2] and converges to u + w as s → 0. If on the other hand, u(y1) + w(y1) ≤ 0, the
same approximation holds by taking s ∈ [−η/2, 0) and s → 0. In any case, by construction of
this approximation v1,s ∈ C1 ∪ C2 as long as s 6= 0 so that u+w ∈ C1 ∪ C2 = C1 ∪ C2. This shows

that C1 ∪ C2 is a neighbourhood of u in C2(M) and that for each v ∈ (C1 ∪ C2)∩DB(C2(M)), v
has a unique stratified critical point at level 0, which is in Br ⊂ U .

Next notice that u + w is in the same connected component of the complement of the dis-
criminant as u + s for s � 1 if w(x) < 0, and is in the same connected component as u − s
for s � 1 if w(x) > 0, which proves that C1 (resp. C2) is a neighbourhood of u in the set of
functions taking non-negative (resp. non-positive) values at x. Finally, if u(yt) + tw(yt) = 0, by
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construction u + w + ε (resp. u + w − ε) is in the same connected component as u + ε (resp.
u− w) for ε > 0 small enough. In other words, Ci(u) = Ci(u + w) for i ∈ {1, 2}. This ends the
proof of the lemma. �

Proof of Lemma 5.1. We prove the three statements in the lemma sequentially:

(1). In order to prove that P̃ivx(ÂV ) = P̃ivx(Â)∩V and P̃iv
σ

x(ÂV ) = P̃iv
σ

x(Â)∩V , it is enough

that ∂ÂV = ∂Â ∩ V , where ∂ÂV is the boundary of ÂV in V . Clearly, ∂ÂV ⊂ ∂Â ∩ V . On
the other hand, let u ∈ ∂Â ∩ V . Then, by Lemma 5.4, there exist C1 and C2 two connected
components of C2(M)\DB(C2(M)) such that for ε > 0 small enough, u+ε ∈ C1, u−ε ∈ C2 and

C1∪C2 is a neighbourhood of u in C2(M). Let us assume that C1 ⊂ Â and C2 ⊂ C2(M)\ Â since

u ∈ ∂Â, and the case C2 ⊂ Â and C1 ⊂ C2(M) \ Â follows by exchanging Â and its complement.
Since u ∈ V and the constant functions belong to V , u± ε ∈ V . In particular, letting ε→ 0, we

deduce that u ∈ Â ∩ V ∩V \ Â = ∂ÂV , from which it follows that ∂ÂV = ∂Â∩V as announced.

(2). Let fx denote the field f conditioned on f(x) = 0 and on x being a stratified critical point

of f . Then, fx is a.s. C2. Assume now that fx ∈ Piv+
x (Â). Then, there exists a (random)

h ∈ C2(M) satisfying h ≥ 0 such that, for small enough values of δ > 0, fx + δh ∈ Â and

fx− δh /∈ Â. In particular, fx ∈ ∂Â. Moreover, since f satisfies Condition 2.7, by the regression
formula (fx(y), dyfx) is non-degenerate for y 6= x, and so by Bulinskaya’s lemma ([3, Proposition
1.20]) a.s. fx has no other stratified critical points at level 0. If we also assume that HF

x fx is

non-degenerate, then by Remark 5.6 fx ∈ P̃iv
+

x (Â). Thus, we have shown that if fx ∈ Piv+
x (Â)

and HF
x fx is non-degenerate then a.s. fx ∈ P̃iv

+

x (Â).

Conversely, assume that fx ∈ P̃iv
+

x (Â) and let U ⊂M be a neighbourhood of x in M . Then,

HF
x fx is non-degenerate. Since f satisfies Condition 2.7, as before by Bulinskaya’s lemma a.s.

fx has no other critical points at level 0. We may thus apply Lemma 5.4 to fx, which implies
that there exists a neighbourhood U of fx in C2(M), two connected components C1 and C2 of
C2(M) \DB(C2(M)), and a geodesic ball Br ⊂ U of radius r > 0 centred at x, such that the
following holds:

• For all small enough δ > 0, fx + δ ∈ C1 and fx − δ ∈ C2.
• The union C1 ∪ C2 covers U .
• Each v ∈ U ∩DB(C2(M)) has a unique stratified critical point in Br and no stratified

critical points at level 0 outside of Br.

Since fx ∈ P̃iv
+

x (Â), we have C1 ⊂ Â and C2 ⊂ Âc. Let h ∈ C2
c (W ) be equal to 1 on Br. Then,

for all small enough δ > 0, fx±h ∈ U , so fx has no stratified critical points at level 0 outside of
Br. Inside Br it coincides with fx up to a constant ±δ. In particular, if δ 6= 0, fx ± h ∈ C1 ∪ C2.
Moreover, by considering the path (fx± (δh+s(1−h)))s∈[0,δ], we conclude that fx+h ∈ C1 ⊂ Â
and fx−h ∈ C2 ⊂ Âc. But h is supported arbitrarily close to x. Thus, fx ∈ Piv+

x (Â). Reasoning
symmetrically, we get the same statement with the + exponent replaced by −, and combining
the two results we get the same property for Pivσx(Â) replaced by Pivx(Â).

(3). Assume that x is a non-degenerate critical point of fx. Then, Lemma 5.4 applies so that
there are two discriminant classes C1 and C2 such that C1∪C2 is a neighbourhood of fx in C2(M)
and there is a neighbourhood W of fx in the discriminant such that for each v ∈ W , and each

small enough ε > 0, v+ε ∈ C1 and v−ε ∈ C2. If fx ∈ P̃ivx(Â) then exactly one of the two classes

belongs to Â, and hence the elements of W will all belong to the boundary of Â. Therefore, fx
belongs to the interior of P̃ivx(Â) in the space V ′x of functions in C2(M) with a stratified critical

point at x at level 0. Similarly, if fx /∈ P̃ivx(Â) then either both C1 and C2 are subsets of Â or
neither of them are. So then, as before, the elements of W cannot belong to the boundary of
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Â so that fx is in the interior of V ′x \ P̃ivx(Â). In both cases, fx /∈ ∂P̃ivx(Â), which proves the
last part of the proposition. �

5.2. The topological class is encoded by the discriminant. In this subsection we verify
that topological events are encoded by the discriminant, making explicit the link between the
events that appear in Theorem 2.14 and the events that appear in Proposition 3.9; in passing,
we also prove the measurability of the stratified isotopy classes.

In this section (B,F) again denotes an arbitrary stratified set of M ; nevertheless, here we
prefer to view F as a general Whitney stratification (see Remark 2.2) since we make use of the
standard theory of Whitney stratifications. Recall the definition of B-discriminant classes from
Definition 3.3, as well as the definition of the stratified isotopy class from Definition 2.8.

Lemma 5.7 (Topological class is encoded by the discriminant). Suppose that u, v ∈ C2(M)
have the same B-discriminant class in C2(M). Then their excursion sets {u > 0} and {v > 0}
have the same stratified isotopy class, i.e., [{u > 0}]B = [{v > 0}]B.

Since the discriminant classes are C1-open (see Lemma C.1), there are at most countably
many of them. This immediately implies the following:

Corollary 5.8. There are at most countably many stratified isotopy classes of subsets of B.
Moreover, the map [D]B from the probability space Ω into the set of stratified isotopy classes is
measurable.

