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View-Action Representation Learning
for Active First-Person Vision

Changjae Oh and Andrea Cavallaro

Abstract—In visual navigation, a moving agent equipped with
a camera is traditionally controlled by an input action and
the estimation of the features from a sensory state (i.e. the
camera view) is treated as a pre-processing step to perform
high-level vision tasks. In this paper, we present a representation
learning approach that, instead, considers both state and action as
inputs. We condition the encoded feature from the state transition
network on the action that changes the view of the camera, thus
describing the scene more effectively. Specifically, we introduce
an action representation module that generates decoded higher
dimensional representations from an input action to increase
the representational power. We then fuse the output from the
action representation module with the intermediate response of
the state transition network that predicts the future state. To
enhance the discrimination capability among predictions from
different input actions, we further introduce triplet ranking loss
and N -tuplet loss functions, which in turn can be integrated with
the regression loss. We demonstrate the proposed representation
learning approach in reinforcement and imitation learning-based
mapless navigation tasks, where the camera agent learns to
navigate only through the view of the camera and the performed
action, without external information.

Index Terms—Representation learning, triplet ranking loss, N -
tuplet loss, mapless navigation.

I. INTRODUCTION

V ISUAL navigation generates through specific actions new
input data by changing or selecting views in order to

perform, for example, object detection [1], visual categori-
sation [2], [3], or image enhancement [4], [5], [6]. Visual
navigation with a camera-equipped agent has been actively
investigated for data collection [5], [6], [7], manipulation [8],
and autonomous driving [9], [10].

Visual navigation can be map-based and mapless. Map-
based navigation splits the task into two sub-tasks, namely
the reconstruction of the geometry of the environment through
navigable space and obstacles, and the subsequent path plan-
ning to enable navigation [11], [12], [13]. The geometry can
be recovered through structure from motion or simultaneous
localisation and mapping (SLAM) approaches [14], which
require accurate mapping of obstacles and parameter adjust-
ments in different environments. With mapless navigation the
camera agent learns to navigate without reconstructing an
explicit map of the environment. Instead of using explicit
external information such as pre-defined features, a topological
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map, or tracking, the agent implicitly learns from the environ-
ment how to navigate to a goal. Deep neural networks can be
used to learn to navigate using various strategies, such as feed-
forward model [15], reinforcement learning (RL) [7], [16],
[17], [18], [19], [20], or imitation learning (IL) [21], [22]. In
this case, the control heavily depends on the representations
of the input data: the camera agent is trained to perform
actions to reach, from the current camera view (state), the final
goal state. The learned representations play here an important
role and should encode information that is useful for efficient
navigation [23].

While learning methods to control the camera agent has
been thoroughly investigated [24], there is limited understand-
ing on how to design an efficient neural network-based archi-
tecture for the representation from state-action pairs. Generic
Convolutional Neural Network (CNN) architectures, whose
feature representations are simply generated from an input
image only, are usually employed but they do not consider
the joint effect with an input action [7], [16], [17].

To address this limitation, we investigate a deep neural
network that employs an input state-action (view-action) pair
to generate effective representations for mapless navigation,
and validate the proposed network with RL [7], [25] and
IL [26]. We introduce a forward model, that learns a represen-
tation which encodes an input image (state) and an action into
CNNs, to predict the future state from the current state-action
pair. In particular, we present an action representation module
for efficient representation learning. This module expands the
dimensions of an input action to improve the representational
power of the network during training. We use joint regression
and N -tuplet loss functions to predict the future state from
a selected input action (regression loss) while discriminating
predictions from different actions (N -tuplet loss) to encode
meaningful features effectively during training. This paper
substantially extends our previous work [20] with (i) joint
regression and N -tuplet loss functions that generalise the
joint regression and triplet ranking loss functions; (ii) variants
of fusion approaches that combine the action representation
module and the state-transition network; and (iii) qualitative
and quantitative comparisons under RL and IL-based mapless
navigation tasks.

II. RELATED WORK

A. Visual Navigation with and without External Information

Traditional map-based visual navigation methods use ex-
plicit information of the environment such as a global map
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or a known target position [27]. A camera agent can navi-
gate towards a known target position using obstacle avoid-
ance [28]. Navigation can also be performed based on the
optimal planned path to reach the goal [29], [30]. Alter-
natively, navigation can be performed by reconstructing a
map during exploration. Topological mapping estimates the
global map from image collections obtained from a camera
agent. Feature matching is generally performed between image
pairs to obtain correspondences that can be used to estimate
relative geometric information [31], [32]. Recently, map-based
approaches have exploited deep neural networks to capture the
environment using a spatial memory and then planning paths
given partial information [33].

