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1 Introduction

This thesis studies option returns in perfect and imperfect markets to explain different

parts of the option mispricing puzzle.

The option mispricing puzzle refers to a number of option pricing anomalies such as extreme

realized index put returns (Bondarenko 2014; Chambers et al. 2014), too high implied

volatilities (Goyal and Saretto 2009), and negative delta-hedged option returns (Bakshi

et al. 2003).

Perfect markets contain the assumptions of informational efficiency, market completeness

and frictionless trading, such that option mispricing cannot exist as option payoffs are

perfectly replicable. Since options imply leveraged positions in the underlying, the oc-

currence of extreme returns is expected. However, it remains to show the coherence of a

perfect option return model with the observed empirical option return series, as presented

in chapter 2 of this thesis.

In imperfect markets, the existence of market frictions allows arbitrage-free deviations of

option prices from fair value (Figlewski 1989) resulting in option return premiums over the

risk-free rate. Such market frictions can include stock illiquidity, taxes, leverage restrictions,

funding costs, transaction costs, market incompleteness, and indivisibility1. However, while

market frictions may explain the potential magnitude of option mispricing, the direction

(over- or underpriced) is controlled by net end-user option demand (Garleanu et al. 2009),

as market makers adjust their quotes to net demand pressure to optimize and hedge their

positions. While many studies focused on the explanation of index option mispricing, where

the market maker’s position is empirically documented, only few works yet discovered the

relevant frictions with respect to individual equity options, where comprehensive data on

net end-user demand is however usually unavailable.
1Bollen and Whaley (2004); Cao and Han (2013); Christoffersen et al. (2014); Figlewski (1989); Garleanu

et al. (2009); Goyenko et al. (2014); Huang and Shaliastovich (2014); Karakaya (2014); Schürhoff and
Ziegler (2011); Santa-Clara and Saretto (2009); Black (1975).
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In perfect markets, the thesis explains expected S&P500 index option returns via an

option-implied risk-adjusted return model based on a representative investor in chapter 2.

Further the properties of S&P500 option return volatility are investigated in a Black-Scholes

setting of chapter 3. In imperfect markets, chapter 4 analyzes the conditional low-volatility

effect in option markets expressing a relation between delta-hedged equity option returns

and underlying volatility conditional on a proxy for option market makers’ position.

Chapter 2 applies the approach by Brinkmann and Korn (2018) to explain S&P500 index

option returns in perfect markets. This option-implied risk-adjusted approach captures the

risk-aversion of a representative investor through a utility function to infer the physical

measure from the risk-neutral measure. The risk-neutral moments are implied from option

market prices. The ratio of the expected physical option payoff over the option market

price yields the expected option return. The option-implied risk-adjusted approach offers

various benefits compared to standard option pricing models. The approach is forward-

looking and dynamic as it extracts current market expectations from option prices and

continuously adjusts to changes in option prices, rather than using historical estimates and

constant parameter assumptions. It does not impose a stochastic process or model option

prices over market option prices when forecasting option returns. The approach is highly

flexible as it allows to incorporate any risk-averse utility function to capture investor risk

preferences. Compared to other model-free approaches, moments are obtained without

explicit construction of the risk-neutral density, avoiding severe numerical problems. As a

drawback, the approach requires an infinite set of current option market prices as input, as

well as an explicit choice for the representative investor’s utility function and its calibration.

The utility function can only be risk-averse, which limits its ability to generate so-called

U-shaped pricing kernels. An empirical study following the test in Broadie et al. (2009)

investigates the hypothesis that the implied risk-adjusted option return model explains

realized S&P500 index option returns compared to the Black-Scholes and risk-neutral

benchmark models.

Chapter 3 presents a study on option return volatility in a Black-Scholes world. While

much research exists on expected option and underlying returns, little is known about

option return volatility. Option volatility can far exceed underlying volatility due to the
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high implied leverage and represents an important measure for option risk. Options can

reflect both long and short positions in the underlying as well as combinations thereof.

I study theoretical and empirical properties of call and put volatilities over finite and

instantaneous holding periods in a Black-Scholes setting. The study derives and illustrates

properties and sensitivities of option volatility with respect to maturity, physical drift

rate, dividend yield, moneyness, underlying volatility, and the risk-free rate over different

holding horizons. While theoretical option volatility is found to behave similarly for hold

to maturity or selling prior to maturity horizons, significant differences exist comparing to

instantaneous holding periods with respect to the physical drift rate and maturity. In a

further empirical test, I compare realized S&P500 put volatilities with Black-Scholes model

predictions to investigate whether the first are explainable by the latter.

Chapter 4 investigates the conditional low-volatility effect in delta-hedged equity option

returns. The empirically negative relation between volatility and future returns called

the low-volatility effect is well documented with respect to equity returns. Cao and Han

(2013) confirm the same effect for delta-hedged option returns decreasing with higher

idiosyncratic volatility of the underlying stock returns due to higher hedging costs. This

paper further explores this effect as to be conditional on market makers being net short

in the respective equity option. If market makers are net long in options, there can be a

converse relation, leading to a high-volatility effect. Since the market maker’s position is

not directly observable, we use the difference between historical and implied volatility as a

proxy. The conditional low-volatility effects stress the importance of market imperfections

and the reaction of market makers in explaining the anomaly, which is important for

investors because it is three to four times stronger than the unconditional effect. We further

verify that the conditional low-volatility effect cannot be explained by common factor risks

or market inefficiencies.



