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ABSTRACT 

THE DETERMINATION OFF AILURE OCCURRING IN THE STATOR COIL 

WINDING DUE TO THE OVER VOLTAGE USING MATLAB SOFTWARE 

Ali Reza Alavizadeh, M.S. 
Morehead State University, 2000 

Director of Thesis: Dr. Ahmad Zargari 

This Thesis covers the study of the thermal effect of the voltage surge on the 

heat distribution of the stator coil winding. For this study, one turn of the stator coil 

winding located at the overhang area of the stator was selected with consideration 

given to the impact of the insulator material and curvature of the wire in the overhead 

area. MATLAB Software was chosen to solve the transient heat differential equation 

using the Finite Element Method. Although the calculated temperatures did not 

demonstrate any significant temperature increments leading to thermal failure in the 

wire, they did show that the temperature reaches its maximum in the wire where the 

curvature is the highest. The temperature in both the conductor and the insulator 

were increased by the choice of material insulators, which possessed less thermal 

conductivity. Also, as the curvature of the wire increased, the temperature increased 

in both the conductor and the insulator. The inner side of the bent part of the wire 

possessed higher temperature than the outer side and this was true regardless of the 



insulator material and the curvature of the wire. The impact of the voltage surge 

appeared as a sudden increment in the wire temperature for both conductor and 

insulator, and as expected the temperature of the conductor was higher than the 

insulator. By changing the material property and the curvature, the nodal 

temperatures were changed accordingly but the temperature distribution remained the 

same. 
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CHAPTER ONE 

Introduction 

Electric motors play a significant role in our industrial world. They are used 

in refrigerators, air conditioners, fans, hair dryers, and automobiles. Electric motors 

are categorized into two different groups: DC motors and AC motors. DC motors are 

those which work with Direct Current (DC), while AC motors are those that work 

with Alternative Current (AC). Generally, electric motors consist of a fixed coil 

called Stator and a moving coil called Rotor. Figure 1 shows some rotor coils and 

Figure 2 (next page) shows a stator coil. 

Figure I. Rotor for a 2500-kW 3-kV two pole 400-Hz motor in different stages of 

production. (Courtesy Brown Company). 
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Figure 2. A typical stator coil winding. 

When voltage surge is loaded on the input of an electric device such as a 

refrigerator, it may damage some components in the circuitry of the device. Electric 

motors, like other electric devices, are vulnerable to over-voltage. The coil inside 

the motor ( either rotor or stator) may be damaged due to a sudden increase in input 

voltage. Electric discharge, lightning, or short circuit may cause over-voltage. In 

order to prevent coil damage due to the over-voltage phenomenon there is a device 

called Voltage Suppressor to reduce the effect of voltage surge. Another device, 

called Lightning Arrester, is used to control the storm-generated lightning strikes. 

None of these devices, of course, are perfect. They just reduce the effect of the surge 

and do not totally prevent the coil failure. 

Other factors could indirectly impact the coil winding, such as mechanical 

stress exerted on the wires by the slot walls. When this type of stress occurs, both 



conductor and insulators experience a pressure, which leads to the temperature 

increasing in both of them. Therefore, when voltage surge is loaded across the coils, 

it creates ex tra temperature inside the wires. Figure 3 show a real case in which the 

fai lure has occurred due to the voltage surge. 

Figure 3. The coil winding failure as a result of voltage surge. 

The impact of the voltage surge on the coil winding appears with the udden 

increasing of the temperature within the conductors and insulators. The wire turn to 

turn or even the winding may be grounded in the s lot as shown in Figure 4 (next 

page) and 5 (next page) due to voltage urge. 

In addition, there are different sources of thermal stress as well as mechanical 

tress. Suffic ient attention should be paid to choose proper material for insulator 

Coefficient of Linear Expansion (CLE). This coeffic ient determines the rate of 

3 
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expan ion of the insulator's dimension with respect to the temperature inc rea e. If 

the difference between the insulator' CLE and conductor' CLE is too much, the 

conductor and the in ulator will not expand w ith the same rate. Therefore, additional 

tress will be 

Figure 4. Winding grounded in the Slot. Figure 5. Winding shorted tum-to-turn. 

produced and exerted to both the conductor and insulator due to thi difference. If the 

wire is bent sharply at the corners of the lots, then the cros - ection of the wire at 

that particular point will decrea e . Con equently, the re i tance will increa e because 

the re ·istance ha an inverse relation with the cros - ection of the wire. Therefore, 

the wire is subject to more thermal stress, resulting in a higher expected chance for 

failure. In order to observe the places in which the failure occurs, the heat equation 



within the wire will be solved. A computer program can be implemented for 

assistance in solving the equation. 

General Area of Concern 
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Voltage surge is a general cause of failure in the electrical machines and it is 

not limited to motors. In any electric or electronic circuit, a discharge of a capacitor 

may cause over-voltage. For example, capacitors store electric energy. If, by 

accident, a capacitor is discharged, the stored energy inside the capacitor is loaded 

onto the circuit. This extra load appears as a voltage peak on the circuit voltage. 

Some components in the circuit work within some specific range of input voltage and 

now, they receive extra voltage. Therefore, they cannot handle it and failure occurs. 

Lightning may produce over-voltage. If transmission lines are struck by 

lightning, this natural phenomenon may damage the cables, transformers, or other 

electric devices in the circuitry. A typical voltage, to the order of a hundred thousand 

volts is exerted on the coils in transformers. If they are not equipped with proper 

circuitry such as lightning arresters, the coil will bum or damage. When lightning 

strikes the telephone or other communication lines or devices (like antennas), the data 

and information carried in the lines are distorted and usually destroyed. 



Statement of the Problem 

The purpose of this Thesis is to determine the place(s) on the stator coil 

winding that fail due to over-voltage using MATLAB Software. This study is an 

attempt to determine the temperature distribution among the wires in the stator coil 

winding of an electric motor using MATLAB Software. 

Significance of the Study 

Voltage surge has many negative results. It causes damage of the circuitry 

and electric machines; damages such as burning the coil winding, burning the 

electronic/ electric components such as ICs, transistors, capacitors and so forth. In 

the electric motor, voltage surge causes burning of the winding and, as a result, some 

failures such as tum-to-tum shorted damage, and grounding will happen. 

In some cases, it may be impossible to do experiments under real conditions. 

For instance, in the case of the lightning, one deals with the high voltage from the 

order of a hundred thousands volts. Working with high voltages is dangerous. 

In order to avoid the probable dangers, the real case should be modeled to a 

smaller size. A circuit is made to produce an impulse and then the output impulse is 

sent to the stator coil winding. Then the response of the coil can be observed. 

Another alternative way is to simulate the real situation with computer. Writing or 

using a software program, which is able to simulate the case of voltage surge, would 

be useful to analyze the cause and effect of the surge. Using computer simulation 

allows one to obtain similar results without actually working with the high voltage. 

6 



Also, the computer's program can be used in the future and it may be developed to 

solve more general problems. 

There are some software available which have the capability of doing general 

analyses such as mechanical and thermal analyses. For instance, ANSYS Finite 

Element Analysis Software is capable of performing several tasks. Using this 

package, one can also have Coupled Filed Analysis (CFA). In CFA, different agents 

that contribute in the case are coupled and are analyzed. For example, engaging both 

mechanical and thermal agents to observe the response of the stator coil winding to 

the over-voltage. 
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Wires, which have several insulators, should be properly designed. The order 

of and the materials used in making the insulators are very important. If the order of 

coating the insulators on the conductor is changed, the heat distribution within the 

wire entirely will be changed accordingly. Hence, making some comparisons 

between different analysis is important. It helps manufacturers to improve their 

products more sufficiently and reliably. 

Research Questions 

In the present Thesis, three questions are going to be answered regarding the 

voltage surge phenomenon: 

Where on the wire does the failure happen due to the over-voltage? 

What is the impact of the bent on the heat distribution within the wire? 
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- What is the impact of the insulator material on the heat distribution within 

the wire? 

Assumptions 

The findings of this Thesis depends on the following assumptions: 

Limitations 

1- It is assumed that the wires in the stator coil winding are not bent 

sharply. Therefore, there is a smooth curve in the overhang areas. 

2- The wires in the coil winding have only one insulator layer. 

There are five factors limiting the study: 

1- The wires in the coil winding have just one insulator. 

2- Just one turn of the stator coil winding is analyzed. 

3- The impact of all other agents such as a magnetic field is not 

considered. 

4- Only one value was chosen for the voltage surge (i.e. 50,000 

V). 

5- Only one material was chosen for the conductor (i.e. Copper). 



Definition of Terms 

Convection: One of the ways that heat can be transferred is 

convection. It happens when objects with temperature differences are 

both in contact with a fluid. Fluid in contact with a high-energy object 

gains energy and becomes warmer and, in most cases, it expands and 

becomes less dense than the surrounding cooler fluid. Therefore, the 

warmed fluid rises toward the cooler object. It reaches the cooler object 

and loses energy and, consequently, it becomes denser and falls. 

Convection described here is called free; the convection can be forced, as 

when a furnace blower causes circulation to heat the room of a house 

(Halliday, & Resnick, 1986). 

9 

- Diffusivity: Ozisik (1980) has stated, 'The thermal diffusivity is the 

property of the medium and has the dimension of length2 
/ time, which 

may be given in m2/hr or m2/s"(p. 7). The diffusivity is the property of the 

medium. It describes the speed of rate of heat propagation into the solid 

with change in temperature during time (Ozisik, 1980). 

Finite Element Method: It is one of the ways used to solve the differential 

equations by means of numerical methods. The strategy is to decompose a 

complicated structure into simple small parts and analyze them 
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individually (Liu, 1998). Using a finite element model gives a piecewise 

approximation to the equation (Huebner, Thornton, & Byrom, 1995). 

- Electrical Conductivity: It is the reciprocal of the resistivity, which is a 

characteristic of a material rather than of a particular specimen of it 

(Halliday, & Resnick, 1986). Each type of conductive material has its 

own unique characteristic called resistivity and denoted by p (Floyd, 

1991). 

- Heat Conduction: It is the transfer of energy arising from the temperature 

difference between two adjacent points of a body. The equation governing 

the heat conduction is described as (Halliday, & Resnick, 1986): 

dT 
H=-kA dx (1) 

Where H (measured in Joule per second for instance) is the time rate 

of heat transfer across the body of area A, dT/dx is the temperature 

gradient, and k is a constant called thermal conductivity. 

- Isotropic Materials: They are materials in which the physical properties 

are the same in any chosen direction inside them. For example, if a 
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material is isotropic, the electrical conductivity is the same in any 

direction (Sears, 1958). 

- Laplace Equation: It is a differential equation named after French 

' mathematician, Pierre Simon de Laplace (1749-1827). It describes 

physical phenomena such as electromagnetic propagation, mechanical 

wave propagation, electric potential of a charge distribution and so forth. 

The equation is written as follows (Ozisik, 1980): 

V2 T(P;t}=O (2) 

Where Tis a desired variable and V2 is called Laplacian Operator. 

The form ofLaplacian depends on the coordinate system chosen. For 

instance, in the Cartesian coordinate system, its form is given by Equation 

(3) (Arfken, 1971). 

(3) 

- MA7LAB: The name MATLAB stands for Matrix Laboratory. It is an 

interactive software, which has been used recently in scientific and 

engineering fields (MATLAB User's Guide, 1993). MATLAB is not a 
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computer language in the normal sense, but it does most of the work of a 

computer programming language (Kwon, & Bang, 1997). 

Steady State and Transient: steady state is a state or condition of a system 

or process that does not change in time. Transient is a temporary 

oscillation that happens in a circuit because of a sudden change of voltage 

or of load (Marriam-Webster's Collegiate Dictionary, 1993). In the 

Transient case, the time variation is involved. 

Stress: Stress is defined as the force acting across any given surface per 

unit area in the material. If the force is a pull perpendicular to the area of 

the material, it is called Tension (Symon, 1964). Stress may be 

mechanical or thermal. When the coil is being wound, the wires are 

pulled along the slots in the stator slots. As there are several turns run 

inside each slot, there may be some force exerted by the walls of the slots 

on the wires. Even the wires may exert force on each other. This force 

acts as a stress on the wires. 

Thermal Conductivity: it is a constant, which is a characteristic of the 

substances (Carslaw, & Jaeger, 1959). A material with a large thermal 

conductivity, is a good heat conductor and substance with a small thermal 

conductivity, is a poor heat conductor (Halliday, & Resnick, 1986). 



Summary 
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Thermal expansion coefficient: Halliday, and Resnick (1986) have defined 

Thermal expansion coefficient as: "a fractional change in length per 

degree temperature change". 

Chapter one provided an introduction to the topic of this Thesis. The general 

area of concern was addressed. After stating the problem, several research questions, 

with Thesis assumptions and limitations of the study were expressed. The last part of 

the chapter listed the definition of the terms. 



CHAPTER II 

REVIEW OF LITERATURE 

14 

fu this chapter, literature concerning. voltage surge will be presented. Then, 

some articles and papers related to this Thesis will be discussed. The concept of the 

Finite Element Analysis and approximation methods used for solving the differential 

equations will be addressed too. Finally, the historical background of the Finite 

Element Method will be discussed 

Review of Literature 

Lightning, as an external surge, develops over a short-range time. fu order to 

check the power system stability, high voltage surges are simulated in the laboratories 

using "impulse". Malik, Al-Arainy, and Qureshi (1998) have defined the impulse as 

follows: "a unidirectional voltage (or current) rising quickly to its peak value and then 

decaying slowly to zero"(p. 282). Figure 6 (next page) shows one of the typical 

circuits used for producing an impulse. The shape of output waveform is shown also 

(Malik et al, 1998, p. 287). The output of such a circuit is applied to the power system 

component and the response of the component is recorded and analyzed. 
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Figure 6. The circuit diagram and output voltage waveform (Malik et al, 1998, 

p. 287). 

Using the same idea, Narang, Gupta, Dick, and Sharma (1989) analyzed and 

predicted the surge distribution in the motor stator coil winding. In their procedure, 

measurement was performed on one phase of the stator coil winding while the rest of 

the phases were grounded to the stator frame. They used a repetitive low-voltage 

surge generator. They have also compared the experimental results with ones that 

were obtained by using a computer model for the problem. In their procedure, they 

considered the turn conductors as transmission lines; each coil was segmented into 

five distinct sections with uniform geometry. 

Oyegoke ( 1997) used the concept of the transmission line and compared three 

different approaches for calculating the transient voltage distribution within the stator 

coil winding. He compared them with the experimental results. Those three methods 

are Multiconductor Transmission Line and Scatter Matrix Concept (MTLSMC), 

Multiconductor Transmission Line and Averaging Techniques Concepts (MTLAC), 

and Multiconductor Transmission Concept for Circuit Simulators (MTLCCS). The 



author has concluded: "Also, it has been seen that computation of the peak voltage 

across turns using the mt/ate [sic] and mtlsmc gives a very close to experimental 

results". The author provided a graph, which indicated the transient voltage wave 

across the coil versus time. 
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Rajagopal, Seethararnu, and Ashwathnarayana (1998) and Sarkar, Mukherjee, 

and Sen (1991) considered the transient analysis from another point of view. In both, 

the whole induction motor including rotor, shaft, and stator were considered and 

meshed. Rajagopal et al (1998) presented two-dimensional transient finite element 

analysis of the induction motor. They developed a Galerkin 's weighted residual 

technique for analyzing the induction motor. The model was applied to one squirrel 

cage Totally Enclosed Fan Cooled (TEFC) machine of 3.7 kW and another surfaced

cooled machine with 5.7 kW. They concluded that the model could be applied to all 

small and medium TEFC motors or any other machine with similar construction. In 

their paper, just the thermal effect was considered and they did not mention the over

voltage effect and its impact on raising the temperature. A similar approach is seen in 

Sarkar et al ( 1991) research, but it was in the steady state case and the time duration 

was not considered in their approach. They have also used three-dimensional 

analysis and a three-dimensional arch-shaped prism element for modeling both the 

rotor and the stator. 



