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ABSTRACT 
 

Rasé, Viva Jeanne. Type 3 T helper cell and myeloid derived suppressor cell population 
dynamics in a mammary carcinoma model Unpublished Master of Science Thesis, 
University of Northern Colorado, 2020  
 

Immunotherapies that augment Type I immunity show robust responses in diffuse 

blood cancers yet remain relatively ineffective in breast and other solid tumor 

malignancies. Breast tumor resistance to immunotherapies is associated with polarization 

towards pro-tumor Type 2 immunity, as well as the expansion of a myeloid derived 

suppressor cell (MDSC) population that inhibits Type 1 T helper (Th) and CD8+ cytotoxic 

T cells. Does polarization toward Type 3 immunity play a role in mammary tumor 

formation? This question had not been investigated prior to these studies despite 

established relationships between MDSCs and Type 3 Th cells in other inflammatory 

pathologies. Therefore, we investigated involvement of Type 3 Th cells (Th17 and Th22) 

and their association with expanding MDSC populations in the 4T1 mouse mammary 

carcinoma model. When evaluated at multiple time points after 4T1 injection (days 7, 14, 

21, and 28), tumor infiltration of Th17 and Th22 cells was first detected at d 14, and Th17 

populations declined after this time while Th22 remained unchanged. In peripheral 

organs, Th17 increased by d 7 before declining, while Th22 were not elevated until later 

times. Only Th17 and MDSC expansion in the bone marrow were positively correlated, 

suggesting further that Th17 and Th22 are functionally distinct lineages and that MDSCs 

may play a role in Th17 fate determination in breast cancer. To further address a possible 
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relationship between MDSCs and Type 3 Th cells in mammary carcinoma, we used 

CRISPR-Cas9 to knock out tumor cell-specific production of interleukin (IL) -6 (IL6-

KO), which functions in Th maturation, myelopoiesis, and MDSC recruitment. Tumor-

resident Th17, Th22, and MDSCs did not change in IL-6 KO tumors, suggesting a limited 

role for IL-6 in local recruitment. However, induction of Th22 and MDSCs in peripheral 

tissues was significantly reduced with IL6-KO tumors, while Th17 cells were increased. 

These concomitant changes in peripheral Type 3 Th and MDSCs suggests direct 

functional interactions between these populations, yet additional studies are required to 

confirm this. To conclude, we identify and characterize a pro-tumor Type 3 Th immune 

response that accompanies MDSC expansion in a model of metastatic breast cancer. This 

is important because these populations are associated with reduced efficacy of cancer 

immunotherapies. 
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CHAPTER I 

INTRODUCTION 

Resistance to Cancer Immunotherapy 
 

In 2019 breast cancer was the leading cause of new cancer cases among American 

women and the second leading cause of cancer deaths in the US behind lung cancers (1). 

In the past decade, immunotherapies that involve training the patient’s immune system to 

recognize and kill cancer cells have been investigated as treatment for breast and other 

cancers. While targeted immunotherapies, especially immune checkpoint (PD-1 and 

CTLA-4) antibody therapy, have been shown to be effective in some forms of lymphoma 

(2), leukemia (3), and melanoma (4), similarly dramatic results have not been observed 

for solid tumor malignancies like breast cancer (5). Even with the advent of 

immunotherapies, breast cancer mortality rates have remained relatively constant (1), and 

recent clinical observations have suggested rare instances in which immunotherapy 

treatment may have resulted in harmful breast tumor hyper-progression (6). Thus, there is 

a definitive clinical need to understand why immunotherapies are failing in these solid 

tumors.  

Mechanisms of Resistance to Immunotherapy 
 

Currently, this resistance to immunotherapy is in part thought to arise because 

breast and other solid tumors present a much more logistically complex location to access 

because they cloak themselves in a milieu of immunosuppressive factors. Additionally, 

solid tumors are not a diffuse easily accessible liquid environment like blood. Due to the 
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variety and breadth of immune countermeasures elicited by solid cancers (7), a complete 

understanding of immunotherapy failure has yet to be realized, and additional 

mechanisms remain to be explored. One well-described barrier to successful 

immunotherapy is the recruitment of myeloid derived suppressor cells (MDSC), a 

population of immature myeloid cells that directly mitigate cytotoxic T and T helper (Th) 

cell potency – immune cell populations that checkpoint therapy hinges on for 

effectiveness. While breast cancers can recruit MDSCs, it is still unclear exactly how the 

tumor, host, and additional immune system components react to their expansion. It has 

been shown that breast tumors can cause polarization away from anti-tumor Type 1 

toward pro-tumor Type 2 immunity (8). Previous work done on MDSC in autoimmunity 

and parasitic infections suggests an interaction between MDSC and Type 3 immunity (9), 

defined here as the accumulation of Th17, Th22, and transitional Th1/17 cell populations. 

Surprisingly little has been done to investigate Type 3 immunity in the context of MDSC-

expanding mammary carcinoma. Thus, the studies described in this thesis aim to: 1) 

Describe the response of Type 3 Th immune cell populations- Th17, Th1/17 and Th22- in a 

murine model of mammary cancer; 2) Correlate the Type 3 Th responses with MDSC 

expansion; and 3) Determine the role of tumor derived interleukin (IL)-6 on MDSC and 

Th cell accumulation and polarization. This work is important because it identifies 

immune polarization and interaction mechanisms that lead to immunotherapy resistance. 

A proposed working model of potential cellular interactions is shown in Figure 1.  
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Specific Aims and Research Hypothesis 
 

A1  Characterize Type 3 Th recruitment by 4T1 mammary tumors.  
 

H1  Proportions of Type 3 Th immune cells (Th17, Th1/Th17, and Th22) will be 
elevated in the tumor and peripheral organs of 4T1 tumor-bearing mice 
compared to healthy controls.  

 
A2  Explore the relationship between MDSCs and the Type 3 immune 

response. 
 

H2  MDSC immune cell expansion will precede Type 3 expansion, suggesting 
MDSC involvement in systemic Type 3 recruitment. 

 
A3  Determine the role of tumor derived IL-6 on MDSC, Type 3 immune, and 

total Th recruitment 
  

H3  4T1 tumors deficient in IL-6 will recruit fewer MDSCs and Type 3 Th 
cells (Th17, Th1/Th17, and Th22) in tumors and peripheral tissues, while 
Type 1 Th cell recruitment will correspondingly increase.   
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Figure 1: Proposed interactions between 4T1 tumor cells, type 3 Th, and MDSCs; 
that are mediated by interleukin IL-6. In this predicted scenario, Type 3 Th cells will 
be recruited from naïve T cells by the 4T1 mammary carcinoma cells. We hypothesize 
that tumor-derived IL-6 is partly responsible for recruiting and skewing naïve T cells into 
Type 3 Th cells (Th17 Th1/17 and Th22), effectively expanding their population and 
creating the opportunity to have Type 3 cells recruited into the tumor. IL-6 also plays a 
role in fate determination of myeloid cells, leading to the expansion of MDSC from 
immature myeloid cells in the bone marrow (10). However, it is unknown if specifically 
removing tumor-derived IL-6 will mitigate MDSC expansion. Lastly, the relationship 
between Type 3 Th and MDSC expansion will be evaluated. 
 
  

? 
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CHAPTER II 

REVIEW OF THE LITERATURE 
 

Normal Immunity 

Adaptive and Innate Immunity   

Adaptive immunity. Th cells, cytotoxic T cells, and B cells are a part of the 

adaptive immune system and are characterized by eliciting antigen specific response 

through highly variable antigen receptors (11). Adaptive immunity can be broken down 

into two categories: humoral immunity and cellular immunity. Humoral immunity is 

often defined as B cell mediated formation and release of antigen specific 

immunoglobulins, also known as antibodies. Antibodies, among other functions, can 

opsonize pathogen for further recognition by innate phagocytotic immune cells. Cell 

mediated adaptive immunity generally does not involve antibody response and is often 

characterized by Th and cytotoxic T cell activation (11, 12).  

Innate immunity. Preceding adaptive immune response and thus Th cell control 

of immunity, the innate immune system must first recognize danger. These molecular 

danger signals are known as pathogen associated molecular patterns (PAMPs) or damage 

associated molecular patterns (DAMPS). PAMPs are highly conserved regions on 

pathogen such as lipopolysaccharide, peptidoglycan, and unmethylated CpG regions of 

DNA, (13) while DAMPs are intracellular contents released from damaged cells such as 

ATP, histones, and mitochondrial DNA (14). Innate immune dendritic cells (DC) and 

macrophage, also known as professional antigen presenting cells (APC), do not rely on a 
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specific antigen to be activated but instead act through recognition of danger signals by 

pattern recognition receptors (PRR), such as toll-like receptors (TLR), nod-like receptors 

(NLR), and RIG-I-like receptors (RLR) (12). These innate immune cells are further 

equipped to aid in Th activation and modulate the Type of immunity (15).  

T Cell Activation and T Cell  
Receptor Biology  

Unlike B cells that recognize antigen in its native form to activate (11), T cells 

with traditional a/b T cell receptor (TCR) require presentation of antigen peptide loaded 

on major histocompatibility complex (MHC), which is expressed on the surface of APC. 

There are two classes of MHC on which peptide antigen can be presented: MHC I and 

MHC II. The MHC class restricts T cell response to either cytotoxic T or Th recognition. 

Cytotoxic T cells recognize peptide loaded onto MHC I due to cluster of differentiation 

(CD) 8 co-receptor expression, while Th cells recognize peptide loaded MHC II due to 

CD4 co-receptor expression. MHC I and MCH II differ in cellular expression patterns, 

with MHCI expressed on the surface of all nucleated cells, allowing for cytotoxic T cell 

and natural killer (NK) cell monitoring of self-cells and subsequent deletion of self when 

an abnormal antigen is presented (15, 16). Due to the widespread expression of MHC I, 

cytotoxic T cell-mediated cell death is vital for surveillance and removal of virally 

infected cells and pre-malignant cells with mutated antigen, also termed cancer neo-

antigen (17, 18). Th1 cells play a further role in enhancing cytotoxic T cell accumulation 

and function through signaling of relevant cytokines such as interferon gamma (IFN-g)  

(19). MHC II is concerned mostly with extracellular-sourced antigens and is only 

expressed on professional APC (B cells, dendritic cells, and macrophages) with a 

functional phagolysosome.  B cell antigen presentation to T cells in the lymphoid follicles 
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(Tfh) is necessary for the development of a hyper-specific and effective antibody 

response, while presentation via the myeloid cells, especially DC, is a necessary bridge 

between innate and adaptive immunity required for the full resolution of a response to 

immunological threat (16).  

TCR interaction with peptide-loaded MHC accompanied by CD4 or CD8 co-

receptor stimulation is necessary but not sufficient to initiate T cell clonal expansion. Co-

stimulation must accompany TCR:MHC interaction for clonal expansion to ensue. This 

occurs through adequate upregulation of costimulatory molecules CD80 (B7.1) and 

CD86 (B7.2) on APCs, which stimulate CD28 on naïve T cells. Adequate co-stimulation, 

TCR engagement, and APC production of IL-2 are each necessary and altogether 

sufficient for T cell activation, and expansion. Without proper co-stimulation, T cells 

often undergo anergy (20). Anergy mechanisms involving immune checkpoints cytotoxic 

T-lymphocyte associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD-

1) are covered later more extensively in the Immune Tolerance section.   

Types of Immunity Based  
on T Helper Cell  
Phenotype 
 

Broadly, there are three main types of immunity to threats/pathogens (with 

examples) the immune system is equipped to respond to: Type 1- intracellular (viruses), 

Type 2-large extracellular (helminth) and Type 3- small extracellular pathogens (bacteria 

and fungi). Each immunity type is ultimately mediated and maintained by the activation 

and polarization of specific adaptive CD4+ Th cells. Once activated, Th cells undergo 

clonal expansion (with respect to their specific TCR sequence) and produce a milieu of 

distinct cytokines that program and dictate further immune response specificity for a 
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given pathogen (21). Indeed, type of immunity was characterized by the response 

initiated following specific pathogen infection; however, the polarization of different 

types of immunity may occur in other contexts, an example being aberrant Type 3 

activation leading to autoimmunity (22). Characterizing the type of immune response 

instigated by cancer and other pathologies will be important in understanding the 

inappropriate immune responses that often accompany these disease states.  

T Helper Cell Polarization 
Amongst Type 1, 2, and 3 
 
 Th polarization follows naïve Th cell recognition of antigen and activation. 

Contingent on the specific danger signal, professional APCs produce a specific cytokine 

profile, which is necessary to polarize Th cells down an immunological lineage. Indeed, 

this encourages fate determination by promoting one type of immunity, which aligns with 

lineage restricted overexpression of specific transcription factors and cytokines. The 

clonal expansion of all Th broadly requires IL-2 stimulation, while distinct polarization of 

Th cells enabling the more pathogen specific responses requires specific stimulation as 

will be described below. As a general rule though, the cytokines that promote one 

category of polarized immunity will inhibit other Th subset formation, which leads to 

specialized Th cell mediated immunity following a specific immune challenge (23). The 

process of normal polarization will be described in the sections immediately following, 

while a potential role of polarization in cancer will be described in a later section. 