Mapless navigation employs the representational power of
deep neural networks to learn a model that implicitly encodes
obstacles and path to achieve the goal. Learning feed-forward
CNN is one approach that trains the model with a collected
supervised dataset [15]. The model learns to classify the
optimal direction at each location to reach the target. Mapless
navigation requires learning relationships between actions and
the environment using for example RL and IL. An RL-based
approach implicitly learns a policy to generate a decision to
move towards the goal by trial-and-error. The model explores
the environment and learns a policy by receiving an extrinsic
reward signal when the agent achieves the goal. A brute-
force approach to solve this problem is to learn a policy
that depends on the current state [25] or one with the goal
state [16]. However, the agent hardly receives the extrinsic
reward as the final goal is generally far away from the
initial state (sparse extrinsic rewards problem). To address
this problem, intrinsic rewards reshape the original reward
function to encourage the agent to explore the environment
by seeking unseen areas rather than previously visited ones.
A visitation count approach maximises the number of reaching
less-frequently visited states [34], [35], [36]. An alternative is
to maximise the information gain for the agent and to reduce
the uncertainty about the environment [37], [38]. Curiosity-
driven exploration measures the error between predicted and
real future states: a high error is interpreted as an unseen
area that cannot be predicted accurately, thus enabling to be
exploited as the intrinsic reward [7], [39], [40], [41].

Another issue is the investigation of the network architecture
for handling an action or language-based instruction beyond
an input image. Since the image and another input are used to
control the camera agent, designing an effective fusion model
is an important problem [20], [42], [43]. An early fusion ap-
proach for goal directed navigation fuses the goal information
with the input state followed by a convolution process to
generate the feature for navigation [42]. Alternatively, a gated
attention architecture fuses language-based instruction with the
input state [43]. Moreover, an action representation module
can be used to increase the dimension of the input action
represented as a one-hot code to increase the representation
power of the network [20].

B. Representation Learning for Camera Control
Representations to control a camera agent can be learned

with forward or inverse dynamics models [24].

A forward model commonly learns temporal dynamics
where the future state is predicted from the current state
and action. This approach can be regarded as predicting
video sequences. The general idea of the forward model is
to encode information that is helpful to predict the future
state using the current state and action. The input image is
mapped to a high-level feature that encodes the future state,
and then an auto-encoder reconstructs the future state on
the image space [34], [44], [45], [46]. Examples include an
action conditional auto-encoder that predicts the next state of
a game [34]; an auto-encoder that generates a learned low-
dimensional embedding of images that enables control in a
locally linear latent space [44]; a variational auto-encoder that
generates the representation from a sensor input image to
manipulate an object [45]; and an auto-encoder with a skip
connection that predicts the future state for the network to
encode information that is useful to perform a target task [46].

An inverse model learns to predict the action that should be
performed to move from the current to the future state [47].
The inverse model is generally incorporated with a forward
model: the inverse model supervises the forward model to
encode information that helps determine the action, providing
a stabilising effect on the dynamics model [7], [20], [48].
The inverse model classifies the action that lies on a lower
dimensional space and can, therefore, help overcome the
problem of predicting the future state from the forward model.
For example, forward and inverse models can be used to learn
how to move objects to target locations by poking [48] or to
visually explore simulation environments [7], [20].

III. VIEW-ACTION REPRESENTATION LEARNING

A. Problem Description

Let a moving camera agent explore the environment over
some discrete time steps. At each time step t, the agent re-
ceives a state, st ∈ RH×W , the image of H ×W size from its
first-person view, and selects an action, at ∈ RN , with policy,
π : st → at, from a set of possible N actions. The action, at,
is commonly represented as a one-hot N -dimensional code.1

After executing the action, the agent receives the next state,
st+1.

We aim to produce a D–dimensional representation,
φ (st) ∈ RD, of the state, st, for efficient first-person-vision
mapless navigation, which can be employed to the policy, π,
rather than naı̈vely using a raw input, st. During representation
learning by exploring the environment, the agent may receive
a reward, rt, which supervises the camera agent to reach the
target. The reward is an optional value to the representation
learning for visual navigation, which can be employed as direct
supervision to the final target (extrinsic reward) or as a self-
supervision for the model to encode meaningful information
for achieving the final target (intrinsic reward).

B. Forward Model

Given a state-action pair, (st, at), at time t, the forward
model, f (·), predicts st+1 as a high-level feature representa-

1These codes describe categorical data as numerical ones, e.g. (1,0,0),
(0,1,0), (0,0,1)
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Fig. 1. (a) Mapless visual navigation of a camera agent that generates action at with an encoded feature, φ (st), from the current state, st. The state st is
encoded to a high-level feature, φ (st), that contains meaningful information for navigation. The generated feature, φ (st), is then employed as input to the
policy network, which includes a long short-term memory (LSTM) network to determine an action of the agent, at, based on the temporal history. The agent
then moves based on the determined action, at, and acquires the next state, st+1, from the environment. (b) Concurrently, given st, st+1, and at at each
step, the forward and inverse models learn to predict the future state, φ̄ (st+1), and classify the performed action, āt, respectively.

tion, φ̄ (st+1) ∈ RD, to constrain the state transition and to
encode information that relates to the task (see Fig. 1(b)):

φ̄ (st+1) = f (st, at; θA, θS) , (1)

where the network parameters, θA and θS , are learned for the
action representation module and the state transition network,
respectively.