Finite Element Method (FEM) 

Liu (1998) has defined FEM as follows: 

The finite element _method (FEM), or finite element analysis (FEA), 
is based on the idea of building a complicated object with simple 
blocks, or, dividing a complicated object into small and manageable 
pieces. Application of this simple idea can be found everywhere in 
everyday life as well as in engineering. 
Examples: 

• Lego (kids' play) 
• Buildings 
• Approximation of the area of a circle: 

"Element'' Si 

Area of one triangle: = S; = ½ R2 sin 0i 

Area ofth~ circle:= I S; = ½ R 2 N sin (Zn:) ➔rtR2 as N ➔oo 
i=l N 

where N = total number of triangles (elements). 
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The main goal is to solve some differential equation that describes the 

physical behavior of the model under certain conditions. Usually, finding the answers 

for differential equations in complicated models is not easy. However, there are 

approximation techniques to solve them, such as Method of Weighted Residual. 
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Method of Weighted Residual 

This method is explained through solving the following typical differential 

equation: 

d' dx•f-f=-x, 0<x<l f(0)=0,andf(J)=0 (4) 

In this method, a trial function (with unknown coefficients) is chosen and 

implemented in the differential equation (Kwon, & Bang, 1997). Usually the form of 

the trial function is not as simple as the one used here to show the method. The trial 

function is defined: u =ax ( 1 -x ). Simple calculation shows that this function 

satisfies the boundary conditions. So it is put into the Equation 4. 

d2 
R = dxl u-u+x=-2a-ax( 1-x) +x (5) 

R is called The Residual Error. In order to obtain the unknown parameter g, 

Equation 5 should be solved. To this end, a weightedjunction (called w) is chosen 

and the weighted averaged of the residual over the interval [O, 1] is set to zero. 

Therefore: 

1 1 d2u 
] = f W R dx = f W ( dx2 - U + X )dx 

0 0 

(6) 



I 
I=J w[-2a-ai:(I-x}+x]dx=0 

0 
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(7) 

Next, Function w should be determined. For this, there are several ways to 

estimate the weighted function, and the resultant approximation solution differs 

depending on the weighted function. One of those ways is Galerkin 's Method. In 

this method, the weighted function is calculated from the trial function itself (Kwon, 

& Bang, 1997): 

du 
w= da (8) 

Using this method for the above example yields w = x ( 1-x ). Substituting 

win Equation 7, obtained a= 0.2272 so that u = 0.2272x ( 1-x) (Kwon, & Bang, 

1997). 

Piecewise Continuous Trial Function 

Function u obtained in the previous section is not the exact one because it has 

just been estimated, but it can be improved. For this, more terms can be added to the 

trial function and each of the added functions would have an unknown constant. 

Therefore, the same number of weighted functions, as the number of constants, would 

be added. 
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Assuming the trial function for the unknown exact answer is not an easy task. 

This is especially true when the shape of the problem is more complicated or the 

domain contains complicated boundary conditions. In order to overcome these 

problems, the trial function is described using piecewise continuous functions (Kwon, 

& Bang, 1997). Consider the following function: 

X - X1_1 X1-1SxSx, 
X; - X;-I 

g,(x)= 
X1+1 - X 

X15 X 5X1+1 
Xl+I - XI 

0 otherwise 

Writing the trial function ( u ) in term of g1 ( x ) results: 

(9) 

Now, the interval [O, I] is divided into three subintervals and g,s are introduced 

based on this division as shown by Figure 7 (next page). 
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u = a1g1 + a2g2 

0 113 213 

Figure 7. The interval [0, I] is divided into three equal ub-domains. 

3x 
I 

05x5 3 

g, ( X) = 2-3x 
1 2 -<x<-3- - 3 

0 
2 -< X < ] 3- -

0 
1 05 x5 3 

g2 ( X) = 3x-l 
l 2 -<x< -3- - 3 

3-3x 
2 -< X < ] 3- -



Using Equation 9 results: 

llJ ( 3 X) 

For computing the residual error, the weighted functions must be defined. 

The Galerkin 's method is used to calculate the weighted functions (Kwon, & Bang, 

1997). Using Equation 8 yields: 

3x 1 Osxs 3 

2-3x 1 2 
(10) W1= -<x<-3- - 3 

0 
2 
3 s xsl 

0 
1 Os xs 3 

3 x-1 1 2 (11) W2= -<x<-3- - 3 

3-3x 2 
3 s xsl 
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1 1 d2u 
From Equation 6, obtained, I= f w R dx = f w ( dx2 - u + x ')dx. Using the 

0 0 

integration by part technique results: 

I 

l=f 
0 

dw du ~u
1 

(- - - -wu+xw)dx+(w )= 0 
dx dx dx 0 

(12) 

And using Equations 10 and 11, finally yielded: 

I 

Ii= f 
0 

By solving these two integrals, the values for a1 and a2 will be determined. Using 

a,and a2 in Equation 9 leads to the trial function (Kwon, & Bang, 1997). 

Galerkin's Finite Element Function 

In the previous section, the trial function was computed by using some 

piecewise continuous functions. These functions are characterized by some 

parameters (similar to a1 and a2). Now the piecewise continuous functions are 

defined by means of the values of the trial function at each node. In other words, 
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these functions are defined in terms of nodal variables. Considering the same 

example above, and try to solve it (Kwon, & Bang, 1997). Figure 8 shows an interval 

in the domain of the problem (which is [O, l]). This "sub-domain" is called Element. 

UI ui+l 

---1Qr------tQ1---

XI xi+l 

Figure 8. A sub-domain of the total domain. 

Now, the trial function is defined as below: 

(13) 

At each node the value of the function u is: 

(14) 

Where u1 and U;+1 are nodal values (refer to Figure 8). Solving these equations yield: 
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(15) 

By substituting these parameters into Equation 13, obtained: 

U = H1 ( X) U; + H2 ( X) U1+1 (16) 

where 

(17) 

(18) 

h; = X;+J -X; 
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Equations 17 and 18 are called linear shape.functions (Kwon, & Bang, 1997). 

It is seen that u is computed in terms of nodal values u1 and u,+1. First, the domain is 

divided into three elements with corresponding nodal values as shown in Figure 9. 

Element I Element 2 Element 3 

ul u2 u3 u4 

xl=O X2;= 1/3 x3= 2/3 x4=1 

Figure 9. The domain is divided into three elements. 

Because there are three elements, three residues exist as follows: 

J x1+1 dw du ~u1 

I= L f (- -. - -wu+xw)dx+(w )=O 
i=I x; dx dx dx 0 

(19) 

Next, the proper expressions for wand u are substituted. As there are two u's, 

there will be two w' s. They are: w1 = H, ( x ) a~d w2 = H2( x ). For u' s, Equation 15 

is used. Consequently: 

(20) 

Which is the matrix form ofEquation 19 (Kwon, & Bang, 1997). 
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Equation 4 is one-dimensional, which means one variable. The more general 

case would be a two-dimensional equation. Equation 21 demonstrates a two

dimensional differential equation (Kwon, & Bang, 1997): 

iflk(x, y) iflk(x, y) _ ( ) 
a2 + o/2 - g X ' y in .Q (21) 

.Q is a two-dimensional domain in which the equation is defined. The 

boundary conditions are: 

k =ko 

ac 
- =no ai 

on r., (22) 

on r,, (23) 

Where ko is a known value and no is the flux boundary condition. This flux is 

measured in the direction of the outward unit vector no at the boundary. Figure 10 

(next page) demonstrates a typical two-dimensional boundary condition. r., and r,, 

are the essential and natural boundary conditions for the differential Equation 21. 



y no 
The normal 

y2 
/ vectors to the 

Boundary~/ boundary of 

a the domain(no) 

y1 ~ 
x1 X 

Figure 10. The domain Q used to solved Equation 21. The curve that 

encloses the domain is the boundary r. 

The trial function is chosen to be/ Using the weighted residual method for 

the two-dimensional domain yields (Kwon, & Bang, 1997): 

28 
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For calculating the integral in Equation 24, the integration by part is applied to 

the first two terms in the integrands. Equations 25 and 26 illustrate the results 

(Kwon, & Bang, 1997): 

fo w(a2 !)dn = - ff aw aJ dxdy + J[w 8.f ]x
2 

dy 
ax ylxl ax ax yl QX 

xi 

(25) 

[ 1
2 a2 x2y2 aw x2 (7 

fo w(---1-)dn = - f f-aJ dxdy + f w}f_ dx 
0' xlyl 0' 0' xi OJI 

yl 

(26) 

The last two terms in Equations 25 and 26 are calculated at the boundary of 

the domain n. After calculation, they become: .C w t3f n df' and .C w t3f n df' 
1rax 1rq,Y 

respectively. nx and ny are the components of the normal vector n which is 

perpendicular to the boundary I'. Then Equations 25 and 26 are added. Therefore, 

(Kwon, & Bang, 1997): 
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The boundary integral can be written as: ilf = ilf n, + ilf nY. Using this in Equation 
a, ac 0' 

27 yields: 

w --+-- dO.=- --+-- dQ+ w-df I (8
21 8 21J I (o,f/ ilf o.11 ilfJ i ilf 0 . ac2 0'2 o iJx iJx 0' 0' r a, (28) 

Next, the first tenn in Equation 24 is replaced with Equation 28. Therefore, 

(Kwon, & Bang, 1997): 

I= - r (o.11 ilf + o.11 ilf Jdn- r wg(x y)dO. + r w ilf df (29) 
Jo iJx iJx 0' 0' Jo ' Jr. m 

There are different finite elements used to discretize a two-dimensional 

domain. One of the simplest elements is the three-nodded triangle, as in Figure 11 

( next page). 
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(x3,y3) ,C7~~ 
(x1,y1) 

X 

Figure 1 1 . A typical triangle element. 

The interpolation function used for the triangular element is written as a linear 

polynomial with two independent variables. Equation 30 demonstrates the 

interpolation function. 

f= CJ+ C]X + CJY (30) 

Or in matrix form: 

(31) 
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Constants c1 through c3 should be calculated. This function has three values at 

three nodal points I, 2, and 3 in Figure 11. The values arefi,h, andjj respectively 

and are shown as the matrix form in Equation 32. 

yll[cll y2 c2 

y3 c3 

(32) 

Solving the linear equation in Equation 32 with respect to cs yields (Kwon, & 

Bang, 1997): 

[
ell 1 [x2y3- y3x2 
c2 =- y2-y3 

2A 
c3 x3-x2 

x3yl-xly3 

y3-yl 

xl-x3 

xly2 - x2yll[/ll 
yl-y2 /2 
x2-xl /3 

(33) 

In which A is the area of the rectangular area shown in Figure 11 and can be 

calculated as: 

I 
I 

A= -I 
2 I 

xi yl 

x2 y2 

x3 y3 

(34) 

By substituting Equation 33 into Equation 31, the trial function will be obtained : 
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(35) 

in which the shape functions H; are calculated as (Kwon, & Bang, 1997): 

(36) 

(37) 

(38) 

Next, the first integral in Equation 29 is calculated as: 

M' = r (aw of + aw of \n 
Jo ax ax iJy iJy r 

i:lHI i:lHl 

dX i:ly 

=In 
i:lH2 [i:lHI i:lH2 i:lH3]+ i:lH2 [i:lHI i:lH2 i:lH3] Q (39) 

i:lx i:lx i:lx i:lx i:ly i:ly i:ly i:ly 
i:lH3 i:lH3 
ax i:ly 



Calculating Equation 39 yields a matrix called element matrix. This matrix and its 

components are demonstrated in Equations 40 through 49 (Kwon, & Bang, 1997): 

[

mll 

[M']= m21 

m31 

ml2 

m22 

m32 

ml3] 
m23 

m33 

(40) 

(41) 

(42) 

(43) 

(44) 

(45) 

(46) 

(47) 
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(48) 

(49) 

The second integral in Equation 29 would be calculated as: 

(50) 

The amount of this integral depends on the form of Function g(x, y). The third 

integral in Equation 29 is performed over the boundary of the domain Q.. One of the 

common boundary conditions is the heat convection which is written as (i}J I an)= h x 

(f-Jo). In this formula, h represents the heat convection coefficient and Jo represents 

the ambient temperature. Rewriting this equation to obtain a more general case yields 

(i}J I cm)= ef + b (Kwon, & Bang, 1997). Therefore, the last integral in Equation 29 

will become: 

f, wi)J df=f, w{a(x,y)u+b(x,y)f0 )df 
rn an r' 

(51) 



The Differential Equation of Heat Conduction in the Solid 

Where: 

The equation governing the heat conduction within a solid is written as: 

T = T ( x, y, z, t ): the temperature in the solid 

p = Density of the solid 

K = Conductivity 

IC= Diffusivity(= ..!f_) 
pc 

(52) 

The form of V2 (Laplacian) depends on the coordinate system. In the 

Cartesian coordinate system, the Laplacian is written as: 

(53) 

This is the general form of the Laplacian in the Cartesian coordinate system. 
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If the problem being considered is a two-dimensional one, then the variable T would 

be independent of z. Therefore, Equation 53 will be decreased to: 
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(54) 

Carslaw, and Jaeger (1959) have computed "the equation of conduction in a 

thin wire heated by an electric current" in one dimension. They have stated that this 

is obtained as: 

iJ iJ2 J/2 -T= 1(-T- v( T-To)+ -a dx2 pcw2 (55) 

In their formalism, Tis temperature and v= (Hp) I (pc w) and ,c= KI pc 

(Carslaw, & Jaeger, 1959). They have defined Has surface conductance (Carslaw, & 

Jaeger, 1959, p. 19). I is the current passing through the wire. j is a constant 

indicating the number of calories in joule. It is assumed that the solid is isotropic. 

Therefore, for a two-dimensional problem, Equation 55 would be changed to: 

o a2T a2 T 112 
-T= tc(-+-)-v(T-To)+-a ax2 ay2 pcw2 (56) 

As the voltage surge produces heat inside the wire, a term representing this 

effect should be added. Because the output of a RC circuit is used to represent the 

voltage surge, the output voltage of such a circuit is used to make the proper term. 