Before proving Lemma 5.7, let us recall some standard facts about Whitney stratifications;
they can all be easily checked from the definitions of the objects they involve:

• If I ⊂ R is an open interval, then the collection FI = (F × I)F∈F is a Whitney stratifi-
cation of B × I.
• For each open subset W ⊂M , FW = (F ∩W )F∈F is a Whitney stratification of B ∩W .
• Consider f : M → N a smooth map between two Riemannian manifolds. Assume that
f |B is proper and that for each F ∈ F , f |F : F → N is a submersion. Then, for each
y ∈ N , the preimage f−1(y) ∩B is naturally equipped with a Whitney stratification Fy
whose strata are the intersections F ∩ f−1(y) where F ∈ F (see Definition 1.3.1 of Part
I of [22]).

The proof of Lemma 5.7 is a standard application of Thom’s first isotopy lemma (see (8.1) of
[33]) and the isotopy extension theorem (see [17]). In fact, the only place we use C2 regularity
in this proof is when we apply Thom’s first isotopy lemma.

Proof of Lemma 5.7. Let u ∈ C2(M) \DB(C2(M)), i.e. u has no stratified critical points in B
at level 0. Recall that, by Lemma C.1 and since B is compact, the set of critical points of u is
compact. In particular, this set is at positive distance from the zero set of u and there exists a
bounded open neighbourhood W ⊂ M of u−1(0) in M and a convex neighbourhood U of u in
C1(M) such that for each v ∈ U and each face F ∈ F , dv|F 6= 0 in W and v 6= 0 on B \W .
We will prove that for each v ∈ U ∩ C2(M), [{v > 0}]B = [{u > 0}]B. To do so, notice that
since U is open and convex, there exists I an open interval containing [0, 1] such that for each
t ∈ I, ut = tv+ (1− t)u ∈ U ∩C2(M). The family FW,I = ((F ∩W )× I)F∈F defines a Whitney
stratification of (B ∩W )× I in W × I. Moreover, since for each t ∈ I, ut has no critical points
on any face of F inside W , the map

(W ∩B)× I → R× I , U : (x, t) 7→ (ut(x), t)

is a submersion when restricted to any face of FW,I . It is proper since B is compact and
idI : I → I is proper. In particular, by Thom’s first isotopy lemma, since U is C2 there exists a
stratified homeomorphism h : W ×I → (W ×I)∩U−1(0)×R×I (where U−1(0)∩B is equipped
with the preimage Whitney stratification that exists since F is transverse to {0} in R× I) such



32 A COVARIANCE FORMULA FOR TOPOLOGICAL EVENTS OF SMOOTH GAUSSIAN FIELDS

that U ◦ h−1 is the projection on the last two factors. Note that U−1(0) = {(x, t) ∈ M × I :
(ut(x), t) = (0, 0)} = u−1

0 (0)× {0}. In particular, the map

(B ∩ u−1
0 (0))× I → B × I , (z, t) 7→ (ft(x), t) := h−1((x, 0), 0, t)

defines an isotopy of u−1
0 (0) in B such that for each t ∈ I, ft(u

−1
0 (0) ∩ B) = u−1

t (0) ∩ B. Since

it is constructed from h it extends to an isotopy of a tubular neighbourhood of u−1
0 (0) in B

that preserves strata of F . By Corollary 1.4 of [17] (and its extension provided in Section 7
of the same article), there exists a continuous isotopy B × I → B × I (x, t) → (Φt(x), t) such
that for each t ∈ I, Φt is a stratified homeomorphism of B and Φt ◦ f0 = ft. In particular,
Φt(u

−1
0 (0) ∩ B) = u−1

t (0) ∩ B for each t ∈ I. Since Φ0 = id, and Φt is continuous in t, we also
have Φ1({u0 > 0} ∩ B) = {u1 > 0} ∩ B and so [{u > 0}]B = [{v > 0}]B. Given that this is
true for all v ∈ U ∩ C2(M), we have shown that equivalence classes for the equivalence relation
generated by the map u 7→ [{u > 0}]B are C2(M)-open. In particular, since DB(C1(M)) is
C1-closed (by Lemma C.1 or just C2-closed by the present argument) each topological class in
C2(M) \ DB(C2(M)) must be a union of connected components of C2(M) \ DB(C2(M)) and
the proof is over. �

5.3. Approximation results. To deduce Theorem 2.14 from Proposition 3.9, we approximate
the field f by a sequence of fields (fk)k∈N taking values in finite-dimensional subspaces (Vk)k∈N
of C2(M). Then, we integrate the result of Proposition 3.9 and pass to the limit.

In this subsection, we first show the existence of an approximating sequence in a general
setting (see Lemma 5.9), and then state the abstract continuity lemma for expectations (see
Lemma 5.10) which we use to show the convergence of the terms in Proposition 3.9.

Lemma 5.9 (Existence of finite-dimensional approximations). Fix l ∈ N and let f be an a.s. C l

Gaussian field on a smooth manifold M of dimension d. Let V ⊂ C l(M) be a linear subspace
of C l(M) such that f belongs a.s. to V . Then the following holds:

(1) There exists a sequence (Vk)k∈N of finite-dimensional linear subspaces of V and a se-
quence of Gaussian fields (fk)k∈N, all defined in the same probability space as f , that
converges in probability to f in the topology of uniform C l convergence on compact sub-
sets of M , and such that for each k ∈ N, fk ∈ Vk a.s. and fk defines a non-degenerate
Gaussian vector in Vk. If f is centred then the fk can also be chosen to be centred.

(2) Moreover, let W ⊂ V be a finite-dimensional subspace. Then, we may find sequences
(Vk)k∈N and (fk)k∈N as in (1) such that W ⊂ Vk.

Proof. Consider a countable atlas (Uj , φj)j∈N of M . Let J ⊂ N, let η > 0 be a parameter to be
fixed later, and let I ⊂M be a locally finite set such that, for each j ∈ J and z ∈ φj(Uj), there
exists x ∈ φj(I ∩ Uj) for which |z − x| ≤ η. Let ε > 0, fix j ∈ J and let B ⊂ Uj be a compact
subset. Let us prove that there exists η0 = η0(j, B, ε) > 0 such that for all η ≤ η0, the field
fI := E [f | fI ] satisfies

(5.1) P
[
‖f ◦ φ−1

j − fI ◦ φ
−1
j ‖Cl(B) > ε

]
< ε .

Since the seminorms ‖ · ‖Cl(B), where j ∈ N and B ⊂ Uj ranges over the compact subsets of Uj ,

generate the topology of C l(M), repeating the above construction for a sequence (εk)k∈N → 0
yields a sequence (fk)k∈N of fields satisfying (5.1) for ε = εk which proves the first point of the
lemma.

To prove (5.1), fix α ∈ Nd and let g = ∂α(f ◦ φ−1
j ) and gI = ∂α(fI ◦ φ−1

j ). Also, let

N = N(d, l) ∈ N be the number of multi-indices α ∈ Nd such that |α| ≤ l. Observe that, for
each z ∈ φj(B), there exists z ∈ φj(Uj ∩ I) such that |x− z| < η so that

|g(z)− gI(z)| ≤ |g(z)− g(x)|+ E [|g(x)− E [g(z) | f |I ] |] ≤ |g(z)− g(x)|+ E [|g(z)− g(x)|] .
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In particular,

E
[

sup
z∈B
|g(z)− gI(z)|

]
≤ 2E

[
sup

x,y∈B, |x−y|≤η
|g(x)− g(y)|

]
=: 2E [Xη] .