The proposed action representation module consists of three
deconvolutional layers with nonlinear activations (Exponential
Linear Unit or ELU) [49]. The input action at, represented as
a one-hot code, passes through three deconvolutional layers
and ELUs to map a single input to multiple outputs. Then
the output of the action representation module is fused with
an intermediate response of the state transition network and
fused to predict the state in the higher dimensional feature
space, φ̄(st+1), which is more expressive for training. Fig. 2
compares the architectures of the conventional and proposed
forward models. The proposed model (see Fig. 2(b)) decodes
an action with the one-hot code to a feature map with increased
dimension in height, width, and depth. The decoded feature
is then fused with the intermediate feature from the state-
transition network. The estimated feature in (1) considerably
differs from previous works (Fig. 2(a)) that represented an
input action as a one-hot code that was simply concatenated
with the response from the fully-connected (FC) layers of the
state transition network [7], [17], [26], [48], [50].

To learn the forward model, we minimise the loss function,
LF :

LF = LFR
+ γpLFp

, (2)

where LFR
is a regression loss, p ∈ {T,N}, and γp controls

the effect of a triplet ranking loss, LFT
(or an N -tuplet loss,

LFN
).

The regression loss function, LFR
, is commonly used to

minimise the prediction error:

LFR

(
φ̄ (st+1) , φ (st+1)

)
=
∥∥φ̄ (st+1)− φ (st+1)

∥∥2
2
, (3)

where φ (st+1) is the feature representation from the image
(state), st+1. LFR

ensures that the predicted state from an
input state-action pair is close to the future state. As the state
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Fig. 2. Comparison between (a) the conventional forward model and (b)
our models with different fusion methods (in F): concatenation (in C) and
gated fusion. The proposed models, which consist of a state transition network
combined with an action representation module, estimates the feature of the
(future) state φ̄ (st+1) from an input state-action pair (st, at). The one-
hot code of an input action passes through three deconvolution (Deconv)
layers with Exponential Linear Unit (ELU) to generate decoded responses
that are then fused to an intermediate response of the state transition network.
The fused responses estimate the feature of the future state after subsequent
convolutions (Conv) and fully connected (FC) layers.

prediction without any actions is the current state itself, st+1

can be encoded into a feature representation as:

φ (st+1) = f (st+1, at+1 = ∅; θA, θS) , (4)

where at+1 = ∅ denotes no action (no-op).
Although using only LFR

in (3) can provide satisfactory
performance, we extend it to consider negative samples,
predictions from a current state with other actions, together
with the positive sample, φ (st+1). Based on the intuition that
the state-transition network should encode a correct feature
and keep predictions from other action different, we enhance
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training and the localisation ability with a triplet ranking loss
and a N -tuplet loss. These loss functions penalise negative
features while maintaining the property of LFR

.
The triplet ranking loss function [20], [51], LFT

, pushes
φ̄ (st+1) to be far from a prediction from st with one of
different N−1 input actions from the current action at, which
we define as φ̄

(
s̃it+1

)
, with i = 1, ..., N−1, while maintaining

the property of (3), in the form:

LFT

(
φ̄ (st+1) , φ (st+1) , φ̄

(
s̃it+1

))
= max

{
0,m+∥∥φ̄ (st+1)− φ (st+1)

∥∥2
2
−
∥∥φ̄ (st+1)− φ̄

(
s̃it+1

)∥∥2
2

}
,

(5)

where m is a margin. Here an action, different from the current
action at, is randomly selected.

The triplet ranking loss function samples one action among
the N − 1 remaining ones, as shown in Fig. 3, thus making
training difficult [20]. In fact, it is difficult to exploit the
process of pushing φ̄ (st+1) far from predictions from st with
N − 1 different actions, φ̄

(
s̃1t+1

)
, φ̄
(
s̃2t+1

)
, ..., φ̄

(
s̃N−1
t+1

)
, at

the same time.
To address this limitation, we adopt an N -tuplet loss func-

tion [53] in the form:

LFN

(
φ̄ (st+1) , φ (st+1) , {φ̄

(
s̃it+1

)
}N−1
i=1

)
=

log

(
1 +

N−1∑
i=1

exp
(
φ̄ (st+1)

T
φ̄
(
s̃it+1

)
− φ̄ (st+1)

T
φ (st+1)

))
,

(6)
where φ̄

(
s̃it+1

)
denotes the prediction from st and one of

N − 1 remaining actions. The N -tuplet loss function enables
the network to discriminate between N − 1 predictions from
remaining actions and the prediction from the selected input
action, as shown in Fig. 3. As the training proceeds, the
distance between φ̄ (st+1) and φ (st+1) becomes closer, unlike
the distance between φ̄ (st+1) and φ̄

(
s̃it+1

)
is small in the

observation (image) space, because they originate from the
same input image st.
LFN

in (6) can be considered as a classification problem:
maximising the probability for φ̄ (st+1) to be categorised into
φ (st+1):

log

(
1 +

N−1∑
i=1

exp
(
φ̄ (st+1)

T
φ̄
(
s̃it+1

)
− φ̄ (st+1)

T
φ (st+1)

))

= − log
exp

(
φ̄ (st+1)

T
φ (st+1)

)
exp

(
φ̄ (st+1)

T
φ (st+1)

)
+
∑N−1
i=1 exp

(
φ̄ (st+1)

T
φ̄
(
s̃it+1

)) ,
(7)

where the positive future prediction φ̄ (st+1) can be considered
as a feature vector, and φ (st+1) and φ̄

(
s̃it+1

)
as weight

vectors. LFN
makes φ̄ (st+1) closer to φ (st+1) while other

φ̄
(
s̃it+1

)
become negative samples.

