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ABSTRACT 
 

Krum, Brian. Effects of Omega-3 Fatty Acids and Hypoxia on Progesterone Biosynthesis 
and Mitochondrial Morphology in the Corpus Luteum. Unpublished Master of 
Science thesis, University of Northern Colorado, 2020 

 
 
 The corpus luteum is a transient steroidogenic endocrine gland that forms from 

the remnants of the ovulatory follicle. This gland is responsible for the synthesis and 

secretion of the hormone progesterone, which is critical for the establishment and 

maintenance of pregnancy. In a non-pregnant cow, PGF2a is released from the uterus to 

regress the corpus luteum. However, in the case of pregnancy, the embryo must mitigate 

PGF2a synthesis to prevent corpus luteum regression. If the embryonic signal is either 

too late or too weak, uterine PGF2a secretion may result in corpus luteum regression and 

termination of pregnancy. Omega-3 fatty acids from fish byproduct may provide a 

nutraceutical approach to reduce luteal sensitivity to PGF2a, which provides a potential 

solution to early embryo loss.  

 Recent data show that incorporation of omega-3 fatty acids into luteal tissue 

reduces sensitivity to PGF2a. However, mRNA for key genes that regulate progesterone 

synthesis were significantly decreased. It was hypothesized that omega-3 fatty acids may 

allow for a rebound in mRNA or adequate luteal cell protein abundance allowing for 

synthesis and secretion of progesterone following intrauterine infusions of PGF2a. 

Additionally, it was hypothesized that omega-3 fatty acids from fish byproduct affect 

both lipid droplet accumulation and size in bovine luteal tissue and cells, as well as 
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mitochondrial dynamics, providing a lipid rich and healthy environment for steroid 

synthesis following PGF2a infusions and a low oxygen environment.  

 Data from the present study show that fish oil supplementation was luteal 

protective in response to PGF2a infusion. Steady-state mRNA for key genes that regulate 

steroidogenesis was significantly increased at 48 h post PGF2a infusion as compared to 

animals receiving vegetable oil supplementation. Additionally, fish oil supplementation 

in vitro improved luteal cell mitochondrial morphology as compared to control cells in a 

low oxygen environment.  

 In conclusion, supplementation of fish oil improved luteal function during PGF2a 

infusion and hypoxia. Outcomes from these studies may allow for development of novel 

feeding strategies to reduce luteal sensitivity during maternal recognition of pregnancy 

resulting in improved reproductive efficiency in cattle.  
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CHAPTER I 

LITERATURE REVIEW 

Bovine Reproductive Cycle 

 The bovine reproductive cycle is approximately 21 days in length and includes 

estrus, metestrus, diestrus and proestrus (Fields and Fields, 1996). Figure 1 shows relative 

hormone concentrations during different phases of the reproductive cycle. 

Bovine Reproductive Cycle - Estrus 

The cycle begins with estrus which is a short period at the beginning of the cycle 

(Senger, 1997). This stage of the cycle is defined as day 0 and generally referred to as 

“standing heat”. Estrus behavior lasts around 18 hours. It is during this during this short 

window of time that the cow will allow other cows or bulls to mount. A dominant follicle 

growing on the ovary releases a large amount of estradiol into the blood. Estradiol, a 

steroid hormone, acts on a complex neuronal circuit that ultimately allows for a surge of 

GnRH (gonadotropin-releasing hormone) from the hypothalamus. GnRH neurons 

synapse at the median eminence and GnRH is secreted into the portal vessels (Kumar and 

Sharma, 2014). GnRH is transported to the anterior pituitary and binds to high affinity 

receptors expressed on the gonadotrophs that trigger a release of LH (luteinizing 

hormone) and FSH (follicle-stimulating hormone). LH will allow the dominant follicle to 

ovulate, releasing the oocyte from the follicle into the oviduct. Ovulation generally 
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occurs 24 to 30 h after onset of estrus. Estradiol also targets neurons of the limbic system 

to drive estrus behavior.  

Bovine Reproductive Cycle - Metestrus 

 Metestrus is days 1 to 5 of the cycle. During this phase of the cycle, LH 

reprograms cells of the ruptured follicle to undergo a transition of proliferation and 

differentiation into the corpus hemorrhagicum. This is the early development of the 

corpus luteum. During metestrus, progesterone levels begin to become detectable in the 

blood of the animal. As the corpus hemorrhagicum undergoes significant transition, the 

theca and granulosa cells of the ovary (which are the follicular steroidogenic cells that 

synthesize androgens and estradiol) become small and large luteal cells, respectively, 

referred to as luteinization (Alila and Hansel, 1984). In order to sustain rapid cell growth 

of the developing corpus luteum, angiogenesis also occurs during this period (Fields and 

Fields, 1996).  

Bovine Reproductive Cycle - Diestrus 

 Diestrus is approximately days 6 to 16 of the cycle. During this period of the 

cycle, a mature corpus luteum is present on the ovulated ovary. Copious amounts of 

progesterone are secreted from the corpus luteum and is therefore easily detected in the 

blood at this phase, normally between 3-10 ng/mL (Sirois and Fortune, 1990; Baird et al., 

1976). Additionally, the cells of the corpus luteum continue to grow in abundance, which 

is essential to increasing progesterone output. If a pregnancy were to occur, the corpus 

luteum would be advanced enough to produce adequate progesterone to maintain the 

pregnancy (Forde et al., 2009). Progesterone acts on the uterine endometrial glands to 

increase histotroph secretion, proteins that support early embryo development prior to 
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implantation. Additionally, the trophoblastic cells of the embryo release interferon-tau 

(IFN-t). This IFN-t signal prevents release of uterine prostaglandin (PG)F2a and thereby 

prevents regression of the corpus luteum. During the estrous cycle, the cow will exhibit 2 

to 3 waves of follicular growth. The wave of follicular growth that occurs during late 

diestrus will lead to an increase in estradiol. It is this increase in estradiol that is 

responsible for an increase in uterine endometrial oxytocin receptor number that results in 

pulsatile secretion of PGF2a in the non-pregnant cow. 

Bovine Reproductive Cycle - Proestrus 

 Days 17 to 21 of the cycle is defined as proestrus (Senger, 1997). During 

proestrus, regression of the corpus luteum occurs in the non-pregnant cow in a process 

known as luteolysis (Hansel, 1966). To initiate luteolysis, PGF2a is released from the 

uterus in a series of pulses that begin on days 16 to 17 of the cycle (Hansel, 1966). As the 

corpus luteum regresses, progesterone levels begin to decline. With the corpus luteum no 

longer present, blood levels of progesterone remain lower than 1 ng/mL (Assey et al., 

1993). With minimal progesterone negative feedback on the hypothalamus and anterior 

pituitary gland, pulsatile secretion of GnRH increases in frequency (Moenter et al., 1992). 

This stimulates follicular growth resulting in increased estradiol secretion. Once estradiol 

reaches a threshold point, a surge of GnRH is released from the hypothalamus which acts 

on the anterior pituitary to signal for a surge of LH release (Moenter et al., 1992). This 

LH surge will ovulate the dominant follicle, which will grow into a new corpus luteum, 

and initiation of a new cycle.  
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Figure 1: A schematic diagram showing the bovine estrous cycle, indicating phases of the 
cycle and relative hormone concentration. Adapted from Senger, 1997.  
 

Maternal Recognition of Pregnancy 

 Research shows that approximately 30% of bovine embryos die within the first 

few weeks of early gestation (Dunne et al., 2000), resulting in a large loss of potentially 

viable offspring (Berg et al., 2010). Loss of pregnancy costs the United States beef and 

dairy industry millions of dollars annually in decreased milk and beef production. Factors 

that can lead to early embryonic loss include failure of placental attachment, 

chromosomal abnormality, and failure in maternal recognition of pregnancy (Thatcher et 

al., 1994). During maternal recognition of pregnancy (days 16 to 23 following mating), 

the embryo must send a signal to halt reproductive cycling and ensure development. In a 

non-pregnant animal, the uterus releases PGF2a (Nancarrow et al., 1973), which is the 

natural luteolysin for ruminant animals. This signal will lead to the regression of the 
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corpus luteum – i.e. a decrease in progesterone and involution of the gland (Roberts et al., 

1996). During early pregnancy, the trophoblastic cells of the embryo secrete IFN-t, which 

inhibits synthesis of PGF2a, thereby protecting the corpus luteum and allowing 

pregnancy to continue (Bazer et al., 2013). It is postulated that these cells are unable to 

secrete an IFN-t signal strong enough, or the signal is delayed, it can result in PGF2a and 

regression of the corpus luteum. As a result, the pregnancy is lost. 

Pulsatile secretion of PGF2a is mediated by oxytocin. The source of oxytocin is 

hypothesized to be from the posterior pituitary and/or the corpus luteum (Fields et al., 

1983). As estradiol concentration increases during late diestrus, synthesis of uterine 

oxytocin receptors subsequently increases (Perumamthadathil et al., 2014). Oxytocin 

binds to these receptors and stimulates generation and secretion of PGF2a from the 

epithelial cells of the uterine endometrium (Burns et al., 1998). The function of IFN-t is 

to inhibit expression of estrogen and oxytocin receptors on the uterine endometrium 

during early pregnancy. By inhibiting receptor expression, oxytocin mediated PGF2a 

release is inhibited.  

There are several ways to mitigate early pregnancy loss in cattle. (Diskin et al., 

2016). Administration of intramuscular injections of IFN-t following mating can be one 

approach (Meyer et al., 1996). However, this is impractical as it requires injection of 

IFN-t at least 2 times daily from days 14 to 17 of pregnancy (Roberts et al., 2009). 

Furthermore, in the United States beef and dairy industry, animals are managed in large 

herds, making this both too labor intensive, as well as financially impractical. Rather than 

treating the animal with additional IFN-t, another approach is to reduce luteal sensitivity 

to PGF2a following mating. This would negate the problem of a late IFN-t signal from 
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the embryo. Omega-3 polyunsaturated fatty acids have been shown to reduce sensitivity 

to PGF2a (Plewes et al., 2018). By supplementing with omega-3 fatty acids, this 

potentially provides the developing conceptus more time to adequately produce enough 

IFN-t to inhibit PGF2a synthesis and protect the corpus luteum. By doing so, this would 

preserve maternal recognition of pregnancy, and the embryo is protected.  

Omega-3 fatty acids are found in a number of dietary supplementations 

(Doughman et al., 2007). This option is far more cost effective than IFN-t injection, given 

that the cost of fish oil is significantly less than pharmaceutical treatments. Dietary 

supplementation of omega-3 fatty acids is a non-invasive method that would reduce stress 

on the animal. Through consumption in diet, omega-3 fatty acids can be incorporated into 

reproductive tissues of the animal thereby reducing luteal sensitivity to PGF2a and 

potentially improving reproductive success (Plewes et al., 2018).  