Type 1 Immunity 

Following a Type 1 challenge such as a viral infection, Th cells are stimulated and 

polarized to become Th1 cells by IL-12 and IFN-g secreting dendritic cells and 

macrophages (23) allowing for the upregulation of transcription factors T-bet, signal 
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transducer and activator of transcription (STAT) 4 and STAT1, which further polarize Th 

cells to the Th1 phenotype. Th1 cells then respond by producing more IFN-g facilitating 

(23) immunoglobin (IgG) 1, IgG2a and IgG3 B cell (clarify/rephrase) class switching (19, 

23); and recruitment of CD8+ cytotoxic T cells, M1 macrophages, and NK cells. These 

cellular responses further direct and specify Type 1 immunity (23). In addition to its viral 

target, Type 1 immunity is the major immune response required to clear pre-malignant, 

mutated ‘self’-cells (24). 

Type 2 Immunity 

Type 2 immunity is mediated by Th2 polarization dependent on local 

concentrations of IL-2 and IL-4 dendritic cells and macrophages (23), which leads to Th 

cell expression of transcription factors STAT6 and GATA-3, ultimately allowing for 

increased production of  IL-4, IL-5, and IL-13 (25). This response is accompanied by IgE 

B cell class switching and recruitment of mast cells, eosinophils, basophils, and M2 

macrophages (19, 25, 26). Type 2 immunity promotes a targeted response to large 

multicellular parasites, but in the context of cancer, it appears to foster tumor growth, 

likely because resources are misdirected away from Type 1 immunity (24). 

Type 3 Immunity 

T helper cell 22 versus T helper cell 17. Type 3 immunity is mediated by Th17 

and Th22 cells. In the late 1980s, Th cells were initially classified into two groups Th1 and 

Th2 (27). It was not until the mid-2000s that Th17 were identified as a distinct lineage 

subset (28, 29). In 2009 Th22 were identified as yet another unique Th subset (30); 

however, ever since the distinction between Th22 and Th17 cells has been hotly debated. 

This is in part due to limited studies highlighting functionally divergent roles of Th22 and 



 

 

10 

Th17 (31). To date, most studies of Th22 function have explored the immunomodulatory 

effects of IL-22 (32). Confoundingly, Th17 are also a source of IL-22, and therefore it 

remains unclear whether there is a distinct Th22 function. Additionally, many studies use 

in vitro Th22 polarization protocols that also stimulate Th17 differentiation, making 

interpretation of these results difficult. Recently, however, researchers have developed an 

in vitro differentiation protocol for Th22 that excludes Th17 differentiation. Studies 

evaluating Th17 versus Th22 functionality are sure to follow (31). 

Polarization towards type 3 T helper cells. Following a bacterial challenge, 

Th17 or Th22 fate determination is dictated chiefly by expression of transcription factor 

retinoic acid receptor related orphan nuclear receptor gamma t (RORgt). The Th17 

phenotype requires Th expression of RORgt promoting the ability to produce Type 3 

immune cytokines IL-17A and IL-17F. Polarization toward the Th22 lineage requires 

inhibition of RORgt expression, and as a consequence Th22 do not express IL-17A or IL-

17F (23). The polarization toward Th17 requires transforming growth factor beta-1 

(TGFb-1), IL-6, and IL-23; alternatively, Th22 requires the combination of IL-6, IL-23, 

and IL-1b (31). Th22 express IL-22, which is regulated in part by transcription factors 

aryl hydrocarbon receptor (AHR) and STAT3 (33). Interestingly, Th17 retain expression 

of IL-22. Th22 and Th17 mediated immunity to allow for the recruitment of neutrophils 

and MDSC. Type 3 immunity is elicited to target small extracellular pathogens; however, 

in the context of solid tumors, this response may be tumor protective (34). Again, this 

may arise because it draws finite resources from Type 1 immunity but could also directly 

stimulate IL-22 receptor (IL-22R) expressing epithelial cancers like breast cancer.  
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Interleukin 17 and interleukin 22 Synergy. Th cell co-expression of IL-22 and 

IL-17 may have additive or synergistic effects. In microbial infection, co-expression of 

IL-17 and IL-22 enhanced expression of anti-pathogen, pro-inflammatory markers 

CXCL8, IL-6, S100A8 and S100A9 (35, 36). Additionally, IL-22 and IL-17 are known to 

work in conjunction to protect against mucocutaneous infection (22). In airway 

inflammation, for example, IL-22 alone did not lead to a pro-inflammatory state, but the 

addition of both IL-22 and IL-17 incited airway inflammation. Specifically, this was 

mediated by Th17 and allowed for neutrophil recruitment to the airway (37). These 

additive properties of IL-17 and IL-22 may explain the perceived conflicting pro- and 

anti-inflammatory nature of IL-22.   

Resolution of Inflammation 

The polarization of Th to the proper category focuses the immune response to a 

given immunological challenge and is pertinent for timely resolution of inflammation. If 

an immune response is polarized toward the wrong type of immunity for a given 

pathogen, the immune system may not be properly equipped to fight it, thus prolonging 

inflammation and increased disease severity. A great example of this is 

following Mycobacterium leprae (M. leprae) infection, which causes leprosy. M. 

leprae is a small intracellular pathogen. Within cases of leprosy, there is a more severe 

illness known as lepromatous leprosy and less severe illness known as tuberculoid 

leprosy. In both instances leprosy is caused by M. leprae, however, the pathology of the 

disease is determined by whether the host elicits a type1 immune response as seen in 

tuberculoid leprosy or a misguided type 2 response as seen in lepromatous leprosy (38).  
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Following termination of an adaptive immune response, a select group of adaptive 

T cells and B cells, with a receptor repertoire specific to the antigen cleared, are 

maintained in the greater lymphocyte population. This adaptive memory allows for faster 

activation of the T cell and B cell response if a secondary challenge occurs (39). 

Following clearance of the pathogen, the immune responses must be dialed back 

and actively suppressed. In large, this occurs through recruitment of the CD4+ T 

regulatory (Treg) cells that can quell cytotoxic and Th expansion through the release of 

inhibitory cytokines (TGFb, IL-10, and IL-35) (40), cell lysis, metabolic disruption and 

targeting of dendritic cells to inhibit Th expansion (41, 42). MDSCs are also known to 

support Treg expansion, and consequently, both Treg and MDSCs are tumor protective 

(43). Treg and MDSC are necessary to maintain peripheral tolerance to self and prevent 

autoimmune reactions (41, 44).  

Immune Tolerance 

Immunological tolerance prevents inappropriate immune responses targeted to 

self-antigen and occurs by either central or peripheral tolerance selection mechanisms. 

Central tolerance occurs in the thymus after T cells undergo VDJ rearrangement of the 

TCR. VDJ rearrangement results in a broad repertoire of antigen specificity. Due to the 

extensive repertoire of TCR specificity, some T cells may be inherently auto reactive. 

When naïve T cells are challenged by thymic epithelium or myeloid cell with self-peptide 

loaded MHC. Tissue specific self-peptide expression is mediated by autoimmune 

regulator in thymocytes. If TCR high affinity binding occurs the T cell is either deleted 

by apoptosis, undergoes further receptor editing, or is induced to become a Treg. Since not 
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all self-antigens are presented in the thymus, some auto-reactive T cells will eventually 

escape central tolerance (45).  

Thus, peripheral tolerance mechanisms outside the thymus exist to prevent further 

T cell autoimmunity most often mediated by immunosuppressive Treg cells, lack of co-

stimulatory molecules, and immune checkpoints. The process and outcome of peripheral 

tolerance and may result in T cell apoptosis, anergy or Treg formation (45). A specific 

mechanism of T cell peripheral tolerance or inflammatory response resolution is referred 

to as “Immune Checkpoints.” This mechanism relies on inhibitory receptors expressed by 

T cells and APC that impede adequate T cell co-stimulation and TCR signaling. The most 

common checkpoint receptors are CTLA-4 and PD-1 both expressed on T cells. CTLA-4 

is upregulated on T cells after activation and binds to costimulatory molecules CD80 and 

CD86 on APCs, which reduces co-stimulation and eventually may leads to T cell anergy. 

Indeed anergy occurs because of the lack of proper co-stimulatory molecules for T cell to 

interact with upon MHC:TCR interaction as a control mechanism to avoid an unsolicited 

autoimmune response.  PD-1 is expressed on hyperactivated and thus exhausted T cells. 

It binds programmed death ligand-1 (PD-L1), which is constitutively expressed and 

active on a variety of myeloid and tumor cells. The interaction of these two proteins 

stimulates T cell apoptosis, which again eliminates potentially auto-reactive T cells in the 

periphery (20).  

Immune Surveillance 

As alluded to above, a primary function of the immune system is to surveil ‘self’ 

cells for abnormalities. Thus, the immune system is the primary defense mechanism 

against transformed tumor cells that may emerge following the failure of cellular-level, 



 

 

14 

innate, tumor suppressor mechanisms. Immune recognition of tumor neoantigen is 

hypothesized to be the primary route of direct cancer cell elimination. This response is 

initiated by Type I MHC damage signals followed by an IFN-g-driven Type 1 immune 

response mediated by Th1 cells (46). Macrophages then acquire a pro-inflammatory M1 

phenotype with the hallmark of increased antigen presenting capability and increased 

production of cytokines IL-6, IFN-g, and tumor necrosis factor alpha (TNF-a) (47). 

Cytotoxic T cells and NK cells are then recruited and can facilitate direct malignant cell 

death via perforin membrane pore formation, TNF-related apoptosis inducing ligand 

(TRAIL), FAS/FASL, and granzyme b (46).  Due to these responses, cancerous cells are 

often killed before they pose a major concern. However, clearly, some tumor cells are not 

deleted, which can be followed by further tumor immune escape.  

Tumor Immune Escape 

Immune surveillance is protective against pre-malignant cells, and thus for 

carcinoma cells to successfully form a growing tumor mass, they must overwhelm or 

evade the body’s immune response resulting in ‘tumor escape’ (48–53). Tumor escape is 

often driven by stochastic misappropriation of surface molecule expression. Specific 

examples include T cell anergy resulting from the upregulation of co-inhibitory 

checkpoint molecules CTLA-4 and PD-1 described above, or downregulation of MHC I 

leading to an inability for cytotoxic T cells to surveil for abnormal self-antigen. In 

addition to surface marker regulation, tumor cells also manipulate their local milieu of 

cytokines to preferentially attract tumor promoting immune cells such as M2 

macrophages, MDSC and Treg. Tumoral cytokines such as TGF-b1 and IL-6 enhance pro-

tumor immune cell phenotype while aiding in tumor growth, local but disorganized 
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angiogenesis, and eventual metastases (54). This recruitment is often initiated by 

polarization away from an anti-tumor type 1 response toward an ineffectual type 2 or type 

3 response (55). Again, many of the studies detailed in this thesis aim to better 

understand these tumor escape mechanisms in mammary carcinoma to improve 

immunotherapy treatments. 

Cancer Immunity 

Checkpoint Immunotherapy  
Cancer 
 

Checkpoint inhibitor antibodies have been developed to target CTLA-4 and PD-1/ 

PD-L1 described above. These antibodies have shown clinical success in hematological 

tumors and solid tumors with a high neoantigen burden, leading to tumor regression and 

considerable gains in patient survival (56–60). Unfortunately, not all patients have 

benefited equally from checkpoint inhibition as non- or poor responders, adverse immune 

events, and tumor hyper-progression have also been reported (6, 61–64). These reports of 

hyper-progression suggest, paradoxically, that releasing inhibitory control of the CTLA-4 

and PD-1/PD-L1 axes on the immune system can aid in tumor progression under certain 

immunological circumstances. These disparate outcomes clearly indicate that we need 

more information on a cancer patient’s immunological status to ensure that checkpoint 

and other immunotherapies are delivered into an optimally effective immune context. 

Case in point the only predictors of therapeutic tumor hyper-progression across all tumor 

types following checkpoint inhibitor treatment is female sex, which is concerning when 

treating breast cancer patients with checkpoint immunotherapy (61).  

The variable tumor responses to checkpoint immunotherapy are likely explained 

primarily by the phenotype and quantity of tumor infiltrating lymphocytes (TIL)- the 
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immune cells that directly occupy the tumor mass (65). However, several other systemic 

immune factors may also play a role in checkpoint therapy effectiveness. Upregulation of 

immune inhibitory cells such as MDSCs can impair CD8+ cytotoxic T cell activation, and 

more broadly, inhibit effector Th cell function (66). Another important factor is tumor 

immune polarization as a means of immune evasion by reducing an anti-tumor type 1 

response and amplifying a pro-tumor type 2 or type 3 response (67–70). Thus, it is 

important to understand the Type of T cell-mediated immunity a tumor elicits before 

administering checkpoint inhibitors that preserve or amplify T cell responses.  