Referring to the Ohm's Law, the heat produced in a wire having resistance R due to 
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some voltage V(t) is calculated as: (V (t)2xt)IR. Therefore, this term will be added to 

Equation 56. Equation 57 indicates the result: 

a a1T a2T v1 (1) ·12 
-T= K(-+-)+ --t + - 1-at ax2 ay 2 R pcOJ2 (57) 

Term v ( T - To ) is omitted in this equation because this term describes the 

heat convection and the convection has already been considered (the last term in 

Equation 29). Because there are two different types of material ( conductor and 

insulator), Equation 57 should be solved within both of the materials. Therefore, the 

constants K', p, c, OJ should be changed properly, depending on the property of the 

area. On the other hand, it is apparent that there is neither electric current nor voltage 

surge within the insulator. If 11;;, Pc, Cc, and OJc represent the conductor constants and I(; 

represents the insulator thermal conductivity, the governing equation of a wire having 

one layer as insulator would be: 

In the conductor: 
a a2T a2T v2u) 
-T= Kc(-+-)+ --t 
at ax2 ay2 R 

(58) 

In the insulator: (59) 



Next, the weighted residual method should be applied to both Equations 58 

and 59. Applying this method to Equation 58 yields: 

a2r a2r 
WK;;(-2 +-2) dQ + f. ax ay n 

f war dQ 
Jn ar 

V 2 (t) 
w--td!J + 

R 

(60) 
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Where Q and Trepresent the domain and the boundary respectively. The 

same procedure should be performed for Equation 59 but only the procedure for 

Equation 58 is detailed. In order to calculate the integrals in Equation 60, the domain 

Q should be determined. Figure 12 demonstrates a linear triangle in the Cartesian 

coordinate system. This element is chosen to be the domain. The sides of the triangle 

are the boundary r. 

y 

93 

91 

3 

., x2 X 

Figure 12. The domain Q used to calculate integral I in Equation 60 
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Therefore: 

B2T B2T v2 (1) 
I= ff WKc(-2 +-2 )dxdy+ ff w-tdxdy+ 

•Y 8x 0' •Y R 

dxdy-f f w1 dxdy 
xy 

(61) 

Using the integration by parts yields: 

/=- --+-- dxdy + f w-df' + ff (aw BT aw BT) ill' 
xy ax ax 0' 0' r ih 

dxdy- ff w1 dxdy 
xy 

(62) 

Since T (x, y, t) = H1(x, y) T1{t) + Hi(x, y) T2(t) + HJ(x, y) T3(t) , Equation 62 

becomes: 
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X2 -X YJ -y 

jl' [H'] a 
X2 -X1 )'3 J3-Y1 

-JI cro 2 H 2 dxdy + Jc, x-x, dx +Jc,. y-y, dy· 
X )' Pc c c H .r1 X2 -X1 

,., 
J3-Y1 3 

0 0 

JI v;o, [ ::],,., + /! [::]~. H2 H,rn]dwy •O (63) 
X )' 

In this equation, Cx and Cy are the thermal convection along the sides, which 

are parallel to x axis and y axis respectively. The last term in Equation 63 deals with 

the time-integration. It shows the time variation of the temperature. Using Equations 

36, 37, and 38 the last term in Equation 63 becomes (Kwon, & Bang, 1997): 

(64) 

In which A is the area of the linear triangle. Now, Equation 63 is rewritten as: 
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[PJ {iJ + [QJ {r} = {v} (65) 

In which: 

[P]= ff [Z:][H, H2 H3] dxdy (66) 
X y H 

3 

[Q] = ff j[Zi:][H;, 
X)' H 

3x 

(67) 

X2 -X Y3 -y 

[Hl 
X2 -X1 Y3 -y, j/2 I x, }'J 

{V}=-ff C (0 2 H2 dxdy +Jc, x-x, dx + f c,. y-y, dy - (68) 
.t J' Pc c c H x1 X2 -x1 

,., Y3 -y, 3 
0 0 

In Equation 65, the superscript t indicates that the temperature T varies with 

. 
time. T indicates the derivative of the temperature with respect to the time. There are 



several ways to calculate the integrals having the time variation. The one used for 

this study is the backward difference method. 

The Backward Difference Method 

Equation 65 is written at time t. If the time is changed by amount L1t, then 

Equation 65 will turn to: 

[ Pl -i + [Ql {Ty+"' = {v y+"' 
{ }

t+Ar 

(69) 

The derivative of Function Tis: 

(70) 

Using Equation 70 in Equation 69 yields: 

(71) 
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The last integral in Equation 68 contains a term representing the output 

voltage of the RC circuit (Figure 6). Basically, the output voltage of any RC circuit is 

in the form of Equation 72 (next page). 



_...!..., 
V(t) = Vo e Re (72) 

In which Vo is the voltage across the capacitor before being connected to the 

resistor. R is the resistance. 

Historical Background of Finite Element Analysis 
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Before the advent of computers, scientists had to solve differential equations 

using complicated solution concepts such as series, Bessel Functions, Laplace 

Transformation and so on. Solving the equation using these concepts required 

simplifying the problem. They were also time-consuming and human error became 

another source of inaccuracy. Even if they could solve the equation, with these 

concepts, the answer was not too realistic (Hoole, 1989). 

The advent of the digital computer and sophisticated software made it possible 

to obtain the answer in a few minutes. Computers became more effective and reliable 

and, therefore, their usage has expanded in solving equations and problems. These 

schemes are known as approximation methods, since it is possible to increase the 

accuracy as much as desired, according to the available computer technology. 

True, these digital, approximate solutions may be less accurate than the closed 

form solution from classical analysis for simple problem shapes such as the circle or 

the triangle. However; in the real world, numerical scheme yields more accurate 

solutions in view of the classical methods' dependence on simplifying assumptions 



(Hoole, 1989). As a historical background of Finite Element Method, Hoole (1989) 

has stated the following: 

Finite elements made their earliest appearance in 1941. Hrenikoff 
(1941) and later McHenry (1943) introduced the concept of replacing a 
continuum by a latticelike assembly of bars, in analogy with a structure 
of steel struts. In consequence, although the method is generally 
applicable to the solution of any differential equation in a continuum, 
the terminology of the science of finite elements is laced with the 
terminology of structural analysis. 

The method was expanded and improved, and the interpolation 

functions were introduced to describe the nodal variables within the elements. 

Gradually the method was implemented in various branches of engineering, 

such as electrical and mechanical engineering. For example, in the Electrical 

field, Silvester (1969) used high-accuracy triangular finite elements for 

solving the Laplace's differential equation. In his article, he presented details 

about the high-order polynomial with the triangular element shape. He also 

developed a computer program used for analyzing the general high-order 

finite element waveguide. About Silvester and his role in improving the 

Finite Element Method, Hoole (1989) implies: 

He introduced high-order polynomial triangular elements (Silvester 
1969), the idea of ballooning for open boundary problems (Silvester, 
Lowther, Carpenter, and Wyatt 1977), and the concept of universal 
matrices (Silvester 1978, 1982a, 1982b) on which most of the current 
finite elements research effort in electrical engineering is based. 
Thanks largely to his endeavors, by the middle of the 1970s the method 
was acknowledged as one of the best for the solution of large field 
problems in electromagnetics [sic]. 

Zienkiewicz, Lyness, and Owen (1977) developed a computer program to 

formulate the three-dimensional magnetic field problem. Their work is also 
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related to the electrical field. In the electro-heat problems, Armor and Chari 

(1976) analyzed the heat flow in the stator core by implementing a three

dimensional finite element. 

Summary 
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In chapter II, the literature used for this Thesis was reviewed. There were 

similar papers in which the transient analysis had been discussed. One of the 

approximation methods for solving the differential equations was introduced 

(Weighted Residual Method). The methods to calculate the trial function were stated. 

Finally, a brief history of the finite element method was explained. 



CHAPTERIII 

METHODOLOGY 

This chapter consists of methods and procedures used in conducting the 

present Thesis. The following items are addressed: restatement of the problem, 

restatement of the research questions, research instruments and methods, and the 

summary of the chapter. 

Restatement of the Problem 

The purpose of this Thesis is to determine the place(s) where the stator coil 

winding wires fail due to over-voltage using MATLAB Software. This study is an 

attempt to determine the temperature distribution among the wires in the stator coil 

winding of an electric motor using MATLAB Software. 

Restatement of the Research Questions 
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When the over-voltage phenomenon occurs, some place(s) damage. There are 

several agents responsible for the failure, such as resistance of the wires, and the 

shape of the coil winding. There are three questions to be answered: 

Where on the wire does the failure happen due to over-voltage? 

What is the impact of the bent on the heat distribution within the wire? 

What is the impact of the insulator material on the heat distribution within 

the wire? 
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Research Instrument and Procedure 

One tum of a stator coil winding was chosen. The wire had one insulator 

layer. The wire was divided into three parts: two straight cylinders that ran inside the 

slot of the stator core and one curved part (over hang part) that went from one slot 

into another as shown by Figure 13. Point I indicates the place where the input 

voltage is applied and point O indicates the output. 

As shown in Figure 13, the wire had symmetry around axis YY'. Therefore, 

half of the wire (for instance the right side of the wire) was considered for analyzing. 

Figure 14 (next page) demonstrates the left hand-side of the wire. 

Over Hang area 1 

I Y' 

.......... 

W,re--

Figure 13. A wire in the slot of a stator coil winding. 



Figure 14. The left hand side of the wire shown in Figure 13. 

Since the temperature distribution across and along the wire was being 

studied, a cross-section along the wire was considered. Therefore, the wire was 

divided into two identical parts as shown in Figure 15. 

49 

Figure 15. The wire was divided into two identical parts. The shaded area shows the 

conductor. 
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Figure 16, shows the same cross-section shown in Figure 15 from the top view. This 

area was basically the domain in which the analysis was performed. 

Figure 16. The cross-section of the wire from the top view. 

Next, the domain needed to be meshed. Because the domain was two-
' 

dimensional, the two-dimensional element was used. The element chosen for the 

current study was the linear triangle element. 

The Computer Program and It Components 

The main steps spanned to do finite element analysis were: 

1- Dividing the domain of analysis into small linear triangles. 

2- Numbering the nodes created in the domain. 



3- Calculating the element vector and element matrix and making the system 

vector and system matrix. 

4- Applying the constraints existing in the problem to the system vector and 

matrix in order to obtain the main matrix equation. 

5- Solving the matrix equation. 

6- Plotting the results for different points within the wire. 
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In order to perform all of the above tasks, nine different MATLAB functions were 

written. In this analysis, the domain shown in Figure 16 was divided into 600 linear 

triangles. The total number of the nodes was three 336. Figure 17 demonstrates the 

meshed domain (it shows the bent part partially). 

I 
Insulator 

I 
Conductor 

I 
Insulator 

Figure 17. The domain was meshed using the triangle element. 
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Figure 17 was used to design the parts of the computer program, which deals 

with the meshing and coordinates of the nodes. The computer program consisted of 

nine functions, which are all called from the main program. The name and the 

functionality of each function are explained as follows: 

1- ss_cylinder (the main function) 

All of the variables' declarations and initializations are made in this function. 

This function also calls the other functions to perform their tasks one by one. The 

constraint nodes, the corresponding values, and the flux at the boundaries are 

determined in this function. 

A list of all variables and their tasks are defined. This list is useful for 

debugging and tracing the program. Most of the variables are global, which 

means that any of the functions, which are called from the main program, can use 

them. There are some local variables that are defined within certain functions. 

Appendix A-1 shows the names of all the variables used in the MATLAB 

program. 

Another list gathered in the first stage of this function is the names of all 

matrices and vectors. This list is useful for understanding and tracing the whole 

program. Appendix A-2 demonstrates the names of all the involved matrices and 

vectors. Appendix A-3 shows the functions used in the MATLAB program. 

The initialing of the variables, matrices, and vectors are the next stage. Some 

of these variables, such as the thermal conductivity of the wire (named con_k in the 
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main program) are constants. Therefore; these values remain unchanged. If another 

kind of material is used for the analysis, the related variables should be modified. 

This modification is performed easily in the "Initialing the variables, vectors, and 

matrices" part of Function ss_cylinder. In the main program, the matrix solution is 

solved and the results will be plotted. Plotting is the last part of the program. 

The algorithm flowchart of Function ss_cylinder is shown in Figure 18. 

START 

Specifying the constrained nodes and the corresponding values 

Initialing all the variables, vectors, and matrices 

Do giv_node_numl 

(Assigning numbers to the nodes) 

Do com_node_coorl 

(Calculating the nodes' coordinates) 

Figure 18. The algorithm flowchart for function ss_cylinder 



Calculating the area of the linear triangle 

m= 0, counter = I 

C)t------► T 
Do con el matl 

(Constructing the time-independent element matrix) 

Do con td el matl - - -

(Constructing the time -dependent element matrix) 

Do con el vecl 
(Constructing the element vector) 

counter = counter + I 

Figure 18 ( continued) 
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EJ 

el con=el con+ 15 - -
m=m+ 15 

Do asemble t matl 

(Making the time-dependent system) 

counter = counter + 1 

EJ 

Figure 18 (Continued) 
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i=i+l 

Filling el_jlux_mat 

(The matrix containing the nodes with the 

flux boundary condition) 

Calculating the coordinates of the nodes 

which have flux boundary condition 

Filling e/_matl and e/_vecl 

Figure 18 ( continued) 
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Filling Matrix con_node_mat 

(Containing the nodes' numbers of 

the conductors) 

Initializing Vector sol_vec to 25 

(The ambient temperature) 

Filling Matrix sys_vec 

(The system vector) 

Updating Matrix sys_vec and 

sys_mat 

Filling Matrix node_ths_mat 

Figure I 8 ( continued) 
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Plotting the result I 

END 
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2. give_nod_number 

This function assigns numbers to the nodes. The total number of the nodes 

along the axis x and the axis of the symmetry are 16 and 11 respectively. To start 

numbering the nodes, the node located at the origin of the coordinate system is 

chosen to be number one. Figure 19 demonstrates this case. 

y 
161 
145 
129 
113 

97 

81 

65 

49 

33 
17 

First row ➔ 
IL..J"---1<:.......J,::........i<::........JL.....L<::..._.i:::_~.1:::-IL..JIL...le~:....JL...,L_~ 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 X 

Insulator Conductor Insulator 

Figure 19. The numbered nodes on the domain. The interior numbers are not 

specified to avoid confusion. 

The above figure is for the straight part of the wire. For the curved part, the 

numbering is started from number 177 to number .336. The number of the nodes and 

element in the curved part is the same as the straight one. 



59 

The algorithm used to assign numbers to each node in the domain is shown in Figure 

19. 

START 

Numbering the nodes in the first row from the bottom 

(Refer to Figure 20) 

I= 30 i = 1 1· = 1 , ' 

node_num_mat(i+/,1) = node_num_mat(i+/-15,3) 
node_num_ll\at(i+/,2) = node_num_mat(i+/-15,2) 
node_num_mat(i+/,3) = node_num_mat(i+/,2) + 16 

j = j+ 1 

node yum_ mat(k+ j+I, 1) = node_ num _ mat(k+ j+l-15, 1) 

node_num_mat(k+j+l,2) = node_num_mat(k+j+l-15,3) 

node_num_mat(k+j+/,3) = node_num_mat(k+j+/,1) + 16 

Figure 20. The algorithm flowchart for Function give _node_ numl 
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0 
/=/ + 30 

i = i + I 
END 

Figure 20 ( continued) 

3. Com_node_coorl.m 

After numbering the nodes, the coordinates (positions) of the nodes on the 

domain are determined. Function com_ node_ coor I performs this task. This 

function has some input parameters that are passed by means of the main 

program. These parameters are node _coor _ mat, wire_ dia, cyl _ hei, arc _/en, and 

arc_ ang. This function has one output which is Matrix node_ coor _mall. Its 

main function is to fill matrix node _coor _mat. Figure 21 (next page) shows the 

algorithm flowchart ofFunction com_!lode_coorl. 