Physiology of the Corpus Luteum 

 The corpus luteum is a transient endocrine gland that grows from the remnants of 

the ovulatory follicle. This gland is responsible for the secretion of progesterone, a 

steroid hormone essential for both the establishment and maintenance of mammalian 

pregnancy (Corner et al., 1937). This gland was first discovered by Regner de Graaf in 

1672 and subsequently named the gland “corpus luteum” in 1689 by Marcello Malpighi 

due to its yellow color by nature. In 1898, Louis-Auguste Prenant and Gustav Born 

furthered demonstrated that the corpus luteum was an organ of internal secretion, also 

known as an endocrine gland (Prenant et al., 1898). Endocrine glands secrete chemical 

messenger signals known as hormones directly into the bloodstream allowing for distant 

signaling.  
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It was first reported in rabbits that the corpus luteum was essential to pregnancy 

(as reviewed by Gadsby et al., 1984). Removing corpora lutea from pregnant rabbits 

resulted in loss of embryos and termination of the pregnancy. When luteal fluid was 

injected back into animals that had no CL, pregnancy was retained. This discovery 

showed there was a chemical signal from the corpus luteum that is involved in pregnancy 

and embryo development. In 1934, the chemical was extracted from the corpus luteum, 

purified, chemically analyzed and subsequently named progesterone (Allen and Goetsh, 

1936; Corner et al., 1937).  

 During the luteal phase of the reproductive cycle, progesterone is secreted in high 

amounts that targets and prepares the uterus for an ensuing pregnancy (Corner et al., 

1937). Progesterone is transported through the bloodstream by carrier proteins, due to 

progesterone being a lipid-derived steroid hormone. Eventually this hormone reaches its 

target tissue and subsequently binds to its respective progesterone receptor (Graham et 

al., 1997). A major target tissue of progesterone is the uterus (Graham et al., 1997). 

Progesterone prepares the uterus for pregnancy by: 

1.  converting the uterine endometrium to the secretory phase, in which it 

secretes histotrophs for early embryo development (Di Renzo et al., 2016).  

2. decreasing the maternal immune response to the developing embryo, allowing 

for successful pregnancy,  

3. reducing myometrial contractions during this period.  

Progesterone also plays a key role in negatively inhibiting gonadotropin-releasing 

hormone (GnRH) and subsequently blocks secretion and release of both luteinizing 

hormone (LH) and follicle-stimulating hormone (FSH) (Girmus et al., 1991). Inhibition 
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of both LH and FSH is characteristic of the luteal phase of the reproductive cycle 

(Girmus et al., 1991).  

The Corpus Luteum 
 

The corpus luteum develops from the ovulatory follicle and is comprised of 4 

major cell types (O’Shea et al., 1989; Alila and Hansel, 1984).  

Luteal Cells 

The first of these cells are small and large luteal cells, occupying the largest 

volume of gland mass. These cells originate from the theca and granulosa cells of the 

follicle, respectively (Murphy et al., 2000). The small and large luteal cells are often 

known as the steroidogenic cells of the corpus luteum (Fitz et al., 1982). Despite being 

similar in steroidogenic nature, small and large luteal cells are highly differentiated and 

large luteal cells alone make up roughly 40% of the total volume of the corpus luteum 

(Weber et al., 1987). 

Large luteal cells have a higher capacity for steroid production. Large luteal cells 

have an average diameter of 38 µm, compared to a diameter of 17 µm in small luteal cells 

(Yoshioka et al., 2013). Proportionally, large luteal cells account for 1 out of every 7.6 

small luteal cells, meaning small luteal cells are considerably more abundant in the 

corpus luteum (Alila and Hansel, 1984). Using centrifugal elutriation to separate cells by 

density, isolated ovine small and large luteal cells showed differing mechanisms for 

progesterone synthesis and production (Fitz et al., 1982). Basal production of 

progesterone differs greatly when comparing large and small luteal cells. Large luteal 

cells on average produce 20 times the amount of progesterone compared to small luteal 

cells (Weber et al., 1987). Likewise, LH-induced progesterone production differs 



 

 
   

9 

between cell type. With addition of LH, small luteal cells are shown to have a 

considerable response with a significant increase in progesterone output (20 to 40 times 

increase). Large luteal cells show only a modest response (2 to 4 times increase; Weber et 

al., 1987). Given a high enough concentration of LH (> 100 ng/ml), bovine large luteal 

cells can exhibit a greater response in progesterone output, approximately doubled 

(Stocco et al., 2007).  

In a mid-cycle corpus luteum, small and large luteal cells may act synergistically 

to enhance progesterone production. This synergy loses its effectiveness during corpus 

luteum regression as both small and large luteal cells begin to become apoptotic. As one 

cell type begins to lose its function, cell to cell interactions are lost and synergy is 

compromised. Large luteal cells have been shown to bind more PGF2a or PGE2 than 

small luteal cells (Hansel et al., 1991). As a result, large luteal cells have a greater 

number of prostaglandin receptors compared to small luteal cells (Hansel et al., 1987).  

Both small and large luteal cells have similar internal organelles. Both cell types 

contain smooth endoplasmic reticulum, mitochondria, Golgi, and lipid droplets. A major 

distinguishing difference between large and small luteal cells is the presence of electron-

dense granules in the cytoplasm of granulosa-derived large cells, as opposed to theca-

derived small cells (O’Shea et al., 1989).  

In addition to morphological differences, small and large luteal cells differ by 

both protein and gene expression (O’Shea et al., 1989). Large and small luteal cells 

express relatively equal amount of CDH12 (Cadherin-12). Additionally, FSH receptor 

expression does not differ between the two cell types (Romereim et al., 2017). Large 

luteal cells express greater numbers of oxytocin receptors (McArdle et al., 1989). PTHLH 
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(parathyroid hormone-like hormone) is significantly increased in large luteal cells 

compared to small cells. LHCGR (LH receptor) expression is greatly increased in small 

luteal cells compared to large luteal cells (Romereim et al., 2017). In the ovine, oxytocin 

production is highly elevated in large luteal cells compared to small (Rodgers et al., 

1983). Oxytocin output of large luteal cells is on average 0.70 fg/cell, which accounts for 

30 times the oxytocin production of a small luteal cell. There, it appears that the primary 

source of oxytocin in the ovine corpus luteum is produced via large luteal cells. 

Additional Cell Types 

While steroidogenic cells comprise a large portion of the corpus luteum, 

endothelial cells and fibroblasts make up most of the rest of the cell composition (Davis 

et al., 2003). Endothelial cells account for roughly 14% of the total volume of the corpus 

luteum (O’Shea et al., 1989) that is necessary for vasculature in the corpus luteum. 

Although steroidogenic cells account for more volume, endothelial cells account for the 

greatest number (O’Shea et al., 1989). Fibroblasts account for 7% of the total volume of 

the gland (Irving-Rodgers et al., 2006). Given that most of the volume is occupied by 

small and large luteal cells, this leaves roughly 10% of the volume of the corpus luteum 

for additional cell types such as immune cells. In the corpus luteum, collagen comprises a 

large amount of the extracellular matrix (Irving-Rodgers et al., 2006). Collagen type 1 is 

a fibrillar collagen that aids in strength and durability of tissue. Collage type 1 subunits 

can be found in the bovine corpus luteum and are found in excess during early corpus 

luteum development (Helen et al., 2006). Basal lamina tissue surrounds the endothelial 

cells and vasculature (Irving-Rodgers et al., 2006). Collagen type 4 was found in 
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endothelial basal laminas contained in the bovine corpus luteum (Irving-Rodgers et al., 

2006).  

Immune cells are likely recruited during the period of ovulation, around day 0. 

Prior to ovulation, macrophages are present in the ovary and may play a role in follicular 

maturation (Bauer et al., 2001). After the LH surge, macrophages and other immune cell 

populations increase (Kfir et al., 2018). Recruitment of immune cells to the mature 

corpus luteum requires immune and endothelial cell interaction (Walusimbi et al., 2013). 

T lymphocytes have been shown to aid in progesterone production in human and rat, but 

not bovine (Bauer et al., 2001). Additionally, neutrophils and eosinophils have been 

shown to play a role in luteal angiogenesis in bovine (Bauer et al., 2001). Reducing the 

number of eosinophils in the developing bovine corpus luteum results in decreased 

plasma progesterone and decreased vascular endothelial growth factor, which in turn 

affects angiogenesis.  

Corpus Luteum Vasculature 

 The corpus luteum is one of the most vascularized tissues in the body (Nishimura 

et al., 2010) and in order to support such rapid cell growth of the corpus luteum over the 

course of only a few days, angiogenic factors must be highly expressed. These 

angiogenic factors must be highly expressed during corpus luteum development and 

during the luteal phase to allow for adequate blood flow. Cell cycle promoters (cyclins, 

cyclin-dependent kinases) must also be upregulated in order to increase cell number 

(Kowalewski et al., 2015; Jiang et al., 2011). The corpus luteum develops during hypoxia 

due to low oxygen provision from a lack of vasculature during early corpus luteum 

formation (Fadhillah et al., 2014). As a result of hypoxia, hypoxic inducible factor 1 
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(HIF1) is highly expressed (Fadhillah et al., 2017). A commonly known target of HIF1 

includes vascular endothelial growth factor (VEGF; Fadhillah et al., 2017). Insulin-like 

growth factor (IGF) and gonadotropins such as LH and FSH have also been known to 

upregulate VEGF in a hypoxic environment. VEGF is the primary driver of angiogenesis. 

During corpus luteum formation, HIF1A mRNA expression is higher during early and 

mid-stage corpus luteum development as opposed to corpus luteum regression 

(Nishimura et al., 2010). Mitogen activated protein (MAP) kinase is also highly 

upregulated during this time and will further aid in cell proliferation as well as gene 

expression. VEGF will be upregulated in response to MAP kinase activation (Nishimura 

et al., 2019). 

Luteal Progesterone Synthesis 

 Hormones are classified as either peptide/protein, amino acid derived, steroid or 

fatty acid derived (Rawn et al., 1989). Progesterone is a steroid hormone and the 

precursor to all steroid hormones is cholesterol. There are several sourced of cholesterol 

that can be utilized by steroidogenic cells. This can be synthesized de novo in all 

mammals or derived from the diet through consumption of animal products (Carr et al., 

1980).  

 The most common form of cholesterol intake is low-density lipoprotein (LDL) 

and high-density lipoprotein (HDL; Hu et al., 2010). LDL is shuttled into the cell through 

the low-density lipoprotein receptor (LDLR) and HDL is shuttled into the cell through 

the scavenger B1 receptor (Feingold and Grunfeld, 2018). In addition, steroidogenic cells 

often store cholesterol intracellularly as lipid droplets (LDs) which are organelles used 

for lipid storage, composed primarily of cholesterol esters and triglycerides (Zhang et al., 
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2010). Lipoproteins bind to their respective receptors for intracellular entry and 

cholesterol from lipoproteins is commonly stored as LDs or shuttled directly into the 

mitochondria for steroid synthesis (Zhang et al., 2010). All cell types synthesize 

cholesterol de novo. During de novo synthesis, cholesterol is synthesized from acetyl 

CoA (Carr et al., 1980). Acetyl CoA is then converted to mevalonate (Carr et al., 1980). 

HMG CoA reductase catalyzes the rate limiting step in cholesterol synthesis (Carr et al., 

1980). Despite the ability to synthesize cholesterol de novo, steroidogenic cells do not 

frequently use this metabolic pathway.  The last form of cholesterol intake is from 

the plasma membrane (Zhang et al., 2010). The cell membrane is largely composed of 

glycerophospholipids, sphingolipids and cholesterol. Cells are able to obtain cholesterol 

from the membrane through use of various phospholipases (Litvinov et al., 2018).  