In the training procedure, the parameters from the action
representation module in the forward model are implicitly
learned from an input action, while there is no explicit
loss function related to the module. In summary, the action
representation module derives high dimensional features from
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Fig. 3. Effect of the N -tuplet loss function for learning the forward model.
From (a) to (b): the N -tuplet loss aims to encode φ̄ (st+1) and φ (st+1)
close in the prediction feature space, while pulling the predictions from all
remaining actions, φ̄

(
s̃it+1

)
(gray circles), away from φ̄ (st+1). The N -

tuplet loss is a generalisation of the triplet ranking loss, where only one out
of all remaining actions is sampled as φ̄

(
s̃it+1

)
.

a simple one-hot code, producing more effective feature repre-
sentations to predict the future state from the forward model.

C. Fusion

We consider two different methods, namely concatenation
and gated fusion, to combine the responses from the action
representation module with the state-transition networks.

The decoded responses of the one-hot code of an input
action can be concatenated to an intermediate response of
the state transition network as shown in Fig. 2(b). The con-
catenated responses estimate the feature of the future state
after subsequent convolutions (Conv) and fully connected (FC)
layers.

We further present a gated fusion approach [54] to combine
the action representation with the state-transition network
effectively, which thus can be easily adapted to other pre-
trained models. As shown in Fig. 2(b), the responses from
the action representation module are element-wise multiplied
to the responses from the intermediate layer from the state-
transition network. This enables the interaction between the
decoded action representation and the state representation.
Unlike concatenation [20], the multiplication is performed
channel-wise, thus fusion does not increase the size of the
responses. Table I summarises the detailed architectures.

D. Inverse Model and Policy Network

It is worth noting that the relationship between forward and
inverse models is important: the inverse model can provide
supervision to learn representations that the forward model
regularises by learning to predict st+1 [7], [48]. The inverse
model learns to recognise an actual action, at, from the input
states, st and st+1, which explains the transition of st into
st+1 [24].

Learning the inverse model can impose constraints on the
encoded representation to be able to efficiently predict actions.
We employ the inverse model that generates a predicted action,
āt, to change from φ (st) to φ (st+1) as follows [7], [20]:

āt = g (φ (st) , φ (st+1) ; θI) , (8)

where θI denotes the network parameters of the inverse model.
As shown in Table II, the inverse model g (·) concatenates two
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TABLE I
CONFIGURATION DETAILS OF FORWARD MODELS WITH CONCATENATION (FORWARD MODEL-C) AND GATED FUSION (FORWARD MODEL-G), WHICH
CONSIST OF CONVOLUTION (CONV), DECONVOLUTION (DECONV), AND FULLY CONNECTED (FC) LAYERS WITH EXPONENTIAL LINEAR UNIT (ELU).

THE ACTION REPRESENTATION MODULE DECODES THE RESPONSES BY SETTING THE VALUE OF STRIDE TO 2 [52]. THE FILTER SIZE IN THE BRACKETS
REPRESENTS OUTPUT DEPTH, INPUT DEPTH, WIDTH, HEIGHT OF THE FILTER. ‘CONCAT’ AND ‘DOT PROD’ DENOTE CONCATENATION AND DOT PRODUCT,

RESPECTIVELY.

Forward Model-C Forward Model-G
State Transition Network Action Representation Module State Transition Network Action Representation Module

Layer Filter (stride) Layer Filter (stride) Layer Filter (stride) Layer Filter (stride)
Conv1/ELU [32, 1, 3, 3] (1) Deconv1/ELU [4, 4, 3, 3] (2) Conv1/ELU [32, 1, 3, 3] (1) Deconv1/ELU [8, 4, 3, 3] (2)

Conv2/ELU [32, 32, 3, 3] (1) Deconv2/ELU [8, 4, 3, 3] (2) Conv2/ELU [32, 32, 3, 3] (1) Deconv2/ELU [16, 8, 3, 3] (2)

Concat - Deconv3/ELU [8, 8, 3, 3] (2) Dot prod - Deconv3/ELU [32, 16, 3, 3] (2)

Conv3/ELU [40, 40, 3, 3] (1) Conv3/ELU [32, 32, 3, 3] (1)

Conv4/ELU [32, 40, 3, 3] (1) Conv4/ELU [32, 32, 3, 3] (1)

FC1/ELU [256, 288, 1, 1] (1) FC1/ELU [256, 288, 1, 1] (1)

FC2 [D, 256, 1, 1] (1) FC2 [D, 256, 1, 1] (1)

TABLE II
CONFIGURATION DETAILS OF THE INVERSE MODEL THAT CONSISTS OF

FULLY CONNECTED (FC*) LAYERS AND EXPONENTIAL LINEAR UNIT
(ELU). ‘CONCAT’ DENOTES A CONCATENATION OF TWO RESPONSES.