2 Explaining S&P500 option returns:

an implied risk-adjusted approach

Accepted for publication in the Central European Journal of Operations Research, S.I. :

Modelling and Management of Commodities and Financial Markets (forthcoming)

Abstract

The option mispricing puzzle states that realized option returns are inconsistent with

option pricing models in perfect markets. This paper applies the approach by Brinkmann

and Korn (2018) to forecast S&P500 option returns via option-implied expectations of a

risk-averse representative investor. The approach is able to explain S&P500 put returns

and achieves superior prediction results over standard option pricing models. However,

none of the tested option pricing models can explain the highly negative mean realized

S&P500 out-of-the-money call returns due to the empirically U-shaped pricing kernel.
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2.1 Introduction

The U.S. equity option market represents one of the largest equity derivative markets in

the world with $1.5 trillion trading volume in 2012 (Karakaya 2014). However, empirical

option prices and returns can not be fully described by standard option pricing models

under perfect market assumptions, known as the option mispricing puzzle (Christoffersen

et al. 2013). Standard option models could not explain the highly negative realized S&P500

put returns, overshooting and skewed option-implied volatilities, and negative delta-hedged

option returns1.

Two strings of literature aim to explain realized option returns in either perfect or imperfect

markets. In imperfect markets, market frictions allow arbitrage-free deviations of option

prices from their theoretical fair value (Figlewski 1989) resulting in apparent return

premiums. These premiums are however not exploitable via arbitrage strategies due

to market frictions. Market frictions may include hedging costs such as stock illiquidity,

funding costs, transaction costs, leverage restrictions and market incompleteness2. Garleanu

et al. (2009) and Bollen and Whaley (2004) state that within such arbitrage-free boundaries

induced by market frictions, net end-user option demand determines the direction of option

over- or underpricing.

In perfect markets with full informational efficiency, market completeness and frictionless

trading, an option mispricing cannot exist as all European contingent claims are perfectly

replicable via a portfolio of the underlying and risk-free asset. Any deviation of option

market prices from their theoretical value would be immediately arbitraged away. However,

it remains to show the existence of an option pricing model in perfect markets consistent

with the observed realized option- and underlying price and return distributions. This

paper studies an approach to achieve such result.

Various articles studied realized option returns in perfect markets. Bondarenko (2014) tests

a model-independent approach to find that S&P500 put returns could not be explained.
1Bondarenko (2014); Chambers et al. (2014); Goyal and Saretto (2009); Bates (2000); Bakshi et al.

(2003)
2Bollen and Whaley (2004); Cao and Han (2013); Christoffersen et al. (2014); Figlewski (1989); Goyenko

et al. (2014); Karakaya (2014); Schürhoff and Ziegler (2011); Santa-Clara and Saretto (2009); Black (1975).
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Broadie et al. (2009) applied standard option pricing models including the Black-Scholes

model, Heston model and Bates model revealing that realized S&P500 put returns did not

deviate significantly from perfect option pricing models given certain market, volatility

and jump risk premiums. However, their in-sample simulations were based on restrictive

assumptions such as constant parameters over 18 years time, conversion of American to

European implied volatilities, and rather arbitrary choices of premium adjustments. In a

related study, Chambers et al. (2014) also find that S&P500 puts were not mispriced given

certain risk premiums, but were again unable to infer the required risk premiums from

the realized index returns, as they state: ”The determination of a reasonable estimate of

the wedge between P-measures and Q-measures based on the Broadie et al. (2009) data

is difficult however, as the risk adjustments rely on somewhat arbitrary choices of a risk

aversion parameter.”.

This paper hereby connects through the application of an implied risk-adjusted approach,

which explains realized option returns via option-implied expectations of a representative

investor with risk-averse preferences. The approach extracts investor’s risk aversion

consistent with option market prices without requiring ”arbitrary choices”. The estimates

of expected option returns are also conditioned on the option market prices, such that no

model option prices are imposed, which can deviate significantly from option market prices.

Expected option returns are further forecasted in a dynamic setting with time-varying

parameters. This study analyzes call and put returns together, whereas many previous

research focused on puts only due to their extreme negative returns3. We find that put

returns can be well explained by the presented approach, while the observed negative mean

realized call returns were unexplainable due to the empirically U-shaped pricing kernel;

therefore the often cited put option puzzle switches to a call option puzzle.

The study is presented as follows. Section 2.2 introduces the option-implied risk-adjusted

approach. Section 2.3 presents the S&P500 option return sample. Section 2.4 performs a

prediction test on the approach and a set of benchmark models. Section 2.5 concludes.
3Bondarenko (2014); Broadie et al. (2009); Chambers et al. (2014).
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2.2 Implied Risk-Adjusted Expected Option Return

Expected option return in perfect markets is determined by the ratio of the expected option

payoff under the physical measure over the option market price under the risk-neutral

measure (Broadie et al. 2009):

E(RH
t,T ) = EP (HT )

e−rτEQ(HT ) − 1 (2.1)

Where E(RH
t,T ) denotes the expected return of a European contingent claim at time t with,

expiration date T , time to maturity τ = T − t, risk-free rate r, payoff function HT ∈ C2.