 Most cholesterol used for steroid biosynthesis is either shuttled directly into the 

mitochondria, or from lipid droplets in the form of cholesterol ester (Rekawiecki et al., 

2008). Sterol O-acyltransferase (ACAT) enzyme forms cholesterol esters from free 

cholesterol. Hormone sensitive lipase (HSL) is necessary to hydrolyze cholesterol esters 

allowing for mobilization of cholesterol (Yeaman et al., 1994). Activity of HSL is 

regulated by protein kinases (Yeaman et al., 1994). Cholesterol from either LDs or 

directly from lipoproteins is then shuttled into the mitochondria by steroidogenic acute 

regulatory protein (StAR). StAR is a major protein in a complex involved in cholesterol 

shuttling. Cholesterol shuttling is the rate limiting step of steroid biosynthesis. As such, 

many cellular pathways are coupled to increase StAR protein and activity. LH works 

through the LHCGR receptor to increase adenylate cyclase (AC) and activate cAMP 

(Allen et al., 2016). This increases protein kinase A (PKA) expression. PKA activity and 
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expression both subsequently increase StAR expression. Additionally, the plant 

compound forskolin is a powerful activator of AC and increases both cAMP and PKA 

expression, as well as being known to increase both StAR expression and progesterone 

production. Dibutyryl cyclic AMP (dBcAMP) is a way to bypass activation of AC and 

directly increase PKA expression. Furthermore, the use of StAR protein can be 

completely avoided by addition of a cholesterol derivative such as 22R-

hydroxycholesterol. Once cholesterol is shuttled into the mitochondrion as regulated by 

StAR, it is then converted to the first intermediate, pregnenolone. P450scc, side chain 

cleavage enzyme (CYP11A1) is responsible for converting cholesterol to pregnenolone. 

During this conversion the cholesterol side chain is cleaved, converting the 27-carbon 

cholesterol into the 21-carbon pregnenolone. Despite pregnenolone being synthesized 

within the mitochondrion, majority of progesterone is synthesized within the smooth 

endoplasmic reticulum.  

There is debate as to how this intermediate is transported to the ER for 

progesterone synthesis. It is postulated that the mitochondria and ER come in contact that 

forms a mitochondrial-associated membrane complex (van Vliet et al., 2018). In this 

model, the ER makes a physical connection with the mitochondria. This is tightly 

regulated through a series of voltage dependent anion channels (VDAC) and ATAD3, an 

AAA ATPase (Shoshan-Barmatz et al., 2010; Issop et al., 2015). Pregnenolone could also 

relocate to the ER by diffusion through the mitochondrial membrane, and towards the 

ER. At the smooth ER, the enzyme 3β-Hydroxysteroid dehydrogenase/Δ5-4 isomerase 

(3β-HSD) converts pregnanolone to progesterone. Once fully synthesized, progesterone 

diffuses out of the cell into the surrounding bloodstream. Figure 2 shows a simplified 
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diagram of progesterone biosynthesis. Since steroids are lipid soluble, it requires use of 

albumin or other carrier protein for transport in the blood plasma. Sex hormone-binding 

globulin (SHBG) is also bound to progesterone for blood transport (Hammond et al., 

2016). Once progesterone is in the blood plasma, it is carried to its target tissue (Skinner 

et al., 1998), which is commonly the uterine endometrium (Harold et al., 1968; Salehnia 

et al., 2013).  Figure 3 shows progesterone binding to its respective receptor, activating 

downstream targets. In the uterus, progesterone blocks myometrial smooth muscle 

contractions by preventing estradiol from binding to alpha-adrenergic receptors found in 

the uterine environment, which would stimulate contractions (Bottari et al., 1983; 

Stevenson et al., 2016). Progesterone is also known to target the brain and mammary 

glands (Rekawiecki et al., 2008). Additionally, progesterone has anti apoptotic effects 

(Rueda et al., 2000). Fas ligand is a common apoptotic receptor found on bovine cells of 

the corpus luteum. Progesterone is involved with the bcl-2 protein family (Niswender et 

al., 2000). As such, progesterone aids in inhibiting Fas ligand, as well as caspase-3 

expression and activation (Okuda et al., 2004).  
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Figure 2: Representative model showing progesterone biosynthesis in a bovine luteal cell. 
Image adapted from Kuru et al., 2018. 
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Figure 3: Mechanism of action showing progesterone and progesterone receptor effects 
on target cell. Image adapted from Gadkar-Sable et al., 2005. 
 

Luteolysis 

 If no pregnancy occurs following ovulation, the corpus luteum must regress for 

the reproductive cycle to repeat, defined as luteal regression, or luteolysis (Bowen-

Shauver et al., 2003). Late in the cycle (days 15-18), PGF2a is released from the uterus to 

initiate corpus luteum regression in a series of pulses (Silvia et al., 1991; Nancarrow et 

al., 1973; Peterson et al., 1975; Shirasuna et al., 2004).  

There are two independent events that occur during luteolysis, functional 

regression and structural regression. Functional regression corresponds to the dramatic 

decrease in progesterone secretion from the corpus luteum. Serum progesterone decline is 

detectable with 6-8 hours following PGF2a uterine pulses. During PGF2a-induced 
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lutoelysis, gene expression and activity for key proteins required for progesterone 

synthesis such as LDLR, StAR, CYP11A1, 3B-HSD and HSL are significantly 

decreased. Following repeated pulses of PGF2a, progesterone decreases to < 1 ng/ml, 

indicating functional regression (Assey et al., 1993), as shown by gene expression for 

StAR, CYP11A1, NR5A1, LHCGR and PTGFR. Average mRNA for all steroidogenic 

genes decreases 2-fold following PGF2a treatment post 12 hours. By 18 hours, gene 

expression for steroidogenic proteins decreases 4-fold. Protein expression for StAR, 

CYP11A1 and 3B-HSD is reduced significantly following repeated doses of PGF2a 

(Rodgers et al., 1995). PGF2a anti-steroidogenic actions are mediated by PKC signaling 

(Wiltbank et al., 1990). Through PKC signaling and decrease in gene expression, 

progesterone production is reduced significantly. Cholesterol transport for steroid 

production is downregulated due to decrease in mRNA for LDLR and HSL. Cholesterol 

shuttling for steroid synthesis through the mitochondria is decreased due to low mRNA 

levels for StAR, as well as low phosphorylation levels and CYP11A1 in response to 

PGF2a (Atli et al., 2012). A decrease in mRNA expression for NR5A1 encodes for 

Steroidogenic factor 1 (SF-1). SF-1 is a transcription factor which is responsible for 

expression of steroid hydroxylases. These steroid hydroxylases are important for farther 

downstream steroid biosynthesis, such as conversion of progesterone to steroids like 

aldosterone and cortisol. 

 Structural regression is also initiated by PGF2a. During structural regression cell 

mass and total gland size are reduced significantly (corpus luteum diameter < 13 mm; 

Concepción et al., 2000) as a result of apoptosis. PGF2a initiates both the intrinsic and 

extrinsic apoptotic signaling pathways (Skarzynski et al., 2008). In extrinsic apoptotic 
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signaling, receptors on the cell membrane receive signaling from outside the cell to 

initiate apoptosis. Receptors are commonly TNFR (tumor necrosis factor receptors) or 

Fas. Both receptors contain a “death domain” inside the cell. Fas ligand (FasL) or 

TNFalpha bind to their respective receptors. Upon binding, the FADD complex (fas 

associated death domain) binds to the receptors and initiates a signaling cascade within 

the cell. FADD activates caspases 8 and 10, the initiator caspases. Initiator caspases 

signal to effector caspases to induce cellular apoptosis. When an initiator caspase is 

activated, the pro-domain of the caspase is cleaved rendering it active. A non-cleaved 

caspase is referred to as a pro-caspase. The initiator caspases 8 and 10 signal for cleaving 

of the executioner caspases 3, 6 and 7. Caspase 3 is responsible for the cleaving of the 

inhibitor regulating CAD (caspase activated DNase; Porter et al., 1999). Normally CAD 

is inhibited to prevent degradation of DNA (Yadav et al., 2005). When caspase 3 cleaves 

ICAD (Inhibitor of caspase-activated DNase), CAD is active to degrade DNA. Caspase 6 

cleaves and degrades lamins (Ruchaud et al., 2002). Lamins are important in nuclear 

structure and transcriptional regulation (Porter et al., 1999). Caspase 7 inhibits activation 

of PARP (poly ADP-ribose polymerase). When DNA is damaged, PARP is activated as 

repair machinery for DNA (Brauns et al., 2005). When PARP is successfully inhibited, 

DNA is successfully degraded during apoptosis (Elmore et al., 2007).  

In intracellular or intrinsic apoptosis, apoptotic signaling is mediated by the 

mitochondria. Pro-apoptotic factors such as BAX (Bcl-2 associated X protein) and BAD 

(Bcl-2 associated dead promoter) are translocated to the mitochondria (Elmore et al., 

2007). A function of BAX and BAD is to create pores on the outer mitochondrial 

membrane (Elmore et al., 2007). These pores allow for release of cytochrome c from the 
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mitochondrial intermembrane space (Elmore et al., 2007). Cytochrome c is an important 

signaling molecule in intrinsic apoptosis (Elmore et al., 2007). Cytochrome c binds with 

apaf-1 allowing for recruitment of pro-caspase 9 and formation of the “wheel of death” 

complex, which subsequently activates caspase 9 (Elmore et al., 2007). Activation of 

caspase 9 leads to cleaving of pro-caspase 3, 6 and 7 into their active forms. Active 

caspase 3, 6 and 7 perform the same functions as they do in the extrinsic pathway 

(Elmore et al., 2007).  

 PGF2a binds to the FP receptor which is a seven helix G-protein coupled 

transmembrane receptor (Wiltbank et al., 1995). Upon binding to the receptor, an 

intracellular signaling cascade is activated, specifically Galpha(q) (Wang et al., 2003). In 

Galpha(q) signaling, phospholipase C (PLC) is activated (Wang et al., 2003). Activation 

of PLC leads to the cleavage of phosphatidylinositol 4, 5 bisphosphate (PIP2) and 

subsequently produces two intracellular signaling molecules, inositol 1, 4, 5 triphosphate 

(IP3) and diacylglycerol (DAG) (Hou et al., 2008). Both IP3 and DAG perform different 

functions in the cell. IP3 will translocate to the smooth ER, where it will bind to its 

respective receptor (Kliem et al., 2007). Upon binding, the ER will release calcium ions 

(Ca2+). Ca2+ inside the cell serves as a secondary messenger. When levels of Ca2+ increase 

intracellularly, they bind to the regulatory subunits of PKC, rendering PKC active. As a 

kinase, the main function of PKC is to phosphorylate enzymes and proteins that lead to a 

decrease in progesterone synthesis and trigger apoptosis. 

Corpus Luteum Protein Expression 

 Despite changes in mRNA expression, protein expression must be studied in the 

corpus luteum in order to adequately analyze abundance of proteins that synthesize 
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progesterone. Since StAR protein is the rate limiting step in steroid biosynthesis, StAR 

protein abundance should correlate with progesterone output. StAR mRNA expression 

appears to decrease during mid luteal cycle and significantly drop during luteal 

regression. However, StAR protein levels actually appear higher during mid luteal cycle, 

despite lower expression of mRNA. StAR protein levels also decline during luteal 

regression (Devoto et al., 2001).  