Immune Polarization in Breast  
and Other Carcinomas 
 

Breast cancer-mediated polarization away from an effective type 1 response 

toward an ineffective, helminth-targeting type 2 response was previously characterized 

(71, 72), yet no investigations have addressed possible polarization toward type 3 

immune responses normally geared for microbial infection. T cell polarization toward a 

type 3 immune response involving Th17 or Th22 cells has been defined in mouse models 

and human cases of cervical, ovarian, prostate, and gastric cancers (34, 68, 73–77), 

indicating that there is precedent for its exploration in models of breast cancer. Further, 

increased expansion of type 3 Th cells has been observed in autoimmune diseases such as 

lupus erythematosus, autoimmune encephalomyelitis, and autoimmune arthritis, as well 

as in H. pylori infections. Intriguingly, type 3 responses in these inflammatory conditions 

are also associated with a significant MDSC response (9, 44, 78). As indicated 

previously, many breast malignancies lead to the recruitment of MDSCs (43). Is there is a 

link between this MDSC response and polarization toward type 3 Th cells that has largely 

been ignored? 
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Type 3 Immunity and Cancer:  
T Helper Cell 22 and 
 Interleukin 22  
 

T helper cell 22. Th22 cells were first described as a terminally differentiated Th 

subset in inflammatory skin diseases: psoriasis, atopic dermatitis, and contact dermatitis 

(30). To our knowledge, Th22 have not been explored in the context of breast cancer, 

though they have been characterized to some extent in a handful of other malignancies. 

Reinforcing the clinical relevance of this cell type, Th22 were significantly elevated in the 

blood and tumors of human patients in gastric, cervical and ovarian cancer (77, 79–81). 

Th22 accumulation in blood was correlated with poor prognosis and lymph node 

metastasis in patients with stage III and IV gastric and ovarian cancer (79–81). In a study 

investigating Th22 in human colon cancer, it was found that Th22 cells supported tumor 

formation, being positively correlated with cancer proliferation and loss of cell cycle 

control in adjacent target cells through polycomb repressive complex 2 (82). In the above 

examples and elsewhere, Th22 cells have been generally implicated a shaping an 

aggressive tumor microenvironment through secretion of IL-22 and potentially other 

undefined factors. 

Under normal physiological conditions, Th22 cells express CCR10 in both human 

and mouse (30, 83), which is a receptor for CCL27 and CCL28 expressed in skin and 

mucosal tissues (84, 85). Since these chemokine receptors and their ligands are essential 

for cell migration and where they congregate, Th22 cells tend to reside in epithelial 

barriers (skin and gut) (30). As such, in humans, Th22 typically comprise of about 1-2% 

of peripheral blood mononuclear cells and the majority are thought to reside in epithelial 

barrier tissues and aid in wound healing (86). CCR10 has been shown to be 
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overexpressed on breast cancer and melanoma tumor cells activated by elevated levels of 

CCL27 and CCL28, which aids in enhanced tumor invasion and migration (84, 87, 88). 

Given that normal epithelial tissues express the CCL27 and CCL28 ligands, if an 

alternative tumor source of these chemokine ligands are present, does this attract Th22 

cells to the tumor? It is clear now from our studies that Th22 are recruited in the 4T1 

mammary carcinoma model, and we believe (though have not yet tested) that tumor 

derived CCL27/CCL28 ligands may underlie this recruitment and local delivery of pro-

tumor IL-22. 

Interleukin 22 ligand. Cellular sources of IL-22 are limited mostly to immune 

cells: Th1, Th17, Th22, type 3 innate lymphoid cells 3 (ILC3) and NK cells (33). STAT3 

and AHR are important drivers in IL-22 transcription initiation and c-maf and suppressor 

of cytokine signaling 3 (SOCS3) downregulate IL-22 production (33). IL-22 is 

recognized by a heterodimeric receptor IL-22R1 and IL-10Rb, and although immune 

cells produce IL-22, they do not express IL-22R1 and therefore, are unresponsive to IL-

22 stimulus (89). 

IL-22 is a dual-function cytokine that appears to be both immune protective or 

pro-inflammatory depending on the context. IL-22 acts on epithelial target tissues to 

enhance survival and proliferation, increase expression of antimicrobial peptide, and aid 

in wound healing. The anti- or pro-inflammatory nature of IL-22 may be a consequence 

of target tissue specific response or acute versus chronic inflammation (33). In ulcerative 

colitis, a chronic inflammatory disease of the colon, hypomorph mutations in the gene 

loci encoding IL-22 and IL-10Rb are disease risk factors (90, 91), suggesting that IL-22 

is critical for maintaining an anti-inflammatory state in the colon. However, IL-22 can 
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promote inflammation in psoriatic lesions in the skin (92) and is upregulated in the serum 

of patients with granulomatous mastitis (93).  

In breast carcinoma, IL-22 has been investigated for its pro-tumor effects 

including: promotion of epithelial cell transformation (94, 95), increased invasiveness 

and migration (96), chemotherapy resistance (97), and uncoincidentally, stimulation of 

epithelial-mesenchymal transition (EMT) (98). However, the role of IL-22 in shaping the 

tumor immune environment remains undefined. In normal epithelial target tissues, IL-22 

signaling leads to increased activation of Janus kinase (JAK)/STAT pathways specifically 

activation of STAT1, STAT3 and STAT5 followed by transcription of target genes (99). 

In keratinocytes, IL-22 stimulates expression of the alarmins S100A8 and S100A9 that 

have been implicated in MDSC recruitment in other tissues (100–102). Further, IL-22 has 

been shown to induce the expression of various chemokines, CXCL2 (103), CXCL3 

(104), and CXCL5 (101), which aid in MDSC chemotaxis to various target tissues (105–

107). Indeed, IL-22 in other tissues has been shown to alter the immune milieu in favor of 

MDSC recruitment. Does Th22 and thus IL-22 presence in breast cancers ultimately 

support MDSC recruitment?  

Type 3 Immunity and Cancer:  
T Helper Cell 17 and  
Interleukin 17 
 

T helper cell 17. Th17 cells are a heterogeneous cell type that are similar to Th22 

cells in that they exhibit both pro-inflammatory or anti-inflammatory functions depending 

on the context. Pro-inflammatory, or pro-pathogenic Th17 cells are characterized by 

expression of IL-17A, IL-17F, IL-21, granulocyte-macrophage colony-stimulating factor 

(GM-CSF) and IL-22; whereas anti-inflammatory, or non-pathogenic Th17 cells primarily 
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express IL-17A, IL-17F, and IL-10. Pathogenic Th17 are thought to be important drivers 

of various autoimmune diseases, while conversely, non-pathogenic Th17 are that to play a 

regulatory, immunomodulatory role in autoimmune prevention. The development of the 

pro- versus anti-inflammatory Th17 phenotype is dependent on the cytokine profile 

present during Th17 polarization. Absence of IL-23 drives non-pathogenic Th17 

differentiation while the presence of IL-23, IL-1b or TGF-b3 favors pathogenic Th17 

development (108, 109).  In carcinomas, the cytokine profile of Th17 resembles a non-

pathogenic phenotype that may assist in shaping a pro-tumor microenvironment.  

Not only are Th17 a heterogeneous population, but they are among the most 

‘plastic’ of Th cells in that Th17 may repolarize following recruitment to a target tissue. 

The most common repolarization events that Th17 undergo are reprograming to a Treg 

which may give rise to an IL-17+ Treg (110, 111), or reprogramming to a Th1 phenotype 

leading to an intermediate IFN-g+, IL-17A+ phenotype referred to as Th1/17 (108, 112, 

113). To our knowledge, the Th1/17 phenotype preferentially occurs by Th17 

repolarization, but this is not to say that Th1 reprogramming to Th17 via the Th1/17 

intermediate does not occur. Th17 cell presence in a solid tumor can also have pro- or 

anti-tumor effects, depending on the context of the cytokine milieu and tumor 

microenvironment. This duality likely stems from Th17 plasticity: in an anti-tumor 

scenario, Th17 can transdifferentiate to a Th1/17 IFNg+ producing cell to further promote 

Type 1 immunity (112, 114). Th1/17 may also support anti-cancer immunity by 

increasing TIL populations through the expression of CXCL9 and CXCL10 (115). In a 

pro-tumor state, Th17 may differentiate into a Treg, or even a Th2 cell phenotype, thus 

promoting immune suppression and ineffective Type 2 immunity (112).  Ultimately, Th17 
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repolarization toward a pro or anti-tumor phenotype is largely dependent on the cytokine 

profile provided by the tumor microenvironment. 

Blood and tumor Th17 populations have been associated with poor prognosis as in 

colorectal, pancreatic and hepatocellular carcinoma; however, ovarian cancer patients 

with elevated Th17 showed enhanced survival (114). In breast cancer patients 

specifically, increased numbers of Th17 have been associated with more aggressive 

subtypes including luminal B (HER2+ luminal) and triple-negative breast cancer 

(estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-

negative) (116). Th17 cells have been shown to promote the upregulation of tumor 

growth-stimulating CXCL1 (117), and they also express the CD39 and CD73 

ectonucleotidases, which hydrolyze ATP to adenosine (118). Extracellular adenosine has 

immunosuppressive functions; it acts to halt effector T cell functions while promoting 

differentiation of Treg. Thus CD39, CD73, and associated adenosine are now recognized 

as an immune checkpoint and coincidently, CD39 and CD73 are also highly expressed on 

MDSCs (119).  

Interleukin 17 ligand. While few studies have detailed the effects of Th17 cells 

on breast cancer, their hallmark chemokine IL-17 has been scrutinized extensively and 

predictably has been described as having both pro- and anti-tumor effects. On the pro-

tumor side, breast cancer cells exposed to IL-17 upregulate expression of CXCL8, 

MMP2, and MMP9, which drive tumor angiogenesis and tumor cell invasion into 

surrounding tissue (120). In the 4T1 mouse model of mammary carcinoma, knocking out 

IL-17 receptor heightened apoptosis and slowed tumor cell proliferation (121). 

Additionally, IL-17 has been shown to promote tumor growth and metastasis by 
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recruitment of neutrophils through CXCR2 chemokine ligands and IL-6 (114, 121). On 

the anti-tumor side, two studies have now identified IL-17 mediated inhibition of MDSC 

expansion. MDSC were found to be inhibited by IL-17 in three ways, it: 1) inhibited 

MDSC proliferation by suspending cells in G0/G1 of the cell cycle, 2) triggered MDSC 

apoptosis, and 3) stimulated further differentiation to a mature myeloid cell phenotype 

(122, 123).  

Interestingly, MDSC are thought to be immature cells arrested in an early stage of 

myeloid development, and while the stage of development is unclear, MDSCs have the 

potential to differentiate into mature myeloid lineages including (potentially anti-tumor) 

macrophage, neutrophils or dendritic cells (124, 125). Because of this differentiation 

potential, and the fact that very similar marker profiles are used to distinguish MDSCs 

from mature macrophage, neutrophils or dendritic cells; there is often confusion as to 

whether MDSCs or a mature myeloid cell is being identified. Preforming a functional T 

cell suppression is a good way to distinguish the difference between MDSC and other 

myeloid cells (126). Nonetheless, IL-17-stimulated MDSC differentiation seems to be in 

direct opposition to two studies where IL-17 mediated recruitment of neutrophils 

correlated with poorer breast cancer outcomes (127, 128). This may also be partly due to 

the multifaced neutrophil phenotypes where N1 neutrophils possess anti-tumor effects 

versus N2 neutrophils that have pro-tumor effects (129). Additionally, a high neutrophil-

to-lymphocyte ratio has been correlated in many studies as an indicator of metastatic 

potential and poor prognosis (130–134). Therefore, IL-17 stimulated MDSC-to-

neutrophil differentiation could, in fact, stimulate metastatic potential. Of course, the 
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question may be posed are neutrophils correlated breast cancer metastases or are these 

neutrophils truly just misidentified MDSC? 

Myeloid Derived Suppressor Cells  
in Cancer 
 

MDSCs have long been known to facilitate tumor progression, promote tumor 

resistance to therapy, and are generally associated with poor prognosis for cancer patients 

(10). MDSCs can be classified into two distinct subsets: monocytic (M-MDSC) and 

granulocytic or polymorphonuclear (PMN-MDSC). M-MDSC are more potently 

suppressive than PMN-MDSC, however, the PMN-MDSC population is observed to be 

more readily expanded in breast cancer patients. The most prominent forms of direct Th 

suppression associated with MDSC include: upregulation of reactive oxygen species 

(ROS), inducible nitric oxide synthase (iNOS) and oxidative NO production, arginine 

substrate depletion by arginase-1, and local release of inhibitory molecules such as 

prostaglandin E2 and adenosine (43, 119). Moreover, MDSC facilitate 

immunosuppression indirectly by TGF-β1 expression (135), which supports the 

production of Treg (43, 136).  