Inverse Model
Action Classification Network

Layer Filter (stride)
Concat -

FC∗1/ELU D × 2D × 1 × 1 (1)

FC∗2 N ×D × 1 × 1 (1)

feature vectors and passes them through the subsequent FC∗1
(D×2D×1×1)2, ELU, and FC∗2 (N×D×1×1) layers. The
loss function, LI (āt, at), is a soft-max as the problem in (8)
generates a discrete action label, which can be considered as
a classification among several possible discrete actions.

Finally, the encoded feature from the forward model, φ (st),
is fed into a policy network, π (·), that consists of a long short-
term memory (LSTM) network, which memorises information
for several timesteps. The LSTM network consists of a mem-
ory cell with D units to process the temporal dependencies
during training [7], [25], [26]. Since the agent can be equipped
with memory of previous states, using the LSTM network is
important for mapless navigation that needs to remember the
previously visited area.

IV. REINFORCEMENT AND IMITATION LEARNING

We integrate the proposed model with two approaches for
mapless navigation, namely RL-based navigation and IL-based
navigation.

A. Reinforcement Learning for Mapless Navigation

In the RL-based navigation, rewards are given when training
the camera agent [7], [20]. The objective of the training is to
maximise the extrinsic reward that is received when the agent
reaches the target.

We additionally exploit two separate FC layers to estimate
the value function and state functions that consist of a cell state
and hidden states for memorising the past steps and generating

2Note that FC* for the inverse model uses different parameters from FC.

the action at. We consider curiosity-driven exploration where
the goal is to optimise the model with additional extrinsic and
intrinsic rewards [7]. The extrinsic reward can be obtained
when the model reaches the target. The intrinsic rewards are
obtained by measuring the prediction error, which encourages
the agent to explore the unseen area. In the end, the intrinsic
rewards relate to the achievement of the final goal.

During training, we optimise the function in the form:

min
θA,θS ,θI ,θP

−Eπ
[∑k

t=0
rt

]
+ βLF + (1− β)LI , (9)

where rt = rextt + rintt , and rextt and rintt are extrinsic
and intrinsic rewards, respectively; and k, which can vary
for each episode but is upper bounded, is the number of
time steps when the agent moved. Eπ is the expectation of
rewards generated by π. The hyper-parameter, β, controls the
weight between the forward and inverse models as the balance
between the two is important to train the model. We employ
LFR

as rintt in [7].

B. Imitation Learning for Mapless Navigation

IL trains a policy to follow an expert (human) demon-
stration, that can be seen as prior information about the
environment provided by human behaviour. Here, the controls
or paths from the expert are provided and the agent then tries to
imitate them by behavioural cloning or inverse reinforcement
learning. Behavioural cloning directly learns a policy through
state-action pairs provided by an expert and without the agent
interacting with the environment during training [55], [56],
[57]. Inverse reinforcement learning learns to estimate a re-
ward function based on state-action pairs from an expert [58].
The reward function is also used to infer an imitation policy
combined with RL [22], [59], [60], [61]. Imitation learning
achieves good performance, but the expert demonstration is
labour intensive, prone to bias, and needed for each new task.
To mitigate the problem that IL is labour intensive, a recent
work proposed imitation of an agent behaviour without any
expert supervision [26], which considers the agent to achieve
the final goal regardless of its intermediate action.

In the integration with IL, we use the output of the LSTM
network directly to estimate the state functions to generate the
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action at. The representation is learned from data collected
offline. The learned model is then transferred to the camera
agent to perform a goal-finding task by providing a target
image as an additional input. We consider zero-shot imitation
where the goal is to optimise the model without expert
supervision [26].

In training with the collected data, the goal of the policy
is to sequentially generate actions conditioned on the current
state, starting from time step t1 to reach the goal observation
at time step tE . In addition to forward and inverse models for
training the agent, the consistency loss [26] is introduced as
follows:

LC

(
φ̂ (st+1) , φ (st+1)

)
=
∥∥∥φ̂ (st+1)− φ (st+1)

∥∥∥2
2
, (10)

where φ̂ (st+1) = f (st, ât; θA, θS) is the predicted repre-
sentation from ât = π (st, stend

; θP ), that aims to generate
sequential actions to reach the goal. The consistency loss is
computed at each time step and jointly optimised with forward
and inverse losses over the whole trajectory during time
steps. Since there is no expert trajectory in this scenario, the
consistency loss helps reach the goal more easily [26]. From
time step t1 to tE , the model is trained with the following loss
functions:

min
θA,θS ,θI ,θP

[∑tE

t=t1
βLF

(
φ̄ (st+1) , φ (st+1) , {φ̄

(
s̃it+1

)
}N−1
i=1

)
+ (1− β)LI (āt, at) + ηLC

(
φ̂ (st+1) , φ (st+1)

)]
,

(11)
where η controls the effect of LC . At each step, the current
state, st, the current action, at, and the goal state, stend

, are
used as inputs for the policy to sequentially generate an action,
ât, with the objective is to move the agent towards the goal.