 In addition to steroidogenic protein expression, AMPK (AMP-activated protein 

kinase) is known to regulate expression of key proteins such as CYP11A, StAR, 3B-HSD 

and HSL (Kohen et al., 2003). Phosphorylation of HSL at Ser-565 prevents activation of 

HSL by PKA. Inhibiting activation of HSL leads to decreased mobilization of cholesterol 

from cholesterol-esters, resulting in a decrease in substrate availability for progesterone 

synthesis. 

 CYP11A1 mRNA and protein expression also increases in a mature CL, however 

not as much as StAR protein, given that StAR protein is the rate limiting step of steroid 

biosynthesis. (Kfir et al., 2018). CYP11A1 protein expression increases during luteal 

formation. CYP11A1 mRNA decreases rapidly however protein remains relatively 

unchanged during luteal regression. Despite a 50% reduction in CYP11A1 mRNA at 24 h 

following PGF2a treatment, CYP11A1 protein remains steady (Atli et al., 2012). 

Additionally, increase in LH secretion leads to increase in CYP11A1 protein in the 

corpus luteum. In the rodent model, prolactin signals for increase of CYP11A1 (Taketa et 

al., 2012). Depletion of either LHCGR or PRLR (prolactin receptor) results in lower 

amounts of secreted progesterone due to decreased CYP11A1 protein. As pregnenolone 



 

 
   

22 

is the first intermediate for all steroid hormones, progesterone cannot sufficiently be 

synthesized without CYP11A1 protein expression (Rodgers et al., 1995).  

 3β-Hydroxysteroid dehydrogenase/Δ5-4 isomerase (3B-HSD) converts 

pregnenolone into progesterone. This enzyme is expressed in the mitochondrion but in 

low levels and is greatly expressed in the endoplasmic reticulum. 3B-HSD protein 

appears in theca cells prior to ovulation. This expression carries into the corpus luteum as 

theca and granulosa cells are remodeled into small and large luteal cells. During luteal 

regression, there is a significant decline in 3B-HSD mRNA and protein (Devoto et al., 

2001).  

Hypoxic Environment of the Corpus Luteum 

  During PGF2a induced regression, apoptosis occurs which results in a decrease 

in overall gland size (Skarzynski et al., 2010). One of the main cell types of the corpus 

luteum are endothelial cells (O’Shea et al., 1989), to support large amounts of 

vascularization in the gland. As the corpus luteum undergoes structural regression 

endothelial cells that make up vascular tissue die off, resulting in a hypoxic environment. 

Blood flow to the corpus luteum is significantly reduced within 8 h following a luteolytic 

dose of PGF2a (Acosta et al., 2002). This is accompanied by a large reduction in total 

area of the gland as well as gland mass.  

 Hypoxia as a result of lack of blood flow has a major effect on progesterone 

production. A hypoxic environment significantly decreased progesterone production, as 

compared to luteal cells cultured in a normoxic environment (Hasegawa et al., 2019). 

mRNA for StAR, CYP11A1 and 3B-HSD decreases in a hypoxic environment; however, 

there was no significant difference in expression as compared to cells cultured under 
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normoxic conditions. As oxygen concentration steadily decreases, so does progesterone 

output (Nishimura et al., 2006). Additionally, as bovine luteal cells are cultured for 

longer periods of time in hypoxic environments, progesterone output decreases. Upon 

stimulation with LH, progesterone production increases in a hypoxic environment, 

however, remains low when compared to progesterone secretion in a normoxic 

environment when stimulated with LH.  

 Gene expression appears to also be altered in a low oxygen environment. 

CYP11A1 mRNA is significantly suppressed during hypoxia (Nishimura et al., 2006). 

Upregulation of HIF-1 also correlates with a decrease in steroid production. In mouse 

Leydig cells, testosterone production drops in response HIF-1 activation. 

Consequentially, StAR mRNA is also decreased during HIF-1 upregulation (Wang et al., 

2019).  

Mitochondrial Hypoxic Response 

 The mitochondrion is the main organelle that regulates steroidogenesis. In 

addition, it is also a major consumer of oxygen required for ATP synthesis. During 

hypoxia, mitochondrial response is often noted by changes in mitochondrial fission, 

reactive oxygen species (ROS) production, and regulation of HIF-1 (hypoxia-inducible 

factor 1; Hamanaka et al., 2009). 

 The mitochondrion is made up of cristae, folds in the inner membrane allowing 

the organelle to have increased surface area. Under normal oxygen conditions, 

mitochondria are long, and can often stretch the length of a cell. This type of morphology 

favors processes like oxidative phosphorylation and ATP production (Fuhrmann et al., 

2017). When oxygen is depleted, mitochondria undergo fission, in which they shorten in 
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length and divide, leading to smaller segments (Fuhrmann et al., 2017). This can include 

one large mitochondrion becoming several shorter mitochondria (Fuhrmann et al., 2017). 

Mitochondrial fission is often a response to low oxygen in an attempt to keep ROS 

production to a minimum and keep the cell healthier (Chen et al., 2012).  

There are a number of ways in which mitochondrial fusion is stimulated. 

Mitofusin 1 and 2 (Mfn1, Mfn2) are found on the outer membrane of the mitochondrion 

and are essential for fusion (Plewes et al., 2020). Mfn1 and 2 support mitochondrial 

fusion in early embryo development, and knockout animals reveal that all embryos are 

terminated at or before mid-gestation (Chen et al., 2003). This shows that not only is 

mitochondrial fusion critical for survival, but Mfn1 and Mfn2 are necessary to support 

early development (Chen et al., 2003). Rate of steroidogenesis is often highly associated 

with Mfn1 and Mfn2 activation (Duarte et al., 2012). LH is a major up regulator of 

cAMP, and therefore PKA activation. As cAMP levels increase, mRNA expression for 

Mfn2 increases (Soodak et al., 1988). This indicates that not only is LH essential for 

StAR activity and cholesterol shuttling through the mitochondrion but is also involved in 

processes to regulate mitochondrial fusion. Mfn2 is also hormonally regulated, given that 

it responds highly to LH. This also shows that mitochondrial fusion is not only 

hormonally stimulated, but also essential for steroidogenesis. As a result of Mfn2 

activation during steroidogenesis, mitochondrial fusion is purely PKA dependent. This is 

also true for regulation of cholesterol transport. StAR protein is phosphorylated by PKA 

and MAPK (Duarte et al., 2014). Additionally, increase in Mfn1 and 2 for mitochondrial 

fusion also occurs, more specifically Mfn2 (Hall et al., 2014). Removing Mfn2 results in 

decreased steroid production. Adversely, Mfn2 is upregulated both during and after 
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steroid synthesis, showing a close relationship Mfn 1 and 2 induced mitochondrial fusion 

and steroidogenesis.   

In contrast, dynamin-1-like protein (DRP1) is essential for fission. Upregulation 

of DRP1 is highly correlated with an increase in fission rates (Fonseca et al., 2019). 

Additionally, knockout animals for DRP1 are lethal during embryonic development. 

Proper management of both mitochondrial fission and fusion during early development is 

critical for survival. Activation of PKA by LH is known to phosphorylate DRP1, 

therefore rendering it inactive, and preserving the process of mitochondrial elongation 

(Plewes et al., 2020).  

ROS are produced in the electron transport chain (ETC), which occurs on the 

inner mitochondrial membrane. ROS are most commonly produced at complex III of the 

ETC, during the formation of ubisemiquinone (Bordt et al., 2017). In a low oxygen 

environment, HIF1 is activated. However, for HIF1 activation in a hypoxic environment 

to occur, ROS must be produced for signaling (Hamanaka et al., 2009). ROS production 

stabilizes HIF1, allowing it to activate. This is generally regarded as a way to activate 

apoptosis in the cell through endogenous metabolites such as hydrogen peroxide, nitric 

oxide and superoxides.  

In normoxia, HIF1 has the ability to downregulate itself, through the use of 

dnHIF1a. HIF1 is unable to serve as a transcription factor, when dnHIF1a is present, 

preventing binding of DNA and gene transcription. In hypoxia, HIF1 can be farther 

upregulated by Ras/Raf signaling (Bardos et al., 2005). Ras/Raf is activated through a 

receptor tyrosine kinase (RTK). This in turn activates Raf and MAPK. If MAPK is 

inhibited, it results in a decrease of HIF1 transcriptional activity. Downstream targets of 
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the Akt (protein kinase B) signaling pathway are also known to upregulate HIF1, such as 

mTOR. mTOR is upstream of many metabolic pathways that regulate transcription of 

genes essential for survival during hypoxia (Land et al., 2007). 

Lipid Droplet Hypoxic Response 

LDs are intracellular organelles made of cholesterol-ester and triglycerides. The 

lipid droplet surface consists of a phospholipid monolayer (Guo et al., 2009). In large 

luteal cells, LDs can be as large as half the cell, or 100	µm in diameter (Olzmann et al., 

2019). On the surface, LDs are covered in perilipins. Perilipins are proteins known to 

protect LDs from lipases found inside the cell, such as HSL. Through PKA activation, 

perilipases are phosphorylated, which exposes the inner contents of the organelle for HSL 

lipolysis (Guo et al., 2009).  

Despite general LD composition, evidence shows that LDs can be specialized for 

certain cell types in order to help facilitate a given function. In addition, not all LDs 

contain the same proteins, and have varying rates of acquiring triglycerides and 

cholesterol (Olzmann et al., 2019).  

Lipid droplet mobilization must take place in order for LDs to be utilized for 

specific functions, such as steroidogenesis or to provide metabolic energy (Suzuki et al., 

2011). This is mediated through G-protein signaling (Suzuki et al., 2001). During 

activation of the G-protein, adenylyl cyclase is activated, which in turn generates cAMP 

from ATP. cAMP activates PKA. As stated previously, PKA will phosphorylate HSL as 

well as perilipin, leading to cholesterol mobilization. 

In a hypoxic environment, lipid droplets increase accumulation in vitro, 

suggesting a lipid mediated response to low oxygen (Gordon et al., 1977). Additionally, 
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this is not directly correlated with HIF1 (Dijk et al., 2017). As luteal cells become 

increasingly more hypoxic, lipid droplets inside these cells are forced to adapt to this 

environment. 

Omega-3 Fatty Acids 

 Literature has shown that polyunsaturated fatty acids (PUFA) improve 

reproductive performance in cattle (Burns et al., 2003; Burke et al., 1997). The 3 most 

common omega-3 fatty acids are alpha linolenic acid (ALA, 18:3), eicosapentaenoic acid 

(EPA, 20:5), and docosahexaenoic acid (DHA, 22:6; Harnack et al., 2009). Both EPA 

and DHA are common long-chain fatty acids found in fish oil. Recent data has shown 

that supplementation with fish oil in bovine luteal cells in vitro leads to increased 

membrane fluidity (Plewes et al., 2017). In addition, single particle tracking of the PGF2a 

FP receptor showed an increase in lateral and spatial mobility most likely due to 

increased membrane fluidity (Plewes et al., 2017; Plewes et al., 2018).  There is also an 

increase in plasma membrane lipid composition of EPA and DHA in luteal cells 

following fish oil supplementation. Additionally, cows supplemented with either fish oil 

or meal have increased EPA and DHA in blood plasma (Burns et al., 2003; Wamsley et 

al., 2005; White et al., 2012; Plewes et al., 2017; Plewes et al., 2018), luteal tissue (White 

et al., 2012; Plewes et al., 2017) and uterine endometrium (Burns et al., 2003).   