Many systemic growth factors have been implicated in the development and 

expansion of the MDSC population, with the most prominent candidates being 

macrophage colony-stimulating factor (M-CSF), GM-CSF, and IL-6 (137). For some 

time, M-CSF and GM-CSF were presumed to be necessary and sufficient to drive all of 

MDSC biology, suggesting that altering IL-6 expression alone would not significantly 

reduce MDSC development in the cancer setting (10). Recently, however, IL-6 has been 

shown to be involved in MDSC recruitment and may underlie the poor prognosis in many 

IL-6 overexpressing malignancies including breast cancer (138–140). In therapeutic 
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models, inhibiting IL-6 signaling in murine squamous cell carcinoma led to a reduction in 

MDSCs by initiating a shift toward anti-tumor type 1 IFN-γ production (141). 

Additionally, IL-6 further aids in type 3 Th polarization (31). Considering its role in 

cancer and other disease states, IL-6 has also become a sought-after therapeutic target in 

cancer due to the appearance of FDA approved tocilizumab in 2010 to treat autoimmune 

arthritis (142).  

Interleukin 6 and Clustered  
Regularly Interspaced  
Short Palindromic 
Repeats 
 

Interleukin 6. There are two types of inflammation- acute and chronic. Acute 

inflammation occurs when the immune system recognizes damaged tissue, but there is 

minimal damage or stimuli, so the acute inflammatory response mediated by neutrophils 

will initiate healing and resolve quickly. Chronic inflammation ensues when significant, 

prolonged exposure to inflammatory stimuli exists over months of time as would likely 

occur in cancer, autoimmunity, or sepsis. The persistent activation of adaptive and innate 

immune cells, coupled with continuous tissue repair and remodeling, leads to polarization 

of an immune response that is often initially correct but may progressively drift or change 

to actually further exacerbate inflammation (143).   

IL-6 is a pleiotropic cytokine that plays a role in the initiation of both acute and 

chronic inflammatory responses. Acutely, IL-6 is a major upstream regulator of acute 

phase, damage-response proteins (144). Chronically, IL-6 helps promote an adaptive 

immune response and further shapes and defines the innate immune response. IL-6 signal 

transduction begins when IL-6 ligand enables dimerization of the IL6R and gp130 

membrane receptors, which are coupled to a JAK/STAT signaling cascade, and IL-6 
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activation of STAT3 transcription factor is most notable (145). gp130 is ubiquitously 

expressed, while IL6R expression appears to be limited to hepatocytes, leukocytes, and 

megakaryocytes; however, IL-6 signaling is not limited to these few cell types. In a 

phenomenon known as IL-6 ‘trans-signaling,’ a metalloprotease specifically ADAM17 

(146)  cleaves IL6R from the cell surface freeing soluble IL6R that can stimulate cells 

expressing gp130- which would explain IL-6’s ability to signal systemically to a variety 

of tissues (145). In cancer, IL-6 plays a role in manipulating both immune landscape and 

tumor growth by promoting cell proliferation and survival through STAT3 activation 

(147).  

Although IL-6 was initially thought of as an anti-tumor cytokine due to its 

conventional role in initiating an acute inflammatory response (148), the prolonged, 

chronic expression of IL-6 appears to directly support the implementation and 

differentiation of pro-tumor immunity. For example, IL-6 directly polarizes Th mediated 

immunity away from an anti-tumor type 1 IFN-g Th1 response (149) toward a pro-tumor 

type 3 Th17 or Th22 phenotype (31). Moreover, chronic IL-6 expression in sepsis, cancer, 

autoimmune disease, traumatic injury and now obesity has been correlated with MDSC 

accumulation (139, 150–152). For some time, GM-CSF and M-CSF were solely credited 

with MDSC formation, with little attention paid to IL-6 (10). Indeed, M-CSF and GM-

CSF are important factors in the promotion of general myelopoiesis, but their expression 

alone does not account for the arrested development of the myeloid lineage that spawns 

MDSCs (10, 153).  

Indeed, it is the presence of chronic IL-6 signaling that prompts immature 

myeloid accumulation with a suppressive, MDSC phenotype. Prolonged IL-6 signal 
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transduction results in altered myelopoiesis within the bone marrow, which has been 

linked to suppression of SOCS3, which under steady state conditions feeds back to inhibit 

JAK/STAT activation. A decrease in SOCS3 allows for continuous phosphorylation and 

activation of STAT3 by chronic IL-6 stimulation, and it also promotes GM-CSF and M-

CSF signaling that further enhances myelopoiesis (139). 

However, there remain many unresolved questions in the interactions between IL-

6 and MDSCs. For example, how does chronic IL-6 affect myelopoiesis such that 

myeloid development is arrested at the ‘MDSC stage’? Does IL-6 affect myelopoiesis by 

systemic delivery of IL-6 to the bone marrow? Or are MDSCs suppressive when they 

leave the bone marrow, or do they require further ‘education’, i.e., prolonged exposure to 

IL-6 or splenic ‘education’ to become suppressive? Do MDSCs react to acute bouts of 

IL-6 expression, such as exercise or physical activity? Is this a concentration-, source 

specific- or simply chronic expression-dependent effect of IL-6 on MDSC? Further 

questions emerge regarding Th populations and chronic IL-6 exposure. Does chronic IL-6 

affect polarization to Th17 versus Th22? Is it possible that reducing tumor IL-6 increases 

an IFN-g mediated immune response? Does IL-6 affect Th17 and Th22 systemically or 

locally within the tumor? Is tumor IL-6 necessary for Th recruitment to the tumor? 

Clustered regulatory interspersed short palindromic repeats. Considering the 

significant number of questions circulating around about IL-6 listed above, we targeted 

IL-6 for knockout using CRISPR-Cas9 in the 4T1 model of mammary carcinoma. 

Clustered regulatory interspersed short palindromic repeats (CRISPR) were originally 

discovered as a bacterial adaptive immune system against bacteriophage virus infection. 

In short, bacteria store DNA sequence from previous viral encounters in between 
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clustered regulatory interspersed short palindromic repeats of DNA. These segments then 

get transcribed into RNA know as a guide RNA (gRNA) and loaded into a Cas 

endonuclease. gRNA loaded Cas seek out the specific viral DNA target and induce a 

double stranded break when proper base pairing is formed (154–156).  In 2013, the 

Zhang lab was the first to successfully take advantage of the CRISPR-Cas9 system for 

genome editing in eukaryotic cells. In eukaryotic cells, the principal is the same: a gRNA 

is designed for a gene of choice and is either 1) loaded directly into a Cas (Cas9 being the 

most common) or 2) coded into a plasmid containing Cas coding region. This is injected 

or transfected into a cell, then the Cas9 gRNA complex unwinds genomic DNA probing 

the entire genome for base pairing matches. Each Cas has a protospacer adjacent motif 

(PAM) requirement, which must be recognized in the adjacent strand to the gRNA target 

in DNA before cutting will occur. When a complete match occurs the Cas endonuclease 

induces a double stranded DNA cut. Once a double stranded break is induced the cell will 

repair DNA by non-homologous end joining, often leaving small insertions or deletions 

(157).Thus rendering a knock out of the particular target gene. 

Rationale for Study  

As alluded to above, the classical view of the MDSC suppressive activity is direct 

cell-to-cell inhibition of the effector cytotoxic and Th populations. This model of MDSC 

suppression has overshadowed other potential immune interactions, specifically the 

interplay between type 3 Th17 and Th22 cells (9). It is thought that solid tumors of 

epithelial origin benefit from recruitment of type 3 Th helper cells due to amplified levels 

growth and survival-promoting IL-22 and IL-17A. The chronic presence of these Type 3 

cytokines has been linked to tumor promotion as well as increased metastatic potential 
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(33, 76, 158). In addition, IL-6 is implicated in both MDSC recruitment and Th17/ Th22 

polarization (31, 139), yet few studies have logically linked these phenomenon and 

explored whether chronic expression of IL-6 may, in fact, elicit both MDSC and Type 3 

Th expansion in the context of mammary carcinoma (31, 139). 

These studies examine the response of canonical type 3 T helper populations: 

Th17, and non-canonical populations: Th22, in the 4T1 model of mouse mammary 

carcinoma. Additionally, we characterize the response of Th1/17, which are Th17 cells 

transiting to a Th1 phenotype and are an indicator of immune polarization toward an 

effective, anti-tumor type 1 immune response (159). The 4T1 model was chosen for this 

study because it is representative of a triple negative breast cancer that does not have high 

levels of TIL, with a low mutational load rendering it unresponsive to immune 

checkpoint therapy (160, 161). 4T1 cells had also been shown by others to elicit a 

pronounced myeloid reaction in the form of MDSCs (162). Our findings provide further 

insight into the interactions among MDSC and type 3 immune cells, as well as IL-6, in a 

murine mammary cancer model (Figure 1). These results may help clarify some of the 

failures of immunotherapies in human breast cancers and inform future attempts aimed at 

improving immune and other therapies.  
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CHAPTER III 

 
METHODS  

Mice and 4T1 Mammary Tumors 

4T1 cells were purchased from the ATCC (Manassas, VA) and cultured in RPMI 

1640 (ThermoFisher) supplemented with, 1% pen/strep, 2 mM L-Glutamine, 1 mM 

Sodium Pyruvate, 10 mM HEPES, 0.05 mM β-mercaptoethanol, and 10% (by volume) 

FB Essence (VWR), the latter which is a mixed serum supplement. To grow syngeneic 

mammary tumors, female BALB/cJ mice (The Jackson Laboratory, Bar Harbor, ME) 

between four to six weeks of age were inoculated with 1.0 x 104 4T1 cells. Cells were 

washed and suspended in 100 µL 1X HBSS (Ca2+/Mg2+ free, ThermoFisher) before 

injection through the nipple of the upper right mammary fat pad using an insulin syringe. 

Mice were monitored daily for availability of food and water and any signs or symptoms 

of peripheral infection or inflammation. Palpable tumors were routinely detected 2 weeks 

after injection and tumor sizes were monitored by calipers. Final tumor volumes were 

calculated by (volume=(3.14/6)width´length2)(163). On the day of tissue harvest, mice 

were euthanized by CO2 asphyxiation and tumors weighed. All animal procedures were 

performed according to the Institutional Animal Care and Use Committee protocol 

1906CE-RH-RM-22, (previously 1511CE-RH-RM-18) and 1702C-NP-M-20. 

Additionally, the 4T1 tumor time course study was conducted, and tissue harvested at 

days 0, 7, 14, 21, and 28 post injection time point (Figure 2). 

 

  



 

 

30 

 

 

 

 

 

Interleukin 6 Gene Knock-Out in 4T1 Cells 

The CRISPR/Cas9 system was used to create 4T1 cells deficient in IL-6 (4T1-

IL6-KO). Guide RNAs were designed with CRISPOR software (http://crispor.tefor.net/) 

to target exon 2 of the Mus musculus il6 gene (GenBank: M24221.1) at sequence 

TATACCACTTCACAAGTCGG. The gRNA oligos (Invitrogen) were annealed, 

phosphorylated, and cloned into the pX458 vector following the Zhang lab protocol 

(157). pSpCas9(BB)-2A-GFP (PX458) was a gift from Feng Zhang (Addgene plasmid # 

48138; http://n2t.net/addgene:48138 ; RRID:Addgene_48138) (Figure 3). A transfection 

protocol using Lipofectamine 3000 (ThermoFisher) was optimized for 4T1 at 50% 

confluency in 12 well dishes by growing cells overnight in a 100 µl of additive-free 

RMPI 1640 containing transfection lipid and plasmid. Lipid and plasmid volume 

remained the same as suggested in the ThermoFisher protocol. The vector includes a 

green fluorescent protein (GFP) reporter, thus GFP+ cells were single-cell sorted into 96-

well plates using a Sony SH800 Cell Sorter. Subclones were cultured and IL-6 deficiency 

Figure 2: 4T1 wild type time-course study. Wild Type 4T1 (4T1-WT) were injected 
into non-tumor bearing mice. Spleen, blood, bone marrow, and tumor were harvested 
on days 7, 14, 21 and 28 post 4T1-WT injection. Tissue was processed, stained, and 
analyzed by flow cytometry. Heathy non-tumor bearing mice were included as a 
control. Mice form palpable tumor day 14 after injection.  
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was verified by fixed-cell flow cytometry with IL-6 antibody (BioLegend, #504504) 

(Figure 3). Two independent subclones verified as IL-6 knockouts were pooled to create 

the 4T1-IL6-KO line used in these studies. 