The expected physical option payoff is denoted as EP (HT ) and the discounted risk-neutral

expected option payoff, i.e. option market price, e−rτEQ(HT ).

When option market prices are observable, expected option returns are determined solely

by the physical expected option payoff. The option-implied risk-adjusted moments frame-

work derived in Brinkmann and Korn (2018) presents a model-free approach to infer the

expected physical payoffs of European contingent claims from current option market prices

representing the investor’s believe and a utility function (U) to model investor’s taste of

risk. The approach is based on the general relationship between the risk-neutral (q) and

physical density (p) given by

p(ST ) = q(ST )
c · U ′(ST ) , with c ≡

∫ q(x)
U ′(x)dx. (2.2)

Assuming that the representative investor holds the market portfolio, the discounted

expected physical call CP (t, τ,K) := erτEP [(ST−K)+], and put P P (t, τ,K) := erτEP [(K−

ST )+] payoffs in equations (2.3), (2.4) were determined such that the investor is indifferent

between holding the index or index options to maturity:

CP (t, τ,K) = C(t, τ,K)
c · U ′(K) +

∞∫
K

−U ′′(x)
c · U ′(x)2 {C(t, τ, x) + (x−K)D(t, τ, x)} dx, (2.3)
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P P (t, τ,K) = P (t, τ,K)
c · U ′(K) −

K∫
0

−U ′′(x)
c · U ′(x)2

{
P (t, τ, x) + (K − x)(e−rτ −D(t, τ, x))

}
dx, (2.4)

with c :=
∞∫

0

−U ′′(x)
U ′(x)2 e

rτD(t, τ, x)dx+ 1
U ′(0) ,

where C(t, τ,K), P (t, τ,K) represent European call and put option market prices with

strike K, D(t, τ,K) the price of a digital call paying 1(ST>K) at time T . The representative

investor’s utility function U(x) ∈ C2 is assumed to be risk-averse with U ′(x) > 0, U ′′(x) < 0

∀x > 0. The integrals in equations (2.3), (2.4) are calculated by the method in Brinkmann

and Korn (2018)4.

The option-implied risk-adjusted approach is forward-looking and dynamic as it extracts

current market expectations from option prices and continuously adjusts to changes in

option prices, rather than using historical estimates and constant parameter assumptions.

The approach does not impose a stochastic process or model option prices over market

option prices when forecasting option return. The approach is highly flexible as it allows for

any risk-averse utility function to capture investor preferences. Compared to other model-

free approaches, moments are obtained without explicit construction of the risk-neutral

density, avoiding severe numerical problems (Brinkmann and Korn 2018).

As a drawback, the approach requires an infinite set of current option market prices as

input, as well as an explicit choice for the representative investor’s utility function and its

calibration. The utility function can only be risk-averse, which limits its ability to generate

so-called U-shaped pricing kernels, as discussed later in section 2.4.

The expected returns on European call and put options under the approach follow from

equation (2.1) as

E(RC
t,T ) = erτCP (t, τ,K)

C(t, τ,K) − 1, (2.5)

4Each month t, a 1,500 step grid was spanned over the interval K ∈ [0.001, 3St] to integrate the expected
physical option payoffs via trapezoidal integration. The required set of option market prices was obtained
via a quadratic fit over the Black-Scholes sample implied volatility curve; for strikes below or above the
available option sample strikes, implied volatility was extrapolated flat. The resulting implied volatility
curves are arbitrage-free following the semi-positive state price density condition in (Benko et al. 2007);
the risk-neutral density was always positive except at the extrapolation borders where the option price
derivative is undefined. The digital call prices were calculated via a Black-Scholes type formula.
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E(RP
t,T ) = erτP P (t, τ,K)

P (t, τ,K) − 1 (2.6)

In this study, the CRRA utility function is selected for the representative investor, and

this specification referred to as the Implied-CRRA model:

UCRRA(x) =


x1−γ−1

1−γ , γ ∈ R≥0/{1}, x > 0

ln(x), γ = 1
(2.7)

Constant Relative Risk Aversion utility (CRRA) represents a standard utility function

which has the property of A(x) = −xU
′′(x)
U ′(x) being a constant, such that decision-making

is unaffected by scale as the fraction of wealth optimally invested into the risky asset is

independent of the level of initial wealth (Menezes and Hanson 1970; Pratt 1964). One can

also show that the Black-Scholes model implies a CRRA risk aversion (Rubinstein 1976)

such that we can benchmark the Implied-CRRA model well against it in the following test.

Figure 2.1 visualizes the Implied-CRRA option prices and expected option returns by

equations (2.3) - (2.7) for the S&P500 using the sample data discussed in section 2.3.