Dietary supplementation of fish meal reduces luteal sensitivity to intrauterine 

infusion of PGF2a (Plewes et al., 2018).  Surprisingly, steady-state mRNA that regulate 

progesterone synthesis were reduced and did not differ from cows with a regressed 

corpus luteum. There are two possibilities for this reduction in steady-state mRNA 

despite elevated progesterone. In the study of Plewes et al. (2018), luteal tissue was 
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collected during the first 18 h following PGF2a infusion. It is highly possible that tissue 

sampling frequency was inadequate to detect a potential rebound in steady-state mRNA 

following PGF2a. A second possibility is that fish oil or meal supplementation could 

protect mitochondria during PGF2a induced hypoxia allowing for maintenance of 

progesterone synthesis. 

Specific Aims 

 This study examined the effects of PGF2a, fish oil and hypoxia on corpus luteum 

function, progesterone synthesis, mitochondrial morphology and lipid droplet dynamics 

in the bovine corpus luteum, both in vitro and in vivo.  

 The long-term goals of this study were to decrease luteal sensitivity to PGF2a 

through omega-3 fatty acid supplementation, as well as understand the effects of low 

oxygen on steroidogenesis.  

Aims, Research Questions and Hypotheses 

A1 Determine if steroidogenic steady state mRNA rebounds following PGF2a 
intrauterine infusion in fish oil supplemented animals. 

 
Q1 What are the effects of omega-3 fatty acid treatment on steroidogenic 

enzyme mRNA levels over 48 h of PGF2a treatment? 
 

H1 Cows supplemented with fish oil will retain steroidogenic enzyme mRNA 
following PGF2a treatment out to 48 h. 

 
A2 Determine correlation between steroidogenic gene mRNA and 

steroidogenic protein abundance following intrauterine infusion of PGF2a. 

 
Q1 What are the effects of omega-3 fatty acid treatment on steroidogenic 

protein levels over 48 h of PGF2a treatment? 
 

H2 Cows supplemented with fish oil will retain steroidogenic protein levels in 
luteal tissue following PGF2a treatment for 48 h. 
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A3 Omega-3 fatty acids are incorporated into the mitochondrial membrane, 
making it resilient to hypoxic environments, and able to synthesize 
adequate progesterone. 

 
Q1 What are the effects of hypoxia on bovine luteal cell progesterone output 

when treated with fish oil? 
 

H3 Bovine luteal cell progesterone synthesis will be unaffected by hypoxia 
when prior treated with fish oil. 

 
Q2 What are the effects of hypoxia on bovine luteal cell mitochondrial 

morphology when treated with fish oil? 
 

H4 Bovine luteal cell mitochondria will show greater amounts of fusion in a 
hypoxic environment when supplemented with fish oil. 

 
A4 Effects of fish oil on luteal cell lipid droplets accumulation in whole 

animal luteal tissue biopsies. 
  

Q1 What are the effects of fish oil on lipid droplet size and accumulation in 
the bovine corpus luteum? 

 
H5 Cows supplemented with fish oil will show an increase in lipid droplet 

size and accumulation when compared to those supplemented with 
vegetable oil. 

 

Conclusion 

Early bovine embryo death is a leading cause of infertility in the United States 

beef and dairy industry. There are a large number of causes responsible for early embryo 

termination in the bovine. One leading cause is a lack of established communication 

between the embryo and the maternal environment. This can lead to regression of the 

corpus luteum and the embryo is terminated. This presents a critical problem in 

reproductive biology 

This study was designed to determine the effects of PGF2a treatment on bovine 

luteal mRNA and protein responsible for steroid production in response to fish oil 

treatment. Additionally, the effects of low oxygen on mitochondrial dynamics and 
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progesterone synthesis were observed in response to fish oil treatment. The results of this 

study present a cost-effective method for maintaining early bovine embryo development 

and therefore, a potential solution for the United States beef and dairy industry.  
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CHAPTER II 

 
METHODOLOGY 

 
Animal Husbandry 

 
 Cows were purchased from a local sale barn and housed at the Animal 

Reproduction Biotechnology Laboratory at Colorado State University in Fort Collins, 

CO. All animal experimental protocols were approved by the Colorado State University 

institutional animal care and use committee (Approval #16-6761AA). An Aloka 500 V 

ultrasound machine with a 5 MHz linear array transducer was used to scan ovaries for 

abnormalities (cystic follicle) and uteri for pregnancies. Cows were removed from the 

study for presence of abnormal ovaries or pregnant. Body weights were collected, and 

cows were stratified by body weight and randomly divided into 2 dietary supplementation 

groups – vegetable oil (n = 10) and fish oil (n = 11). Diets consisted of 95% mixed grass 

hay and 5% supplement that were isocaloric and isonitrogenous (Tables 1 and 2) and met 

or exceeded NRC recommendations for non-lactating cows. Cows were individually 

penned from 0600 to 0900 h and fed supplements and hay, after which cows were turned 

out of pens to have access to water and shelter. Cows were penned in the evening (1600 

to 1800 h) to consume remaining hay. Diets were fed at 2% dry matter intake 

approximately 70 days. Cows were administered an intramuscular injection of 25 mg of 

PGF2a on day 50 of supplementation to synchronize estrous cycles. Cows were observed 

for estrous behavior at 0500 and 2100 h for a minimum of 30 min. Estrotect patches were 
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applied to tail-head region of the animal to aid in detection of estrus. Cows not detected 

in estrus within 5 days were administered a second injection of PGF2a and were 

monitored for an additional 5 days for estrous behavior. 

Jugular blood samples were taken at days 0, 35 and 70 to monitor changes in 

plasma fatty acid composition. Samples were centrifuged at 1500 x g for 15 min at 4 °C 

and plasma was stored at -80 °C until gas chromatography (GC) analysis. 

Luteal Tissue and Blood Collection 
 
 Luteal biopsies and blood were collected over a period of 48 h on day 10 to 12 

following synchronized estrus. Intrauterine infusions of either 0.25 mL saline or 0.5 mg 

PGF2a were administered at h 0 and 12 in the uterine horn ipsilateral to the ovary 

containing the CL. Blood samples were taken from the jugular vein every 3 h for 24 h of 

experimental period, and every 6 h for remaining 24 h of experimental period and 

assayed for serum progesterone. Blood samples were allowed to clot and kept at 4 °C 

prior to centrifugation at 1500 x g for 10 min. Luteal biopsies were taken at h 0, 18, 24, 

36 and 48. Prior to biopsy, the vulva was cleaned with betadine surgical scrub, and a 

local block of 2% lidocaine (3-6 mL in the tail head) was administered. A transvaginal 

ultrasound guided biopsy probe equipped with a spring loaded Quick-Core 60 cm 18-

guage with a 20 mm specimen notch needle (QC-18_60-20T, Cook Medical) was used 

for luteal biopsy collection. The biopsy probe was inserted into the vagina and the ovary 

containing the corpus luteum was aligned with the projected needle line trajectory 

(Plewes et al., 2018). The triggering device was activated to collect luteal tissue. Tissue 

was removed from the biopsy notch (approximately 5 mg), rinsed with sterile 1x PBS and 
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placed in a sterile 1.7 mL tube for freezing. Tubes were frozen in liquid nitrogen and 

stored at -80 °C until RNA preparation. 

Ribonucleic Acid Extraction and Quantitative  
Polymerase Chain Reaction 

 
RNA was extracted using the TRIzol plus RNA kit according to the protocol. A 

2.0 Qubit Fluorometer was used to estimate RNA concentration and samples were kept at 

-80 °C until further processing. cDNA was prepared from 1 µg of total RNA using a Bio-

Rad T100 PCR Thermal Cycler. Bovine specific primers for genes of interest have been 

validated and were used in the current study. Primers were designed from Primer3 

software from the NCBI gene database. qPCR reactions were carried out in duplicate 

using a Bio-Rad CFX384 real-time PCR system. Melt curve analysis was conducted to 

determine single product amplification.  

Immunohistochemistry 

 Luteal tissue biopsies were removed from the biopsy notch, rinsed with sterile 1x 

PBS and placed in 500 µL of 4% paraformaldehyde (wt:vol) for 1 h at 4 °C. Luteal 

samples were immediately rinsed with 1x PBS and placed in 1 mL 20% sucrose (wt:vol) 

solution and incubated for 24 h at 4 °C. Following sucrose dehydration, biopsy samples 

were placed in a 10 x 10 x 5 mm biopsy tissue mold (VWR 25608-922) containing 

Tissue-Tek Optimal Cutting Temperature (OCT) compound (Sakura, 4583). The molds 

were submerged in 50 mL of isopentane and placed in Styrofoam containing liquid 

nitrogen. Following freezing, biopsies were wrapped in parafilm and aluminum foil and 

stored at -80 °C. Frozen biopsies were sliced at 15 µm sections using a Leica cryostat 

(CM1950; -20 °C) and placed onto glass microscope slides (VWR 48300-026). 

Microscope slides were stored at -80 °C until further processing. 
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Slides were warmed to room temperature and tissue slices were washed 3 times 

with 1x PBS to remove excess OCT compound. Sections were then permeabilized using 

1.0% Triton-X 100 (Sigma 9002-93-1) for 30 min. After permeabilization, tissue samples 

were washed 3 times with 1x PBS. A blocking buffer (1% BSA and 5% normal goat 

serum; Thermo 50062Z; Sigma A8806) was applied to the slides and incubated for 30 

min. Slides were then washed with 1x PBS and the primary antibody (CYP11A1) was 

applied at the appropriate dilution as shown in Table 3. The slides were incubated with 

the primary antibody overnight at 4 °C. After incubation with primary antibody, the 

appropriate secondary antibody was applied to the slides at the correct dilution. Hoechst 

33342 was used to counterstain cell nuclei. 

Images were taken on a Zeiss LMS 700 confocal with the appropriate filters. 

Tissue sections were observed using a 20x objective (N.A. = 0.8) and a 100x oil 

immersion objective (N.A. = 1.4). Images were captured using Zen Black 2011 software. 

Images were analyzed for protein amount using mean gray area analysis in ImageJ. 

Slides containing tissue samples were warmed to room temperature prior to 

staining. Tissue was washed 3 times with 1x PBS prior to staining and subsequently 

stained with 10 µM BODIPY 493/503 for 30 min to stain lipid droplets. Slides were then 

washed and stained with 2.5 µg/mL of Hoechst 33342 and Phalloidin 633 at a 1:33 

dilution. Hoechst and Phalloidin were incubated for 15 min on the samples diluted in 1x 

PBS. Hoechst and Phalloidin were washed off of slides and slides were analyzed using 

confocal microscopy. A DAPI filter was used for Hoechst 33342, FITC filter for 

BODIPY 493/503, and TRITC for AlexaFluor633.  
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Corpus Luteum Collection, Digestion and Culture 

 Bovine ovaries were collected at a local slaughterhouse in Greeley, CO, and 

transported to the laboratory at the University of Northern Colorado in 1x PBS. The 

ovaries were then submerged in 70% ethanol to sterilize the ovary. The corpus luteum 

was dissected from the ovary and the capsular connective tissue was removed from the 

gland. The corpus luteum was sliced into 500 µm sections using a handheld microtome 

and enzymatically digested with collagenase I (2000 units/mg). Harvested cells were 

grown in T-75 or T-25 cell culture flasks containing Ham’s F12 with 5% fetal bovine 

serum, insulin (5ug/mL), transferrin (5ug/mL), selenium (5ng/mL), 100 units/mL 

penicillin, 0.1 mg/mL streptomycin, and 0.25 mg/mL amphotericin B (pH 7.34). Cells 

were grown to a monolayer until ready for experimentation. Only healthy adhered cells 

were used for experimentation based on confluency. Cells were incubated at 37 °C and in 

a humidified atmosphere of 95% air and 5% CO2.  