 

Figure 3: pSpCas9(BB)-2A-GFP (PX458) vector. gRNA with sequence 
TATACCACTTCACAAGTCGG was cloned into pX458 vector. pX458 plasmid map 
shown here from Addgene (Addgene #48138). 
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Tissue Processing 

Spleens were weighed, dissected, and dissociated using a rubber policeman in 500 

µL of 1X HBSS. Blood was collected from the chest cavity following a cut to the aorta 

and local heparin infusion. Blood was centrifuged at 0.2 rcf for 10 min and buffy coat and 

plasma transferred to fresh vials and any residual red blood cells lysed with ACK lysis 

buffer. Bone marrow was flushed from excised femurs and tibias using HBSS. Final 

tumor sizes were measured prior to excision, and tumors were weighed after excision and 

removal of extraneous tissue. Tumor tissue was minced and mechanically separated using 

a cell dissociation sieve fitted with a 100 µm mesh screen and resuspended in 1 ml 

HBSS. Cells were resuspended in Type IV collagenase (2mg/1mL) and DNase (0.1 

mg/mL; Worthington) and incubated at 37 oC rocking at 225 rpm for 1 hour. Remaining 

erythrocytes from various tissues were cleared with ACK lysis buffer (Quality 

Biological). 
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Figure 4: CRISPR/Cas9 knockout of IL-6 in the 4T1 cell line. Wild Type 4T1 
(4T1-WT) versus IL-6 knock out 4T1 (4T1-IL6-KO) expression of IL-6 via 
intracellular flow cytometry. (A) Histogram demonstrating relative fluorescence, and 
(B) Percent of total 4T1 that are IL-6 positive. (C) Total cells in a 4T1-IL6-KO tumor 
positive for IL-6. 
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Flow Cytometry and Antibodies 

Cells were stained in flow cytometry buffer: 0.5% BSA in Ca2+/Mg2+ free 1X 

Dulbecco’s PBS (ThermoFisher). Flow reagents and antibodies were purchased from 

Biolegend (San Diego, CA) unless stated otherwise. Fc block (101302) was used prior to 

staining with extracellular markers following the manufacturer’s protocol. Any surface 

marker staining was performed prior to fixation in fixation buffer (420801) per the 

manufacturer’s recommendation. For intracellular markers, prior to cell surface staining 

and fixation, cells were treated with 1X brefeldin A (420601) for 3-4 h at 37 oC to block 

intracellular protein trafficking. Cells were then stained for surface markers, fixed, then 

permeabilized with permeabilization buffer (421002), and finally stained for intracellular 

targets according to manufacturer’s protocols. Samples were analyzed using an Attune 

NxT cytometer (ThermoFisher); raw data were processed in FCS Express (De Novo 

Software). The biomarker profiles and antibodies used to define cell types in these studies 

outlined in Table 1 and 2. Example of flow cytometric gating strategy Figure 5A, B.  

 

 

 

 

 

 

 

Table 1: Cell biomarker profiles 

Cell Type Biomarker Profile  
M-MDSC CD11b+Ly-6G−Ly-6Chi 
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PMN-MDSC  CD11b+Ly-6G+Ly-6Clow 
Th CD3+CD4+ 

Th17  CD3+CD4+RORγt+IFN-γ−IL-17A+IL-22+/- 
Th1/17  CD3+CD4+RORγt+IFN-γ+IL-17A+IL-22+/- 

Th1  CD3+CD4+IFN-γ+RORγt-IL-17A−IL-22+/- 
Th22  CD3+CD4+IFN-γ−RORγt-IL-17A−IL-22+ 

 

Table 2: Antibodies and Catalog Numbers  

Biomarker Antibody Catalog Number 
CD3 100237 Biolegend 
CD4 100438 Biolegend 

IFN-γ 505806 Biolegend 
IL-22 516409 Biolegend 

IL-17A 506904 Biolegend 
RORγt 46698180 ThermoFisher 

MDSC antibody cocktail 77496 Biolegend 
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Figure 5:  Flow cytometry gating strategies. Representative samples of (A) MDSC and 
(B) Th gating strategies. Blood represented.  
 
 
 
 
 
 
 
 
 
 

Statistical Analysis 

All data are presented as mean ±SEM and statistical tests used α = 0.05. Grubbs’ 

test was used to identify any outliers. All multiple comparisons were calculated using 
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one-way ANOVA with Turkey’s multiple comparisons test. Single comparisons were 

calculated using Student’s t-test. A simple linear regression and Pearson’s correlation 

were used to assess the relationship between cell types in the 4T1-WT time course study 

for each of these regressions animals across all time points were included. A confidence 

interval (CI) of 95% is represented as well as Pearson r and r2 values, with significance 

set by α = 0.05. All statistical analyses were conducted in Prism 8 (GraphPad). R2 

(coefficient of determination) and r (Pearson correlation coefficient) values are used to 

predict the relationship between independent and dependent variables in a linear model. 

R represents the overall strength and direction of a correlation, while r2 is indicative of 

how well the data fit to a regression line. R values are measured from -1 to +1; 0 

indicating no relationship. R2 are measured from 0 to +1 while 0 indicates the model 

explains none of the variability (164).  
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CHAPTER IV 
 

RESULTS  

T Hepler Cell Immune Populations in Response to  
4T1 Wild Type Tumors 

 
Tumor and Spleen 

We assessed the Th immune response including type 1, type 3, and transitional Th 

populations in animals bearing 4T1 mammary tumors at 0 (no tumor control), 7, 14, 21 or 

28 days (d) after tumor cell injection. When we inject 104 4T1 carcinoma cells into the 

mammary gland of our BALB/c mice, small but palpable tumors form at the injection site 

by d 14 (Figure 6A, B). Others have also reported increased spleen size, or splenomegaly, 

in this model (165). Interestingly, in d 7 animals we observed a significant reduction in 

spleen mass relative to controls, but by days 21 and 28 the tumor-bearing animals show a 

pronounced increase in spleen size as has been reported elsewhere (Figure 6C). To our 

knowledge, this is the first report of this early reduction in spleen size in this 4T1 tumor 

model.  
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Figure 6: Tumor and spleen sizes in 4T1 tumor bearing animals. 4T1-WT 
carcinoma cells (104) were injected into the mammary gland of BALB/c mice and 
harvested at 0 (no tumor control), 7, 14, 21 or 28 d post injection. (A) Tumor volume, 
(B) tumor mass and (C) spleen mass were determined at the indicated times. Data are 
represented as mean ± SEM; n= 4-11 mice per time point. *p<0.05, **p<0.001, 
***p<0.001 and ***p<0.0001. 
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Total T Helper Cell Populations 

Various Th cell phenotypes were assessed in spleen, blood, bone marrow, and 

tumor at each time point. The percentage of total Th cells remained relatively unchanged 

in tumor, blood, and other peripheral tissues with modest increases detected in spleen and 

bone marrow at days 14 and 21, respectively (Figure 7A, B).  

Type 3 T Helper Cell Populations  

Within the total Th cell population, however, we observed dynamic changes in the 

Th cell subtype. In the spleen, the Th17 population increased significantly by d 7 post-

injection compared to no tumor controls and declined thereafter such that the percentage 

of Th17 recruited/remaining by d 28 was significantly lower than d 7. This same trend in 

Th17 recruitment was observed in the blood and bone marrow (Figure 7, G-H). Notably, 

unlike Th17, Th22 cells in peripheral organs were not expanded initially at d 7 compared 

to no tumor controls. Th22 increased significantly over time in blood compared to heathy 

controls (Figure 7I). In the tumors, Th17 and Th22 are present initially at d 14, Th17 

significantly decline by d 28 whereas Th22 significantly increase at d 28 compared to d 

14 tumors (Figure 7H, J). Due to the inverse pattern of Th17 and Th22 recruitment, we 

computed the Pearson correlation between Th22 and Th17 polarization over time. There 

was no correlation between Th22 and Th17 in the blood or bone marrow; however, there 

was a significant negative correlation (r2=0.14) in the spleen, and a significant positive 

correlation in tumors (r2=0.25; Figure 8A-D).  
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Figure 7: Th populations over time in 4T1-WT tumor bearing mice. Flow 
cytometric measurement of total Th, Th1, Th1/17, Th17, and Th22 in peripheral tissues 
(A, C, E, G, I) or tumors (B, D, F, H, J) at the indicated times. Data are represented 
as mean ± SEM and n= 4-11 mice per time point. *p<0.05, **p<0.001, ***p<0.001 
and ***p<0.0001.  
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T Helper Cell 1 Polarization 

Th1 recruitment was also assessed. The spleen was the only tissue where Th1 

remained statistically elevated compared to healthy animals (Figure 7C). In the blood, T-

h1 were significantly expanded at all times post injection consistent with a mobilization 

of this Th subtype. In bone marrow, Th1 were significantly elevated compared to control 

and d 28 tumor-bearing mice (Figure 7C). Although Th1 are present in the tumor, there 

was no statistical significance seen over time suggesting that increased circulating Th1 in 

the blood did not result in a pronounced infiltration of these cells into the tumor 

microenvironment (Figure 7D).  

We also examined correlations between Th1, Th17, and Th22 and found significant 

negative correlations between Th1 and Th17 in the spleen and tumor (Figure 8E, H), but a 

significant positive correlation in the bone marrow (Figure 8G). When assessing Th1 

versus Th22, there was a significant negative correlation between these two cell types in 

the tumor (Figure 8L). These findings suggest that in the spleen or tumor there is 

potential for polarization away from type 1 toward a type 3 Th phenotype. In addition, it 

may be that spleen and tumor are conducive to initial Th activation and polarization (or 

repolarization), which may explain the relationships in these tissues, but not in blood 

(Figure 8F, J).   

Transitional Type 1 to 3 T  
Helper Cell 1/17  
Populations  
 

Th1/17 were relatively unchanged in blood and bone marrow throughout the time 

course. However, in the spleen Th1/17 were significantly increased compared to d 0 at 

every time point except d 14 (Figure 7E). The same trend was not seen in the tumor. 
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Th1/17 were initially detectable in the tumor at d 14 but were then significantly reduced 

at d 28 (Figure 7F). Interestingly, the pattern of recruitment of Th1/17 and Th17 to the 

tumor were similar during the various time points. Due to the Th1/17 differentiation 

plasticity that exists between Th1 and Th17, we looked at Pearson correlations and found 

that Th1/17 and Th17 were positively correlated over time (r2=0.62, Figure 8P). However, 

no correlation was observed in peripheral organs (Figure 8, M-O). When examining 

Th1/17 and Th1 we saw significant negative correlations in the spleen (r2=0.19), blood 

(r2=0.36) and bone marrow (r2=0.76; Figure 7, Q-S) but a minimal relationship in the 

tumor (Figure 8T). These correlation patterns are consistent with differentiation away 

from the type I Th1 cells toward the type 3 Th17 phenotype. 
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Figure 8: Correlations among Th subsets in 4T1-WT tumor bearing mice. Pearson 
correlations between (A-D) Th17 and Th22 (E-H) Th17 and Th1 (I-L) Th17 and Th1 
(M-L) Th17 and Th1/17 (Q-T) Th1 and Th1/17 levels in spleen, blood, bone marrow 
and tumors in 4T1-WT tumor bearing mice based on data shown in Figure 7. Simple 
linear regression and 95% CI are included to help visualize relationships. *p<0.05, 
**p<0.001, ***p<0.001, ***p<0.0001, and ****p<0.00001  
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Myeloid Derived Suppressor Cell  
Expansion and Relationship to  

Type 3 T Helper Cell 17  
and T Helper Cell 22 

 
Myeloid Derived Suppressor Cells  

MDSCs were measured in the spleen, blood, bone marrow and tumor, and both 

M-MDSC and PMN-MDSC exhibited expansion in the peripheral organs, though each 

displayed a distinct pattern of MDSC expansion (Figure 9, A-C). In the spleen, MDSCs 

progressively increased over time, while blood MDSCs were not significantly elevated 

until late stage (d 28) of tumor development. In the bone marrow, MDSCs peaked early 

on at d 7, and then declined at later time points, however, they remained significantly 

elevated above baseline. Recruitment to the tumor differed between M-MDSC and PMN-

MDSC yet were both present by d 14 (Figure 9B, D). M-MDSC did not change 

significantly over time, whereas PMN-MDSC progressively increased in the 4T1 tumors.  
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Figure 9: 4T1-WT tumor-induced MDSC expansion. Flow cytometric 
measurement of (A) M-MDSC (CD11b+Ly-6G−Ly-6Chi) and (B) PMN-MDSC 
(CD11b+Ly-6G+Ly-6Clow) in response to 4T1-WT mammary carcinoma over time. 
Data are represented as mean ± SEM and n= 4-11 mice per time point. *p<0.05, 
**p<0.001, ***p<0.001 and ***p<0.0001. 
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Correlating Myeloid Derived  
Suppressor Cell and Type 3  
T Helper Cell 
 

 Due to a positive MDSC and type 3 Th correlation in other systems (lupus 

erythematosus, autoimmune encephalomyelitis, rheumatoid arthritis, and autoimmune 

arthritis, H. pylori infections, and colon cancer (9, 44, 78) suggesting that perhaps 

MDSCs may be directly stimulating the type 3 immune response, we wanted to determine 

if similar associations exist in mammary carcinoma. Again, we used Pearson’s 

correlations to compare the patterns of various Th cell types described in Figure 7 across 

the time course of MDSC proportions in Figure 9 (Figure 10). No significant correlation 

was observed in the spleen or tumor between MDSCs and any of the Th cell types. There 

were significant negative correlations in blood between Th17 and PMN- or M-MDSCs, 

r2=0.21 and r2=0.42 respectively (Figure 10J, N). In the bone marrow, we observed no 

relationship between Th22 and MDSC (Figure 10C, G). When looking at the correlation 

between Th17 and MDSC in bone marrow we saw a positive association between PMN-

MDSC and Th17 with r2=0.41 as well as M-MDSC and Th17 r2=0.67 (Figure 10K and O). 