Figure 2.1 Panel (a) shows a monotone decreasing (increasing) relationship for the expected

call (put) option payoff and the option strike. This behaviour is expected as the option

strike directly affects the intrinsic value of the option. Due to the assumed positive market

risk premium, the expected physical call payoffs are higher than the risk-neutral call prices

and expected call returns are positive. Conversely, the implied short-position of a put

option leads to lower expected physical put payoffs than under the risk-neutral measure

and negative expected put returns.

Figure 2.1 Panel (b) shows that expected Implied-CRRA call and put returns are both

mainly increasing with the option strike. For calls, a higher option strike implies a higher

leverage on the positive market risk premium, such that expected call returns increase

with a higher strike and are always positive. For put options, a higher option strike

implies a lower leverage on a short position against a positive market risk premium, such

that expected put returns also increase though being always negative. Both call and put

expected return curves exhibit a kink in the area where the implied volatility was fitted

using a quadratic polynomial.
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The observed option return behaviour is consistent with Coval and Shumway (2001), who

show under mild assumptions that expected call and put returns are increasing with the

option strike, whereas expected call returns lie above the expected return of the underlying

and expected put returns lie below the risk-free rate. Christoffersen et al. (2013) and Ni

(2009) discuss that deviations of expected option returns from the properties stated in

Coval and Shumway (2001) are possible for non-monotonic pricing kernels or risk-seeking

investors.

Figure 2.2 presents the at-the-money Implied-CRRA option prices and expected option

returns for varying risk aversion using equations (2.3) - (2.7). From panels (a) and (b)

one can observe a monotone increasing (decreasing) relationship between investor’s risk

aversion and expected call (put) option returns and -prices, as a more risk-averse investor

discounts the risky underlying before maturity, hence increasing (decreasing) expected

physical call (put) option payoffs and returns.
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Figure 2.1: Impact of the option strike on expected option payoffs and returns in the
Implied-CRRA model.

(a) Implied-CRRA discounted risk-neutral and physical expected call
and put payoffs for different option strikes.
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(b) Implied-CRRA hold-to-expiration expected call and put returns for
different option strikes.
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The graphs show the Implied-CRRA discounted risk-neutral and physical expected option
payoffs for varying option strikes (K) in panel (a) and expected option returns in panel (b)
for the S&P500 sample on 01/22/2004. Other parameters were fixed at St = 1143.94, γ =
2.45, τ = 28/365, r = 0.011. Risk-neutral (Q) and physical (P ) discounted expected option
payoffs are denoted CQ(γ), CP (γ), PQ(γ), P P (γ) for calls (C) and puts (P ) respectively.
Expected hold-to-expiration option returns over the period τ = T−t are denoted E[RC

t,T (γ)],
E[RP

t,T (γ)] for calls and puts.
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Figure 2.2: Impact of risk-aversion in the Implied-CRRA model.
(a) Implied-CRRA discounted risk-neutral and physical expected call
and put option payoffs for varying risk-aversion.
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(b) Implied-CRRA expected call and put returns for varying risk-
aversion.
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The graphs show the Implied-CRRA discounted risk-neutral and physical expected option
payoffs for varying risk-aversion (γ) in panel (a) and expected option returns in panel (b)
for the S&P500 sample on 01/22/2004. Other parameters were fixed at K = St = 1143.94,
τ = 28/365, r = 0.011. Risk-neutral (Q) and physical (P ) discounted expected option
payoffs are denoted CQ(γ), CP (γ), PQ(γ), P P (γ) for calls (C) and puts (P ) respectively.
Expected hold-to-expiration option returns over the period τ = T−t are denoted E[RC

t,T (γ)],
E[RP

t,T (γ)] for calls and puts.
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2.3 Realized option returns

The study will test the Implied-CRRA model on the prediction of monthly realized S&P500

European option returns over the period 01/1996 – 08/2015. This section discusses the

selection and properties of the S&P500 option sample used in this study.

All option pricing data was obtained from OptionMetrics IvyDB. The sample was filtered

following standard methodology (Goyal and Saretto 2009; Cao and Han 2013): S&P500

options with 28 to 29 days to expiration (depending on bank holidays) and expiration on

the 3rd Friday or Saturday of the month were selected. The option bid-ask spread was

filtered to be greater than the minimum spread of $0.05 when the option mid price was

below $3, and $0.1 minimum option spread else. The midpoint prices of call (Ct) and put

(Pt) options lay within the arbitrage-free boundaries: [Ste−dtτ −Ke−rtτ ]+ < Ct < Ste
−dtτ

and [Ke−rtτ − Ste−dtτ ]+ < Pt < Ke−rtτ . Best bid and ask quotes, daily trading volume,

open interest, implied volatility were filtered to be non-zero and the last trade date of

the option had to be available. Since S&P500 option payoffs were calculated from the

index open price on the settlement day and time to expiration was calculated as number of

days between the option price date and its settlement day minus one. The settlement day

equals the first trading day at or before the expiration day (some expiration days were on

a Saturday or bank holidays). The final sample contains 19.912 one-month options, with

50 puts and 35 calls per month on average.