Now, since g is a continuous Gaussian field on B (which is compact), it is a.s. bounded and
the family (Xη)η>0 is uniformly L1 (see for instance [3, Theorem 2.9]). Moreover, since g is
continuous, Xη converges a.s. to 0 as η → 0. In particular, limη→0 E [Xη] = 0. Thus, there exists
ηα = ηα(ε, d, l) > 0 such that for each η ≤ ηα, P [supz∈B |g(z)− gI(z)| > ε] ≤ ε/C. The estimate
(5.1) follows by taking a union bound of the probability of the events supz∈B |g(z) − gI(z)|
where α ∈ Nd ranges over all the multiindices such that |α| ≤ l, and will be valid for η ≤ η0 =
min|α|≤l ηα.

Consider now a sequence (ηk)k∈N of positive real numbers converging to 0 and (Ik)k∈N an
increasing sequence of finite subsets of M , such that for each k ∈ N and j ≤ k, φj(Ik ∩ Uj) is
an ηk-net of φj(Uj). For each k ∈ N, let fk = fIk defined as above (with J = [0, k]). Then, for

each j ∈ N and each compact subset B ⊂, by (5.1), limk→∞ ‖f ◦ φ−1
j − fk ◦ φ

−1
j ‖Cl(B) = 0 in

probability so (fk)k∈N converges to f in probability.
We claim that each fk belongs to a finite-dimensional subspace Vk. Indeed, let K be the

covariance of f . By the regression formula (Proposition 1.2 of [3]), for each k ∈ N, fk is a
random linear combination of the functions K(·, x) for x ∈ Ik and of E[f ] the mean of f . Hence
it belongs to the finite-dimensional subspace Vk generated by these functions. Moreover, since
fk is the mean of a random variable with values in V , we have Vk ⊂ V and if f is centred, by
construction, fk is centred. This concludes the proof of the first statement.

For the second statement, take (fk)k∈N as above, let (h1, . . . , hm) be a basis of W , and let
ξ1, . . . , ξm be independent standard normals. Then, clearly, 1

k (ξ1h1 + · · ·+ ξmhm) converges

to 0 in probability in C l(M), so that replacing fk by

fk +
1

k
(ξ1h1 + · · ·+ ξmhm)

yields the required result. �

Next we state without proof an abstract continuity lemma for expectations; this can be
considered a simple variant of the standard Portemanteau lemma.

Lemma 5.10. Let (X,Y ) and (Xk, Yk)k∈N be random variables with values in R×E, where E is
a Polish space. Assume that the sequence (Xk, Yk)k∈N converges in law towards (X,Y ), and that
the sequence (Xk)k∈N is uniformly integrable. Let A ⊂ E and assume P [X 6= 0, Y ∈ ∂A] = 0.
Then

lim
k→∞

E
[
Xk1[Yk∈A]

]
= E

[
X1[Y ∈A]

]
.

5.4. Completing the proof of Theorem 2.14. To complete the proof of Theorem 2.14 we
assemble the previous elements together, namely we:

• Approximate f by a sequence of finite-dimensional fields (fk)k∈N with nice regularity
and non-degeneracy properties constructed using Lemma 5.9.
• Use Lemma 5.7 to encode the topological events A1 and A2 via the discriminant.
• Apply Proposition 3.9 to the fields fk and the events encoded by the discriminant.
• Pass to the limit in each term of the formula given by Proposition 3.9, using Lemmas

5.1 and 5.10.
• Show that the two definitions of pivotal events coincide using Lemma 5.1.

Proof of Theorem 2.14. Recall that (B1,F1) and (B2,F2) are stratified sets of M , and A1 and
A2 are topological events on B1 and B2 respectively. By Lemma 5.7, for each i ∈ {1, 2} there

exists Âi ∈ σ̂discr(Bi, C
2(M)) such that P[f ∈ Âi4Ai] = 0, and so it will be sufficient to work

with the events Âi ∈ σ̂discr(Bi, C
2(M)).
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Let us first define the approximating sequence of fields. By Remark 3.8, there exists a finite-
dimensional subspace W ⊂ C2(M) satisfying Conditions 3.6 and 3.7 that contains the constant
functions. Hence we may define a sequence of Gaussian fields (fk)k∈N, taking values in a se-
quence of finite-dimensional linear subspaces W ⊂ Vk ⊂ C2(M), that satisfy all the properties
guaranteed by Lemma 5.9 (setting ` = 2, and so in particular the fk converge in probability in
the topology of uniform C2 on compact sets). Since W satisfies Conditions 3.6 and 3.7 so does

each Vk, and so Proposition 3.9 applies to the sets Âi,k = Âi ∩ V for i ∈ {1, 2} and the field fk.
Next, recall that f1 and f2 denote independent copies of f , and let (f1

k )k∈N and (f2
k )k∈N

be independent copies of (fk)k∈N, with f1
k converging to f1 and f2

k converging to f2 (i.e. in

C2). Similarly, recall that ft denotes the interpolation (f1
t , f

2
t ) = (f1, t(f1 − µ) +

√
1− t2(f2 −

µ) + µ), and define for each k ∈ N the interpolation ft,k = (f1
t,k, f

2
t,k) analogously. Applying

Proposition 3.9 we have, for each k ∈ N and t ∈ [0, 1),

P
[
ft,k ∈ Â1,k × Â2,k

]
− P

[
f0,k ∈ Â1,k × Â2,k

]
(5.2)

=
∑

F1∈F1, F2∈F2

∫ t

0

∫
F1×F2

Kk(x1, x2)× Λk(s;x1, x2)γs,k;x1,x2(0) dvF1(x1)dvF2(x2)ds,

where Λk(s;x1, x2) equals
(5.3)

Es;x1,x2
[
σ(f1

s,k, f
2
s,k)1P̃ivx1 (Â1,k)×P̃ivx2 (Â2,k)

(f1
s,k, f

2
s,k)|det

(
Hx1f

1
s,k|F1

)
||det

(
Hx2f

2
s,k|F2

)
|
]
,

and where Kk is the covariance of fk, and γs,k;x1,x2 is the density of

(f1
s,k(x1), dx1f

1
s,k|F1 , f

2
s,k(x2), dx2f

2
s,k|F2)

in orthonormal coordinates (recall that the subscript s;x1, x2 in the expectation denotes condi-
tioning on this vector vanishing).

Let us compute the limits of both sides of (5.2) as k →∞, beginning with the left-hand side.

Notice that for each t ∈ [0, 1) and k ∈ N, f tk ∈ Â1,k × Â2,k if and only if f tk ∈ Â1 × Â2. Since

∂(Â1× Â2) ⊂ DB(C2(M))×C2(M)∪C2(M)×DB(C2(M)), and since f satisfies Condition 2.7,
by Bulinskaya’s lemma (Proposition 1.20 of [3])

P[(f1
t , f

2
t ) ∈ ∂(Â1 × Â2)] = 0.