Cumulatively this suggests that MDSC likely do not elicit type 3 Th in mammary cancer 

specifically in tumors. MDSC may, however, recruit Th17 in the bone marrow of 4T1 

tumor bearing mice. 
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Figure 10: Correlations between Type 3 Th and MDSC accumulation.  Pearson 
correlation assessing the association between Type 3 Th percentages shown in Figure 
7, and MDSC percentages shown in Figure 9. (A-D) Th22 and PMN-MDSC, (E-H) 
Th22 and M-MDSC, (I-J) Th17 and PMN-MDSC, and (M-P) Th17 and M-MDSC 
recruitment in the spleen, blood, bone marrow and tumor of 4T1 tumor-bearing 
animals. Simple linear regression included to visualize relationship and 95% CI are 
represented. *p<0.05, **p<0.001, ***p<0.001, ***p<0.0001, and ****p<0.00001. 
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The Role of Tumor Interleukin 6  
in Type 3 T Helper Cell  
Recruitment   
 

Following our initial time course study, we chose to knock out IL-6 using 

CRISPR-Cas9 (Figure 3, (166)) to generate a 4T1 IL-6 knock out (4T1-IL6-KO) cell line. 

Unlike other studies in which IL-6 is knocked out in the entire animal (167), this 

approach narrows the IL-6 deficiency to the 4T1 tumor cells. Indeed, in whole tumors  

there are still stromal and immune cells recruited that produce IL-6 (Figure 4). We did 

not observe a significant difference in tumor volume over time or day 28 tumor mass 

between 4T1-WT and 4T1-IL6-KO tumors (Figure 11A-B). Day 28 spleen mass was 

significantly elevated in 4T1-IL6-KO compared to healthy no tumor controls (Figure 

11C). 

Figure 11: 4T1-WT vs. 4T1-IL6-KO tumor bearing mice measurements of tumor 
and spleen. (A) 4T1-WT and 4T1-IL6-KO tumor volumes were measured over the 
course of progression. 4T1-WT and 4T1-IL6-KO tumor volumes were not statistically 
significant at any time point. (B) Final tumor mass comparing 4T1-WT and 4T1-IL6-
KO tumors at a day 28 post injection time point. Tumors were not statistically 
different in mass. Measurements in (A) and (B) should likely be repeated as many 
animals developed two tumors and is likely a result of miss injection. (C) Spleen mass 
at a day 28 time point. Healthy non-tumor bearing spleens included for reference. 
4T1-IL6-KO spleens have a significantly greater mass than 4T1-WT and healthy 
controls. ANOVA with Tukey’s multiple comparisons. Data are represented as means 
± SEM and n= 6-11 mice. *p<0.05, **p<0.001, ***p<0.001 and ***p<0.0001.  
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Based on the results obtained in the earlier time course, we decided to look at type 

3 accumulation at the d 28 time point with the 4T1-IL6-KO cells. While 4T1-WT tumors 

significantly reduced Th17 at d 28 in the periphery compared to healthy controls, Th17 

remained unchanged with the 4T1-IL6-KO tumors in all peripheral organs (Figure 12A). 

Th22 were expanded in blood and bone marrow of 4T1-WT mice yet remained 

unchanged in spleen and blood in 4T1-IL6-KO. In the bone marrow, Th22 were 

significantly reduced in 4T1-IL6-KO compared to 4T1-WT tumor-bearing mice (Figure 

12C). In tumors, Th17 are expanded (Figure 12B) and Th22 are significantly reduced 

(Figure 12D) in 4T1-IL6-KO compared to 4T1-WT. These data suggest that Th17 are 

affected by tumoral IL-6 local to the tumor. This observation may be in line with the 

tumor microenvironment ability to re-polarize the type of Th immunity (68). We saw little 

systemic effect on Th17 due to the reduction of IL-6 but we see a significant reduction of 

Th22 in the bone marrow. This observation may suggest that 4T1-IL6-KO have a lower 

metastatic potential to the bone marrow than 4T1-WT due to the reduction in Th22 in the 

bone marrow. 
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Figure 12: Tumor IL-6 affects type 3 Th recruitment to the tumor at day 28. Day 
28 recruitment of (A-B) Th17 and (C-D) Th22 in healthy non-tumor controls, 4T1-WT 
and 4T1-IL6-KO in periphery and tumors of tumor bearing mice. 4T1-IL6-KO is 4T1 
specific IL-6 knockout. Statistical significance was measured using one-way ANOVA 
with Tukey’s multiple comparisons or students t-test. Data are represented as means ± 
SEM and n= 4-11 mice. *p<0.05, **p<0.001, ***p<0.001 and ***p<0.0001 
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Effects of Tumor Interleukin 6 on 
T Helper Cell 1, T Helper Cell  
1/17, T Helper Cell, and  
Myeloid Derived  
Suppressor Cell 
 
 We also examined Th1/17, Th1, total Th, and MDSC recruitment in the 4T1-IL6-

KO model as these cell populations could be viewed as indicators of a ‘pro-

immunotherapeutic’ environment assuming tumor IL-6 could be similarly depleted in the 

clinic. In 4T1-IL6-KO tumor bearing mice, the percentage of total Th cells remained 

unchanged in spleen and bone marrow but were significantly increased in blood and 

tumors (Figure 13). We found that Th1/17 were significantly increased in blood and 

tumor in 4T1-IL6-KO compared to 4T1-WT tumor bearing mice. Compared to 4T1-WT 

where Th1/17 polarization was readily apparent, in 4T1-IL6-KO tumors and Th1/17 were 

significantly increased (Figure 14A). Th1 significantly increased in the spleen and 

significantly decreased in the blood in 4T1-IL6-KO tumor bearing mice compared to 

4T1-WT counterparts suggesting that removal of tumoral IL-6 may be therapeutically 

beneficial (Figure14B).   

 

 

Contro
l

4T
1-W

T

4T
1-I

L6-K
O

0

10

20

30

40

Spleen

%
 T

h 
(o

f T
ot

al
 C

el
ls

)

Contro
l

4T
1-W

T

4T
1-I

L6-K
O

0

10

20

30

40

50

Blood

%
 T

h 
(o

f T
ot

al
 C

el
ls

)

✱✱

Contro
l

4T
1-W

T

4T
1-I

L6-K
O

0

10

20

30

40

Bone Marrow

%
 T

h 
(o

f T
ot

al
 C

el
ls

)

4T
1-W

T

4T
1-I

L6-K
O

0

5

10

15

20

%
 T

h 
(o

f T
ot

al
 C

el
ls

)

Tumor
✱✱

Figure 13: Tumor IL-6 depletion increases tumor-infiltrating Th Cells. Th cell 
recruitment at d 28 by 4T1-WT and 4T1-IL6-KO tumors. Data are represented as 
means ± SEM and n= 4-11 mice. *p<0.05, **p<0.001, ***p<0.001 and ***p<0.0001 
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Figure 14: Depleting tumor IL-6 increases Th1 and Th1/17 cells. Recruitment at d 
28 of (A) Th1/17 and (B) Th1 in response to 4T1-WT vs. 4T1-IL6-KO tumors. Data 
are represented as means ± SEM and n= 4-11 mice. *p<0.05, **p<0.001, ***p<0.001 
and ***p<0.0001 
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Removing tumor cell-derived IL-6 led to a significant reduction of both M-MDSC 

and PMN-MDSC in all peripheral organs compared to 4T1-WT tumors (Figure 15A, C), 

further supporting the idea that IL-6 promotes MDSC expansion and that blocking 

systemic IL-6 signaling could prove beneficial to cancer patients. However, only tumor 

infiltrating M-MDSC were significantly reduced in 4T1-IL6-KO tumors (Figure 15B), 

whereas PMN-MDSC remained unchanged (Figure 15D).    
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Figure 15: Tumor IL-6 depletion reduces both M-MDSCs and PMN-MDSCs. (A-
B) M-MDSCs and (C-D) PMN-MDSCs in healthy controls, 4T1-WT and 4T1-IL6-
KO in periphery and tumors of tumor bearing mice. 4T1-IL6-KO a 4T1 specific IL-6 
knockout. Data are represented as means ± SEM and n= 4-11 mice. *p<0.05, 
**p<0.001, ***p<0.001 and ***p<0.0001.  
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CHAPTER V 

DISSCUSSION  

4T1 Tumor Time-Course Studies 

Implications of Type 3 Polarization 
in Breast Cancer 
 

Our results show that Type 3 Th are dynamically recruited over time in response 

to mammary carcinoma. Th17 were recruited initially in spleen, blood, bone marrow, and 

tumor and diminished at later time points. The opposite was seen of Th22, which were 

recruited to the tumor at later timepoints. Due to the dynamic nature of type 3 Th in 

response to mammary carcinoma, our findings indicate that the efficacy of clinical 

checkpoint inhibitors could be substantially diminished by enhancing type 3 immunity. It 

remains to be seen whether checkpoint therapy is able to enhance a pro-tumor Th2, Th17 

or Th22 response as opposed to increasing anti-tumor Th1 or cytotoxic T cells, further 

experiments are necessary to answer this question.  In theory, if type 3 Th are amplified, it 

is possible that a negative immune response promoting tumor growth may persist with 

little amplification of type 1 immunity (68, 168). Indeed, clonal expansion followed by 

the polarization of type of immunity is possible following checkpoint inhibitor treatment, 

however, it remains to be seen what antigen these T cells recognize. It may be that they 

do not recognize tumor specific neoantigen displayed on MHC are merely bystanders. 

Checkpoint inhibitor-stimulated expansion of  Th22 may be detrimental to the 

patient due to the polarization away from Type 1 immunity, Th22 may also facilitate 
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metastasis in high grade breast cancer via IL-22 (81, 97). Thus, amplifying a Th22 

population in breast tumors may increase metastatic potential. The 4T1 model is 

representative of a high-grade mammary tumor (160, 161), which our data demonstrates 

robust Th22 recruitment as time progresses. Future studies using this, and similar models 

should be carried out to elucidate the potential effects of Th22, and by extension IL-22, 

on tumor and metastatic burden. 

Are T Helper Cell 17 and T Helper  
Cell 22 Different Type 3  
Subtypes? 
 

 Historically there has been debate as to whether Th17 and Th22 should be 

classified as distinct Th subsets (31). Our data suggest that Th17 and Th22 are inversely 

correlated in the spleen but directly correlated in the context of a metastatic tumor (Figure 

8 G and I). The spleen is a secondary lymphoid structure where Th subset polarization 

occurs. Based on the negative correlation we observed between Th17 and Th22 in the 

spleen, we suggest that Th17 and Th22 are unique functional subsets due to the ability to 

be maintained in an opposing nature. A positive correlation of Th17 and Th22 suggests 

the potential repolarization of Th17. Whether the reprogramming of Th17 to a Th22 

phenotype is possible remains unclear and the present data underscore the need for 

additional focus on IL-22 in promoting metastasis (169). Moreover, IL-22 is known to 

promote wound healing in the skin and gastrointestinal tract, suggesting that this cytokine 

may enhance a breast tumor microenvironment and provide aid for the growth of 

malignant cells (33, 170). 
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Potential Impacts of Myeloid  
Derived Suppressor Cells on  
Checkpoint Inhibitor  
Therapy 
 

The timing of checkpoint administration may be important as MDSC presence 

varies over time. Here, following tumor injection, PMN-MDSC and M-MDSC are 

induced early in the bone marrow but are not significantly elevated in blood and spleen 

until days 21 and 28 respectively. Early expansion followed by the reduction of MDSC in 

the bone marrow suggests splenic takeover of the maintenance of MDSC (Figure 9A and 

B). Early expansion of MDSC in the bone marrow, compared to other tissues is logical 

because MDSC are of the myeloid lineage, and myelopoiesis occurs in the bone marrow. 

It is, however, interesting that this increase in MDSC production occurs day 7 before a 

palpable tumor is detected suggesting early remodeling of immune tissue. A similar 

phenomenon is seen in the spleen at day 7, spleen mass is significantly lower than non-

tumor bearing controls which may suggest immune remodeling of the spleen prior to an 

enlarged mass (Figure 6C). Understanding the pattern of MDSC recruitment may serve as 

an additional parameter to determine the stage of tumor progression (43).  