START 

Input parameters: node_ coor _ mat, wire_ dia, 
cy/ _ hei, arc _/en, arc_ ang 

m = 1, i = J,j = I 

node_coor_mat(j+m,1) = node_coor_mat(j+m-I,1) + wire_dia/15 
node _coor _mat(j+m,2) = node _coor _ mat(j+m-I,2) 

~-EJ 
j=j+ I 

m=m+ 16 

node_coor_mat(m,1) = 0 

node_coor_mat(m,2) = node_coor _mat(m-16,2) + cy/_hei/10 

i = i + I 

0 
Figure 21. The flowchart for Function com_node_coor.m. 
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Setting the variables used for the curved part 

m = 177, i = J 

node_coor_mat(m,1) = node_coor_mat(m - 16,1) + hlb*cos(b_angle*pi/180) 
node_ coor _ mat(m,2) = node_ coor _ mat(m - 16,2) + hi b*sin(b _ angle*pi/180) 

j=J 

E 

node_coor_mat(j+m,1) = node_coor _mat(j+m-16,1) + 
(15 -J)*hl b*cos((b _ angle-di.ff_ ang)*pi/180)/15 

node_coor_mat(j+m,2) = node_coor _fllat(j+m-16,2) + 
(15 -1)*hl b*sin((b _ angle-di.ff_ ang)*pi/180)/15 

Figure 21 ( continued) 



j=j+ 1 

i = i+ I 
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node _coor _ mat(j+m, 1) = node _coor _ mat(j+m-16, 1) + 

in _seg_len*cos((b _ angle - di.ff_ ang)*pi/180) 

node _coor _ mat(j+m,2) = node _coor _ mat(j+m-16,2) + 

in _seg_len*sin((b _ angle - di.ff_ ang)*pi/180) 

m=m+ 16 

di.ff_ ang = di.ff_ ang +sub_ ang 

END 

Figure 21 ( continued) 
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The variables used in this figure are the same as the ones used in the programs. 

The description of each variable is listed in Appendix A-1. 

4. co11_el_malt 

This function constructs the matrix element. Using matrices node_coor __Jllat, 

node_num_mat, and el_mat, it generates Matrix element el_mat. This matrix is a 

3x3 matrix. 

5. con_td_el_matl 

In this function, a 3x3 matrix called td_el_mat is generated. This matrix is the 

same for all the elements in the domain and eventually it is combined with the 

time-dependent system matrix (i.e. td_sys_mat). 

6. co11_el_vecl.m 

This function, calculates the element vector for the triangle linear element. 

The inputs of this function are el_vec, node_coor _mat, node_num_mat, counter, 

and tri_area. The output is Vector el_vec. 

7. asemble_matl.m 

When both the element vector and the element matrix are built, they should be 

assembled in order to obtain the system matrix and system vector. This task is 

done by Function asemble_mat.m. The inputs of this function are sys_mat, 



65 

node_num_mat, el_mat, el_vec, sys_vec, and counter and the outputs are sys_vec 

and sys_mat. The first part of the function builds the system matrix and the 

second part builds the system vector. 

8. asemble_t_matl.m 

The task of this function is to fill matrix td_sys_mat. Basically, this function 

calculates the time-dependent integral existing in Equation 62 (the last integral). 

The input parameters of this function are td_sys_mat, td_el_mat, node_num_mat, 

and coullter. The output is td_sys_mat. 

9. node_t_h.m 

There are two different types of reports: temperature distribution along the 

wire, and temperature distribution across the wire. This function gets the nodal 

values from the main program and fills Matrix node_ths_mat. This matrix is 

used to plot the graph of the temperature versus the length of the wire. 

The program is written using the MATLAB software since it is relatively easy to 

learn and the length and simplicity of the codes compared with other languages is an 

advantage of MATLAB. Since most engineering problems deal with matrix 

calculation and MATLAB software is geared toward solving problems involving 

matrices calculation, it is definitely a useful tool for solving engineering problems 

(Kwon, & Bang 1997). 



Summary 

In this chapter, the problem and research questions were restated. Then the 

procedure used for solving the problem was explained. The details of the computer 

programs and the algorithms used to write the program were also addressed. 
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CHAPTERIV 

FINDINGS 

In this chapter, the results and findings of the analysis are shown and 

discussed. First, the names of the materials and their physical properties are 

explained and then the result for each of them is going to be demonstrated 

individually. 

Materials' Specifications 
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The analysis was performed using different kinds of materials as the insulator. 

The conductor chosen was Copper. The conductor specifications are shown in Table 

I. 

Table I 

The Physical Properties of the Conductor Used in the Analysis 

A WG Length (m) Diameter (m) Thermal Electrical 

Conductivity (J/m.s.K) Conductivity ((r1 -m·') 

18 0.12 0.001 405.12 5.98e+007 
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The coefficient of convection chosen was 5 in this study. The wire consists of 

two parts: the straight part and the bent one. The length shown in the above table 

indicates the total length of the wire. 

Three different insulators were used for the present study. The thickness was 

the same: 0.0005 m. The thermal conductivity of the insulators is demonstrated in 

Table 2 (RBC Industries, 1997). 

Table2 

The Physical Properties of the Insulators Used in the Analysis 

Name 

Epoxy Resin (RBC-5520) 

Epoxy Resin (RBC-5200) 

Epoxy Resin (RBC-5400) 

Thermal 

Conductivity ( cal/sec/cm2 /°C/cmx I 04
) 

5 

5.3 

27.0 

The values in the above table should be converted into SI system of units, 

which is W/m2c. To do so, it is sufficient to multiply them by 4 I 9 to convert them. 

The curvature of the wire (the amount of its bent) was considered in the analysis. 
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Therefore, the arbitrary values for it were plugged into the computer program. These 

values were 15°, 25°, and 35°. The arbitrary voltage surge was chosen as 50,000 V. 

The first analysis was performed with the assumption that there was not any 

voltage surge. The reason for doing this analysis was to observe the heat distribution 

along the wire layers in the normal case. The materials' properties listed in Table 2 

were plugged into the computer program one by one. Once the material was chosen, 

the curvature was chosen, and with this data, the computer program was run to obtain 

the temperature distribution for those specific values. Then, having the same material 

property, the curvature was changed and again, the program was run for all the 

different material properties with different curvatures. 

Since observing temperature in different points in the wire was desired, the 

sets of the three nodes were picked up from different parts of the wire. Figure 22 

(next page) shows the location of the three sets of nodes in the wire. Table 3 (next 

page) shows the associated numbers for the discussed nodes. 

It should be mentioned that the nodes in the inner side and outer side of the 

wire were in correspondence with each other. They were at the same distance from 

the center of the wire. Also, all the nodes belonging to the same set were located at 

the same cross-section as seen in Figure 22 (next page). For choosing each of these 

sets in the program, there was a parameter named plot_key in Function ss_cy/inder. 

For set number one, plot_key was set to two. For set number two, p/ot_key was set to 

three and for set number three, plot_key was set to four. 
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Figure 22. The nodes chose to observe the temperature in both insulator and 

conductor. 

Table 3 

The Node Numbers of the Three Nodes Chosen for the Analysis 

Set number 

1 

2 

3 

outer side node 

83 

179 

307 

conductor 

88 

184 

312 

inner side node 

94 

190 

318 

70 
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To begin, first those codes in the program, which calculate the time-dependent 

part, were commented. Those codes are in Function ss _cylinder (refer to Appendix 

B) and begin at line number 303. Figure 23 shows this commented part of the 

program. 
' . 

Figure 23. The commented part of ss _ cylinder function which are green in color. 

Then, the values were plugged in one by one. For this purpose, the variable 

insl_k (refer to Table 2) was set for each material. The initial time (ini_time) and the 

terminal time (fin_time) were set to 0 and 0.02 seconds respectively. 
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The first insulator used for the analysis without the surge was Epoxy Resin 

(RBC-5520). The curvature angle was set to 15°. Figure 24 demonstrates the 

temperature for this case. As the Figure shows, when the current starts passing 

through the wire, the temperature in both the conductor and insulator increases from 

the ambient temperature (25°C) up to 25.00045 °C and 25.00044 °C for conductor 

and insulator respectively. 
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Figure 24. The temperature distribution in both conductor and insulator with the 

nodes in the set number one (angle= 15°). 



Those values can be found in the time-history matrix, node_ths_mat. As 

expected, the temperature of the conductor was higher than the insulator since the 

conductor was surrounded by the insulator and, therefore, the insulator blocks the 

heat flow from the conductor toward the ambient. 
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Another result from this analysis was that the difference between the 

temperature of the insulator and conductor was not very much. As seen in Figure 24, 

the graphs of the insulator and conductor look to be coincided but they actually are 

not. The actual difference will be revealed by changing the scale of the graph. Figure 

25 shows the result of the change. 
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Time(s) 

Figure 25. The same distribution shown in Figure 24, but using different axial scales. 
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The temperature was not really the same between conductor and insulator. 

However, as seen in Figure 25, the temperature of both nodes in the inner side and 

outer side of the wire were the same. This should be true since this analysis belongs 

to node set number one, which deals with the nodes lying in the straight part of the 

wire. Consequently, the rate of the temperature change in the corresponding nodes 

was identical. 

After enough time passed, the temperature, either in conductor and insulator, 

was established and did not change. This was acceptable since the rate of the heat 

producing in the wire due to the current was balanced with the rate of the heat 

flowing out of the wire to the ambient. 

In order to observe the temperature distribution in other parts of the wire, the 

analysis was repeated for the node sets number 2 and 3 leaving the rest of the 

parameters unchanged. Figures 26 (next page) and 27 (next page) show the heat 

distributions for set 2 and 3 respectively. 
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Figure 26. The temperature distribution in both conductor and insulator with the node 

set number 2 (angle= 15°). 
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Figure 27. The temperature distribution in both conductor and insulator with the 

nodes in the set number three (angle= 15°). 
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Although the shape of the graphs in Figure 26 and 27 are similar, they do not 

demonstrate the same temperature distribution. By changing the axial scale of these 

figures, Figures 28 and 29 (next page) better demonstrate the temperature 

sdistribution. 
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Figure 28. The same distribution as in Figure 26 but with different scale. 
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Figure 29. The same distribution as in Figure 27 but with different scale. 

An interesting thing in Figure 29 is the distinguishing which appeared 

between the temperature of the inner side and the outer side of the wire insulator. 

The reason for this separation was that since the wire was bent, the nodes in the inner 

side were under more pressure than the nodes in the outer side. Therefore, the 

temperatures in the nodes representing the inner side were higher than the outer ones. 

As seen in both Figures 28 and 29, the temperature difference between 

conductor and insulator was not much. Actually, it was from the order of ten to the 

power of negative four. Even when checking the matrix node_ths_mat for the value 

of the temperature, it showed that the temperature difference was negligible. The 



reason was that since the electrical resistivity of the copper was very small (1.68 x 

10·8 n-m), the rate of the heat production within the conductor was not big. 

Therefore, any raise in the temperature was conducted outward since copper had a 

good thermal conductivity too. This case was valid along the wire as confirmed by 

the Figures 24, 26, and 27. 
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The temperature was also observed from another perspective. In this 

perspective, the temperature variation was observed along the wire (at different 

positions in both conductor and insulator) at some specific instant of time. This 

specific time could be any moment in the time interval, which is interval [0, 0.02]. In 

order to obtain such a graph, Parameter p/ot_key in Function ss_cylinder (refer to 

Appendix B) was set to one. It was corresponded to the moment t = 1.2 ms. The rest 

of the parameters such as the insulator material, the curvature, and the voltage surge 

remained unchanged. Figure 30 (next page) shows such a case. 
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Figure 30. The change of the temperature along the wire (angle= 15°). 

As Figure 30 shows, there was no difference between the temperature of the 

inner side of the wire (in the insulator layer) and the outer ones. However, this was 

true only in the straight part. In the bent part, the temperature of the inner area 

became a little bit more than the outer one. This difference was observed by 

changing the scales in the graph. Figure 31 (next page) is demonstrating the same 

distribution, but using a different scale. 
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Figure 31. The same distribution as Figure 30, but in the bent part of the wire and 

with different scale (angle= 15°). 
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As mentioned before, due to the low electrical resistivity of the conductor, the 

temperature raise was very small. Therefore, it cannot be shown in the graph 

although it is possible to view the node temperature values by changing the output 

format of the data. By default, MATLAB sets the format to be short. It means that 

the output format of the result would have four digits as decimals. In order to change 

the format, at the command line, the command format long G was executed. This 

command set the format to fifteen digits ( either fixed or floating). Therefore, the 
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matrix containing the answers (node_thy_mat) changed and the values were displayed 

with the new format. Table 4 shows a part of Matrix node_thy_mat for three arbitrary 

nodes 259,264, and 270 (column 17 of Matrix node_thy...Jnat). 

Table 4 

The Temperature at Some Typical Nodes (Angle - 15°) 

Node number 

259 (Insulator-the outer side) 

264 (Conductor) 

270 (Insulator- the inner side) 

Temperature (°C) 

25.00041760 

25.00041792 

25.00041762 

Referring to the above table, the change in the temperature occurred in the 

higher order of the decimal digits and, therefore, MATLAB rounded the extra 

decimal digits. This explains why the temperature difference was not obvious in 

Figure 30. 

Also shown in Figure 30, the temperatures of the nodes, which were located in 

the bent part (the area of the graph between points 0.1 and 0.12 on the X-axis in 

Figure 30), were more than the straight ones. Consequently, the impact of the 

curvature appeared as a raise in the temperature in both conductor and insulator. To 

inspect the impact of the curvature angle on the temperature pattern, the angle was 



changed to 25 degrees and the rest of the parameters left unchanged. Figure 32 

represents the result. 
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Figure 32. The change of the temperature along the wire (angle= 25°). 
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The temperature of the conductor was higher than the insulator. By changing 

the output format of the data, the order of the temperature was revealed. Using long 

G format, the temperature for the similar nodes shown in Table 4 were obtained. 

Table 5 (next page) represents the result. 



Table 5 

The Temperature at Some Typical Nodes (Angle - 25°) 

Node number 

259 (Insulator-the outer side) 

264 (Conductor) 

270 (Insulator- the inner side) 

Temperature (°C) 

25.00043975 

25.00047499 

25.00044002 
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As seen in the above table, the temperature of the node which was in the inner 

side of the wire was higher than the outer ones. The pattern implied that at bent the 

temperatures of the inner nodes in the insulator were higher than the similar nodes in 

the outer side of the insulator. Still, as expected, the temperature of the conductor 

was highest. The problem of having very small values of the temperature was 

considered. As mentioned before, this was due to the low resistivity of the conductor. 

By changing the angle from 25 to 35, the graph in Figure 33 (next page) was 

produced. The shape of the graph was the same as Figure 32, however, there was a 

small rise in the nodal temperature. 
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Figure 33. The change of the temperature along the wire (angle= 35°). 

Figure 34 (next page) shows a re-scaled version of Figure 33 giving a closer 

look. In this figure, a small peak is observed in the insulator temperature distribution 

(the inner side of the insulator). It means that the temperature became higher in that 

area and then came down. Again, as the curvature ofthewire increased, the 

temperature increased as well. Tlie location of the small peak is approximately at 

x = 0.1 lm and its value is 25.00045659 °C. 
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Figure 34. The same distribution as shown in Figure 33, but in the bent area. 
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Therefore, it was concluded that the temperature in the wire (in both 

conductor and insulator) increased when the curvature of the wire increased. Also, 

the nodes located in the bent part of the wire gained more temperature than the nodes 

in the straight part. As observed, the temperature in the inner side of the wire 

insulator was more than the temperature in the outer side and, of course, the 

temperature of the conductor, in any case, was the highest one. 

In order to observe the impact of the insulator material on the wire 

temperature, the above analyses were performed again changing the parameter 

representing the material property of the insulator. The parameter describing the 
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insulator behavior was thermal conductivity. In Function ss_cylinder, this multiplier 

was described by Parameter insl_k (refer to Appendix A-1). 