Thus, by Lemma 5.10 (setting X = 1, Y = (f1
t , f

2
t ), E = C2(M) × C2(M) and A = Â1 × Â2),

we have

(5.4) lim
k→∞

P[ft,k ∈ Â1,k × Â2,k] = P[ft ∈ Â2 × Â2].

We turn now to the right-hand side of (5.2); we begin by computing the pointwise limit
of the integrand, and then apply the dominated convergence theorem. Fix F1 ∈ F1, F2 ∈
F2, x1 ∈ F1, x2 ∈ F2 and s ∈ [0, t] (so that s < 1). Since the Hessians restricted to zero-
dimensional faces have vanishing determinants, we may assume that dim(F1), dim(F2) > 0.
This allows us to assume that x1 6= x2 by removing a set of measure zero from the integral
in (x1, x2). Now, since f sk converges in probability to fs as k → ∞, it also converges in law.
In particular Kk(x1, x2) converges to K(x1, x2) and γs,k;x1,x2(0) converges to γs;x1,x2(0). To
deal with Λk(s;x1, x2), we note that fs,k converges in law to fs in C2(M) as k → ∞ so that
Kk converges to K in C2(M ×M). Now, since the vector (f1

s (x1), dx1f
1
s |F1 , f

2
s (x2), dx2f

2
s |F2)

is non-degenerate, by the regression formula (Proposition 1.2 of [3]), the law of f conditioned
on this vector vanishing is well-defined and depends continuously in K. Since the covariance
of a field determines its law, we deduce that the sequence of fields (fs,k)k∈N conditioned on
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(f1
s,k(x1), dx1f

1
s,k|F1 , f

2
s,k(x2), dx2f

2
s,k|F2) = 0 converges in law to f with the above conditioning.

We denote the conditional law of these fields by Ps;x1,x2 [. . . ]. By the first statement of Lemma 5.1

Ps;x1,x2
[
ft,k ∈ P̃ivx1(Â1,k)× P̃ivx2(Â2,k)4P̃ivx1(Â1)× P̃ivx2(Â2)

]
= 0

so, if we temporarily set

A = P̃ivx1(Â1)× P̃ivx2(Â2), Xs = Xs(x1, x2) = σ(fs)|det
(
HF1
x1 f

1
s

)
||det

(
HF2
x2 f

2
s

)
|

and

Xs,k = Xs,k(x1, x2) = σ(fs,k)|det
(
HF1
x1 f

1
s,k

)
||det

(
HF2
x2 f

2
s,k

)
|,

we have

Λk(s;x1, x2) = Es;x1,x2 [1A(fs,k)Xs,k(x1, x2)] .

Since under the conditioning fk converges in law to f , and since these are Gaussian fields, the
sequence (Xs,k(x1, x2))k∈N is uniformly integrable (though the bound may depend on s, x1 and
x2). On the other hand, the random variables fs,k and fs take values in the Polish space C2(M).
By the third point of Lemma 5.1, a.s. either the Hessian of one of the f is’s is degenerate, which
implies that either Xs = 0 or ft /∈ ∂A. Moreover, the pair (Xs,k, fs,k) converges in probability
to the pair (Xs, fs). By Lemma 5.10, we have limk→∞ Λk(s;x1, x2) = Λ(s;x1, x2) which is equal
to

(5.5) Es;x1,x2
[
σ(f1

s , f
2
s )1

P̃ivx1 (Â1)×P̃ivx2 (Â2)
(f1
s , f

2
s )|det

(
HF1
x1 f

1
s

)
||det

(
HF2
x2 f

2
s

)
|
]
.

In summary, the integrand of the right hand side of (5.2) converges pointwise to the same
quantity with fs,k replaced by fs everywhere.

To apply the dominated convergence theorem to the right hand side of (5.2), we must find a
uniform L1 bound on the integrand. To bound Λk(s;x1, x2) × γs,k;x1,x2(0) we use Lemma A.4
with Xi

s,k = Hxif
i
s,k, Ys,k = Ys,k(x1, x2) = (f1

s,k(x1), dx1f
1
s,k|Tx1F1 , f

2
s,k(x2), dx2f

2
s,k|Tx2F2) for each

i ∈ {1, 2} and k ∈ N. For any finite-dimensional Gaussian vector X in a space equipped with a
scalar product, let DC(X) be the determinant of the covariance of X in orthonormal coordinates.
The covariances of the coordinates of the Xi

s,k are bounded in terms of derivatives up to order
two in each variable of the covariances Kk; since these are uniformly bounded, there exists a
constant C <∞ for which, for each k ∈ N,

|Λk(s;x1, x2)γs,k;x1,x2(0)| ≤ C√
DC(Ys,k)

.

Next, for i, j ∈ {1, 2} let Y ij
k (xj) = (f ik(xj), dxjf

i
k|TxjFj ) so that, for any j1, j2 ∈ {1, 2}, Y 1j1

k is

independent from Y 2j2
k and

Ys,k = (Y 11
k , s(Y 12

k − E
[
Y 12
k

]
) +

√
1− s2(Y 22

k − E
[
Y 22
k

]
+ E

[
Y 12
k

]
)).

Then, by Lemma A.3, for each s ∈ [0, t],

DC(Ys,k) = DC(Y 11
k , sY 12

k +
√

1− s2Y 22
k )

≥ DC(Y 11
k , sY 12

k ) + DC(Y 11
k )DC(

√
1− s2Y 22

k )

≥ (1− s2)dim(F2)+1DC(Y 11
k )DC(Y 22

k )

= (1− t2)n+1DC(fk(x1), dx1fk|Tx1F1)DC(fk(x2), dx2fk|Tx2F2).

Since (fk)k∈N converges in law to f , and since (f(x), dxf) is non-degenerate for each x ∈ M
(and since B is compact), there exist k0 ∈ N and a constant c > 0 such that for each t ∈ [0, 1),
s ∈ [0, t], x1 ∈ F1 and x2 ∈ F2, as long as k ≥ k0,

DC(Ys,k) ≥ (1− t2)n+1c.
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In particular |Λk(s;x1, x2)γs,k;x1,x2(0)| ≤ Cc−1/2(1 − t2)−(n+1)/2. Hence the integrand in the
right hand side of (5.2) is uniformly integrable, so the dominated convergence theorem applies.

All in all, letting k →∞ in both sides of (5.2) yields

P
[
ft ∈ Â1 × Â2]− P

[
f0 ∈ Â1 × Â2](5.6)

=
∑

F1∈F1, F2∈F2

∫ t

0

∫
F1×F2

K(x1, x2)× Λ(s;x1, x2)γs;x1,x2(0)dvF1(x1) dvF2(x2)ds,

where Λ is defined in (5.5).

Let us now finish off the proof. Fix F1 ∈ F1 and F2 ∈ F2. By the second point of Lemma 5.1,
for each i ∈ {1, 2}, each s ∈ [0, t] and each xi ∈ Fi, a.s. (under the conditioning present in Λ)

det(HFi
xi f

i
s)1P̃ivxi (Âi)

(f is) = det(HFi
xi f

i
s)1Pivxi (Âi)

(f is)

since the only place at which the two pivotal events do not coincide is where the determinant of
the Hessian vanishes. Moreover, Pivxi(Âi) splits as the disjoint union of Piv+

xi(Âi) and Piv−xi(Âi).
All in all, a.s. under the conditioning used in Λ,

σ(f1
s , f

2
s )1Pivx1 (Â1)×Pivx2 (Â2)(f

1
s , f

2
s )

=
(
1Piv+

x1
(Â1)×Piv+

x2
(Â2)(f

1
s , f

2
s ) + 1Piv−x1 (Â1)×Piv−x2 (Â2)(f

1
s , f

2
s )
)

−
(
1Piv+

x1
(Â1)×Piv−x2 (Â2)(f

1
s , f

2
s ) + 1Piv−x1 (Â1)×Piv+

x2
(Â2)(f

1
s , f

2
s )
)
.