Fish Oil Treatment 

 For all experiments, lipids from fish oil were bound to BSA prior to addition in 

culture medium. In brief, 0.03% fish oil (v:v) was added to Ham’s F12 culture medium 

containing 33 mg/mL of fatty acid free BSA. BSA control medium was also prepared 

using 33 mg/mL of fatty acid free BSA. Media were incubated in a shaking water bath at 

37 °C for 2 h prior to experimentation to allow binding of lipids in fish oil to BSA. Cells 

were cultured in BSA or fish oil treated media for 72 h at 37 °C in a 95% humidified air 

atmosphere and 5% CO2 to allow for incorporation of long-chain fatty acids into 

biological membranes. 
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Oxygen Treatment 

 Cells were incubated in either a normoxic (20% O2) or hypoxic (5% O2) 

environment for 24 h. A hypoxic environment was created using a hypoxia incubator 

chamber (Stem Cell Technologies). Dishes or flasks of cells were placed in the chamber 

and sealed. A gas line was connected to the inlet valve of the chamber and was purged 

with a 5% O2 90% N2 and 5% CO2 gas mixture for 2 min. The inlet and outlet valves 

were then clamped. Normoxic cells were cultured in normal incubator conditions. Both 

normoxic cells and hypoxic cells (in chamber) were placed in an incubator at 37 °C and 

in an atmosphere of 95% air and 5% CO2. 

Effects of Hypoxia on Fish Oil Treated Luteal  
Cell Progesterone 

 
 Six 24 well dishes (5 ´ 104 cells/well) were prepared from 3 corpora lutea for use 

in progesterone analysis. Cells were treated with either 0.03% fish oil or BSA control for 

72 h. After treatment, cells were stimulated with either 10 µM of forskolin in a final 

volume of 1 mL. All treatments were applied in triplicate. During collection, 50 µL of 

media was collected at 0, 6 and 24 h from each well and combined into a total of 150 µL 

for each treatment. Spent culture media was assayed for progesterone using an ELISA 

(Cayman chemical 582601) per manufacture’s protocol 

 DNA was extracted from cells within each well using TRIzol reagent to normalize 

cell number. In brief, 100 µL of TRIzol was added to each well. The wells were scraped, 

and the cell lysate was collected. DNA was extracted using the TRIzol reagent protocol 

from Invitrogen and quantified using a 2.0 Qubit Fluorometer. In brief, luteal tissue was 

homogenized on ice in 100 µL of TRIzol reagent. An additional 900 µL of TRIzol was 
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added and allowed to incubate for 5 min at room temperature before adding 200 µL of 

chloroform. Tissue samples were vortexed and incubated for an additional 3 min. 

Samples were then centrifuged at 12,000 x g for 15 min at 4 °C. The aqueous phase was 

collected and transferred to a new 1.7 mL tube. An equal volume of 70% ethanol was 

added to the sample and vortexed. Samples were added to spin columns and centrifuged 

at 12,000 x g for 15 seconds. 700 µL of wash buffer I was added to each spin column and 

centrifuged at 12,000 x g for 15 seconds and this step was repeated. 500 µL of wash 

buffer II was used to wash each sample. Columns were then centrifuged at 12,000 x g for 

15 seconds at room temperature. DNA was eluted into collection tubes with 30 µL of 

nuclease free water.  

Data Analysis 

 Effects of hypoxia and fish oil on bovine luteal cell progesterone synthesis were 

analyzed using three-way analysis of variance. The statistical model included oxygen 

environment (normoxic or hypoxic), treatment (BSA-control or fish oil), time and all 

possible interactions as sources of variation.  

Effects of Hypoxia on Fish Oil Treated Luteal  
Cell Mitochondria 

 
 Cells from 7 to 8 corpora lutea were used in this experiment. Cells were cultured 

in 35mm confocal microscopy dishes with a cover slip bottom (5 ´ 104 cells/dish). Cells 

were grown to confluency and then randomly treated with either fish oil or BSA 

supplemented medium. Cells were incubated in treatments for 72 h at 37 °C. Cells were 

then incubated in normoxic or hypoxic environments for an additional 24 h (either 20% 

or 5% O2). 
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 After 24 h of incubation, cells were stained by directly adding 100 nM 

tetramethylrhodamine, methyl ester, perchlorate (TMRM) to each dish. An additional set 

of dishes were treated with Carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone 

(CCCP; 1 ng/mL) for 30 min to serve as a positive control. Unstained cells were used as a 

negative control. Cell nuclei were counterstained using Hoechst 33342 (2.5 µg/mL). 

ImageJ Analysis 

All confocal data were analyzed using ImageJ (FIJI; Version 2.0.0-rc-43/1.52g). 

Mitochondrial analysis was performed using protocols previously established by Valente 

et al. (2017).  In brief, mitochondria were assessed for membrane potential, mitochondrial 

fragment size, mitochondrial fragment number, mitochondrial footprint, mitochondrial 

mean branch number and mitochondrial mean junction number. Mitochondrial contrast 

was enhanced, and tubeness was applied to separate individual organelles. Images were 

then binarized or skeletonized to remove additional material and particle analysis was 

run. Lipid droplet analysis was performed using ImageJ particle analysis plugin.  

Data Analysis 

 Effects of hypoxia on membrane potential, mitochondrial fragment size, 

mitochondrial fragment number, mitochondrial footprint, mitochondrial mean branch 

number and mitochondrial mean junction number were analyzed using three-way analysis 

of variance. The statistical model included oxygen environment (20 vs 5%), treated (fish 

oil or BSA) time (0 or 24 h) and the interaction as sources of variation in the statistical 

model. 

 

 



 

 
   

39 

Statistical Analysis 

 All statistical calculations were performed using mixed linear model procedures 

of SAS. When main effects or interactions were significant (p < 0.05) individual means 

were compared using preplanned pairwise t-test.  
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Table 1.  Ingredient, chemical composition, and long-chain fatty acid profile of dietary 
supplementation   
 Experimental Diet 
Item Vegetable oil Fish oil 
Dry Matter Intake, % 5 5 
Ingredient of Supplement, %   
Corn Gluten meal 5 5 
Chemical Analysis   
Dry Matter, % 94.1 94.0 
Crude Protein, % 39.8 40.1 
Degradable Intake Protein, % 29.5 29.9 
Undegradable Intake Protein, % 33.7 34.2 
Total Digestible Nutrients, % 68.8 69.6 
Crude Fat, % 8.4 8.2 
Fatty Acid Composition of 
Supplement, wt, %    
Palmitic Acid (16:0) 15.1 26.7 
Palmitoleic Acid (16:1)  <0.5 10.7 
Stearic Acid (18:0) 18.2 8.1 
Oleic Acid (18:1) 1.5 9.1 
Linoleic Acid (18:2) 43.1 1.4 
Alpha-Linolenic Acid (18:3) <0.5 1.4 
Arachidonic Acid (20:4) <0.5 1.1 
Eicosapentaenoic Acid (20:5) <0.5 6.0 
Docosahexaenoic Acid (22:6) <0.5 5.9 
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Table 2.  Chemical composition of Alfalfa Orchard mixed grass hay 

Dry matter intake, % 95 

Chemical Analysis  

Dry Matter 91 

Water Soluble Carbohydrates, % 8.0 

Neutral Detergent Fiber, % 47.3 

Acid Detergent Fiber, % 34.7 

Simple Sugars, % 5.3 

Starch, % 1.3 

Non Fiber Carbohydrates, % 1.0 

Crude Protein, % 19.7 

Crude Fat, % 2.7 

 
 
Table 3: Antibodies used for microscopy  

Antibody name 
Dilution 

ratio 
Species 

specificity Source 

Supplier 
(distributor, 

town, country) Cat. No 
STAR 1:20 Mouse Rabbit 

pAB 
Abcam  ab9663

7 
CYP11A1 1:50 Mouse Rabbit 

mAB 
Cell Signaling 14217 

BODIPY 
493/503 

10 - 20 µM All  Thermo Fisher 
(Carlsbad, CA, 
USA) 

D3922 

Hoechst 20 nM All  Thermo Fisher  62249 
Phalloidin  
Alexa Fluor 
555 
Alexa Fluor 
568 
TMRM 

1:33 
1:500            
1:500 
1:1000 
 
1:1000 

All 
All 
All 
All 
 
All 

 Thermo Fisher A3405
5 

steroidogenic acute regulatory protein (STAR); Cholesterol side-chain 
cleavage enzyme (CYP11A1); tetramethylrhodamine (TMRM) 
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CHAPTER III 

RESULTS 
 

Changes in Plasma Fatty Acid Composition 
 
 During the supplementation period, blood was drawn at days 0, 35 and 70 to 

measure plasma long-chain fatty acid composition. Figure 4 shows changes in blood 

plasma compositions of omega-6 fatty acids in the form of linoleic acid (18:2) and 

arachidonic acid (20:4). No significant differences were observed following 

supplementation in omega-6 fatty acids. No significant changes were seen in alpha-

linolenic acid (18:3) during the course of the supplementation period. Eicosapentaenoic 

acid (20:5) was significantly increased in fish oil treated animals at day 70 (p < 0.05). 

Docosahexaenoic acid (22:6) was significantly increased in fish oil animals at both days 

35 (p < 0.01) and 70 (p < 0.001).  
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Figure 4: Effects of fish oil and vegetable oil on plasma omega-3 and omega-6 fatty 
acids in the blood plasma of the bovine. Cows supplemented with fish oil (n = 11) or 
vegetable oil (n = 10) for approximately. 70 days. At days 0, 35 and 70, blood was drawn 
to assess plasma long chain fatty acid composition. (* p < 0.05, ** p < 0.01, *** p < 
0.001)  
 
 

Serum Progesterone and Corpus Luteum Diameter 
 
 Serum progesterone was measured immediately prior to treatment (0 h), every 3 h 

for the first 24 h and every 6 h for the remaining 24 h following PGF2a or saline infusion. 

Corpus luteum diameter was measured using ultrasonography at 0, 18, 24, 36 and 48 h. 

Animals were sorted into 4 groups based on serum progesterone concentration at 48 h 

following PGF2a treatment – functional corpora lutea serum progesterone > 1 ng/mL and 

regressed serum progesterone < 1 ng/mL: fish oil regressed (FOR; n = 2), fish oil non 

regressed (FONR; n= 6), vegetable oil regressed (VOR; n= 3) and vegetable oil non 

regressed (VONR; n = 4). In saline treated animals, there was no difference between fish 

oil and vegetable oil supplementation on corpus luteum diameter (Figure 5A). Overall, 

corpus luteum diameter was significantly larger for FONR animals, compared to FOR 

p = 0.052 
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and VOR (p < 0.001). Additionally, VONR had a significantly larger corpus luteum 

diameter than both FOR and VOR animals (p < 0.01) following PGF2a treatment. 