V. VALIDATION

This section shows how the view-action representation
learning is crucial for different learning approaches to ef-
ficiently achieve the goal of mapless navigation. We use
VizDoom and Gazebo as environments for RL-based and IL-
based mapless navigation, respectively. For a fair comparison,
we follow the same architecture for the state transition network
and inverse model. The state transition network consists of 4
convolution (Conv) layers followed by fully connected (FC)
layers and the inverse model consists of two FC layers. A
nonlinear activation, exponential linear units (ELUs), is added
after each Conv and FC layer except for the last FC output. Our
model additionally takes three deconvolution (Deconv) layers
with ELUs for the Action Representation Module. Table I
shows the details of the network configuration of two forward
models including concatenation (Forward model-C) and gated
fusion (Forward model-G) process. In the experiment, the
number of action is N = 4. These actions are move forward,
turn right, turn left, and no-op. The encoded feature dimension
is D = 256. All agents are trained using images converted to
greyscale and resized to 42×42 pixels [25]. We use the ADAM
solver [62] with initial learning rate 10−4.

TABLE III
SUCCESS RATIOS WITH DIFFERENT FUSIONS AND LOSS FUNCTIONS.

SUCCESS REFERS TO THE AGENT ACHIEVING THE GOAL DURING TRIALS
WITHIN 20M STEPS. THE FIRST AND SECOND BEST RESULTS ARE

REPORTED IN BOLD AND UNDERLINED, RESPECTIVELY.

Model Success ratio (%)

Fusion Loss Dense Sparse Ext. Sparse

C
on

ca
te

na
tio

n

LFR
96.78 ± 17.63 91.33±28.13 87.10±33.51

LFT
8.13 ± 27.33 0.0006 ± 0.00 11.25 ± 3.35

- LFN
2.13 ± 1.33 0.001 ± 0.00 7.25 ± 1.35

LFR
+ LFT

96.06 ± 19.43 94.45 ± 22.87 87.13 ± 33.48

LFR
+ LFN

94.50 ± 22.23 95.52 ± 22.78 88.22 ± 32.22

G
at

ed

LFR
94.25 ± 19.23 89.45 ± 29.09 71.45 ± 45.05

LFT
9.05 ± 26.58 5.54 ± 11.12 8.25 ± 7.13

LFN
1.93 ± 0.93 0.001 ± 0.00 3.25 ± 0.35

LFR
+ LFT

92.74 ± 25.94 91.47 ± 27.92 73.75 ± 44.00

LFR
+ LFN

95.75 ± 20.14 92.58 ± 26.20 87.53 ± 33.03

A. Reinforcement Learning

Let Ours-C-T, Ours-C-N, Ours-G-T, and Ours-G-N be four
combinations of the proposed approach with two fusion meth-
ods (Concatenation, C, and Gated fusion, G) and two additive
loss functions (triplet ranking loss, T, and N -tuplet loss, N).
We compare our models with another self-supervised network,
ICM (Intrinsic Curiosity Module) [7], and a network that
only considers extrinsic rewards in training, A3C (a vanilla
Asynchronous Advantage Actor-Critic) [25]. Our models and
ICM are built on A3C. For a fair comparison, the same
architecture for the state transition network is employed,
except for Ours-C-T and Ours-C-N, which increase the number
of parameters in Conv3 layer to concatenate the response
from the Action Representation Module. Also, our models
additionally increase the number of parameters by adopting the
Action Representation Module. To train the networks, sixteen
workers are used to perform RL following the asynchronous
training protocol in A3C [25].

In the VizDoom MyWayHome environment [63], [64] the
goal is to reach an armour (see Fig. 4). We consider three
settings, namely dense, sparse, and extremely sparse extrinsic
rewards [7] as shown in Fig. 5. With the dense setting, the
agent can randomly spawn one of 17 locations (some of which
are close to the goal). In the sparse and extremely sparse
settings, the agent takes at least 270 and 350 steps (actions)
to reach the goal state, respectively. Episodes are terminated
when the agent reaches the armour or when 2100 time steps
are completed. The agent can perform four discrete actions:
move forward, at = (1, 0, 0, 0); turn right, at = (0, 1, 0, 0);
turn left, at = (0, 0, 1, 0); and no-op, at = (0, 0, 0, 1).
For efficient training, we set the action to be repeated four
times [25]. The total number of steps taken by all workers is
20M, and the value of the hyper-parameter for β is set among
{0.15, 0.18, 0.2} which shows the best result, and γT = 1.0,
m = 3× 10−5 and γN = 0.001.

Note that the objective of the RL-based mapless navigation
is learning to reach the goal efficiently by receiving extrinsic
rewards. We thus show the effectiveness of the proposed model
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Fig. 4. Navigation in the VizDoom environment. Original images are cropped, resized, and converted to grayscale images (in yellow box) for training and
testing. In testing, the agent takes the current state as an input and determines the next action to perform until it reaches the goal or has moved by a maximum,
pre-defined number of steps.