Realized hold-to-expiration option returns for calls (RĈ
t,T (K)) and puts (RP̂

t,T (K)) with

strike K and time to maturity τ = T − t at time t were calculated by equations (2.8), (2.9)

for moneyness categories from 0.94 to 1.06; moneyness was defined as k := St/K for calls

and k := K/St for puts. Call and put option market prices (Ĉ, P̂ ) with exact moneyness

were obtained via discussed quadratic fit over each month’s sample implied volatilities,

following the methodology in Chambers et al. (2014) and Broadie et al. (2009).

RĈ
t,T (K) = (ST −K)+

Ĉ(t, τ,K)
− 1, (2.8)
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RP̂
t,T (K) = (K − ST )+

P̂ (t, τ,K)
− 1 (2.9)

Tables 2.1 and 2.2 show the mean realized returns of the selected puts, calls, and the

S&P500 index. All options yielded negative mean returns over the sample period, except

for in-the-money (ITM) calls. ITM calls yielded a positive average return of 4 to 7% per

month compared to 0.6% by the index (implying a 10-fold leverage), however the Sharpe

ratios of these options were still lower than for the underlying S&P500 index. Since call

options are considered leveraged long positions in the underlying, it seems susceptible that

some calls provided negative mean returns while the underlying S&P500 index increased

at 0.6% per month. In perfect markets, there are no frictions such as liquidity and hedging

costs, hence negative call returns could only be explained by investors accepting a negative

return premium due to their risk preferences. Boyer and Vorkink (2014) finds that investors

exhibit risk-seeking preferences and therefore pay a premium on options which provide

high skewness of returns.

Mean realized S&P500 put returns are however expected to be negative, as the S&P500

index was on average increasing over the sample period, such that puts often expired

worthless. For the period 01/1996-09/2000, put returns became particularly negative when

the mean S&P500 return doubled to 1.2% per month during the dot-com bubble. However,

during the following dot-com crash from 10/2000 - 02/2003, put options yielded up to 61%

monthly return while the S&P500 dropped -1.8% per month.

Mean realized S&P500 call returns were negative and decreasing with the option strike over

the sample period. Bakshi et al. (2010) observed that this pattern holds for international

option markets as well. According to Coval and Shumway (2001), expected call returns

should be positive and increasing with the option strike under positive expected return

on the underlying. Ni (2009) shows that negative expected call returns are possible when

investors are risk-seeking, and finds evidence for a positive idiosyncratic skewness premium

on call prices which reduces their returns (also see Boyer and Vorkink (2014)). She also

noted that the frequency of large positive stock returns was higher in 1996 – 2005 than

1963 – 1995, such that the negative realized out-of-the-money (OTM) call returns were

likely even higher than expected. For the period before the dot-com bubble from 1996 to
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2000, one can observe highly positive call returns, and highly negative call returns during

the subsequent crash.

Table 2.1: Average 1-month S&P500 put returns and S&P500 index returns over different
time periods.

k 0.94 0.96 0.98 1.00 1.02 1.04 1.06 Index
01/1996 - 08/2015 -0.48 -0.42 -0.33 -0.28 -0.20 -0.14 -0.10 0.006
01/1996 - 09/2000 -0.96 -0.91 -0.79 -0.58 -0.38 -0.25 -0.17 0.012
10/2000 - 02/2003 0.61 0.54 0.46 0.46 0.39 0.30 0.23 -0.018

The table shows average 1-month S&P500 hold-to-expiration European put returns with
moneyness k, and the average underlying S&P500 index return over different time periods.
Moneyness was defined as k := St/K for calls and k := K/St for puts.

Table 2.2: Average 1-month S&P500 call returns and S&P500 index returns over different
time periods.

k 0.94 0.96 0.98 1.00 1.02 1.04 1.06 Index
01/1996 - 08/2015 -0.38 -0.29 -0.10 -0.002 0.04 0.04 0.04 0.006
01/1996 - 09/2000 0.73 0.34 0.12 0.05 0.07 0.09 0.11 0.012
10/2000 - 02/2003 -0.71 -0.61 -0.47 -0.40 -0.35 -0.27 -0.22 -0.018

The table shows average 1-month S&P500 hold-to-expiration European call returns with
moneyness k, and the average underlying S&P500 index return over different time periods.
Moneyness was defined as k := St/K for calls and k := K/St for puts.

Figure 2.3 presents the time series of realized S&P500 option returns with moneyness 0.94

(OTM), 1.00 (ATM) and 1.06 (ITM). OTM option return distributions are highly skewed,

as many options expired worthless with −100% return. A 0.94-moneyness option requires

an index movement of approximately 6% over the month to yield a positive payoff, which

is highly unlikely given the historical 0.6% mean monthly S&P500 return. However, when

OTM options expired in the money, returns could be as high as +4103%. Conversely, options

with higher moneyness expired worthless less frequently but yielded lower maximum returns.

For calls, high moneyness option returns converge to the distribution of the underlying as

the value of a call with a strike of zero implies holding the underlying without dividends.
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Figure 2.3: Monthly realized S&P500 European option returns from 01/1996 - 08/2015.
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The figure shows the time series of monthly realized S&P500 European hold-to-expiration
call and put returns (Rk

C , R
k
P ) with moneyness k = 0.94, 1.00, 1.06 and the respective mean

option returns over the period 01/1996 - 08/2015. Moneyness was defined as k := St/K
for calls and k := K/St for puts.