 When evaluating the relationship between MDSC recruitment and Th17 it was 

found that there was a positive correlation in the bone marrow but a negative correlation 

in the blood (Figure 10J, N, K, and O). It may be possible that MDSC are capable of 

promoting Th17 responses before achieving full suppressive capacity. These data may 

suggest that when MDSC are first generated in the bone marrow they may not have 

acquired suppressive capacity. Thus, are able to promote Th17. While this is a stimulatory 

response, in the context of a metastatic tumor this is still negative as it would deplete the 
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necessary type 1 immune components necessary to mitigate tumor progression. Future 

studies evaluating the suppressive capacity of MDSC in the bone marrow over time 

following 4T1 mammary tumor injection are needed to support this claim. Still, this 

finding is in line with research in rheumatoid arthritis where MDSC promote Th17 

responses but are not able to suppress effector Th to halt an autoimmune reaction (9). 

Further, there were no significant correlations between MDSC and Th22 in the bone 

marrow and blood. This is more evidence suggesting that Th17 and Th22 should be 

regarded as different cell types, which may have unique functional relevance in the 

context of breast cancer. 

Polarization to Type 1 Immunity  

In addition to Th17, Th22, and MDSC recruitment in 4T1 mammary carcinoma, 

we assessed the recruitment of Th1/17 as a potential indicator of polarization to anti-

tumor type 1 immunity. The Th17 phenotype has been shown to be more plastic than the 

Th1 phenotype (112). Due to this, it is thought that Th1/17 are transiting away from Th17 

toward the Th1 phenotype (112) as opposed to the reverse. Our data support that previous 

work. We see that there is a significant positive correlation between Th1/17 and Th17 in 

the tumor across all time points. This suggests that when there are more Th17 present 

there is also a greater chance of detecting Th1/17. Further, there was no correlation 

observed between Th1/17 and Th17 in spleen, blood, or bone marrow indicating that the 

tumor microenvironment might play a unique role in the re-polarizing immune response. 

In the spleen, blood, and bone marrow, when comparing Th1/17 accumulation to Th1 we 

see a significant negative correlation. This event suggests once again that Th1/17 likely 

occur when Th1 polarization is low, indicating the potential to transition from type 3 to a 



 

 

57 

type 1 immune response. Additionally, if Th1/17 are transiting towards Th1 eventually 

you would expect the number of Th1 to increase. It is possible that a complete 

repolarization of Th1/17 is dependent on tumor specific milieu of cytokines and should be 

evaluated further. Understanding the conditions in which Th1/17 are likely to be 

amplified over Th17 following checkpoint therapy may prove to be therapeutically 

beneficial. 

Despite Th1/17 generation, which indicates that repolarization of Th17 into Th1 

may be possible it is still possible polarization away from type 1 to type 3 immunity. 

When evaluating the recruitment of type 1 and type 3 Th we saw significant negative 

correlations between both Th1 and Th17, and Th1 and Th22 in the spleen and tumor. This 

may indicate that there is potential for polarization away from type 1 towards a type 3 Th 

phenotype in mammary carcinoma given the proper stimulation of cytokines from the 

tumor microenvironment. We did not examine which population of Th cells (Th1 or Th17) 

were actively undergoing clonal expansion, however, Th17 is to be a more plastic Th 

phenotype as it is easily repolarized by the target tissue, such as a tumor (112). Due to 

this, we speculate that Th1/17 generation likely originates from a Th17, not a Th1. 

Tumor Interleukin 6 Studies 

Following our time course study using 4T1-WT tumor bearing mice, we focused 

on the effects of tumor-derived IL-6. IL-6 was targeted in this study for two reasons: 1) it 

acts as a broad pro-tumor cytokine, and 2) the presence of already clinically approved 

tocilizumab to target IL-6 signaling in rheumatoid arthritis (142). IL-6 promotes 

tumorigenesis by facilitating immune suppression, Th polarization away from type 1 

immunity and promoting angiogenesis (171). Further, IL-6 facilitates MDSC 
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development and type 3 Th polarization (30, 139). We used CRISPR to knock out IL-6 in 

the 4T1 cell line (4T1-IL6-KO) and compared Th17, Th22, Th1/17, and MDSC responses 

to changes in IL-6. When assessing Th17 and Th22 in the 4T1 tumor IL-6 knockout we 

found that IL-6 acts differently on Th17 and Th22. In the tumor, Th17 are expanded 

whereas Th22 are significantly reduced when the tumor source of IL-6 is removed. IL-6 is 

a key cytokine in fate determinate of both Th17 and Th22 lineage (31), but it has been 

thought that TGF-β1 is the major player in determining Th17 or Th22 polarization. TGF-

β1 presence drives Th17 polarization while inhibiting Th22 formation, while IL-6 is 

necessary but not sufficient to discriminate between these lineages. Our data suggest that 

there is an IL-6 concentration-dependent mechanism of Th22 or Th17 skewing, which 

should further be evaluated as there is currently little information on differential 

expression of IL-6R or IL-6R function on these cell types.  

Additionally, the reduction of tumor resident Th22 may be therapeutically 

beneficial due to the link between IL-22 growth and metastasis in other types of cancer 

(80). It remains unclear whether an increase of Th17 in this context would lead to pro or 

anti-tumor immunity. Specifically, this is because Th17 are a plastic subset of Th cell and 

their phenotype may be easily manipulated by the cytokine profile of the tumor 

microenvironment, thus they may remain pro-tumor Th17 or repolarize into tumor 

promoting Treg or tumor mitigating Th1 (108, 110, 112). 

Moreover, a significant increase in Th1/17 was observed alongside Th17 increase 

in the 4T1-IL6-KO tumor compared to 4T1-WT. Further supporting the notion that these 

cells are transitioning from Th17 to Th1 phenotype. Th1/17 were significantly elevated in 

the blood of 4T1-IL6-KO tumor bearing animals compared to 4T1-WT. The increase of 
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anti-tumor IFN-γ positive Th1/17 in the absence of tumor IL-6 suggests that IL-6 is a 

logical therapeutic target to accompany checkpoint immunotherapy.  

Additionally, tumor localized IL-6 should be investigated as a therapeutic target 

in this setting, because we observed a significant increase in total Th cells present in 4T1-

IL6-KO tumors as well as blood compared to 4T1-WT tumor-bearing animals. In 

addition, we observed a statistically significant reduction in M-MDSC across all tissues 

including tumor and a significant reduction in PMN-MDSC in all peripheral organs. 

Indeed, this was our initial prediction and impetus for the IL-6 portion of the study. 

Reducing MDSC accumulation in the periphery as well as in the tumor has been shown 

to bolster T cell-mediated immunotherapy (172). Additionally, the effects of IL-6 on 

extramedullary hematopoiesis (EMH) should be considered. 4T1 tumors are known to 

initiate extramedullary myeloid hematopoiesis in the spleen and liver of tumor bearing 

mice (137). Despite the decrease of MDSC in the spleen, we saw spleen masses were 

significantly increased in 4T1-IL6-KO compared to 4T1-WT tumor bearing mice (Figure 

11C). This may suggest that splenic EMH is increased in the absence of tumor IL-6 but 

allowing for the maturation of myeloid cells and potentially extramedullary lymphoid cell 

hematopoiesis. Additionally, in our 4T1-WT time course study, we observed MDSC 

expansion at d 7 in bone marrow accompanied by a significant decrease in splenic mass. 

In subsequent days MDSC in the bone marrow decreased while spleen size and MDSC 

accumulation in the spleen increased. This suggests that there is a delay in splenic EMH 

and the ability for splenic takeover of MDSC production over bone marrow derived 

MDSC. This raises further questions about when and how MDSC acquire suppressive 

capacity. 
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In our model knocking out IL-6 in 4T1 cells did not significantly reduce total IL-6 

in the tumor (Figure 4C), and we suspect this is due to infiltrating immune and stromal 

cell and systemic ability to produce IL-6 is intact, despite this we observed a significant 

impact on the local and systemic immune environment. Thus, we propose that a reduction 

in IL-6 from the tumor may be sufficient to alter the immune landscape. Although we 

saw positive anti-tumor alterations in immune response when eliminating tumor IL-6, it 

is important to further investigate whether the local source of IL-6 is important for this 

reduction or whether these systemic responses occur in a concentration dependent 

manner.  

Conclusion and Summary 

 In sum, this study demonstrated that there is a dynamic pro-tumor type 3 immune 

response in reaction to 4T1 mammary carcinoma (Figure 16). These data demonstrate the 

ability for breast tumors to polarize away from an anti-tumor type 1 immunity toward a 

type 3 response, highlighting that it might be possible for checkpoint therapy to amplify 

the wrong immune response. This has not been adequately explored, warranting future 

research into the impact of immune polarization on checkpoint efficacy. Furthermore, the 

effects of tumor-derived IL-6 on the tumor and peripheral immune landscapes were 

explored. It was found that knocking out tumor IL-6 significantly increased tumor 

infiltrating Th cells, significantly increased IFN-g producing Th1/17, and reduced MDSC 

recruitment (Figure 16). These results demonstrate that IL-6 should be considered a 

therapeutic target in select circumstances where aberrant type 3 immune skewing is 

involved, which may better facilitate an initial, appropriate anti-tumor immune response. 

Indeed, IL-6 may serve as a therapeutic target for the above reasons but IL-6 is necessary 



 

 

61 

to initiate an immune response. Lack of IL-6 has been shown to lower lymphopoiesis and 

poor infiltration of immune cells into sentinel lymph nodes. Due to these collective 

observations, the concentration of IL-6 will likely be important if implementing anti-IL-6 

therapy (173).  
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Figure 16: Summary of interactions between 4T1 tumor cells, type 3 Th, and 
MDSCs; that are mediated by interleukin IL-6. In this study, we demonstrated that 
both Th17 and Th22 are dynamically recruited in the 4T1 tumor model of mammary 
carcinoma. Tumoral IL-6 plays a role in the formation of MDSC as removal lead to a 
systemic reduction in MDSCs. Tumor derived IL-6 was important to type 3 Th locally 
to the tumor but this effect was minimal, and possibly aids in repolarization of Th 
immunity. Additionally, total Th were expanded in the tumor when IL-6 was knocked 
out of the 4T1 cells. The connection between MDSC and type 3 Th has yet to be 
determined in mammary carcinoma. 
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Future Studies and Questions 
 
Myeloid Derived Suppressor Cell  
and Type 3 Immunity  
 
 Our data suggest that in the context of 4T1 mammary carcinoma there is not a 

relationship between MDSC recruitment and type 3 Th polarization. I make this 

assumption because type 3 Th and MDSC recruitment do not appear in lockstep with one 

another. Further studies evaluating whether or not this conclusion is accurate should be 

done. Additionally, a study should be done to reveal when MDSC achieve suppressive 

capacity, both in a time course setting and at the level of tissue specific MDSC. A study 

like this may reveal why we observed a positive correlation between Th17 and MDSC in 

the bone marrow of tumor-bearing mice; MDSC may be able to promote Th17 

polarization before they achieve suppressive capacity. MDSC have been shown to 

produce high levels of TGF-b1 (9), which in turn may drive a Th17 phenotype over a 

Th22 phenotype. This may be why we saw a positive correlation between presumably 

pre-suppressive MDSC and Th17 in the bone marrow and not between MDSC and Th22. 

Additionally, it would be interesting to assess the link between MDSC, Th17 and mast 

cells in a mammary carcinoma setting. The rationale here being TGF-b1 high-producing 

MDSC have been shown to promote mast cell activation. Mast cells upon TGF-b1 

challenge have been shown to secrete high levels of IL-6 (26), which has the potential to 

promote both MDSC and Th17 (9).  

T Helper Cell 17 and Mammary  
Carcinoma 
 

We found that Th17 are recruited at early time points in response to 4T1-WT 

tumors and then are reduced over time. I think in the future it would be interesting to 
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evaluate why we see this reduction of Th17. Is it possible that Th17 are initially polarized 

but following migration to the tumor they are driven into a Treg phenotype? Additionally, 

is it possible to capitalize on this early Th17 response and completely repolarize Th17 to 

tumor fighting Th1 help? 

Interleukin 6 and Checkpoint  
Immunotherapy  
 

In this study, the main immunological benefits found by removing tumor IL-6 

were the increase of tumor infiltrating Th and the reduction of MDSC. Lack of TIL and 

the recruitment of MDSC are thought to be major contributors to the failure of 

immunotherapy treatment in solid tumors. I propose that adding an IL-6 neutralizing 

antibody may increase the efficacy of checkpoint inhibitor therapy function. This 

combination has not yet been evaluated and should be considered for future studies. 

Additionally, it would be interesting to look at the polarization of Th immunity under the 

influence of checkpoint therapy as well as analyze the interactions between activated Th 

and their antigen in a mammary carcinoma setting.  