 

 

 
 
 
Figure 5: Effects of saline or PGF2a on serum progesterone and corpus luteum 
diameter in fish oil and vegetable oil supplemented cows. Saline (panel A): Black bar 
and solid line indicates fish oil supplemented animals (n = 3), grey bar and dashed line 
indicates vegetable oil supplemented animals (n =3). PGF2a (panel B): Black = FONR (n 
= 6), Grey = FOR (n =2), Blue = VONR (n = 4), Yellow = VOR (n = 3). Double y-axis 
graph indicates serum progesterone on primary y-axis as a line graph (ng/mL) and corpus 
luteum diameter on secondary y-axis as a bar chart (mm). Red line on both graphs 
indicates functional corpus luteum regression (progesterone < 1 ng/mL).  

Black = FONR    Grey = FOR    Blue = VONR    Yellow = VOR 

A 

B 
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Steroidogenic Gene Expression 

 Luteal biopsies taken at 0, 18, 24, 36 and 48 h and were used to assess steady-

state mRNA levels for key genes that regulate progesterone synthesis. StAR, CYP11A1 

and LDLR steady-state mRNA was significantly higher for animals infused with saline, 

when compared to PGF2a infused animals (Figure 6A, B, C). Regardless of corpus 

luteum function, animals infused with PGF2a had a significant reduction in mRNA for all 

genes measured (Figure 6A, B, C). However, at 48 h, steady-state mRNA for CYP11A1 

and LDLR in luteal tissue collected from fish oil supplemented cows was higher as 

compared to tissue collected from vegetable oil supplemented cows treated with PGF2a 

(p = 0.01; Figure 6A, B, C). There was a tendency for StAR mRNA to be higher in tissue 

collected from cows supplemented with fish oil (p = 0.10; Figure 6A, B, C).   
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Figure 6: Effects of fish oil supplementation and PGF2a infusion on StAR, 
CYP11A1 and LDLR steady-state mRNA. Biopsy tissue was collected and assessed for 
StAR (A), CYP11A1 (B) and LDLR (C) steady-state mRNA using qPCR. Animals 
received either saline or PGF2a infusions at 0 and 12 h. Tissue was collected at 0, 18, 24, 
36 and 48 h. Black bar indicates vegetable oil saline animals (VOSal; n = 3), white bar 
indicates fish oil saline animals (FOSal; n = 3), grey bar indicates vegetable oil PGF2a 
animals (VOPGF; n = 7), diagonal bar indicates fish oil PGF2a animals (FOPGF; n = 6) 
and dotted bar indicates fish oil PGF2a animals that did not regress (FOPGFNR; n = 2).  
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Steroidogenic Protein Abundance 

 Biopsies were used to assess protein abundance in luteal tissue. Protein expression 

was measured using immunohistochemistry and ImageJ analysis. Protein abundance was 

assessed at 0, 18 and 48 h for CYP11A1. Protein abundance remained unchanged in 

animals treated with saline, and for cows with a functional corpus luteum (Figure 7). 

However, protein abundance tended to decrease in response to PGF2a for vegetable oil 

supplemented cows that had a regressed corpus luteum (p = 0.13).  

 

 

 

Figure 7: Effects of fish oil supplementation and PGF2a on steroidogenic protein 
abundance. Representative image at 0, 18 and 48 h showing CYP11A1 abundance. 
Nuclei staining in red (Hoechst 33342) and CYP11A1 protein abundance (green).  
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Figure 8: CYP11A1 protein abundance quantification for saline, not regressed and 
regressed corpora lutea. Quantification was measured as percent of protein positive 
cells compared to total cells. Top panel shows saline control, mid panel shows non-
regressed luteal tissue and bottom panel shows regressed luteal tissue. Fish oil saline n = 
3, vegetable saline n =2, fish oil not regressed n = 2, vegetable oil not regressed n = 3, 
fish oil regressed n = 2, vegetable oil regressed n = 2. 
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Changes in Lipid Droplet Dynamics 

 Luteal biopsies at 0 h were used to measure lipid droplet number and size. Effects 

of fish oil on cultured bovine luteal cell lipid droplets were also measured in vitro. Lipid 

droplet number and size were increased (Figure 9B, C) in fish oil supplemented animals 

as compared to vegetable oil supplemented animals (p < 0.01). In addition, lipid droplet 

number was increased in fish oil treated bovine luteal cells in vitro (p < 0.01). However, 

lipid droplet size was decreased (Figure 9E, F) in fish oil-treated bovine luteal cells in 

vitro as compared to BSA-control bovine luteal cells (p < 0.01).  
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Figure 9: Effects of fish oil on bovine luteal cell lipid droplet accumulation and 
volume. Luteal tissue was collected following approximately 75 days of supplementation 
with fish (n = 5) or vegetable oil (n = 4). Cultured cells were treated with fish oil or BSA 
for 72 h. A) Representative images showing lipid droplet staining in bovine luteal tissue. 
B) Lipid droplet accumulation in bovine luteal tissue. C) Lipid droplet volume in bovine 
luteal tissue. D) Representative images showing lipid droplet staining in cultured bovine 
luteal cells. E) Lipid droplet accumulation in bovine luteal cells in vitro. F) Lipid droplet 
volume in bovine luteal cells in vitro. (** p < 0.01) 
 

D 
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Effects of Fish Oil and Hypoxia on Progesterone  

Biosynthesis 
 
 Progesterone production was measured from cultured luteal cells during hypoxia 

and treated with fish oil. Forskolin was added to cells to stimulate progesterone synthesis. 

Progesterone was measured at 0, 6 and 24 h of hypoxia in fish oil treated cell. After 24 h, 

luteal cells cultured in a hypoxic environment produced less progesterone as compared to 

luteal cells cultured in a normoxic environment (Figure 10). Additionally, there was no 

difference in progesterone production between cells treated with fish oil or BSA that 

were cultured in either normoxic or hypoxic environments (Figure 10). 

 

Figure 10: Effects of fish oil and hypoxia on forskolin-induced (10 µM) progesterone 
production. Cultured bovine luteal cells were treated with fish oil or BSA control for 72 
hours and cultured in either 20 or 5% O2 environments. Progesterone was measured at 0, 
6 and 24 h of oxygen incubation. BSA = bovine serum albumin control, FO = 0.03% fish 
oil (** p < 0.01, ns = not significant) 
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Effects of Fish Oil and Hypoxia on Bovine Luteal Cell  
Mitochondrial Membrane Potential and Morphology 

 
Mitochondrial membrane potential was assessed using TMRM fluorescence intensity. 

There was no difference in membrane potential between cells cultured in a normoxic or 

hypoxic environment. Furthermore, fish oil treatment had no effect on mitochondrial 

membrane potential.  

 

Figure 11: Effects of fish oil and hypoxia on mitochondrial membrane potential. 
Mitochondrial membrane potential was measured using TMRM following treatment with 
either BSA supplemented medium or fish oil supplemented medium, and hypoxic or 
normoxic culture. BSA = bovine serum albumin control, FO = 0.03% fish oil (ns = not 
significant) 
 
Additionally, the effects of hypoxia and fish oil on mitochondrial fragment size and 

number were determined. There was an increase in mitochondrial fragment size in luteal 

cells cultured in a normoxic environment as opposed to a hypoxic environment, 
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regardless of fish oil or BSA supplemented medium (p < 0.05; Figure 12B). Furthermore, 

fish oil treatment mitigated this decrease in fragment size when cultured in a hypoxic 

environment (Figure 12B). Mitochondrial fragment size was reduced in luteal cells 

treated with CCCP regardless of oxygen environment or supplementation (Figure 12C).  
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Figure 12: Effects of fish oil and hypoxia on mitochondrial fragment size: A: 
Representative images showing mitochondrial fragmentation. Images shown are 
unedited, CLAHE (enhanced local contrast), tubeness (particle separation), and binary 
(black and white). B: Average mitochondrial fragment size between cells treated without 
CCCP treatment. C: Average mitochondrial fragment size between cells treated with 
CCCP. BSA = bovine serum albumin control, FO = 0.03% fish oil (* p < 0.05, ns = not 
significant) 
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There was a decrease in mitochondrial fragment number in luteal cells treated with fish 

oil as compared to luteal cells treated with BSA, regardless of oxygen environment (p < 

0.01, p < 0.05; Figure 13A). In CCCP treated cells, mitochondrial fragment number was 

decreased when treated with fish oil as compared to BSA, regardless of oxygen 

environment (p < 0.01, p < 0.05; Figure 13B). 

 

 

Figure 13: Effects of fish oil and hypoxia on mitochondrial fragment number. A: 
Mitochondrial fragment number between cells without CCCP treatment. B: 
Mitochondrial fragment number between cells with CCCP treatment. BSA = bovine 
serum albumin control, FO = 0.03% fish oil (* p < 0.05, ** p < 0.01) 
 
Mitochondrial footprint was measured for each treatment group to determine overall 

organelle coverage. Mitochondrial footprint was higher in BSA treated luteal cells as 

compared to fish oil treated luteal cells, regardless of oxygen environment (p < 0.01; 

Figure 14A). Additionally, CCCP reduced mitochondrial footprint, however, 

mitochondrial footprint remained higher in BSA treated cells as compared to fish oil 

treated cells, regardless of CCCP treatment (p < 0.01, p < 0.05; Figure 14B). 
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Figure 14: Effects of fish oil and hypoxia on mitochondrial footprint. A: 
Mitochondrial footprint without CCCP. B: Mitochondrial footprint with CCCP. BSA = 
bovine serum albumin control, FO = 0.03% fish oil (* p < 0.05, ** p < 0.01)  
 
 
Mitochondrial morphology was further investigated using networking. Mitochondrial 

networking was used to determine number of mitochondrial branches and junctions. 

There was an increase in mitochondrial branch number for BSA treated luteal cells 

cultured in a normoxic environment as compared to BSA treated luteal cells cultured in a 

hypoxic environment (p < 0.01, p < 0.05; Figure 15B). Furthermore, there was an 

increase in mitochondrial branch number for BSA treated luteal cells cultured in a 

normoxic environment as compared to fish oil treated cells, regardless of oxygen 

environment (p < 0.01, p < 0.05; Figure 15B). Additionally, there was an increase in 

mitochondrial junction number for BSA treated cells cultured in normoxia, as compared 

to either BSA treated cells cultured in hypoxia or fish oil treated cells, regardless of 

oxygen environment (p < 0.01, p < 0.05; Figure 15C).  
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Figure 15: Effects of fish oil and hypoxia on mitochondrial branch number and 
mitochondrial junction number. A: Representative images showing morphological 
changes. Images shown are CLAHE (enhanced local contrast), tubeness (particle 
separation), skeleton (particle thickness of mitochondria) and labeled skeleton (colorized 
labeling of ROI; region of interest). B: Average mitochondrial branch number. C: 
Average mitochondrial junction number. BSA = bovine serum albumin control. FO = 
0.03% fish oil (* p < 0.05, ** p < 0.01) 
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Effects of Hypoxia on Lipid Droplets 

 
Lipid droplet number was greater in luteal cells at cultured in a hypoxic environment at 

24 h, as compared to a normoxic environment (p < 0.05; Figure 16B). Additionally, lipid 

droplet size was greater in luteal cells cultured in a normoxic environment at 12 h, as 

compared to luteal cells cultured in a hypoxic environment (p < 0.05; Figure 16C).  
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Figure 16: Effects of hypoxia on lipid droplet size and accumulation in bovine luteal 
cells. A: Representative images showing cell differences in lipid droplet size and number 
between hypoxia and normoxia. B: Lipid droplet number. C: Lipid droplet size. (* p < 
0.05, ns = not significant)  
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CHAPTER IV 

 
DISCUSSION 

 
 The objective of this study was to determine the effects of dietary 

supplementation of fish oil on PGF2a induced corpus luteum regression. 