Having the same values for the rest of the parameters and setting the angle to 

be 15°, Epoxy Resin (RBC-5200) was chosen as the insulator. In Function 

ss_cylinder, the parameter describing this material was uncommented and the 

previous parameter (Epoxy Resin RBS 5520) was commented. Figure 35 (next page) 

shows the result of the analysis. 

The shape of this figure is similar to RBC-5520 (with all. other parameters the 

same). But the nodal temperatures are different. For instance, Table 6 compares the 

temperatures among three arbitrary nodes of RBC-5520 and RBC-5200. 

Table 6 

A Comparison Between 'the Temperatures of Some Arbitrary Nodes for Different 

Insulator Materials · 

Temperature (°C) 

Node number RBC-5520 

259 (Insulator-the outer side) 25.00045097 

264 (Conductor) 25.00045131 

270 (Insulator- the inner side) 25.00045100 

RBC-5200 

25.00041002 

25.00041031 

25.00041003 



These data were obtained from Matrix node_thy_mat. 
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Figure 35. The change of the temperature along the wire for RBC-5200 (angle= 15°). 

Figure 36 (next page) shows the results of the analysis with only the angle 

changed from 15 degrees to 25 degrees. 
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Figure 36. The change of the temperature along the wire for RBC-5200 (angle= 25°). 

The last angle change to 35° was plugged into the program with the rest of the 

parameters left unchanged. Figure 37 (next page) illustrates that, in this analysis, the 

temperature increases when the angle increases. 
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Figure 37. The change of the temperature along the wire for RBC-5200 (angle= 35°). 

Epoxy Resin (RBC-5400) was the last material used. The same procedure was 

performed with the value of the angle changed each time. The results of the first 

analysis (i.e. 15 °) is illustrated in Figure 38 (next page). 



25.0001 ,----~-----.---~,-----.---~.---~ 

§: 
~ i 25.0001 L _____________________ _ 
C. 
E 
~ 

25.0001 L_ ___ L.,_' ___ .L.,_ ___ L-., __ __,. ___ __. ___ _j 

0 0.02 0.04 0.06 
Length(m) 

0.08 0.1 0.12 

90 

Figure 38. The change of the temperature along the wire for RBC-5400 (angle= 15°). 

Since the thermal conductivity of RBC-5400 is relatively high, the heat is 

conducted to the ambient quicker as compared to the two previous insulators. 

Therefore, the nodal temperatures are small. Referring to Figure 38, the maximum 

temperature occurs at the end of the wire where the bent is maximum. Referring to 

Matrix node_thy_mat, the.maximum values are 25.00008054 °C in the conductor and 

25.00008049 °C and 25.00008048 °C for inner nodes and outer nodes respectively. 
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The results of changing the angle from 15° to 25° are shown in Figure 39. 
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Figure 39. The change of the temperature along the wire for RBC-5400 (angle= 25°). 

In Figure 39, the temperature difference between the insulator and conductor 

is very small and is not readily distinguishable. Although, as expected, the 

temperature at the far end of the wire, where it is bent, tends to be higher than other 

places. The temperature difference is more clearly revealed when the scale of the 

graph is changed as is demonstrated in Figure 40 (next page). 
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Figure 40. The ame figure as Figure 39, but with different caJe and showing the 

bent part of the wire (angle= 25°). 

A expected, the temperature of the inner s ide i higher than the outer s ide. 
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Also, the temperature at this pan of the wire is the highest one compared with other 

parts, and can be seen by observing the values of the temperatures in Matrix 

node_thy_mat. Referring to Matrix 11ode_thy_mat, the maximum temperature in the 

conductor is 25.00008509 °C and for the insulator (both the inner side and the outer 

ide) are 25.00008505 °C and 25.00008502 °C respectively. 
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Again, all the parameters were unchanged except the angle of the wire, which 

was set at 35°. The distribution result is illustrated in Figure 41. 
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Figure 41. The change of the temperature along the wire for RBC-5400 (angle= 35°). 

Here, again, the difference between the insulator and conductor is very small. 

However, it is still obvious that the temperature increases as the curvature of the wire 

increases. A closer view of the bent part of the wire can be seen by changing the 

scale of the graph as demonstrated in Figure 42 (next page). Again, it should be 

mentioned that due to the high thermal conductivity of RBC-5400, the raise in 



temperature is very small. Therefore, the vertical scale in Figure 42 doe not how 

any difference. 
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Figure 42. The ame figure as Figure 41 , but with different scaJe and showing the 

bent part of the wire. 

Referring to Matrix node_thy_mat, the maximum nodal temperature in the 

conductor is 25.00008862 °C and in the in ulator, the inner ide and outer ide, are 

25.00008861 °C and 25.00008856°C respectively. 
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The Impact of the Voltage Surge on the Temperature Distribution 

A 50,000 V was applied across the wire. Since the under-study wire was a 

piece of a long wire in the stator coil winding, this voltage was not applied directly 

across this small wire, but was applied across the coil. The coil chosen for the current 

study had l 4.9Q resistance and ability to carry 7 .2 A. The length of the wire having 

the mentioned characteristic was calculated to be approximately 699.5 m, which was 

rounded to 700. This was the whole length of the wire used to make the stator coil 

winding. 

Therefore, the voltage surge was applied across a 700-m wire. To find the 

voltage applied across the 0.12-m of the wire was desired, it was needed to know how 

many of these 0.12-m were contained in the 700-m wire. This was calculated by 

dividing 700 by 0.12, ;µ1d the result was approximately 5833.3. This value was then 

rounded to 5833. 

The meaning of this value is that there were 5833 pieces of wires in the 700-m 

wire, each of which was 0.12 m long. Each of these pieces was treated as a resistor. 

Therefore, there was a long chain of series resistors. The voltage (in this case, 50,000 

V) was divided among 5833 resistors. Consequently, there were 50000/5833 = 8.6 V 

across each 0.12-m resistor. 

In Function ss_cylinder (refer to Appendix B), the total amount of the voltage 

surge was plugged in since the program calculates the voltage across each small 

resistor itself. Therefore, parameter sur _volt (refer to Appendix A-1) was set at 

50,000V. 



96 

The lines commented in Figure 23 were uncommented in order to implement 

the surge into the computer program, then Parameters insl_k and arc_ang (refer to 

Appendix A-1) were changed to obtain the temperature distribution with different 

insulators and angle of curvature. 

Based on the choice of the insulator and the angle, the following graphs were 

produced and categorized. 

1) Insulator : Epoxy Resin(RBC-5520), Curvature Angle: 15° 

The result is demonstrated in Figure 43. 
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As seen, the temperature suddenly increased. When the surge hit the wire, it 

produced a big current in the wire. This current created extra heat within the wire 

and, therefore, the temperature increased. As expected, the temperature along the 

straight part of the wire was almost identical, since the shape of the wire was a 

cylinder and it had symmetry along its axis. In the bent area, as the curvature 

increased, the temperature increased as well. Again, the temperature reached its 

maximum at the very end part of the wire where the curvature was maximum. To 

better observe, the temperature distribution at the end part of the wire, the node set 

number three was selected. Then, to obtain the corresponding graph, the parameter 

plot_key (refer to Appendix A-1) in Function ss_cylinder (refer to Appendix B) was 

set to be four. 

Figure 44 (next page) demonstrates the temperature across the wire at the far 

end of it, corresponding to node set number three. At the moment of the surge, the 

voltage suddenly increased and then gradually decreased. 
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Figure 44. The nodal temperature for the node set number three. 

A close look at Figure 44 also reveals that the temperature between the two 

sides of the wire (inner and outer sides) in the bent part of the wire was not the same. 

Figure 45 (next page) expands and provides a closer view of the bent part. As seen, 

there was. a slight difference between the temperature of the inner side nodes and the 

outer side ones. It is alsci clear .that the inner side part of the insulator is hotter than 

the outer side. The inner side of the wire tolerates higher pressure than the outer side, 

therefore, causing the temperature to increase. 

According to Matrix node_ths_mat (refer to Appendix A-2) the maximum and 

the minimum temperatures for the conductor were approximately 42. 703 °C and 

42.652 °C respectively. For the insulator, the maximum and minimum temperature of 



the inner side are 42.691 °C and 42.638°C and for the outer side are 42.689 °C and 

42.638 °C respectively. 
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Figure 45. The same distribution as Figure 44 with different scale (angle = 15°). 

2) Insulator : Epoxy Resin(RBC-5520), Curvature Angle: 25° 

This analysis was the same as analysis number one except the angle is set at 

25° instead of 15°. The graph in Figure 46 (next page) demonstrates this case. 
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Figure 46. The nodal temperature along the wire (angle= 25°). 

Comparing this graph with Figure 43, one sees that the temperature had 

increased. The reason lies in the angle increasing. The nodal values contained in 

Matrix node _thy_ mat (refer to Appendix A-2) showed the maximum and minimum 

values for the conductor as 44.379 °C and 44.271 °C respectively. For the inner side 

nodes of the insulator, the maximum of the temperature was 44.370 °C and the 

minimum was 44.253 °C. The outer side temperature of the insulator at its maximum 

was 44.364 °C and at its minimum was 44.253 °C. 
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The temperature of the inner side of the insulator was higher than the outside 

temperature of the insulator. To demonstrate this, the scales of the graph in Figure 46 

were changed to produce the result in Figure 47. 
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Figure 47. The bent part of the wire shown in Figure 46 (angle= 25°). 

Since the maximum occurred at the same area as in the previous analysis 

(refer to analysis number one), the temperature varying versus time was obtained 



using the same set of node (i.e. node set number three). Figure 48 illustrates the 

result. 
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Figure 48. The nodal temperature for the node set number three (angle= 25°). 

3) Insulator : Epoxy Resin(RBC-5520), Curvature Angle: 35° 
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The graph in Figure 49 (next page) was produced by changing the angle from 

25° to 35°. As seen, the temperature alo!]g the wire had increased and was 

expected since the angle of the wire was increased. Also, the temperature in the 

bent area increased, as was the case in the previous similar analysis. 
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Figure 49. The temperature distribution along the wire (angle= 35°). 

The maximum and the minimum values of the temperature in the conductor 

were 45.876°Cand 45.718 °C. In the insulator, the maximum and the minimum were 

45.873°C and 45.720°C. The maximum value here represents the nodal temperature 

in the inner side of the insulator. The corresponding maximum values for the outer 

side of the insulator was 45.87°C and the minimum was 45.70°C. Figure 50 (next 

page) represents the temperature varying in the bent area when the scales were 

changed in the graph in Figure 49. 
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Figure 50. The temperature distribution in the bent area in both conductor and 

insulator ( angle = 3 5°). 
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Referring to Figure 22, the node set representing the bent area at far the end of 

the wire was node set number three. Therefore, the program was run again to 

calculate the nodal temperatur_es. Figure 51 (next page) illustrates the result. 
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Figure 51. The nodal temperature for the node set number three 

By comparing Figure 51 with Figure 48, the deduction can be made that the 

temperature had increased. Consequently, increasing the angle raised the temperature 

in both conductor and the insulator. As in analysis number one, a closer view of the 

figure was needed. Figure 52 (next page) shows the enhanced view of the graph in 

Figure 51. 
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Figure 52. A close look at the peak of the same temperature distribution shown in 

Figure 51. 
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Again, the graph revealed that the temperature of the insulator in the inner 

side of the wire was higher than the outer side. Since the temperature difference was 

not too much, the difference was not evident in Figure 51. 
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4) Insulator : Epoxy Resin(RBC-5200), Curvature Angle: 15° 

In this case, the material used as the insulator was changed to Epoxy Resin 

(RBC-5200). Therefore, Parameter ins]_ k cylinder (refer to Appendix A-1) in 

Function ss _ representing this parameter was uncommented and the same parameter 

representing the value for Insulator Epoxy Resin (RBC-5520) was commented. Also, 

the angle was set to its first value, which was 15°. The program was run for the new 

values of the parameters. Figure 53 shows the result of the analysis using these new 

data. 
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Figure 53. The nodal temperature along the wire (angle= 15°). 
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This figure shows that the average temperature along the wire had decreased 

compared with the similar analysis shown in Figure 43. The thermal conductivity 

RBC-5520 is less than RBC-5200 and the rate of loosing temperature in RBC-5520 is 

less than RBC-5200. Therefore, under the same experienced circumstances, the wire 

that had RBC-5520 was at the higher temperature than the wire that had RBC-5200 as 

insulator. Comparing Figures 43 and 53 indicate this correlation. 

As shown in Figure 53, the end part of the wire (in the bent area) had the 

highest temperature. Figure 54 illustrates the temperature distribution in the bent part 

of the wire using node set number three. 
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Figure 54. The nodal temperature for the node set number three (angle= 15°). 
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By comparing Figure 54 with Figure 44, the results show that the peak of the 

temperature had decreased. Referring to Matrix node ths mat the maximum value 

for the temperature was 41.420 °C for the conductor and for the insulator was 

41.409°C (in the inner side) and 41.407°C (for the outer side). 

Similar to the previous analysis, the temperature of the conductor was the 

highest. Also, the temperature of the inner side of the insulator was higher than the 

outer side. 

Figure 55 illustrates the same distribution as in Figure 54 using another scale 

so that the temperature difference can be more readily observed. 
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Figure 55. A close look at the peak of the same temperature distribution shown in 

figure 54 (angle = 15°). 
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5) Insulator : Epoxy Resin(RBC-5200), Curvature Angle: 25° 

In this analysis, the angle was changed to 25° with the rest of the parameters 

left unchanged. The temperature distribution along the wire, .in both conductor 

and insulator, showed the same pattern as the previous similar analysis as shown 

in Figure 56. 
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Figure 56. The nodal temperature along the wire (angle= 25°). 
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Again the same pattern was observed. The shape of the distribution was the 

same and the temperature increased as the curvature increased. The only difference 

was that the average temperature had decreased when compared to the results shown 

in Figure 46. The reason was that the thermal conductivity of RBC-5200 was higher 

than RBC-5520. 

The nodal values for the node set number three should again be considered 

since the maximum temperatures occurred in the bent (refer to Figure 56). Figure 57 

demonstrates the distribution in this case for node set number three. 
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Figure 57. The nodal temperature for the node set number three (angle= 25°). 
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6) Insulator : Epoxy Resin(RBC-5200), Curvature Angle: 35° 

Figure 58 demonstrates the distribution obtained by changing the angle from 

25° to 3 5°. Similar to the previous analysis, just the angle was changed. 
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Figure 58. The nodal temperature along the wire (angle= 35°). 

Figure 5 8 shows the pattern was repeated among the similar analysis, but the 

temperature changed. In this case, the temperature decreased, compared with Figure 

49, in which the same angle was used, but with different insulator material. 



Figure 59 represents a different scale for the graph in Figure 58. 

44.39 

44.38 

44.37 

~ 44.36 
~ 
:l 

~ 44.35 
8. 
E 
~ 44.34 

44.33 

44.32 

44.31 

Red : Insulator (the inner s ide) 

Blue : Insulator (the outer side) 

44.3 ,...._ _ __,_ _ ____.'--_.....__ _ ___._ __ .....__ _ __._ __ ,...._ _ __,_ _ ____. _ _____, 
0.1 0.102 0.104 0.106 0.108 0.11 0.112 0.114 0.116 0.118 0.12 

Length(m) 

Figure 59. The temperature distribution in the bent area in both conductor and 

insulator (angle = 35°). 