2.4 Option Return Prediction Test

This section presents an option return prediction test of the Implied-CRRA model and two

standard option pricing models as benchmarks.

The Implied-CRRA model requires only an estimate of the monthly risk-aversion parameter

γ to forecast expected option returns. Following the approach in Broadie et al. (2009) and

Chambers et al. (2014), the estimation was performed by equating the expected market
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risk premium to the historical market risk premium of µ− rf = 0.39%, calculated as the

average difference between monthly discrete index returns (µ) and discrete risk-free rate

(rf ) over the sample period. The expected market return each month equals the sum of the

prevailing 1-month discrete risk-free rate rdt and the historical market risk premium µ− rf :

EP
(
St+τ − St

St

)
= rdt + (µ− rf ) (2.10)

As shown in Brinkmann and Korn (2018), expected market return can be expressed via

at-the-money physical expected option payoffs:

EP
(
St+τ − St

St

)
= ertτ

St

(
CP (t, τ, St|γt)− P P (t, τ, St|γt)

)
, γt ≥ 0 (2.11)

The CRRA parameter γt is estimated each month by numerically minimizing the absolute

difference between the expected market returns in equations (2.10) and (2.11). The range

for the estimation of γ was set to γ ∈ {0 ∪ [1, 20]} 5. The calibration was achieved with a

mean absolute error of 2 · 10−11.

Figure 2.4 presents the time series of estimated γt risk aversion and historical S&P500

index prices over the sample period. One can observe that implied risk aversion after

2001 correlated with the underlying price: when the index reached record highs, investors

became more risk-averse and vice versa. The co-movement of risk-aversion and the index

price can be interpreted as follows: a higher risk aversion implies a lower marginal utility

from holding the underlying, therefore during times when the S&P500 index strongly

increased, investors gained less and less marginal utility from holding their investments

and started to sell at the peaks. In market downturns, investor’s risk aversion reached 0

implying risk-neutrality. At the lowest possible risk-aversion, marginal utility from any

increase of holding the underlying was the highest possible and the index recovered as

investors started to buy.

5The term U ′′(x)
U ′(x)2 in the physical expected option payoffs was numerically unstable for γ ∈ (0, 1), hence

this interval was excluded for the estimation.
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Figure 2.4: Estimated CRRA risk aversion.
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The figure shows the time series of monthly estimated CRRA risk aversion (γt) and S&P500
index prices (St) over the period 01/1996 - 08/2015.

The Implied-CRRA model captures the believe of the representative investor via the option-

implied risk-neutral distribution, and incorporates his risk preferences via the CRRA utility

function. Two benchmark models were selected to assess the importance of each of these

components.

The Lognormal-CRRA model assumes a parametric Lognormal risk-neutral price density

and CRRA preferences under the physical measure. It enables to compare the accuracy of

the option-implied distribution in the Implied-CRRA model versus a standard parametric

normal density assumption. As shown in Rubinstein (1976), the Lognormal-CRRA model

is equivalent to the Black-Scholes model (Black and Scholes 1973). It can be further

shown that a Lognormal risk-neutral price density with parameters (µ, σ) and CRRA risk

preferences implies a Lognormal physical density with parameters (µ + γσ2, σ). Hence

the Lognormal-CRRA model measures only a single market risk premium γσ2, whereas

all other moment risk premiums such as variance and skewness premiums equal zero.

The Implied-CRRA model in contrast utilizes the option-implied distribution without

restrictions on the moment risk premiums.

It is a stylized fact that equity returns show certain deviations from Normality, such as

peakedness, skewness, and fat tails. This is also true for my data set, as shown via a

Kolmogorov-Smirnov test of normality. Using the monthly S&P500 realized logreturns,

the null hypothesis of Normality was rejected at the 1% level. The Lognormal-CRRA
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model, however, still constitutes a reasonable benchmark model to specifically compare

the implied-CRRA approach over a standard parametric density with same type of risk

preferences. As the Lognormal-CRRA model derives from the Black-Scholes model, it

represents a standard benchmark for option pricing models (also see Broadie et al. (2009);

Chambers et al. (2014)). Further the Lognormal-CRRA model uses an implied volatility

from option prices and therefore is not just based on the historical volatility of the index,

but market expectations thereof, which can be seen as the market correction for the

simplifying assumption of normally distributed returns.

Under the Lognormal-CRRA model, the risk-neutral and physical expected option payoffs

are calculated by the Black-Scholes formula with respective drift-rates rt and rt + γtσ
2
t

under the risk-neutral and the physical measure. As shown in Hu and Jacobs (2016),

expected call (C) and put (P ) option returns (including a continuous dividend yield dt)

then follow as

E(RC
t,T )Log. = e(µ∗t−dt)τStN(d∗1)−KN(d∗2)

C(t, τ,K) − 1, (2.12)

E(RP
t,T )Log. = KN(−d∗2)− e(µ∗t−dt)τStN(−d∗1)

P (t, τ,K) − 1 (2.13)

with d∗1 = ln St
K

+(µ∗t−dt+σ2
t /2)τ

σt
√
τ

, d∗2 = ln St
K

+(µ∗t−dt−σ2
t /2)τ

σt
√
τ

, µ∗t = rt + γtσ
2
t .