In particular,
Λ(s;x1, x2)γs;x1,x2(0) = I+

s (x1, x2)− I−s (x1, x2),

where I±s are the signed pivotal intensity functions from Definition 2.11. Thus, (5.6) yields

P[f1 ∈ Â1 × Â2]− P[f0 ∈ Â1 × Â2]

=
∑

F1∈F1, F2∈F2

∫
F1×F2

K(x1, x2)×
∫ t

0

(
I+
s (x1, x2)− I−s (x1, x2)

)
ds dvF1(x1)dvF2(x2).

By the definition of Â1 and Â2 as well as (ft)t∈[0,1],

P[f1 ∈ Â1 × Â2]− P[f0 ∈ Â1 × Â2] = P[A1 ∩A2]− P[A1]P[A2],

so letting t→ 1 yields

P[A1 ∩A2]− P[A1]P[A2] =

∫
B1×B2

K(x1, x2)
(
dπ+(x1, x2)− dπ−(x1, x2)

)
,

where dπσ(x1, x2), for σ ∈ {+,−}, are the signed pivotal measures from Definition 2.11. �

To complete the section, we verify that Corollary 1.1 is indeed a special case of Theorem 2.14:

Proof of Corollary 1.1. Recall that B1 and B2 are closed boxes, F 1
0 and F 2

0 are their interiors,
and F ij , for j ∈ {1, 2, 3, 4} and i ∈ {1, 2}, are their four sides. Together with the corners of the

boxes, which we denote F ij for j ∈ {5, 6, 7, 8} and i ∈ {1, 2}, the set of F ij form a tame (and

affine) stratification of B1. Moreover, the events A1 and A2 are indeed topological events since
stratified isotopies preserve crossings, and so Theorem 2.14 applies to these events, yielding an
exact formula for Cov[A1, A2].

Let us next analyse the terms in this formula. By Remark 2.12, the corners do not contribute
to the sum over strata. Further, by Remark 2.13, since Ai are both increasing events, the sets
Piv−xi(Ai) are empty and so the pivotal measure only contains positively pivotal events. Finally
notice that, for each i = 1, 2, t ∈ (0, 1) and (x1, x2) ∈ (B1, B2), under the conditioning that
x1 and x2 are stratified critical points at level 0 of f1

t and f2
t respectively, the fields f1

t and f2
t
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have a.s. no other critical points at level 0 (by the non-degeneracy assumption). Moreover, if
the Hessians of f it at xi do not degenerate, the xi are non-degenerate stratified critical points
of f it . The pivotal event for Ai is then equivalent to the existence of a path in {f it ≥ 0} joining
‘left’ to ‘right’ and a path in {f it ≤ 0} joining ‘top’ to ‘bottom’, both passing through xi. �

6. Proofs of the applications

In this section we give proofs for the applications that are discussed in Sections 1 and 2, in
particular Theorem 2.15 and Corollaries 1.2, 1.6, 2.17, and 2.19.

6.1. Strong mixing for topological events.

Proof of Theorem 2.15. Let c denote a constant, that can change line-to-line, that depends only
on d. By Theorem 2.14 and the definition of αtop, after replacing K with its absolute value,
and dropping the condition that f1

t and f2
t lie in the pivotal sets, it suffices to show that, for all

t ∈ [0, 1],

(6.1) γt(x1, x2)Et;x1,x2
[
| det(HF1

x1 f
1
t ) det(HF2

x2 f
2
t )|
]

is bounded above by the maximum, over i, j, k ∈ {1, 2}, of

c
E
[
‖HFi

xi f‖
2
op | dxif |Fi = 0

]di√
det(∆(x1, x2))

max
{

1,
(K(xj , xj) det(dxk ⊗ dxkK|Fi×Fi)√

det(∆(x1, x2))

)2di}
.

Let ∆t(x1, x2) denote the covariance matrix of (2.2) and let Ωt(x1, x2) denote the covariance
matrix of (dx1f

1
t |F1 , dx2f

2
t |F2). Applying Lemma A.4 to the matrices X1 = HF1

x1 f
1
t and X2 =

HF2
x2 f

2
t and the vectors Y = (f1

t (x1), f2
t (x2)) and Z = (dx1f

1
t |F1 , dx2f

2
t |F2), (6.1) is bounded

above by the maximum, over i, j, k ∈ {1, 2}, of

c
E
[
‖HFi

xi f
i
t‖2op | dxif it |Fi = 0

]di√
det(∆t(x1, x2))

max
{

1,
(Var[f jt (xj)]

√
det(Ωt(x1, x2))√

det(∆t(x1, x2))

)2di}
.

Recall that f it is equal in law to f , and that, by Lemma A.5,

det(∆t(x1, x2)) ≥ det(∆1(x1, x2)) = det(∆(x1, x2))

and

det(Ωt(x1, x2)) ≤ det(Ω0(x1, x2)) = Πk=1,2 DC[dxkf |Fk ] ≤ max
k=1,2

DC[dxkf |Fk ]2,

where DC(X) is the determinant of the covariance of X in orthonormal coordinates. Since

Var[f(xj)] = K(xj , xj) and DC[dxkf |Fk ] = det(dxk ⊗ dxkK|Fi×Fi)
2,

we have the desired result. �

Proof of Corollary 1.2. The non-degeneracy condition in the statement of Corollary 1.2 is equiv-
alent to Condition 2.7, and so we are in the setting of Theorem 2.15. First we argue that there
exists constants c1, c2 > 0, depending only on d, κ(0), and the Hessian of κ at 0, such that, if

max
α∈Nd:|α|≤2

sup
x1∈B1,x2∈B2

|∂ακ(x1 − x2)| < c1,

then for any affine sets F1 and F2 the covariance matrix of the Gaussian vector

(6.2) (f(x1),∇f |F1(x1), f(x2),∇f |F2(x2))

has a determinant bounded below by c2. Let Σ1(x1, x2) denote this matrix, and observe that

Σ1(x1, x2) =

[
M11 M12

MT
12 M22

]
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where, by stationarity,

Mii =

[
κ(0) 0

0 HFi
0 κ

]
,

and M12 depends only on the value and second derivatives of κ at x1 and x2 (here HF
0 denotes

the Hessian at the point x in an orthonormal basis of the linear span of F ). The result then
follows by the continuity, on the set of strictly positive-definite matrices, of the determinant
with respect to the entry-wise sup-norm.