Again, the inner side of the insulator was at a higher temperature than the 

outer side. Both of them are at a lower temperature than the conductor, which was 

expected. 
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7) Insulator : Epoxy Resin(RBC-5400), Curvature Angle: 15° 

The last insulator material analyzed was Epoxy Resin (RBC-5400). This 

material has a very good thermal conductivity as compared with the two previously 

used. The analysis started using the angle of 15° as the curvature and the rest of the 

parameters were kept unchanged. Figure 60 shows the result of this analysis. 
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Figure 60. The temperature distribution along the wire (angle= 15°). 
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It is obvious that the temperature decreased. This is reasonable since the 

thermal conductivity of RBC-5400 is high, which allows it to conduct the heat faster 

and more than RBC-5520 and RBC-5200. By changing the scale of the above figure, 

the graph in Figure 61 was generated, showing the temperature distribution in the 

bent area of the wire. 
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Figure 61 . The same distribution as Figure 60 but using different scales to see the 

distribution in the bent area (angle = 15°). 
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Again, the same pattern was observed. The temperature in the conductor was 

the highest one and the temperature in the inner side of the insulator was higher than 

the outer side. Since the maximum temperature wi,is in the bent area of the wire, 

again, node set number three was chosen. The results of this analysis are shown in 

the graph in Figure 62. 
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Figure 62. The nodal temperature for the node set number three (angle= 15°). 

By changing the scale, it was possible to observe the temperature varying at 

the peak of the above figure. Figure 63 (next page) illustrates this observation. As 



seen in this figure, the temperature of the inner side was higher than the outer side, 

the same distribution as with the other insulators. The only thing changed was the 

maximum temperature. Referring to Matrix node _ths _ mat, this maximum was 
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29.143 °C for the conductor and for the insulator, it was 29.141 °C for the inner side 

and 29 .140°C for the outer side. 
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Figure 63 . A closer view of the peak shown in Figure 62 (angle = 15°). 

Another interesting result obtained from Figure 63 was when the temperature 

raised, the rise occurred in both insulator and conductor almost simultaneously. At 
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the peak, the temperature of the conductor increased more than the insulator. 

Therefore, when the voltage surge decreased the temperature of both conductor and 

insulator decreased (the right-hand side of Figure 63), but the temperature difference 

between the conductor and the insulator was now more than the increasing time (the 

left-hand side of Figure 63). 

8) Insulator : Epoxy Resin(RBC-5400), Curvature Angle: 25° 

In this case, just the angle was changed. Figure 64 illustrates the result. 
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Figure 64. The nodal temperature along the wire (angle= 25°). 
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Figure 65 shows the same distribution with a different scale in the bent part of 

the wire. It was completed by choosing the proper scales. It is obvious that the nodal 

temperature decreased compared to Figure 4 7 due to the high thermal conductivity of 

RBC-5400. 
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Figure 65. The same distribution as Figure 64 but using different scales to see the 

distribution in the bent area (angle = 25°). 
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9) Insulator : Epoxy Resin(RBC-5400), Curvature Angle: 35° 

The last analysis was performed by setting the angle of the curvature to be 

35°. The result is shown in Figure 66. Due to the close nodal temperatures of 

both the conductor and the insulator, the difference was not obvious in this figure. 
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Figure 66. The temperature distribution along the wire (angle = 35°). 

A closer view of Figure 66 is shown in Figure 67 (next page). Like the 

previous cases, this graph was generated in the bent part of the wire. At first glance, 
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it appears that the slope of the curves was more than the other similar analysis (refer 

to Figure 50), but actually they had the same slope. The only thing different was that 

the temperature difference between conductor and insulator in the present analysis 

was less than other analysis. This was acceptable since the thermal conductivity of 

RBC-5400 was the maximum one among the insulators chosen, therefore, the heat 

passed through the insulator faster. 
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Figure 67. The bent part of the wire analyzed in Figure 66 (angle = 35°). 
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Summary and Conclusion 

In this chapter, the results of the different analyses were shown. Each 

of the analyses produced for a particular angle of curvature and the material 

used as an insulator. The graphs were detailed and discussed, and the impact 

of changing each of the parameters, such as material and angle of curvature, 

were addressed. Three research questions presented in this Thesis with 

respective answers are as follows: 

1- Where on the wire does the failure happen due to the over-voltage? 

As the analysis showed, when the voltage (not the voltage surge) was applied 

across the wire, the temperature in both conductor and insulator increased. The 

temperature in the insulator was less than the conductor since the insulator blocked 

the heat flowing out of th_e conductor toward the ambient. Consequently, the 

temperature of the conductor increased. Also, the temperature in the straight part of 

the wire was less than the bent part because, in the bent area, the cross-section of the 

wire was decreased, therefore increasing the resistance, which led to increasing the 

temperature. 

In less than 10 ms (refer to Figure 27), the temperature established in both 

conductor and insulator, and did not increase. When the voltage surge was applied, 

the temperature of both the conductor and the insulator increased suddenly. As the 

voltage surge decreased, the temperature was decreased too. The analysis showed 

that the temperature was increased and that the increment was more in the bent area 
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of the wire. The analysis did not show any significant increment in the temperature, 

in either conductor or insulator, which led to over heat the insulator or conductor. In 

this study, just the impacts of the thermoelectrical effects were observed. Since the 

wires in the stator coil winding experience some mechanical impacts, these impacts 

could be led to the failure in the insulators. On the other hand, the vibration of the 

coils in the stator effects the insulators. This effect can appear as a mechanical 

damage to the insulator layers or even some thermal effect, such as temperature 

increment. 

Despite all of these effects, it can be said that the temperature in the bent area 

of the wire, where the wire is bent to go out from one slot or even where it goes into 

another slot, reaches its maximum value. Therefore, these areas in the stator coil 

winding are most likely the. places where the damages 9ccur. 

2- What is the impact of the bent on the heat distribution within the wire? 

The temperature of the wire in the straight part was smooth. In this part, the 

corresponding nodes in the inner side and outer side had almost the same 

temperatures, due to the symmetry of the straight part, which is basically a cylinder. 

In the bent area, the temperature variation was a function of the curvature. When the 

angle of curvature either increased or decreased, the nodal temperature also increased 

or decreased. The more the angle, the more the temperature increment. 

When the angle increased the temperature difference between conductor and 

insulator increased. And, the temperature of the inner side of the insulator (refer to 
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Figure 65) was higher than the outer side, which can lead to failure in this area of the 

wire. 

3- What is the impact of the insulator material on the heat distribution within 

the wire? 

Since each insulator had its own thermal conductivity, the impact of 

conducting the heat to the ambient was different among the insulators. The present 

analysis showed that the amount of the thermal conductivity had direct impact on the 

nodal temperature in both the conductor and the insulator. When the thermal 

conductivity increased, the temperature increased as well. Therefore, choosing the 

material, which had good thermal conductivity was essential. But, at the same time, 

the mechanical behavior of the material chosen should be considered, since there are 

some mechanical effects in the stator coil winding. 

Suggestions and recommendations 

Based on the results of this study, the following are recommended for the next 

study: 

1- Since this study just considered the thermal-electrical effect, it is 

recommended to consider the mechanical impact on the heat distribution. 

2- The method used for analyzing the present study was actually two

dimensional with the two-dimensional element used to discretize the domain. 

Also, just a cross-section of the wire was studied. To obtain more details and 



125 

more accurate results, the three-dimensional analysis is recommended, with 

the three-dimensional element used to mesh the wire. For instance, a 

hexahedral element ( either with 8 nodes or 20) could be used. 

3- Using some well-known engineering packages, such as ANSYS, could assist 

in seeing and observing the results in three dimensions. 

4- One practical problem is the change of the physical properties with the 

temperature increment. Most of the physical parameters are not constant 

during the temperature increasing/decreasing. To obtain a better more 

realistic answer, it is recommended to include the variation or fluctuation of 

some properties such as resistance, thermal convection, and thermal 

conductivity. 
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Appendix A 

Table I 

The Name of all the Variables Used in the MATI,AB Programs 

Variable Description 

amb _temp The ambient temperature 

arc_ ang The angle of the arc (in degree) 

arc len The length of the arc 

cap The capacitance of the capacitor in the RC circuit 

con area The cross-section area of the conductor 

con k The thermal conductivity of the conductor 

con res The resistance of the wire 

con ro . The volume density of the conductor 

con_ spec The conductor thermal specific heat 

counter, counter 1, The counter of the loops 

i, k 

cyl_hei 

el con 

el num 

ele_dof 

The height of the cylinder 

The parameter which determines if the element is 

conductor or insulator 

The element number 

Degree of freedom in each element 
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Table 1 (Continued) 

fin_time 

flux_ side _/en 

ini time 

ins] conv 

insl k 

n time 

node coor 

node_dof 

node num 

node wanted 

num element 

num _jluxyode 

num _flux_ node 

num yode _ sys 

num node el - -

The final time (the time which the computation is 

stopped) 

The length of the side which have the flux passing 

through it 

The initial time (the time that the computation is 

started) 

The convection of the insulator to the ambient 

The thermal conductivity of the first insulator around 

the conductor 

The number of time intervals in the time domain 

The node coordinate 

Degree of freedom in each node 

The node number 

The node which its time-history is desired 

The number of elements in the system 

The number of nodes in the conductor 

The number of nodes which have the flux boundary 

conditions 

The total number of nodes in the system 

The number of node per element 
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Table I (Continued) 

p/ot_key 

r _flux_ node 

res 

sur volt 

sys_dof 

time 

time int 

time wanted 

tri area 

wire c 

wire cur 

wire dia 

wire row 

wire_sig 

wire_temp 

The parameter determining the kind of desired graph 

The r-coordinate of the node which has flux 

The resistance of the resistor in the RC circuit 
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The voltage across the capacitor in the RC circuit (the 

voltage surge) 

The system degree of freedom 

The time parameter in the surge equation 

The time interval for each computation 

The time that the history of the node is desired 

The area of the triangle 

The specific thermal of the wire 

The current passes through the wire 

The diameter of the wire 

The volume density of the wire 

The electrical conductivity of the wire 

The wire temperature at any time 
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Table2 

The Name of all the Matrices and Vectors Used in the MATLAB Programs 

Name 

be vecl 

con node mat 

con node num 

con node val - -

el_jlux_mat 

el mat 

el vec 

node coor mat 

node num mat 

node ths mat 

node _thy_ mat 

sol vec 

sys_mat 

Description 

The boundary condition vector 

The matrix including the nodes of the conductor part of 

the wire 

The matrix including constrained node numbers 

The vector including constrained node values 

The nodes with flux boundary condition 

The element matrix ( time independent) 

The element vector 

The matrix containing the coordinate of the nodes 

The matrix containing the number dedicated to each 

node in each element 

The matrix containing the time history solution of the 

nodes 

The matrix containing the y-position history solution of 

the node at the particular time given 

The vector containing the solution of each node 

The system matrix 



Table 2 ( continued) 

sys_vec 

td el mat 

td_sys_mat 

uw 

The system vector 

The time-dependent element matrix 

The time-dependent system matrix 

The last matrix in the formula 
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Table 3 

The Name of all the Functions Used in the MATLAB Programs 

Name 

asemble mall 

asemble t matl 

com~ node _coor 1 

con el mat] 

con el vecl 

con td el mat/ 

giv _ nod _numl 

node th 

ss _ cylinder 

Description 

Assembles the time-independent element matrix and 

vector into system matrix and system vectol" 

Assembles the time-dependent element matrix into system 

matrix 

Computes the nodes coordinates 

Constructing the element matrix (time-independent) 

Constructing the element vector 

Constructing the element matrix (time-dependent) 

Assigns number to the nodes 

setting the report type (temperature along the wire or 

temperature across the wire) 

The main function. It calls other functions and graphs the 

results. 
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APPENDIXB 

The Source Code of the MATLAB Programs 
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% 
% the last date of modification: 10-30-00 

%--------------------------------------------------------
% Function: ss _ cylinder (the main function) 
% This program calculates the temperatures among a one
layer cylindrical wire carrying 
% electricity (the transient response) 
%--------------------------------------------------------
%--------------------------------------------------------
% 
%node_coor_mat(a, b) = c -> Global Cartesian coordinates 
% I I 
% Node number The node coordinate (x,y) 
% 
% node_num_mat(a , b) = c -> Global node number 
% I I 
% Element number Local node number a·ssociated with the 

element 
% 

%--------------------------------------------------------
% NOTE: ALL THE VALUES ARE CONSIDERED IN THE SI SYSTEM 
%------------------------------- ------------------------
clear; 
%-------------------------------- -----------------------
% Initialing the variables, vectors, and matrices 
%--------------------------------------------------------
amb_temp 
arc_ang 
arc len 
cap 
con area 
con dia 
conk 
con res 
con ro 
con_spec 
cyl_hei 
el con 
ini time 
insl conv 
%insl k·, 

= 25; 
= 25; 
= 0.02; 
= 470e-006; %10 47-mf capacitors with 4.5 kV 
= 7.85e-007; 
= 0.001; %AWG = 18 
= 401; 
= 0.0026; 
= 8920; 
= 386; 
= 0.1; 
= O; 
= O; 
= 5; 

= 0. 20; % Silicon rubber(RBC-5520) 
range :-65,Max.100 

,Temp 



-'!sinsl k 

insl k 

ele dof 
fin time 
node dof 

= 0.22; -'Is Silicon rubber(RBC 5200) ,Temp 
range. :-65,Max.100 

= 1.13;% Silicon rubber(RBC 5400) ,Temp 
range :-65,Max.100 

= 
= 
= 

3; 
0.1; 
1; 

node wanted = 3; 
200; num con el = 

num_con_node = 126; 
num flux node = 70; 
num node .el = 3; 
num element = 600; 
num_node_sys = 336; 
plot_key = 1; 
sur volt = 50000; 
sys_ dof = node_ dof*num _node_ sys; 
time = O; 
time int = 0.001; 
wire cur = 7.2; 
wire dia = 0.0015; 
wire res = 14.9; 
wire~sig = 5.98e+007; 
-'Is 

n time = (fin time - ini time) /time int; 
time 'l<l'anted - = n_time-:, 89; -
-'Is 

con node mat= zeros(num_con_node,1); 
con node val= zeros(num_con_node.,1); 
conduct mat = zeros(num_con_el,1); 
node num mat= zeros(num_node_sys,3); 
node_coor_mat =zeros(num_node_sys,2); 
el flux mat = zeros(num_flux_node-2, 2); 
el vec = zeros (ele_dof, 1); 
sys_ vec = zeros (sys_ dof, 1) ; 
el mat = zeros(ele_dof, ele_dof); 
td el mat = zeros (ele_dof, ele dof) ; 
t~_sys_mat = zeros(sys_dof, sys_dof); 
sys_mat = zeros (sys_dof, sys_dof); 
sol vec = zeros (num _node_ sys, 1) ; 
node ths mat= zeros (20,round(n_time)); 
node_thy_mat = zeros (3, 20); 

137 



138 

% 

%--------------------------------------------------------
% Construction the conductor element matrix 

%--------------------------------------------------------
% 
m = 5; 
j = 1; 
for counter= 1:num con el 

. - -
conduct_mat(counter,1) = m + j; 
j = j + 1; 
if j = 6 

m = m + 15; 
j = 1; 

end 
end 
% 

%------------------------------------------ ----------- -
% The Main Program 

%--------------------------------------------------------
% 
%Assigning number to the nodes 
node_num_mat = giv_nod_numl(node_num_mat); 