The volatility parameter was hereby estimated as the average implied volatility of S&P500

puts and calls each month: σ̂Log.t = σIVt . We did not estimate historical volatility as to

condition both models on option market prices.

Given the functional form of the physical density under the Lognormal-CRRA model, the

risk aversion estimator can be inferred from equation (2.10) as:

γ̂Log.t = ln(eτrt + µ− rf )− τ(rt − dt)
τσ2

t

(2.14)

γ̂Log.t is proportional to the market price of risk in the Black-Scholes model and the Sharpe

Ratio.
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Figure 2.5 presents the time series of estimated γ̂Log.t , σ̂Log.t , and St over the sample period.

One can observe that σ̂Log.t tends to be anti-correlated with the underlying S&P500 index:

options were cheap when the index grew, and expensive in times of crises. The difference

between implied volatility and realized volatility (σ̂RV = 0.177, annualized volatility

estimated from monthly continuous S&P500 returns) is commonly used as an indicator for

option mispricing (Goyal and Saretto 2009); since σ̂Log.t was mostly higher than σ̂RV , options

are often perceived as overpriced relative to the Black-Scholes model. The large spike in

implied volatility around 2008 can be attributed to the Lehman Brothers collapse and

following financial crisis in 2008/2009; other spikes in implied volatility can be attributed

to the 09/11 attack (2001), dot-com bubble (2002), Flash-Crash (2010), and Greece debt

crisis (2011). The estimates of γ̂Log.t under the Lognormal-CRRA model remained close to

the estimates under the Implied-CRRA model, but with lower variation due to the constant

volatility estimator and equal parametric density type each month.
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Figure 2.5: Estimated Implied-CRRA risk aversion, Lognormal-CRRA risk aversion,
Lognormal-CRRA volatility.

(a) Monthly estimated risk aversion and S&P500 index prices.
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(b) Monthly estimated Lognormal-CRRA volatility, realized volatil-
ity, and S&P500 index prices.
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The figure shows the time series of monthly estimated Implied-CRRA risk aversion (γ̂Imp.t )
and Lognormal-CRRA risk aversion (γ̂Log.t ) in panel (a). Panel (b) shows the time series of
monthly estimated Lognormal-CRRA volatility (σ̂Log.t ) and the level of realized volatility
(σ̂RV ) over the sample period 01/1996 - 08/2015. S&P500 index prices (St) are denoted on
the second y-axis.

The second benchmark model is represented by the naive risk-neutral approach, which

assumes a risk-neutral representative investor to assess the potential benefit of the assumed

CRRA risk preferences in the Implied-CRRA approach. In this setting, the risk-neutral

and the physical measure are equal (P = Q), such that it follows from equation (2.1) that

the expected return on any European option equals the risk-free rate:

E(RC
t,T ) = E(RP

t,T ) = ertτ − 1 (2.15)
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Hence while the risk-neutral measure determines the option prices, it becomes irrelevant

for option returns when investors are risk-neutral. Figure 2.6 shows the time series of

annualized continuous risk-free rates, which fell from 7% to around 0% after the financial

crisis. The mean monthly discrete risk-free rate was 0.22%, which clearly deviates from

the mean realized option returns in table 2.1, such that investors are unlikely to have been

risk-neutral in S&P500 options, and the modeling of risk preferences is required.

Figure 2.6: Monthly annualized risk-free rate.
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The figure shows the time series of monthly annualized continuously compounded risk-free
rates (rt), mean risk-free rate (r̄t) and S&P500 index prices (St) over the sample period
01/1996 - 08/2015.

Figure 2.7 presents the time series of predicted and realized option returns with moneyness

0.94, 1.00 and 1.06. Lognormal-CRRA expected option returns behaved relatively stable,

while the Implied-CRRA model adjusts stronger to changing market information through

the implied volatility curve. One can observe a number of downward spikes in Implied-

CRRA expected option returns, which coincide with the upward spikes of implied volatility

in figure 2.5. The Implied-CRRA model therefore translates option overpricing into lower

expected option returns. The quality of the predictions can be measured by their average

distance to the mean realized option returns. The forecasted positive expected call returns

of all three approaches deviate strongly from the low to negative mean realized call returns.

For S&P500 put options, the Implied-CRRA model is clearly closest to the realized mean

and, as discussed in more detail later, provided the best predictions of realized S&P500

put returns.
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To statistically assess the prediction power of each model, the call (C) and put (P ) option

return prediction errors ErrC,Pt for each month t were calculated as:

ErrC,Pt = E(RC,P
t,T )−RC,P

t,T (2.16)

where RC,P
t,T indicates the realized call or put return and E(RC,P

t,T ) the corresponding predicted

option return.

Table 2.3 presents the results of the option return prediction test on the option return

prediction errors of each model. The Implied-CRRA model delivered the most accurate

expected option return predictions by its mean prediction errors and mean absolute errors

for put- and ITM call returns. The high p-values of the mean prediction errors indicate that

these errors were not significantly different from zero at the 5% level and the Implied-CRRA

approach is not rejected. The leveraged short position of a put option holder always yields

highly negative mean returns under a positive expected market return. However, the

Implied-CRRA model, as well as the Lognormal-CRRA model, can not explain the highly

negative realized OTM call returns due to high and significant prediction errors.