Combined with the stationarity of f , under the assumption that

max
α∈Nd:|α|≤2

sup
x1∈B1,x2∈B2

|∂ακ(x1 − x2)| < c1,

the quantity cF1,F2(x1, x2) in Theorem 2.15 can be bound above by

cmax
i

{
E
[
‖HFi

0 f‖2op | ∇f |Fi(0) = 0
]dim(Fi)

}
,

for some c > 0. Since this is a finite quantity, we have proved the result.
To verify the observation in Remark 1.3 note that we have already established that c1 depends

only on d, κ(0), and the Hessian of κ at 0. Next, since all norms on Rd are equivalent,

E
[
‖HFi

0 f‖2op | ∇f |Fi(0) = 0
]
≤ cd max

j1,j2
E
[
(HF1,F2

0 f)2
j1,j2 | ∇f |Fi(0) = 0

]
,

where cd is a constant depending only on the dimension d. By stationarity, and since conditioning
on part of a Gaussian vector reduces the variance of all coordinates, this is at most

cd max
j1,j2

E
[
(HF1,F2

0 f)2
j1,j2

]
≤ cd max

j1,j2

∂4κ(0)

∂x2
j1
∂x2

j2

.

Finally, applying the Cauchy–Schwartz inequality in Fourier space,

max
j1,j2

∂4κ(0)

∂x2
j1
∂x2

j2

≤ max
j

∂4κ(0)

∂x4
j

and we have the result. �

Proof of Corollary 2.17. Observe that each of fn|B1∪B2 satisfies Condition 2.7, since B1 ∪ B2

does not include antipodal points. Note also that a condition analogous to (1.4) holds; more
precisely, as n→∞,

sup
x1∈B1,x2∈B2

‖(Kn(x1, x2), dx1Kn(x1, x2), dx2Kn(x1, x2), dx1 ⊗ dx2Kn(x1, x2))‖∞ → 0,

which, as in the proof of Theorem 2.15, implies that, as n→∞,

sup
x1∈F1,x2∈F2

∣∣∣det(∆1(x1, x2))

det(∆0(x1, x2))
− 1
∣∣∣→ 0,

where ∆t(x1, x2) is the covariance matrix, for the field fn, that is defined in the proof of Theo-
rem 2.15 (note that we have omitted the dependence on n in the notation). Observe also that
the scale sn = 1/

√
n at which the Kostlan ensemble converges to a local limit is a polynomial,

and so all derivatives of Kn on the diagonal (x, x) grow at most polynomially, uniformly over x.
Along with the discussion in Remark 2.16, we deduce that

sup
F1∈F1,F2∈F2

sup
x1∈F1,x2∈F2

cF1,F2(x1, x2)

grows at most polynomially as a function of n, where cF1,F2(x1, x2) is the constant appearing in
Theorem 2.15 applied to fn (again we omit the dependence on n in the notation). Since on the
other hand

sup
x1∈B1,x2∈B2

|Kn(x1, x2)|
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decays exponentially in n (recall that B1 and B2 are contained within an open hemisphere), we
deduce the result from Theorem 2.15. �

6.2. Lower concentration for topological counts. Our proof of the lower concentration
results in Corollaries 1.6 and 2.19 essentially follows the proof of [44, Theorem 1.4]. We make
use of the following simple lemma:

Lemma 6.1. Let Bi ⊂ M be a sequence of disjoint stratified sets, and let Ai ∈ σtop(Bi) be
topological events such that supi P[Ai] < h < 1. Then

|P[∩iAi]−ΠiP[Ai]| ≤
1

1− h
sup
n∈N

αtop

(
Bn,∪j>nBj

)
.

Proof. By the definition of αtop

|P (An ∩ (∩j>nAj))− P(An)P(∩j>nAj)| ≤ αtop

(
Bn,∪j>nBj

)
.

Iterating this inequality for n = 1, 2, . . . and using that P(An) < h we get the upper bound

(1 + h+ h2 + . . .)× sup
n∈N

αtop

(
Bn,∪j>nBj

)
,

which is equal to the desired upped bound. �

Proof of Corollary 1.6. First observe that we may assume the infimum in (1.8) is eventually
attained in the set r ∈ [gs, s/gs] for some function gs → ∞ as s → ∞, since otherwise the
right-hand side of (1.8) is bounded from below, and we may then choose c1 > 0 large enough so
that (1.8) holds trivially.

Fix ε > 0, a function gs ∈ (0,
√
s) such that gs → ∞, and a mesoscopic parameter gs <

r < s/gs. Let B0 denote the unit cube, considered as a stratified set via its collection of
generalised faces of all dimensions. Consider placing (Vol(B) + o(1))(s/r)d disjoint translations
of rB0 inside sB , and let Mi denote these mesoscopic cubes. By the super-additivity of N , if
N(sB)/sd ≤ (cN − ε)Vol(B), then there exist at least εVol(B)/(2cN − ε) × (s/r)d mesoscopic
cubes Mi such that N(Mi)/r

d ≤ cN − ε/2. If this holds, then we can also find at least ν(s/r)d

mesoscopic cubes Mi with this property that are separated by a distance r, where

ν = cd ×
εVol(B)

2cN − ε
,

and cd > 0 is a constant that depends only on the dimension.
By stationarity and the law of large numbers (1.7), for each h ∈ (0, 1)

P[N(Mi)/r
d ≤ cN − ε/2] < h

eventually as s → ∞. Hence, by Lemma 6.1, for every choice of ν(s/r)d mesoscopic cubes Mi

which are r-separated, the probability that N(Mi)/r
d ≤ cN − ε/2 for all of them is at most

hν(s/r)d +
1

1− h
αr,s,

where αr,s = maxn αtop(Mn,∪i>nMi). There are at most 2(Vol(B)+o(1))(s/r)d ways to choose cubes
Mi, hence by the union bound

P
[
N(sB)/sd ≤ (cN − ε)Vol(B)

]
≤ 2(Vol(B)+o(1))(s/r)d

(
hν(s/r)d +

1

1− h
αr,s

)
.

Let F1 and F2 be the standard stratifications of Mn and ∪i>nMi. Clearly, there is a constant
c > 0 which depends on the dimension only, such that |F1| ≤ c and |F2| ≤ cν(s/r)d. In both
stratifications the strata with the largest volume are interiors of mesoscopic cubes that have
volume rd. By Corollary 1.2 this implies that there is a constant c1 > 1 such that

αr,s ≤ c1r
dsdκ̄(r).
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Combining these estimates, taking cB = 2 log 2Vol(B) and choosing h small enough, we see that
for every C > 0

P
[
N(sB)/sd ≤ (cN − ε)Vol(B)

]
≤ c1

(
e−C(s/r)d + ecB(s/r)drdsdκ̄(r)

)
,

provided s is large enough. This proves the result for r ∈ [gs, s/gs]. As mentioned in the
very beginning of the proof, by choosing sufficiently large c1 we can extend the estimate to all
r ∈ [0, s]. �

Proof of Corollary 2.19. This follows closely the proof of Corollary 1.6. We first treat the case
that B is contained in an open hemisphere. Equip Sd with a marked pole x0, and for r ∈ (0, 1] let
rB0 denote the symmetric spherical cap centred at x0 with volume rd, considered as a stratified
set via the stratification FB = {int(B0), ∂B0}. Fix ε > 0 and a function gn such that gn →∞ as
n → ∞. Define a mesoscopic scale gn/

√
n < r < 1/gn and consider placing (Vol(B) + o(1))/rd

disjoint copies of rB0 inside B . Following exactly the proof of Corollary 1.6, we deduce the
existence of c1, c2 > 0 such that

P[N(B)/nd/2 ≤ (cN − ε)Vol(B)] ≤ c1(e−c2r
−d

+ αr,n),

where αr,n denotes the supremum of α-mixing coefficients αtop(B1, B2) among all pairs of disjoint
stratified sets B1 and B2 contained in B and separated by a distance at least r. By Theorem 2.15
(see also the proof of Corollary 2.17), there exist k, c3, c4 > 0 such that

αr,n ≤ c3n
ke−c4r

2n.