70QMUL     Changjae Oh,       Research Meeting

Dense: Sparse: Extremely Sparse:

Fig. 5. A VizDoom map with spawning points (circle, square, and triangle)
and the goal location (in yellow). In dense setting, the agent can be randomly
spawned from 17 different points. In sparse and extremely sparse settings, the
agent is spawned about 270 and 350 steps away from the goal, respectively.

by presenting the average success ratio within fixed global
steps in Fig. 6 and Table III. Fig. 6 shows that with the
dense setting, all models have good performance, whereas with
sparser rewards the proposed model has good performance
and the performance of the other models degrades. In settings
with sparse and extremely sparse extrinsic rewards, A3C
fails to perform navigation as it has insufficient feedback
to improve itself during training and the policy cannot be
trained efficiently. ICM has good performance with sparse
rewards, but slow convergence in the environment containing
extremely sparse rewards. As the sparsity of the extrinsic
rewards increases, our models generally outperform other
models, indicating effective learning of the features during
exploration.

To investigate the contribution of the components within
the proposed network, we further conduct an ablation analysis
by training the agent with different fusion methods and loss
functions and compute the success rate during 20M total
steps. Note that we use the inverse model for all experiments.
Table III shows a good performance when LFT

or LFN

are additionally used with LFR
. The concatenation approach

generally shows better performance than the gated fusion
approach. LFR

combined with LFN
performs better than the

one with triplet ranking loss LFT
. When the network is trained

only with LFT
or LFN

, the agent is unable to perform the

73QMUL     Changjae Oh,       Research Meeting
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Fig. 6. Extrinsic rewards for an agent with A3C, ICM, and Ours-* in an
environment with (a) dense, (b) sparse, and (c) extremely sparse extrinsic
rewards. Four combinations of our model are evaluated by considering various
options in fusion (concatenation, C, and gated fusion, G) and the additional
loss (triplet ranking loss, T, and N -tuplet loss, N).



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 2020 8

(a) A3C (b) ICM (c) Ours-C-N

Fig. 7. Sample trajectory of (a) A3C (b) ICM (c) Ours-C-N, trained with (top) 8M and (bottom) 20M steps in the VizDoom environment with extremely
sparse rewards. The agent trajectories are presented in yellow lines. The A3C agent cannot reach the goal when it is trained with extremely sparse reward
setting. Both ICM and Ours-C-N agents have good performance with 20M global training steps. However, ICM has slower convergence in training than
Ours-C-N.

(a) Ours-C-R (b) Ours-C-T (c) Ours-C-N

Fig. 8. Confusion matrices of the predicted features generated from the same state with four different actions: no-op, move forward (forward), turn right,
and turn left. Results with (a) Ours-C-R, (b) Ours-C-T, and (c) Ours-C-N.

navigation task, since the LFR
is directly related to the intrinsic

reward, rintt , which should decrease as the exploration is
processed [20].

Fig. 7 shows the trajectory generated with extremely sparse
extrinsic rewards. Each agent is trained with 8M and 20M
global steps respectively in order to demonstrate the effective-
ness of learning representation with respect to the timesteps.
Due to the extremely sparse extrinsic rewards, the A3C agent
has insufficient feedback to improve itself during training. In
fact, the agent fails to perform navigation in both 8M and
20M global training steps, as shown in Fig. 7(a). The ICM
and Ours-C-N agents show good performance when the global
training steps are set to 20M. When the agent is trained with

8M global steps with the setting of extremely sparse rewards,
as shown in Fig. 7 (top), the agent of Ours-C-N still achieves
the goal while others cannot reach the goal, indicating that our
model effectively learns the features during exploration.

Fig. 8 shows the effect of LFT
and LFN

for training the
forward model and compares the predicted feature from the
same state with four different actions. We use a forward
model with randomly initialised parameters, Ours-C-R , Ours-
C-T, and Ours-C-N. We generate φ̄ (st+1) = f (st, at; θA, θS)
in (1) by fixing st while changing at. The similarity between
two features, e.g., φ̄1 (st+1) and φ̄2 (st+1), is measured as
exp

(
−
∥∥φ̄1 (st+1)− φ̄2 (st+1)

∥∥2
2

)
. The result is averaged by
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(a) Goal state (b) Initial state (c) Step 8 (d) Step 12 (e) Step 20

(f) Step 24 (g) Step 25 (h) Step 28 (i) Step 49

Fig. 9. Goal-finding task in Gazebo. Original images are resized, and converted to grayscale (see the yellow square) for training and testing. At test time, the
camera agent takes (a) the goal and (b) current state as inputs, and performs the goal-finding task by exploring the environment. (c-f) The agent first looks
around since there is no overlap between the initial and the goal state. (g-i) Once the goal is observed, the agent moves towards it.

Fig. 10. Goal-finding task in Gazebo with four different spawning points for
the agent.

TABLE IV
THE NUMBER OF SUCCESSES AND AVERAGE NUMBER OF STEPS TO REACH

THE GOAL (IN BRACKETS) FOR IL-BASED MAPLESS NAVIGATION IN
GAZEBO. THE STEPS ARE COUNTED ONLY WITH SUCCESSFUL CASES.