Study Limitations 

 Throughout the course of this study, we acknowledge the following limitations. In 

our flow cytometric panel, we did not include markers that allowed us to identify Th2, 

cytotoxic T cells or Treg. This meant that we were unable to evaluate changes to these cell 

populations. Most importantly, however, we are unable to say for certain whether the Th 

populations we evaluated fall into a Treg or effector Th category. Despite this, I argue that 

polarization of Type of immunity meaning the alteration in the tumor immune 

microenvironment and thus cytokine profile released by total Th may shape the outcome 

to immunotherapy treatment. 
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           Additionally, this research was only conducted using one model of mouse 

mammary carcinoma. Due to this, we do not know if similar results will be observed in 

other models of solid tumors, such as the B16 melanoma in C57/BL6 mouse. Another 

limitation arises when evaluating the 4T1-IL6-KO line. 4T1-IL6-KO were derived from 

two single knockout 4T1 clones. This presents a unique situation where there is not an 

exactly matched 4T1-WT control. Presumably, before using CRISPR to knock out IL-6 I 

could have started 4T1-WT colonies from a signal cell and used this to knockout IL-6 

and saved some as controls. Indeed, this was an option, but we decided not to proceed, 

because each colony would be cultured separately for a number of passages, which 

invariably introduces clonal divergence. 

           Lastly, I would like to state that I myself did not perform a functional suppression 

assay on MDSC in our model of 4T1 mammary carcinoma. However, this phenomenon 

has been reported extensively in the literature (10). Additionally, Jacob Garritson, a 

member of our laboratory performed MDSC T cell suppression assays from this model, 

and he observed that MDSC were indeed suppressive at the day 28 time point (work 

currently in peer review).
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APPENDIX B 
 

ANIMAL VITAL STATISTICS  
 

 

 
Figure 17: Female mouse body mass before injection and at day 28 post injection. 
Mass of (A) 4T1-WT and (B) 4T1-IL6-KO tumor bearing mice before injection and at 
day 28 post injection. Mice received tumors at 6-8 weeks old and were euthanized around 
10-12 weeks old. This weight gain is expected since the average weight of a healthy 6-8-
week-old female mouse is about 18g and of a 10-12-week-old female mouse is on 
average 21g. Data are represented as means ± SEM and n= 4-11 mice. *p<0.05, 
**p<0.001, ***p<0.001 and ***p<0.0001. 
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APPENDIX C 
 

CLUSTER OF DIFFERENTIATION 40+ T 
 HELPER CELLS IN 4T1 MAMMARY  

CARCINOMA 
 

Background 
 

Classically, CD40 is thought of as a costimulatory molecule expressed on 

professional APC such as dendritic cells and B cells, and its ligand CD40L is expressed 

on activated Th.  CD40 is not classically thought of as expressed of Th cells. In dendritic 

cells, the CD40/CD40L signaling axis is essential for dendritic cell survival and 

differentiation. Arguably, more importantly, CD40L+ effector Tfh interact with CD40 on 

B cells to facilitate immunoglobin class switching. When CD40L is rendered functionally 

impaired, Tfh help of B cell class switching is not achieved and hyper IgM syndrome is 

observed (174). Hyper IgM is characterized by increased serum IgM and insufficient 

levels of IgG, IgA, and IgE, thus and chronic risk of pathogenic infection (175).  

Despite the notion that CD40 is classically restrictively expressed on APC while 

CD40L is largely expressed on T cells and not CD40, the Wagner lab at Anschutz 

Medical Campus in Denver have recently classified a subset of pathologically active T 

cells that express CD40, which they have entitled Th40. The Wagner lab has identified 

Th40 or CD40+ Th in experimental autoimmune encephalomyelitis and in Type 1 diabetes. 

In both of these autoimmune diseases, their results indicate that CD40+ Th are 

pathologically active and drive these autoreactive immune responses (176–179). After 

seeing this work presented at the AAI in 2019, naturally we were curious if this 
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particularly autoreactive Th40 subset was present in our 4T1 model of mammary 

carcinoma. If so, it may be of therapeutic benefit to enrich an autoreactive CD40+ Th in 

order to improve immunotherapeutic efficacy in breast cancer. To our knowledge, this is 

the first study to evaluate CD40+ Th recruitment in mammary carcinoma.  

Research Questions 

Q1  Are CD40+ Th cells recruited in 4T1-WT Tumor bearing mice?  
 
Q2  Are CD40+ Th cells affected by tumor IL-6?  
 

Methods 
 

The same methodology was utilized as in the thesis proper, however, with the 

addition of a CD40 (BioLegend 124631) antibody to the Th cell flow cytometric panel. In 

short, a time course study was performed with 4T1-WT tumors evaluating CD40+ Th 

recruitment in spleen, blood, bone marrow and tumor at days 0, 7, 14, 21, and 28 post 

injection time point. Following this a day 28 time point was used to evaluate the effects 

of tumor IL-6. This was accomplished through CRISPR/Cas9 knockout of IL-6 

generating 4T1-IL6-KO cells. CD40+ Th were evaluated in 4T1-WT and 4T1-IL6-KO in 

spleen, blood, bone marrow and tumor. All data are presented as mean ±SEM and 

statistical tests used α = 0.05. All multiple comparisons were calculated using one-way 

ANOVA with Turkey’s multiple comparisons test. Single comparisons were calculated 

using Student’s t-test. 
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Results and Discussion 

Cluster of Differentiation 40+ T  
Helper Cell in 4T1 Wild  
Type Time Course  
 

CD40+ Th were detected in the spleen, blood, and bone marrow of both healthy 

and tumor-bearing mice (Figure 18A).  This was interesting because CD40+ Th have 

largely been ignored but are present in high numbers in a healthy mouse. CD40+ Th 

remained unchanged following tumor injection in the spleen and bone marrow but were 

significantly elevated at day 14 in blood compared to no tumor controls and day 28 tumor 

bearing controls (Figure 18A). CD40+ Th were found in the tumor; however, we saw that 

they decreased day 21 to day 28 in 4T1-WT tumor bearing mice. CD40+ Th are thought to 

be an auto-reactive Th (178, 179), which means that Th40 cells may have the potential to 

provide anti-tumor immunity to the host. Due to this, we evaluated the particular Th 

subset of CD40+ Th over time (Figure 18C-J). We found that the majority of CD40+ Th 

seemed to be either a Th1 phenotype or a Th17 phenotype (Figure 17C-D and G-H). The 

phenotype of CD40+ Th may be important when evaluating how CD40+ Th may provide 

an autoreactive or anti-tumor phenotype. In autoimmunity autoreactive Th are generally 

pathologically active Th17, however, some are Th1 (180). In the case of CD40+ Th the 

autoreactive phenotype is a mix between Th1 and Th17 suggesting these cells may be able 

to provide anti-tumor immunity (177). However, at this time we do not know the 

functional significance of CD40 expression on Th cells. Additionally, CD40+ Th that are 

Th17 decreased over time in the spleen and blood, which followed the trend of total Th17 

over time in 4T1-WT tumors. CD40+ Th that are Th22 were significantly increased at day 
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28 in the spleen compared to no tumor bearing mice, which directly opposed the 

depletion of CD40+ Th that are Th17.   

Cluster of Differentiation 40+ T  
Helper Cell and Tumoral  
Interleukin 6  
 

In the 4T1-IL6-KO tumor bearing mice, CD40+ Th are significantly increased in 

the spleen blood and bone marrow compared to 4T1-WT tumor bearing mice (Figure 

19A). Indeed, this may be a consequence of total Th increase in 4T1-IL6-KO compared to 

4T1-WT tumor bearing animals, however, if CD40+ Th are more auto-reactive this 

increase may be therapeutically beneficial. Additionally, we evaluated Th subset that 

were CD40+ Th (Figure 19B-E). 

Future Directions 

The functional importance of CD40 expression on Th has yet to be elucidated. In 

fact, the idea that CD40 may be expressed on Th has largely been ignored with the 

exception of the Wagner Laboratory. Uncovering functional significance of CD40 

expression on Th would be very interesting given that Th40 have been identified as more 

autoreactive than CD40- Th cells.  
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Figure 18: CD40+ Th expansion over time in 4T1-WT tumor bearing mice. Flow 
cytometric measurement of (A) total CD40+ Th in periphery (B) total CD40+  Th in 
tumor, (C) CD40+ Th1 in periphery (D) total CD40+ Th1 in tumor, (E) CD40+ Th1/17 
in periphery (F) total CD40+ Th1/17in tumor, (G) CD40+ Th17 in periphery (H) total 
CD40+  Th17 in tumor, (I) CD40+  Th22 in periphery and (J) total CD40+ Th22 in 
tumor in response to 4T1-WT mammary carcinoma over time. Tumor free (no tumor) 
mice were used as control.1.0x104 4T1-WT cells were injected and Th cell measured 
in individual mice days 7, 14, 21 and 28. Palpable tumors day 14. Statistical 
significance was measured using one-way ANOVA with Tukey’s multiple 
comparisons. Data are represented as means ± SEM and n= 4-11 mice. *p<0.05, 
**p<0.001, ***p<0.001 and ***p<0.0001.  
 



 

 

91 

 

Contro
l

4T
1-W

T

4T
1-I

L6-K
O

0

20

40

60

80

Spleen

%
 C

D4
0+

 T
h 

Ce
lls

✱

Contro
l

4T
1-W

T

4T
1-I

L6-K
O

0

20

40

60

80

100

Spleen

%
 T

h1
 C

D
40

+ 

✱

✱

Contro
l

4T
1-W

T

4T
1-I

L6-K
O

0

5

10

15

Spleen

%
 T

h1
/1

7 
CD

40
+ 

Contro
l

4T
1-W

T

4T
1-I

L6-K
O

0

20

40

60

Spleen

%
 T

h1
7 

CD
40

+ 

✱✱✱✱

✱✱✱✱

Contro
l

4T
1-W

T

4T
1-I

L6-K
O

0

1

2

3

Spleen

%
 T

h2
2 

CD
40

+ 

✱
✱

Contro
l

4T
1-W

T

4T
1-I

L6-K
O

0

20

40

60

80

Blood

%
 C

D
40

+ 
Th

 C
el

ls

✱

Contro
l

4T
1-W

T

4T
1-I

L6-K
O

0

20

40

60

80

100

Blood
%

 T
h1

 C
D

40
+ 

Contro
l

4T
1-W

T

4T
1-I

L6-K
O

0

5

10

15

Blood

%
 T

h1
/1

7 
CD

40
+ 

Contro
l

4T
1-W

T

4T
1-I

L6-K
O

0

20

40

60

80

Blood

%
 T

h1
7 

CD
40

+ 

✱

Contro
l

4T
1-W

T

4T
1-I

L6-K
O

0

2

4

6

Blood

%
 T

h2
2 

CD
40

+ 

✱
✱✱

Contro
l

4T
1-W

T

4T
1-I

L6-K
O

0

20

40

60

80

100

Bone Marrow

%
 C

D4
0+

 T
h 

Ce
lls

Contro
l

4T
1-W

T

4T
1-I

L6-K
O

0

10

20

30

40

%
 T

h1
/1

7 
CD

40
+ 

Bone Marrow

✱

Contro
l

4T
1-W

T

4T
1-I

L6-K
O

0

10

20

30

Bone Marrow

%
 T

h1
7 

CD
40

+ 

Contro
l

4T
1-W

T

4T
1-I

L6-K
O

0

1

2

3

4

Bone Marrow

%
 T

h2
2 

CD
40

+ 

✱
✱

Contro
l

4T
1-W

T

4T
1-I

L6-K
O

0

20

40

60

80

100

%
 T

h1
 C

D4
0+

 

Bone Marrow

4T
1-W

T

4T
1-I

L6-K
O

0

20

40

60

80

100

Tumor

%
 C

D4
0+

 T
h 

Ce
lls

✱✱

4T
1-W

T

4T
1-I

L6-K
O

0

20

40

60

80

100

%
 T

h1
 C

D4
0+

 

Tumor

4T
1-W

T

4T
1-I

L6-K
O

0

20

40

60

%
 T

h1
/1

7 
CD

40
+ 

Tumor

✱

4T
1-W

T

4T
1-I

L6-K
O

0

10

20

30

40

%
 T

h1
7 

CD
40

+ 

Tumor

4T
1-W

T

4T
1-I

L6-K
O

0

10

20

30

40

%
 T

h2
2 

CD
40

+ 

Tumor

A B C D E 

Figure 19: CD40+ Th expansion in 4T1-WT vs. 4T1-IL6-KO tumor bearing Mice 
at day 28. Flow cytometric measurement of (A) total CD40+ Th, (B) CD40+ Th1 in 
periphery, (C) CD40+ Th1/17 in periphery, (D) CD40+ Th17 in periphery, and (E) 
total CD40+ Th22 in tumor in response to 4T1-WT mammary carcinoma over time. 
Statistical significance was measured using one-way ANOVA with Tukey’s multiple 
comparisons. Data are represented as means ± SEM and n= 4-11 mice. *p<0.05, 
**p<0.001, ***p<0.001 and ***p<0.0001.  
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