Setting r = n−1/(2+d) yields the desired bound.
In the general case, we simply choose a finite number of disjoint stratified sets Bi that are each

contained within an open hemisphere. Since by super-additivity N(B)/nd/2 ≤ cNVol(B) − ε
implies that N(Bi)/n

d/2 ≤ cNVol(Bi)−ε/k for some Bi, the argument goes through in this case
as well. �

6.3. Decorrelation for topological counts. Corollary 2.20 is a direct consequence of the
following general result, applied to the random variables X = N(B1) and Y = N(B2):

Proposition 6.2 (See [24, Theorem 17.2.2]). Let X and Y be random variables and define the
α-mixing coefficient associated to their σ-algebras

α(X,Y ) = sup
A∈σ(X),B∈σ(Y )

|P[A ∩B]− P[A]P[B]|.

Suppose further that

E[X2+δ] < c and E[Y 2+δ] < c

for positive constants δ, c > 0. Then

|Cov(X,Y )| ≤ 8c2/(2+δ)α(X,Y )2/(2+δ).

Appendix A. Gaussian computations

In this section we gather results about finite-dimensional Gaussian vectors. If X is a Gaussian
vector in finite-dimensional vector space equipped with a scalar product, let DC(X) be the
determinant of its covariance.

Lemma A.1. Let X,Y be jointly Gaussian vectors such that Y is non-degenerate. Then
DC(X|Y ) does not depend on Y , and

DC(X,Y ) = DC(X|Y )DC(Y ).

Proof. This is an easy consequence of the Gaussian regression formula ([3, Proposition 1.2]). �
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Lemma A.2. Given two independent Gaussian vectors X and Y of the same dimension,

DC(X + Y ) ≥ DC(X) + DC(Y ).

Proof. In terms of covariance matrices, this amounts to saying that given A,B two symmetric
non-negative matrices of the same size,

det(A+B) ≥ det(A) + det(B),

which follows from the Minkowski inequality. �

Lemma A.3. Let X,Y, Z be jointly Gaussian vectors such that Y and Z have the same dimen-
sion and Z is independent of (X,Y ). Then

DC(X,Y + Z) ≥ DC(X,Y ) + DC(X)DC(Z).

Proof. Let us assume that X is non-degenerate; the general case follows by continuity. By
Lemma A.1

DC(X,Y + Z) = DC(X)DC(Y + Z|X).

Applying Lemma A.2,

DC(Y + Z|X) ≥ DC(Y |X) + DC(Z|X) = DC(Y |X) + DC(Z),

with the final equality since Z is independent of X. Hence

DC(X,Y + Z) ≥ DC(X)DC(Y |X) + DC(X)DC(Z) = DC(X,Y ) + DC(X)DC(Z),

where the equality holds by Lemma A.1. �

Lemma A.4. Let X1 and X2 be respectively d1 × d1 and d2 × d2 random matrices, and let
Y = (Y1, Y2) ∈ R2 and Z ∈ Rd1+d2 be random vectors. Suppose that (Y,Z) is a non-degenerate
Gaussian vector and, conditionally on Z = 0, X1 and X2 have entries that are jointly Gaussian
with Y . Let ϕY,Z denote the density of (Y,Z). Then there exists a constant c > 0, depending
only on d1 and d2, such that

(A.1) ϕY,Z(0)E[|det(X1)det(X2)| |Y = 0, Z = 0]

is bounded above by the maximum, over i ∈ {1, 2}, of

cE
[
‖Xi‖2op |Z = 0

]di√
DC(Y,Z)

max
{

1,
(maxk Var

[
Yk
]√

DC(Z)√
DC(Y,Z)

)2di}
,

where ‖ · ‖op denotes the (L2-)operator norm.

Proof. Let c denote a positive constant, depending only on d1 and d2, that may change from
line to line. In the proof we use repeated the fact that conditioning on part of a Gaussian vector
reduces the variance of all coordinates. By the Cauchy-Schwarz inequality and an elementary
bound on the determinant, (A.1) is bounded above by

c ϕY,Z(0) max
i,j1,j2

E
[
(Xi)

2di
j1,j2
|Y = 0, Z = 0

]
.

Since a normally distributed random variable Z ∼ N (µ, σ2) satisfies

E[Z2di ] ≤ cmax{µ2di , σ2di},

and since the variance of a random variable is less than its second moment,

E[(Xi)
2di
j1,j2
|Y = 0, Z = 0] ≤ cmax

{
E
[
(Xi)

2
j1,j2 |Z = 0

]di , E[(Xi)j1,j2 |Y = 0, Z = 0
]2di}.
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Let ΣY |Z and ΣZ denote the covariance matrices of Y |Z and Z respectively. By conditioning
on Z = 0 and applying Lemma A.1, we have that

ϕY,Z(0) = c
e
− 1

2
E[Y |Z=0]TΣ−1

Y |ZE[Y |Z=0]√
DC(Y |Z)

e−
1
2
E[Z]TΣ−1

Z E[Z]√
DC(Z)

≤ ce
− 1

2
E[Y |Z=0]TΣ−1

Y |ZE[Y |Z=0]√
DC(Y,Z)

≤ c√
DC(Y,Z)

.

Since, moreover,
max
j1,j2

E
[
(Xi)

2
j1,j2 |Z = 0

]
≤ E[‖Xi‖2op |Z = 0],

it suffices to show that

sup
`∈R2

{
E
[
(Xi)j1,j2 |Y − E[Y |Z = 0] = `, Z = 0

]2die− 1
2
`TΣ−1

Y |Z`
}

is bounded above by

cE
[
(Xi)

2
j1,j2 |Z = 0

]di max
{

1,
(maxk Var

[
Yk
]√

DC(Z)√
DC(Y,Z)

)2di}
.

To show this, decompose Σ−1
Y |Z = UTΛ−1U , where U = (uk1,k2) is a 2 × 2 orthogonal matrix

and Λ = Diag(λk) is the 2× 2 diagonal matrix of (positive) eigenvalues of ΣY |Z . Abbreviating
W = (wk) := UCov[(Xi)j1,j2Yk|Z = 0] and replacing ` by U`, by the Gaussian regression formula
([3, Proposition 1.2]) we have that

sup
`

{
E
[
(Xi)j1,j2 |Y − E[Y |Z = 0] = `, Z = 0

]2die− 1
2
`TΣ−1

Y |Z`
}

= sup
`

{(
E[(Xi)j1,j2 |Z = 0] +W TΛ−1 `

)2di e− 1
2
`TΛ−1`

}
≤ cmax

{
sup
`

{
E[(Xi)j1,j2 |Z = 0]2di e−

1
2
`TΛ−1`

}
, sup

`

{(
W TΛ−1 `

)2di e− 1
2
`TΛ−1`

}}

≤ cmax

{
E[(Xi)

2
j1,j2 |Z = 0]di , sup

`

{(
W TΛ−1 `

)2di e− 1
2
`TΛ−1`

}}
.