Trial 1 2 3 4

Random Fail Fail Fail Fail
Inverse [47] Fail Fail Fail Fail

ZSI [26] 2/5
(39 steps)

3/5
(49 steps)

2/5
(42 steps) Fail

Ours-C-R 3/5
(66 steps)

3/5
(87 steps)

2/5
(70 steps) Fail

Ours-C-T 2/5
(28 steps)

1/5
(35 steps)

2/5
(107 steps)

1/5
(67 steps)

Ours-C-N 5/5
(44 steps)

4/5
(75 steps)

4/5
(70 steps)

1/5
(70 steps)

using images collected in the VizDoom environment during
navigation. Ours-C-T and Ours-C-N (Fig. 8(b) and Fig. 8(c))
have better discriminative performance between two features
generated from different actions than Ours-C-R (Fig. 8(a)).
The feature prediction of Ours-C-T is biased to the turn right
action and has distinctive low similarities with the feature
predictions from other actions.

B. Imitation Learning

We compare our model, Ours-C-R (the forward model
trained only with LFR

), Ours-C-T and Ours-C-N, with other
approaches, random search, Inv (Inverse model) [47], and ZSI
(Zero-shot Imitation) [26]. Note that ZSI encodes the input
state with the conventional forward model as shown in Fig. 2
and learns to minimise the loss function in (11).

We first collect state-action pairs for every step in a Gazebo
TurtleBot2 environment [65] (see Fig. 10). A turtlebot with
first person view (RGB image) collects an image and action
for each time step. We follow the data collection described
in [26]. During data collection, the agent randomly generates
one action from four available discrete actions (move forward,
turn right, turn left, and no-op). If the agent reaches an object
or the wall, then it moves backward and then turns right or
left by a uniformly sampled angle between 90-270 degrees.
The agent autonomously repeated this process and collected
70K state-action pairs data. In the training phase, we use the
collected data where the goal image is changed every 20 steps
(frames) since no specific goal is set during the training. The
agent thus can imitate the exploratory behaviour with various
goal images.

We test whether the learned agent without any goal or expert
supervision can find a way to reach the target. We provide a
single image of the goal for the agent to find a way to get to
the target, as shown in Fig. 9(a). We place the turtlebot where
there is no overlap between the initial and target state, 20 to 40
steps away from the target. The agent explores the environment
to find the goal and is successful if it stops, within 150 steps,
close to the goal. The stopping criterion for the agent is based
on a normalised l2 distance between the feature representations
of input and goal images. We use the feature generated by φ (·)
in (4). The hyper-parameter β and η in (11) are empirically
both set to 0.1, and γN is set to 0.001.

As the objective is learning to navigate without expert
supervision, we evaluate the number of successes with a fixed
number of trials, i.e. five times, as shown in Table IV. The
agent with random navigation and learned by Inverse [47] fails
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(a) (b)

(c) (d)

Fig. 11. Sample trajectory of Ours-C-N in different locations in the Gazebo environment. The trajectory is colour-coded, starting from blue and ending with
red. The camera agent first looks around until it finds the goal. The agent moves towards to reach the goal, once the goal is observed and stops when it (a-c)
achieves the goal or (d) has completed a maximum, pre-defined number of steps.

(a) Ours-C-R (b) Ours-C-T (c) Ours-C-N

Fig. 12. Confusion matrices of the predicted features generated from the same state with four different actions: no-op, move forward (forward), turn right,
and turn left. Results with (a) Ours-C-R, (b) Ours-C-T, and (c) Ours-C-N.

to achieve the goal. Since the model learned by [47] does not
learn the forward model, information about the surrounding
environment is not encoded in the representation effectively.
ZSI shows good results in terms of the number of steps
as it moves towards the detected goal after looking around.
However, it fails to reach the goal when it is not detected in
the early stages of navigation. The results show that Ours-C-
N outperforms other methods, which suggests that the learned
representation encodes effective information for understanding
the environment.

Fig. 11 shows the trajectory for the goal-finding task per-

formed by Ours-C-N. In the early stage, the agent looks around
to find the goal. Once the goal is detected, as shown in
Fig. 11(a)-(c), the agent moves forward to reach the object.
However, the agent may fail to reach the goal when the
movement is blocked by an obstacle as shown in Fig. 11(d).

Finally, Fig. 12 shows the confusion matrices based on the
predicted features. The result is averaged by using images
collected in Gazebo during navigation by following the same
process as described previously for generating the results in
Fig. 8. In Fig. 12, because training uses a large amount of data
collected offline, it is possible to notice a good performance
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in discriminating other feature predictions. In Fig. 12(b) and
(c), the similarity between no-op and forward is higher than
others, whereas the similarity between turn left and turn right
is the lowest.

VI. CONCLUSION

We proposed a view-action representation learning method
that expands the dimensions of one-hot codes of input actions
and fuses them with a state-transition network. In the context
of mapless visual navigation, we also presented two loss
functions, triplet ranking loss and N -tuplet loss, each of which
can be additionally combined with the regression loss for
effective representation learning. We integrated the proposed
networks trained with the joint loss functions in RL and IL-
based mapless navigation tasks. The validation shows that
the proposed networks have faster training convergence than
previous networks in RL-based mapless navigation tasks. As
future work we will increase the granularity of the camera
control with a larger set of actions and validate the proposed
view-action representation learning method with other robot
types, such as arms and drones.
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