% Computing the node coordinates 
node coor mat = 
com_node_coorl(node_coor_mat,con_dia,wire_dia,cyl_hei,arc 
_len,arc_ang); 
% 
m = O; 
for counter=l:num element 

tri_area = (1/2)*det([l, 
node_coor_mat(node_num_mat(counter,1),1), 
node coor mat(node num mat(counter,1),2); 1, 
node coor mat(node num mat(counter,2),1), 
node_coor_mat(node_num_mat(counter,2),2); 1, 
node_coor_mat(node_num_mat(counter,3),1), 
node_coor_mat(node_num_mat(counter,3),2))); 
el mat = 
con_el_matl(el_mat,node_coor_mat,node_num_mat,counter, 
tri_area,con_k,insl_k,m); 
td_el_mat = con_td_el_matl(td_el_mat,tri_area); 
if counter>= m + 6 

if counter<= m + 10 
el vec = 
((wire_cur)h2/(con_ro*con_~pec*(con_area)h2*wire 



_sig))*con_el_vecl(el_vec, node_coor_mat, 
node_num_mat, counter,tri_area); 

else 
el vec = [0;0;0]; 

end 
end 
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[sys_mat,sys_vec] = 
asemble_matl(sys_mat,node_num_mat,el_mat,el_vec,sys_ve 
c, counter) ; 
[td~sys_mat]= 
asemble_t_matl(td_sys_mat,td_el_mat,node_num_mat,counte 
r); 
if counter>= 15 + el con 

el con= el'con + 15; 

end 
end 
% 

m = m_+ 15; 

%--------------------------------------------------------
% Computing the flux at the boundaries and adding it to 
%the system matrices and vector 

%--------------------------------------------------------
% el_flux_mat( a, b) 
% I I 
%the counter representing the number of the node 
%the number of the element 
% 

= 1; el_flux_mat(l,1) 
el_flux_mat(2, 1) 
el_flux_mat(3,1) 
el_flux_mat(4,1) 
el_flux_mat (5,1) 
el_flux_mat(6, 1) 
el_flux_mat (7, 1) 
el_flux_mat(8,1) 
el_flux~mat(9,1) 
el_flux_mat(l0,1) = 
el flux mat(ll,1) = 
el flux'mat(12;1) = 
el flux mat(l3,1) = - . -

= 17; 
= 33; 
= 49; 
= 65; 
= 81; 
= 97; 
= 113; 
= 129; 

el_flux_mat(14,1) = 

145; 
161; 
177; 
193; 
209; 
225; 
241; 
257; 
273; 

el_fl~x_mat(15,1) = 
el_flux_mat(16,1) = 
el_flux_mat(17,1) = 
el_flux_mat(18,1) = 

= 17; el_flux_mat(l,2) 
el_flux_mat(2,2) 
el_flux_mat(3,2) 
el_flux_mat(4,2) 
el_flux_mat(5,2) 
el_flux_mat(6,2) 
el_flux_mat(7,2) 
el_flux_mat(8,2) 
el_flux_mat(9,2) 
el_flux_mat(l0,2) = 
el_flux_mat(ll,2) = 
el_flux_mat(l2,2) = 
el_flux_mat(l3,2) = 
el_flux_mat(l4,2) = 
el_flux_mat(l5,2) = 
el_flux_mat(16,2) = 
el_flux_mat(17,2) = 
el_flux_mat(lB,2) = 

- 33; 
= 49; 
= 65; 
= 81; 
= 97; 
- 113; 
= 129; 
= 145; 

161; 
177; 
193; 
209; 
225; 
241; 
257; 
273; 
289; 
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el_flux_mat(l9,l) = 289; el_flux_mat(19 12) = 305; 
el_flux_mat(20,1) = 305; el_flux_mat(20,2) = 321; 
el_flux_mat(21,1) - 16; el_flux_mat(21,2) = 32; 
el_flux_mat(22,1) = 32; el_flux_mat(22,2) = 48; 
el_flux_mat(23,1) = 48; el _flux_mat(23,2) = 64; 
el_flux_mat(24,1) = 64; el _flux_mat(24,2) = 80; 
el_flux_mat(25,1) = 80; el_flux_mat(25,2) = 96; 
el_flux_mat(26,1) = 96; el_flux_mat(26,2) = 112; 
el_flux_mat(27,1) = 112;el_flux_mat(27,2) = 128; 
el_flux_mat(28, 1) = 128;el_flux_mat(28,2) = 144; 
el_flux_mat(29,1) = 144 ;el_flux_mat(29,2) = 160; 
el_flux_mat(30,1) = 160; el_flux_mat(30,2) = 176; 
el_flux_mat(31,1) = 176; el_flux_mat(31,2) = 192; 
el_flux_mat(32,1) = 192; el_flux_mat(32,2) = 208; 
el_flux_mat(33,1) = 208; el_flux_mat(33,2) = 224; 
el_flux_mat(34,1) = 224; el_flux_mat(34,2) = 240; 
el_flux_mat(35,1) = 240; el_flux_mat(35,2) = 256; 
el _flux_mat(36,1) = 256; el _flux_mat(36,2) = 272; 
el_flux-"-mat(37,1) = 272; el_flux_mat(37,2) = 288; 
el_flux_mat(38,l) = 288; el_flux_mat(38,2) = 304; 
el_flux_mat(39,1) = 304; el_flux_mat(39,2) = 320; 
el_flux_mat:(40, 1) = 320; el_flux_mat(40,2) = 336; 
el_flux_mat(41,1) = 336; el_flux_mat(41,2) = 335; 
el_flux_mat(42,1) = 335; el_flux_mat(42,2) = 334; 
el_flux_mat(43,1) = 334; el_flux_mat(43,2) = 333; 
el_flux_mat(44,1) = 333; el_flux_mat(44,2) = 332; 
el_flux_mat(45,1) = 332; el_flux_mat(45,2) = 331; 
el_flux_mat(46,1) = 331; el_flux_mat(46,2) - 330; 
el flux mat(47,1) = 330; el_flux_mat(47,2) = 329; 
el flux mat(48,1) = 329; el_flux_mat(48,2) = 328; 
el_flux_mat(49, 1) = 328; el_flux_mat(49,2) = 327; 
el_flux_mat(50,1) = 327; el_flux_mat(50,2) = 326; 
el_flux_mat(51,1) = 326; el_flux_mat(51,2) - 325; 
el_flux_mat(52, 1) = 325; el _flux_mat(52,2) = 324; 
el_flux_mat (53, 1) = 324; el _flux_mat(53,2) = 323; 
el_flux_mat(54,1) = 323; el_flux_mat(54,2) = 322; 
el_flux_mat(55,1) = 322; el_flux_mat(55,2) = 321; 
el_flux_mat(56,1) = 1; el_flux_mat(56,2) - 2; 
el_flux_mat(57,1) = 2; el_flux_mat(57,2) = 3; 
el_flux_mat(58, 1) = 3; el_flux_mat(58,2) = 4; 
el_flux_mat(59,1) = 4; el_flux_mat(59,2) = 5; 
el_flux_mat(60,1) = 5; el_flux_mat(60,2) = 6; 
el_flux_mat(61,1) = 6; el_flux_mat(61,2) = 7; 
el_flux_mat(62,1) = 7; el_flux_mat(62,2) = 8; 
el _flux_mat(63, 1) = 8; el _flux_mat(63,2) = 9· , 



el_flux_mat(64,1) = 9; el_flux_mat(64,2) = 
el_flux_mat(65,1) = 10; el_flux_mat(65,2) = 
el_flux_mat(66,1) = 11; el _flux_mat(66,2) = 
el_flux_mat(67,1) = 12; el_flux_mat(67,2) = 
el_flux_mat(68,1) = 13; el_flux_mat(68,2) = 
el_flux_mat(69,1) = 14; el_flux_mat(69,2) 
el_flux_mat(70,1) = 15; el_flux_mat(70,2) 
% 
for i = 1:(num_flux_node) 

if i > 40 
el matl = [0,0;0,0]; 
el vecl = [0;0]; 

else 

10; 
11; 
12; 
13; 
14; 
= 15; 
= 16; 
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rl flux_node = node_coor_mat(el_flux_mat(i, 1),1); 
r2_flux_node = node_coor_mat(el_flux_mat(i, 2),1); 
zl_flux_node = node_coor_mat(el_flux_mat(i, 1),2); 
z2_flux_node = node_coor_mat(el_flux_mat(i, 2),2); 

flux side·len = sqrt((r2 flux node -
rl_flux_node)A2 + (z2_flux_node - zl_flux_node)A2); 
el matl = 
insl_k*insl_conv*(flux_side_len/6)*[2,l;l,2]; 
el vecl = 
insl k*insl conv*amb temp*[flux side len/2;flux sid 
e_len/2]; - - - - -

end 
[sys_mat,sys_vec] = 
asemble_matl(sys_mat,el_flux mat,el matl,el vecl,sys 
vec,i); 

end 
% 

%--------------------------------------------------------
% loop for the time integration 

%--------------------------------------------------------
% 
for counterl = 1: num_node_sys 

sol_vec(counterl,1) = 25; 
end 
yyy = sys_vec; 
sys_mat = td_sys_mat + time int*sys mat; 
for counter= 1:n time 

%if·counter < (n_time - 90) 
r_side = tirne_int*sys_vec + td_sys_mat*sol_vec; 

%else 
% for counterl = 1:length(conduct_mat) 
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% tri_area = (l/2)*det([l, 
node_coor_mat(node_num_mat(conduct_mat(counterl,1 
) , 1) , 1) , 
node coor mat(node num mat(conduct mat(counterl,1 
>,1,--;-2>; I, - - -
node_coor_mat(node_num_mat(conduct_mat(counterl,1 
),2),1), 
node_coor_mat(node_num_mat(conduct_mat(counterl,1 
),2),2); 1, 
node_coor_mat(node_num_mat(conduct_mat(counterl,1 
),3),1), 
node_coor_mat(node_num_mat(conduct_mat(counterl,1 
),3),2)]); 

% sur cur= (sur volt*exp(
l*time/(wire_~s*cap)))/wire_res; 

% el vec = 
((sur_cur)A2/(con_ro*con_spec*(con_area)A2*wire_s 

ig))*con_el_vecl(el_vec, node_coor_mat, 
node_num_mat, conduct_mat(counterl,1),tri_area); 

% for i = 1:3 
% counter2 = 

node_num_mat(conduct_mat(counterl,1),i); 
% sys_vec(counter2,1) = yyy(counter2,1) + 

el_vec(i,1); 
% end 
% end 
% r side= time_int*sys_vec + td_sys_mat*sol_vec; 
% time= time+ time_int; 
%end 
% 
sol vec = sys_mat\r_side; 
% 
switch plot_key 
case 1 

node ths mat 

% Temperature variation along the 
wire at Time= time wanted 

= node_t_h (node_ths_mat, sol_vec, 
counter,node_wanted); 
if counter= time wanted 

node_thy_mat(l,:) = node_ths_mat(:, 
time_wanted) '; 

end 
node_ths_mat = node_t_h (node_ths_mat, sol_vec, 
counter,node_wanted + 5); 
if counter= time wanted 



node_thy_mat(2, :) = node_ths_mat(:, 
time_wanted) •; 

end 
node ths mat= node_t_h (node_ths_mat, sol_vec, 
counter,node_wanted + 11); 
if counter= time wanted 

node_thy_mat(3,:) = node_ths_mat(:, 
time_wanted) •; 

end 
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case 2 % Node set# 1 
node_ths_mat(l,counter) = sol_vec(83,1); 
node_ths_mat(2,counter) = sol_vec(BB,1); 
node_ths_mat(3,counter) = sol_vec(94,1); 

case 3 % Node set# 2 
node_ths_mat(l,counter) = sol_vec(179,1); 
node_ths_mat(2,counter) = sol_vec(184,1); 
node_ths_mat(3,counter) = sol_vec(190,1); 

case 4 % Node set# 3 
node ths mat(l,counter) = sol_vec(307,1); 
node ths~mat(2,counter) = sol_vec(312,1); 
node_ths_mat(3,counter) = sol_vec(318,1); 

end 
end 
% 

%--------------------------------------------------------
% Plot the result 

%--------------------------------------------------------
% 
switch plot_key 
case 1 

counter= node_wanted; 
fork= 1: length(node_thy_mat) 

x_pos(l,k) = node_coor_mat(counter,2); 
counter= counter+ 16; 

end 
counter= node_wanted + 5; 
fork= 1: length(node_thy_mat) 

x_pos(2,k) = node_coor_mat(counter,2); 
counter= counter+ 16; 

end 
counter= node_wanted + 11; 
fork= 1: length(node_thy_mat) 

x_pos(3,k) = node_coor_mat(counter,2); 
counter= counter+ 16; 



end 
plot(x_pos(l,:),node_thy_mat(l,:),'

',x_pos(2,:),node_thy_mat(2,:),'
',x_pos(3,:),node_thy_mat(3,:),'-'); 
case {2,3,4} 

time= ini_time:time_int: (fin_time - time_int); 
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plot(time,node_ths_mat(l,:),'
',time,node_ths_mat(2,:),'-',time,node_ths_mat(3,:),'-'); 
end 
axis auto; 
ylabel('Temperature(C)'); 
clear; 
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%-------------------------------------------------------
% the last date of modification: 10-14-00 
% Function: gi v _nod_ numl 
% Assigning number to the nodes in the system (Transient 
%analysis 
% with a 1-layer cylinder) 
% 
% node_nurn_rnat(a , b) = c -> Global node number 
% I I 
% Element number Local node number associated with the 
element 
%--------------------------------------------------------
function [node_ nurn _mat] = giv_node_nurnel(node_nurn_rnat); 
% 
% Insulator 1 

node_nurn_rnat(l,l) = 1; node_nurn_rnat(l,2) - 2; 
node_nurn_rnat(l,3) = 18; 
node_nurn_rnat (2, 1) = 2; node_nurn_rnat(2,2) = 3; 
node_nurn_rnat(2,3) = 19; 
node_nurn_rnat(3,l) = 3; node_nurn_rnat(3,2) - 4; 
node_nurn_rnat(3,3) = 20; 
node_nurn_rnat(4,l) = 4; node_nurn_rnat(4,2) = 5; 
node_nurn_rnat(4,3) = 21; 
node_nurn_rnat(5,l) = 5; node_nurn_rnat(5,2) = 6; 
node_nurn_rnat (5,3) = 22; 
node_nurn_rnat(16,1) - l; node_nurn_rnat(l6,2) - 18; 
node_nurn_rnat(16,3) - 17; 
node_nurn_rnat(17,l) = 2; node_nurn_mat(l7,2) = 19; 
node_nurn_rnat(l7,3) = 18; 
node_nurn_rnat(l8,1) = 3; node_nurn_rnat(l8,2) = 20; 
node_nurn _ mat (18, 3) = 19; 
node_nurn_rnat(l9,1) = 4; node_nurn_rnat(l9,2) - 21; 
node_nurn_rnat(l9,3) = 20; 
node_nurn_rnat(20,l) = 5· , ' node_nurn~rnat(20,2) = 22; 
node_nurn_rnat(20,3) = 21; 