Differentiating in `, the maxima of the expression on the right is attained at

` = (`1, `1) =


±
√

2di√
w2

1λ
−1
1 +w2

2λ
−1
2

(
w1, w2

)
, (w1, w2) 6= (0, 0),

(0, 0), (w1, w2) = (0, 0),

and yields a maximum value of

(2di/e)
di (w2

1λ
−1
1 + w2

2λ
−1
2 )di ≤ c

(
max
k

w2
k max

k
λ−1
k

)di
.

Since the eigenvalues of a positive-definite real symmetric matrix are bounded by a constant
times the maximum diagonal entry,

max
k

λ−1
k =

maxk λk
det(Λ)

≤ c
maxk Var

[
Yk |Z = 0

]
det(ΣY |Z)

≤ c
maxk Var

[
Yk
]

det(ΣY |Z)
= c

maxk Var
[
Yk
]
DC(Z)

DC(Y,Z)
,

where in the last step we used Lemma A.1. Moreover, since U has entries bounded above in
absolute value by one (being orthogonal), and by the Cauchy-Schwarz inequality,

max
k
|wk| ≤ c max

k
|Cov[(Xi)j1,j2Yk |Z = 0]| ≤ cE[(Xi)

2
j1,j2 |Z = 0]1/2 max

k
Var
[
Yk
]1/2

.

Combining we have the result. �
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Lemma A.5. Let (Y1, Y2) denote a (d1 + d2)-dimensional non-degenerate Gaussian vector. For

each t ∈ [0, 1], define Y t = (Y1, tY2 +
√

1− t2Ỹ2) where Ỹ2 is a copy of Y2 independent of (Y1, Y2).
Then

DC(Y 1) ≤ DC(Y t) ≤ DC(Y 0).

Proof. Observe that DC(Y t) has the block form[
A tB
tBT C

]
,

where A and C are (strictly) positive-definite. Since A is positive-definite and BC−1BT is
symmetric and positive-definite, there exists a P such that

A = P TP and BC−1BT = P TDP,

where D = Diag((di)i) is a positive diagonal matrix. Hence

DC(Y t) = det(C) det(A− t2BC−1BT ) = det(C) det(P )2 Πi(1− t2di)
which, since di > 0, is decreasing in t ∈ [0, 1]. �

Appendix B. Proof of Piterbarg’s formula

In the proof of Piterbarg’s formula, we will use the classical fact that the density function
ϕ(x; Σ) of a (possibly non-centred) Gaussian vector with covariance Σ satisfies

(B.1)
1

2

∂2

∂x2
i

ϕ(x; Σ) =
∂

∂Σii
ϕ(x; Σ) and

∂2

∂xi∂xj
ϕ(x; Σ) =

∂

∂Σij
ϕ(x; Σ), i 6= j.

Proof of Lemma 2.22. Let (fi)i≥1 and (gi)i≥1 be sequences of smooth compactly supported func-
tions on Rm that converge to 1A and 1B in the sense of tempered distributions. Following the
proof of [39, Theorem 1.4], by writing the derivative with respect to t in terms of derivatives
with respect to the elements of the covariant matrix, and then by using the identity (B.1) and
integrating by parts, we obtain

d

dt
E [fi(Xt)gi(Yt)] =

m∑
k=1

∫
R2m

∂xkfi(x)∂ykgi(y) γt(x, y)dx dy

=

m∑
k=1

∫
R2m

fi(x)gi(y) ∂xk∂ykγt(x, y)dx dy;

(all the other terms disappear since the only covariances that depend on t are Cov(Xt,k, Yt,k) = t).
Passing to the limit as i→∞ gives that

d

dt
P [Zt ∈ A×B] =

d

dt
E [1A(Xt)1B(Yt)] =

m∑
k=1

∫
R2m

1A(x)1B(y)∂xk∂ykγt(x, y)dx dy.

By Gauss’s theorem, applied both in the xk and in the yk variables we have∫
R2m

1A(x)1B(y)∂xk∂ykγt(x, y)dx dy =

∫
∂A×∂B

νA(x)kνB(y)kγt(x, y) dx dy

where νA(x)k is the k-th component of νA(x), and dx on the right-hand side of the equation
is the volume element on ∂A (and similarly for B and y). Since

∑m
k=1(νA(x))k(νB(y))k =

〈νA(x), νB(y)〉,
d

dt
P [Zt ∈ A×B] =

∫
∂A×∂B

〈νA(x), νB(y)〉 γt(x, y)dx dy,

which proves the first part of the statement.
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To prove the last part of the lemma let us consider X to be a translation of the standard
Gaussian vector by µ. Let Y be an independent copy of X. We can define Xt = X and
Yt = t(X − µ) +

√
1− t2(Y − µ) + µ. It is easy to see that these vectors satisfy the assumptions

in the first part of the lemma. Note that in this case Z0 = (X,Y ) and Z1 = (X,X). Integrating
with respect to t from 0 to 1 we have∫ 1

0

∫
∂A×∂B

〈νA(x), νB(y)〉γt(x, y)dx dy dt = P[(X,X) ∈ A×B]− P[(X,Y ) ∈ A×B].

Since P[(X,X) ∈ A × B] = P[X ∈ A ∩ B] and P[(X,Y ) ∈ A × B] = P[X ∈ A]P[X ∈ B], this
proves the second part of the statement. �

Appendix C. On stratified critical points

Here we prove two elementary lemmas about stratified critical points. Recall that M is a
smooth manifold and (B,F) is a stratified set of M .

Lemma C.1. Let (uk, xk)k∈N be a sequence in C1(M)×B converging to a limit (u, x) ∈ C1(M)×
B. Assume that, for each k ∈ N, xk is a stratified critical point of uk. Then x is a stratified
critical point of u.

Lemma C.1 implies that the discriminant DB is C1-closed. Moreover, taking uk = u for all k,
it implies that the set of stratified critical points of u in B is compact.

Proof of Lemma C.1. Without loss of generality, we may assume that there exist F, F ′ ∈ F such
that xk ∈ F for each k ∈ N and x ∈ F ′. If F ′ = F then the sequence (uk|F )k converges to u|F
in C1 so dxu|F = 0 and x is a stratified critical point of u. Otherwise, F ′ < F and dxu vanishes
on TxF |F ′ which contains TxF

′, so x is a critical point of u|F ′ . �

Lemma C.2. Let u ∈ C2(M) and let x ∈ B be a non-degenerate stratified critical point of u.
Then x is isolated in the set of stratified critical points in B.

Lemma C.2 shows that Definition 3.1 is the natural definition of non-degenerate critical points
in the setting of stratified sets.

Proof of Lemma C.2. Let x be a stratified critical point of u belonging to F ′ ∈ F . Assume that
there exists a sequence (xk)k∈N of stratified critical points of u distinct from x converging to x;
let us show that x is degenerate. Without loss of generality, we may assume that there exists
F ∈ F such that, for each k ∈ N, xk ∈ F . If F ′ = F then x is a degenerate critical point of
u|F ′ . Otherwise, F ′ < F and dxu vanishes on TxF |F ′ , in which case x is a degenerate stratified
critical point of u. �
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