Supplementation with fish byproduct in the form of fish oil or meal has been shown to 

prevent corpus luteum regression in the bovine, leading to increased progesterone 

synthesis (Mattos et al., 2002; Childs et al., 2008). It has been reported that regardless of 

corpus luteum regression, cows treated with PGF2a showed a significant decrease in 

steady-state mRNA for steroidogenic genes (Plewes et al., 2018). The purpose of this 

study was to determine if there was a rebound in steroidogenic gene mRNA following 

intrauterine infusions of PGF2a.  

 Previous literature shows that supplementation with fish byproduct leads to a 

significant increase in blood plasma EPA and DHA (Burns et al., 2003; White et al., 

2012; Plewes et al., 2018; Moussavi et al., 2007), which is in alignment with our results. 

Cows receiving fish oil supplementation had increased plasma EPA and DHA beginning 

at day 35 of supplementation (Figure 4), which remained elevated compared to vegetable 

oil control cows for the remainder of the supplementation period. There were no 

significant weight changes between fish or vegetable oil supplemented cows at initial or 

final day of supplementation, which is in agreement with previous studies from our 

laboratory (White et al., 2012; Plewes et al., 2018). Therefore, changes in luteal 



 

 
   

61 

sensitivity to PGF2a are most likely due to increased plasma EPA and DHA from dietary 

supplementation. 

 In the present study, dietary supplementation did not have an effect on serum 

progesterone in cows treated with saline control (Figure 5A). These results are in 

alignment with previous literature indicating that fish oil or meal supplementation had 

minimal effects on luteal progesterone secretion (Moussavi et al., 2007; Mattos et al., 

2002; Childs et al., 2008; Plewes et al., 2018; Wamsley et al., 2005; White et al., 2012). 

Intrauterine infusions of PGF2a at h 0 and 12 significantly decreased serum progesterone 

(Figure 5B), which resulted in functional regression for 43% of vegetable oil control 

cows, as opposed to only 25% of fish oil cows. This result is similar to previously 

reported literature (Plewes et al., 2018) where fish meal reduces corpus luteum sensitivity 

to PGF2a. Serum progesterone remained elevated for the remainder of the experimental 

collection period in cows that did not show a regressed corpus luteum.  

 Corpus luteum regression occurs in two separate ways, functional regression and 

structural regression (Nancarrow et al., 2973; Peterson et al., 1975; Juengel et al., 1993). 

Functional regression results in loss of progesterone synthesis whereas structural 

regression results in a decrease of gland mass. In cows that received intrauterine infusions 

of saline, there was no decrease in corpus luteum diameter regardless of supplementation 

(Figure 5B). Previous literature reports that fish oil or meal supplementation does not 

affect corpus luteum diameter (Plewes et al., 2018, Childs et al., 2008). Additionally, 

recent literature reports show that intrauterine infusions with PGF2a results in a 

significant decrease in corpus luteum diameter (Plewes et al., 2018). Surprisingly, there 

was no decrease in corpus luteum diameter in fish oil supplemented cows infused with 
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PGF2a that did not show functional regression (Figure 5B), indicating lack of both 

functional and structural regression. This result was not anticipated given that previous 

literature reports a decrease in corpus luteum diameter regardless of serum progesterone 

levels in response to fish meal supplementation (Plewes et al., 2018). One possible 

mechanism for this result would be increased membrane fluidity in response to fish oil 

supplementation, which subsequently decreases cell responsiveness to apoptotic factors 

recruited by PGF2a.  

 Progesterone biosynthesis is regulated by a set of key genes that are responsible 

for synthesis of steroid hormones (Zhang et al., 2010; Rekawiecki et al., 2008;). Reports 

in the literature show that steady-state mRNA for steroidogenic genes decreases in 

response to intrauterine infusions of PGF2a (Plewes et al., 2018; Atli et al., 2012). 

Steady-state mRNA for StAR, CYP11A1 and LDLR decreased following intrauterine 

infusions of PGF2a in cows that received vegetable oil supplementation (Figure 6A, B, 

C). In cows that received fish oil supplementation, steroidogenic mRNA decreased in 

response to intrauterine infusions of PGF2a (Figure 6A, B, C). However, unlike vegetable 

oil supplemented cows with a regressed corpus luteum wherein steady-state mRNA 

continued to decline, fish oil supplemented cows showed a stabilization in steroidogenic 

mRNA regardless of corpus luteum function (Figure 6A, B, C). 

 A recent report in the literature (Atli et al., 2012) shows that intrauterine infusions 

of PGF2a decrease luteal CYP11A1 protein abundance. Preliminary data from this study 

show that intrauterine infusions of PGF2a tended to decrease CYP11A1 protein 

abundance in vegetable oil supplemented cows with a regressed corpus luteum (Figure 

7). However, CYP11A1 protein abundance remained unchanged following PGF2a 
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treatment in fish oil supplemented cows regardless of corpus luteum function (Figure 7). 

Thus, it appears that fish oil supplementation may mitigate PGF2a-induced luteal protein 

reduction. 

 Cholesterol is stored in steroidogenic tissues in the form of intracellular lipid 

droplets. These lipid droplets serve as a cholesterol-rich reservoir to maintain 

steroidogenic output. A recent report in the literature shows that fish oil supplementation 

increases lipid droplet size in mouse preadipocytes (Hsieh et al., 2019) and accumulation 

in rabbit hepatocytes (Zhu et al., 2015). In the present study, fish oil increased both lipid 

droplet size and accumulation in luteal tissue following approximately 75 days of 

supplementation (Figure 9). Additionally, fish oil increased lipid droplet accumulation in 

cultured bovine small luteal cells, but not lipid droplet size. These data demonstrate that 

fish oil supplementation either in vitro or in vivo affect lipid droplet dynamics. However, 

the mechanism by which alternation in lipid droplet dynamics affect PGF2a-induced 

corpus luteum regression warrant further investigation.  

PGF2a has been reported to decrease blood during luteal regression (Ginther et 

al., 2007). This decrease in oxygen could potentially lead to hypoxia and affect 

mitochondrial function and subsequently progesterone production. Recent studies have 

shown that hypoxia decreases progesterone output in bovine luteal cells in vitro 

(Nishimura et al., 2008; Hasegawa et al., 2019). In the present study, hypoxia 

significantly reduced forskolin-induced progesterone production as compared to luteal 

cells cultured in a normoxic environment (Figure 10), which is in agreement with 

previous studies. It was hypothesized that fish oil supplementation would protect 

mitochondria and maintain progesterone production within a hypoxic environment. 
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However, progesterone production in fish oil-treated cells was similar to BSA-control 

treated cells during hypoxia (Figure 10). Although fish oil failed to improve progesterone 

production during hypoxia, it is possible fish oil may improve mitochondrial morphology 

and thereby become more resilient to apoptosis during hypoxia (Nishimura et al., 2008). 

Mitochondrial fusion and fission are opposing processes. During hypoxia, 

mitochondria are likely to undergo fission, which subsequently leads to apoptosis (Zhang 

et al., 2018). Additionally, mitochondrial fusion is correlated with steroid biosynthesis 

(Duarte et al., 2012). It was hypothesized that fish oil treatment would reduce 

mitochondrial fission during hypoxia. In the present study, hypoxia resulted in decreased 

fragment size in BSA-treated luteal cells (Figure 12), indicating induction of 

mitochondrial fission (Zorov et al., 2019). However, there was no significant decrease in 

fragment size in fish oil-treated cells that were cultured in a hypoxic environment, as 

compared to cells cultured in a normoxic environment (Figure 12). This is interpreted as 

fish oil preventing mitochondrial fission during hypoxia. Additionally, mitochondrial 

fragment number was reduced in luteal cells treated with fish oil regardless of oxygen 

environment (Figure 13). Taken together, these data show that fish oil may improve 

mitochondrial morphology during hypoxia and thereby decreasing the likelihood of 

apoptosis.  

  Mitochondria are dynamic organelles capable of interactions between each other. 

This is often referred to as mitochondrial networking. Mitochondrial branching and 

junctions are indicative of multiple mitochondria grouping (or fusing) together to create 

more surface area that can readily be used for things such as shuttling of cholesterol and 

electron transport chain efficiency (Osellame et al., 2012). In the present study, fish oil 
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treatment had no effect on mitochondrial networking when cells were cultured in either 

normoxic or hypoxic conditions (Figure15). These data corroborate with the progesterone 

output during hypoxia. 

 Previous reports in the literature show that hypoxia induces lipid droplet 

accumulation (Gordon et al., 1977). In the present study, hypoxia increased lipid droplet 

accumulation in bovine luteal cells (Figure 16), which is in agreement with previous reports 

in the literature (Gordon et al., 1977). It is postulated that hypoxia induces lipid droplet 

accumulation with associated long-chain fatty acids that could be utilized by the 

mitochondria for beta-oxidation (Fuhrmann et al., 2019). In these studies, fish oil treatment 

affected lipid dynamics. Future studies are warranted to investigate lipid droplet dynamics 

in fish oil treated cells during hypoxia. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
   

66 

 

 

 

 

CHAPTER V 

CONCLUSION 

Early embryonic mortality is a major problem in the United States beef and dairy 

industries. This leads to a significant loss in meat and milk production. Therefore, 

preventing these losses will ultimately increase profitability for the American rancher and 

dairy farmer. The use of fish oil may be a novel method for improving reproductive 

performance.  

Both literature and previous data from our laboratory show that omega-3 fatty 

acids in fish byproducts can be incorporated into blood plasma, which may be readily 

available for reproductive tissues, including the corpus luteum. The increase in 

availability of omega-3 fatty acids may allow for decreased luteal sensitivity to PGF2a. 

Here, it was shown that fish oil supplementation reduces luteal sensitivity to intrauterine 

infusions of PGF2a. However, the cellular and molecular mechanisms that lead to a 

reduction in luteal sensitivity are still largely unknown. These studies show that steady-

state mRNA for key proteins that regulate steroidogenesis are initially reduced during the 

first 18 h following PGF2a, but then remain unchanged during the remaining 48 h. 

Protein abundance for CYP11A1 remain elevated in fish oil supplemented cows that 

retained a functional corpus luteum, but was reduced in vegetable oil supplemented cows 

with a regressed corpus luteum.  
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In vitro experiments from this study show that fish oil treatment improves 

mitochondrial morphology during hypoxia. This may be a potential mechanism whereby 

fish oil protects the bovine corpus luteum during PGF2a-induced hypoxia.  

It has been postulated that slow developing embryos fail to mitigate uterine 

PGF2a secretion during maternal recognition of pregnancy. Data from the current studies 

show that fish oil is luteal protective.  Further studies are warranted to demine if fish oil 

supplementation improves pregnancy outcome in slow developing embryos. 
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