% Conductor 
node_nurn_rnat(6,1) = 6; node_nurn_rnat(6,2) = 7; 
node_nurn_rnat(6,3) = 23; 
node_nurn_rnat(7,l) = 7; node_nurn_rnat(7,2) = 8; 
node_nurn_rnat(7,3) = 24; 
node_nurn_rnat(8,l) = 8; node_nurn_rnat(8,2) = 9; 
node_nurn_rnat(8,3) = 25; 
node_num_rnat(9,l) = 9; node_nurn_rnat(9,2) = 10; 
node_num_rnat(9,3) = 26; 



node_num_mat(lO,l) = 10; node_num_mat(l0,2) = 11; 
node_num_mat(l0,3)= 27; 
node_num_mat(21,1) = 6; node_num_mat(21,2) = 23; 
node_num_mat(21,3) = 22; 
node_num_mat(22,l) = 7; node_num_mat(22,2) = 24; 
node_num_mat(22,3) = 23; 
node_num_mat(23,l) = 8; node_num_mat(23,2). = 25; 
node_num_mat(23,3) = 24; 
node_num_mat(24,l) = 9; node_num_mat(24,2) = 26; 
node_num_mat(24,3) = 25; 
node_num_mat(25,l) - 10; node_num_mat(25,2) = 27; 
node_num_mat(25,3) = 26; 

% Insula.tor 1 

% 

node_num_mat(ll,l) = 11; node_num_mat(ll,2) = 12; 
node_num_mat·(ll,3) = 28; 
node_num_mat(l2,l) - 12; node_num_mat(l2,2) = 13; 
node_num_mat(l2,3) = 29; 
node_num_mat(l3,l) = 13; node_num_mat(l3,2) = 14; 
node_num_mat(l3,3) = 30; 
node_num_mat(l4,l) = 14; node_num_mat(l4,2) = 15; 
node_num_mat(l4,3) = 31; 
node_num_mat(l5,1) = 15; node_num_mat(l5,2) = 16; 
node_num_mat(l5,3) = 32; 
node_num_mat(26,1) = 11; node_num_mat(26,2) = 28; 
node_num_mat(26,3) = 27; 
node_num_mat(27,l) = 12; node_num_mat(27,2) = 29; 
node_num_mat(27,3) = 28; 
node_num_mat(28,l) = 13; node_num_mat(28,2) - 30; 
node_num_mat(28,3) = 29; 
node_num_mat(29,1) = 14; node_num_mat(29,2) = 31; 
node_num_mat(29,3) = 30; 
node_num_mat(30,l) = 15; node_num_mat(30,2) - 32; 
node_num_mat(30,3) = 31; 

l = 30; 
for i = 1: 19 

for j = 1:15 
= node_nurn_mat(j+l-15,3); 
= node_num_mat(j+l-15,2); 
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node_num mat(j+l,l) 
node_num_mat(j+l,2) 
node_num_mat(j+l,3) = node_nurn_mat(j+l-15,2)+ 16; 

end 
for k = 1:15 

node_num_mat (k+j+l, 1) = node_nurn_mat(k+j+l-15,1); 
node_num_mat(k+j+l,2) = node_nurn_mat(k+j+l-15,3); 



node_num_mat(k+j+1,3) - node_num_mat(k+j+l-15,1) 
+16; 

end 
1 = 1 + 30; 

end 
% 

147 
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%--------------------------------------------------------
% the last date of modification:10-14-00 
% Function: com node coorl - -% Computing the coordinates of the nodes in the 

system(transient analysis with a 1-layer cylinder) 
% 
%node_coor_mat(a, b)·= c -> Global Cartesian coordinates 
% I I 
% Node number The node coordinate (x,y) 

%---------------- ---------------------------------------
function[node_coor_mat] = 
com_node_coorl(node_coor_mat,con_dia,wire_dia,cyl_hei, 
arc_len, arc_ang); 
% 

%--------------------------------------------------------
% The variables used in this program: 
%arc rad :The main radios of the torus 

%diff_ang 

%in arc rad 
%in seg len 

%out arc rad 
%out_seg_len 

%sub_ang 
torus 
%sub wire dia 
% 

(measured form the central arc of the 
turos) 
:The difference between the angles of 
the two successive out_seg_lens 

:The inner radius of the torus 
:The length of the inner segment 
separated from the inner circle of 
the torus 
:The outer radius of the torus 
:The length of the outer segment 
separated from the outer circle of 
the torus 
:The angle of each secant of the 

:A fraction part of the wire diameter 

%--------------------------------------------------------
% 
% The cylindrical part 
% 
node_coor_mat(l,1) = O; node_coor_mat(l,2) = O; 
m = l; 
for i = 1:11 

for j = 1:5 
node coor mat(j+m,l) = node coor mat(j+m-1,1) + 
((wi~e_dia - con_dia)/2)/5;- -
node_coor_mat(j+m,2) = node_coor_mat(j+m-1,2); 

end 



for j = 6:10 
node coor mat(j+m,l) = node_coor_mat(j+m-1,1) + 
(con dia)/5; 
node_coor_mat(j+m,2) = node_coor_mat(j+m-1,2); 

end 
for j = 11:15 

node coor mat(j+m,l) = node coor mat(j+m-1,1) + 
((wire_dia - con_dia)/2)/5;- -
node_coor_mat(j+m,2) = node_coor_mat(j+m-1,2); 

end 
m = m + 16; 
node_coor_mat(m,1) = 0; 
node coor mat(m,2) = node_coor_mat(m-16,2) + 

cyl_hei/10; -
end 
% 
% The curved part 
% 
sub_ang = arc_ang/10; 
diff_ang = 0; 
arc_rad = (arc_len*lB0) / (arc ang*3.14); 
in arc rad= arc rad - (wire dia/2); 
out arc rad - arc rad+ (wire-dia/2); 
in_seg_len = in arc rad*(sub ang*pi/180); 
out_seg_len = out arc rad*(sub ang*pi/180); 
b_angle = (180 - sub ang)/2; -
% 
m = 177; 
for i =l :10 

node_coor_mat(m,l) = node_coor_mat(m - 16,1) + 
out_seg_len*cos((b_angle - diff_ang)*pi/180); 

node coor mat(m,2) = node coor mat(m - 16,2) + 
out_seg len•iin((b_angle - diff_ang)*pi/180); 

for j = 1:5 
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node coor mat(j+m,l) = node coor mat(j+m-16,1) + 
(out-seg len/out arc rad)*(out arc rad - j*(wire dia 
- con_dia)/lO)*cos((b_angle-diff_ang)*pi/180); -
node coor mat(j+m,2) = node coor mat(j+m-16,2) + 
(out-seg len/out arc rad)*(out a:rc rad - j*(wire dia 
- con_dia)/lO)*sin((b_angle-diff_ang)*pi/180); -

end 
jj = 1; 
for j = 6:10 

node_coor_mat(j+m,l) = node_coor_mat(j+m-16,1) + 
( (out_seg_len/out_arc_rad) * (out_arc_rad - ( (wire_dia 
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- con dia)/2 + (jj*con dia)/5)))*cos((b angle-
diff_ang)*pi/180); - -
node coor mat(j+m,2) = node coor mat(j+m-16,2) + 
((out seg-len/out arc rad)*(out ire rad - ((wire dia 
- con-dia)/2 + (jj*con dia)/5)))*sin((b angle- -
diff_ang)*pi/180); - -
jj = jj + 1; 

end 
jj = 1; 
for j = 11:15 

node eoor mat(j+m,1) = node coor mat(j+m-16,1) + 
((out seg-len/out arc rad)*(out ire rad - ((wire dia 
- con-dia)/2 + (con dia)/5 + jj*(wire dia - -
con_dia)/lO)))*cos((b_angle-diff_ang)*pi/180); 
node coor mat(j+m,2) = node coor mat(j+m-16,2) + 
((out seg-len/out arc rad)*(out ire rad - ((wire dia 
- con-dia)/2 + (con dia)/5 + jj*(wire dia - -
con_dia)/lO)))*sin((b_angle-diff_ang)*pi/180); 
jj = jj + 1; 

end 
m = m + 16; 
diff_ang = diff_ang + sub_ang; 

end 
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%---------_----------------------------------------------
% the last date of modification: 10-14-00 
% Function: con_el_matl 
% Constructin!J the element matrix 
% 
% 
% 
% 

node_num_mat(a, b) = c -> Global node number 
I I 

Element number Local node number associated with 
the element 
%---· ---------%function[el_mat] = 
el_mat_funl(el_mat,node_coor_mat,node_num_mat,el_num, 
tri _ area,con _ k,insl _ k,m); 
function[el_mat] = 
con_el_matl(el_mat,node_coor mat,node num mat,counter,tri 
_area,con_k,insl_k,m); 
% 

% 

rl = node_coor_mat(node_num_mat(counter,1),1); 
zl = node_coor_mat(node_num_mat(counter,1),2); 
r2 = node_coor_mat(node_num_mat(counter,2),1); 
z2 = node_coor_mat(node_num_mat(counter,2),2); 
r3 = node_coor_mat(node_num_mat(counter,3),1); 
z3 = node coor mat(node num mat(counter,3),2); 
switch counter- - -
case {m+l, m+2, m+3, m+4, m+S} 

cc= insl_k*(l/(4*tri_area)); 
case {m+6, m+7, m+B, m+9, m+lO} 

cc = con_k* (l/ (4*tri_area)); 
case {m+ll, m+12, m+13, m+14, m+l5} 

cc = insl_k* (1/ (4*tri_area)); 
end 
el_mat(l,1) = cc* ( (r3 - r2)"2+(z2 - z3)"2); 
el_mat(l,2) = cc* ( (r3 - r2) * (rl - r3)+(z2 -
zl)); 
el_mat(l,3) = cc* ( (r3 - r2)*(r2 - rl)+(z2 -
z2)); 
el_mat(2,i) = el_mat(l,2); 
el_mat(2,2) = cc*((rl - r3)"2+(z3 - zl) "2) ; 
el_mat(2,3) = cc* ( (rl - r3) * (r2 - rl)+(z3 -
z2)); 
el_mat(3,l) = el_mat(l,3); 
el_mat(3,2) = el_mat(2,3); 
el_mat(3,3) = cc* ( (r2 - r1)"2+(zl - z2) "2); 

' 

z3)*(z3 

z3)*(zl 

zl)*(zl 

-

-

-
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%-------------------.------------------------------------
% the last date of modification:10-14-00 
% Function: con td el matl - - -
% Constructing the time_dependent element matrix 
(transient analysis with a 1-layer cylinder) 

%------------------------------------- ------------------
% 
function[td_el_mat] = 

con_td_el_matl(td_el_mat,tri_area); 
% 
td el mat= [2,1,l;l,2,1;1,1,2); - -· td el mat= (tri_area/12)*td_el_mat; 
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%---------------------------- ---------------------------
% the last date of modification: 10-14-00 
% Function: con_ el_ vecl 
% Constructing the element vector (transiant analysis 
%with a 1-layer cylinder) 
% 
% node_num_mat(a ·, b) = c -> Global node number 
% I I 
% Element number Local node number associated with the 
element 
% 

%--------------------------------------------------------
% 
functiori.[el_vec) = con_el_vecl (el_vec, node_coor_mat, 
node_num_mat, counter, tri_area); 
% 
rl 
r2 
r3 
zl 
z2 

= 
-
= 
= 
= 

node_coor_mat(node_num_mat(counter,1),1); 
node_coor_mat(node_num_mat(counter,2),1); 
node_coor_mat(node_num_mat(counter,3),1); 
node_coor_mat(node_num_mat(counter,1),2); 
node_coor_mat(node_num_mat(counter,2),2); 

z3 = node_coor_mat(node_num_mat(counter,3),2); 
% 
fl= (l/(2*tri_area))*(r2 - rl)*(z3 - zl); 
% The Hi is treated as the multiplication of the form 
of:hl =fl* f2 

% Computing hl 
f2 = (r2*z3 - r3*z2) + (1/2)*(rl + r2)*(z2 - z3) + 
(l/2)*(r3 - r2)*(z3 + zl) ; 
el_vec(l,1) = fl*f2; 

% Computing h2 
f2 = r3*zl - rl*z3 + (l/2)*(rl + r2)*(z3 - zl) + 
(1/2) * (rl - r3) * (z3 + zl); 
el_vec(2,l) = fl*f2; 

% Computing h3 
f2 = rl*z2 - r2*zl + (1/2)*(rl + r2)*(zl - z2) + 
(l/2)*(r2 - rl)*(zl + z3); 
el_vec(3,l) = fl*f2; 
% 
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%--------------------------------------------------------
% the last date of modification:10-14-00 
% Function: asemble matl 
% Constructing the time-independent system matrix 
%---------- ---------------------------------------------
function{sys_mat,sys_vec] = 
asemble_matl(sys_mat,node_num_mat,el_mat,el_vec,sys_vec,c 
ounter); 
% 
mat len = length(el_mat); 
vec len = length(el_vec); 
for i = 1:vec len 

counterl = node_num_mat(counter,i); 
sys_vec(counterl) = sys_vec(counterl) + el_vec(i); 
for j = 1:mat_len 

counter2 = node_num_mat(counter,j); 
sys_mat(counterl,counter2) = 

sys_mat(counterl,cou~ter2) + el_mat(i,j); 
end 

end 
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% 
%--------------------------------------------------------
% the last date of modification:7-12-00 
% Function: asemble_t_matl 
% Constructing the time-dependent system matrix 
%-------------------------------------------------
function[td_sys_mat]= 
asemble_t_matl(td_sys_mat,td_el_mat,node_num_mat,counter) . , 
% 
%---------------------------------------------
% Assembling time-dependent matrix elements 
%---------------------------------------------
% 
td_sys_mat(node_num_mat(counter,l),node_num_mat(counter,l 
)) = 
td_sys_mat(node_num_mat(counter,1),node_num_mat(counter,l 
)) + td_el_mat(l,l); 

td_sys_mat(node_num_mat(counter,l),node_num_mat(counter,2 
)) = 
td_sys_mat(node_num_mat(counter,1),node_num_mat(counter,2 
)) + td_el_mat(l,2); 

td_sys_mat(node_num_mat(counter,1),node_num_mat(counter,3 
)) = 
td_sys_mat(node_num_mat(counter,l),node_num_mat(counter,3 
)) + td_el_mat(l,3); 

td_sys_mat(node_num_mat(counter,2),node_num_mat(counter,l 
)) = 

td_sys_mat(node_num_mat(counter,2),node_num_mat(counte 
r,l)) + td_el_mat(2,l); 

td_sys_mat(node_num_mat(counter,2),node_num_mat(counter,2 
)) = 

td_sys_mat(node_num_mat(counter,2),node_num_mat(counte 
r,2)) + td_el_mat(2,2); 

td_sys_mat(node_num_mat(counter,2),node_num_mat(counter,3 
)) = 

td_sys_mat(node_num_mat(counter,2),node_num_mat(counte 
r,3)) + td_el_mat(2,3); 
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td sys ·mat(node num mat(counter,3),node num mat(counter,1 ,,-; - -· - - -
td sys mat(node num mat(counter,3),node num mat(counte 

r,1))'"""'+ td_el_mat(3,1); ·· - -

td sys mat(node num mat(counter,3),node num mat(counter,2 ,,-; - - - - - . 

td_sys_mat(node_num_mat(counter,3),node_num_mat(counte 
r,2)) + td_el_mat(3,2);· 

td_sys_mat(node_num_mat(counter,3),node_num_mat(counter,3 
)) = 
td_sys_mat(node_num_mat(counter,3),node_num_mat(counter,3 
)) + td_el_mat(3,3); · 
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% 

%--------------------------------------------------------
% 
% the last date of modification:10-14-00 
% Function: node t h 
% Making the tim;-history·of the chosen node(s) and 
filling Matrix node_ths_mat 
% 

%------------------ ------ ------------------------------
% 
function [node_ths_mat] = _ 
node_t_h(node_ths_mat,sol_vec,counter,node_wanted,plot_ke 
y); 

j = O; 
for i = 1:20 

node_ths_mat(i,counter) = sol_vec(node~wanted +. 
j, 1); 
j = j + 16; 

end 