While the Implied-CRRA model forecasted expected 1.04-moneyness put returns with a

near zero mean prediction error, its mean absolute prediction error was 66%; this absolute

error is still in line with the 88% standard deviation of realized 1.04-moneyness put returns.

The prediction test does not aim to predict individual realized option returns, but only

expected option returns. The mean absolute prediction error hereby increased with lower

moneyness, as such options contain a higher leverage.

The Lognormal-CRRA forecasts were also not rejected at the 5% level for put options

and ITM calls, such that there was no statistical evidence on mispricing for these S&P500

option returns even under the standard Black-Scholes model. However, the mean prediction

errors and mean absolute errors were higher than for the Implied-CRRA model.

The risk-neutral approach can be clearly rejected at the 5% level for all S&P500 puts,

whose realized returns deviated significantly from the monthly risk-free rate. For calls, the

risk-neutral model delivers significant predictions with lower errors than the other option

return models. However, this result may rather be attributed to the inherent problem
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of the Implied-CRRA and Lognormal-CRRA models being unable to predict negative

expected call returns under a risk-averse investor.
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We further investigate whether the Implied-CRRA model provides not only lower, but

significantly lower prediction errors compared to the benchmark models. Table 2.4 shows

the mean absolute prediction error differences and p-values of the Implied-CRRA model

compared to the benchmark models Lognormal-CRRA and risk-neutral. A negative mean

absolute error difference indicates that the Implied-CRRA model achieved a lower mean

prediction error.

Panel (a) shows that the Implied-CRRA model was slightly inferior, but not significantly,

to the Lognormal-CRRA model in forecasting ITM call returns based on the mean absolute

prediction error differences. The error differences were near zero and not significant for

ITM calls with moneyness 1 to 1.06. For OTM calls with moneyness below 1, both models

were rejected at the 5% level in the prediction test, such that the lower Lognormal-CRRA

prediction error is not relevant in this case.

The risk-neutral approach, which forecasts all option returns by the risk-free rate, was

significantly superior to the Implied-CRRA model for OTM call returns and insignificantly

superior for ITM calls. For put options, the Implied-CRRA model was always significantly

superior to the risk-neutral benchmark. The fact that the risk-neutral benchmark achieved

a lower prediction error for call options may be statistically significant, but economically it

rather reflects the anomaly of negative mean realized call returns, which are not possible

to predict under the Implied-CRRA and Lognormal-CRRA models due to the assumed

risk-averse utility.

Panel (b) presents remarkable results of the Implied-CRRA model, which significantly

outpaced both benchmark models in the prediction of put returns. The Implied-CRRA

model is particularly strong in predicting OTM put returns, which were often quoted as an

option mispricing anomaly due to their extreme negativity (Bondarenko 2014).

In conclusion, the Implied-CRRA model achieves significant prediction results for mean

realized S&P500 put returns, where it also outperformed both benchmark models. The

negative mean realized S&P500 call returns however can not be explained by both Implied-

CRRA and Lognormal-CRRA models. The naive risk-neutral approach is statistically not

rejected for the prediction of call returns, but rejected for the prediction of put returns.
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Table 2.4: Mean absolute prediction error differences of the Implied-CRRA model against
the benchmark models.

(a) Calls:
Moneyness (k) 0.94 0.96 0.98 1.00 1.02 1.04 1.06
∆ErrLog.-CRRA 0.08 0.04 0.01 0.00 0.00 0.00 0.00

p (0.00) (0.00) (0.00) (0.08) (0.28) (0.49) (0.21)
∆Errrisk-neutral 0.26 0.17 0.08 0.02 0.01 0.00 0.00

p (0.00) (0.00) (0.00) (0.00) (0.39) (0.84) (0.49)

(b) Puts:
Moneyness (k) 0.94 0.96 0.98 1.00 1.02 1.04 1.06
∆ErrLog.-CRRA -0.20 -0.14 -0.09 -0.05 -0.02 -0.01 0.00

p (0.00) (0.00) (0.00) (0.00) (0.00) (0.10) (0.58)
∆Errrisk-neutral -0.35 -0.25 -0.18 -0.11 -0.06 -0.03 -0.02

p (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01)

The table shows the mean absolute prediction error differences ∆Erri =
Mean(|ErrImplied-CRRA|t − |Erri|t) of the Implied-CRRA model against the benchmark
models (i = Log.-CRRA, risk-neutral) for predicted monthly S&P500 call and put returns
over the period (t) from 01/1996 - 08/2015. p-values of the mean absolute prediction error
differences were calculated from a z-test with Newey-West corrected standard errors on the
null hypothesis H0 : ∆Erri = 0 (H1 : ∆Erri 6= 0). A p-value below 0.05 indicates that the
error difference is significantly different from zero, and otherwise not significantly different
from zero.

Under a positive mean realized return on the underlying, how can the realized mean call

returns be negative? An explanation can be found through analysis of the pricing kernel

m(St+τ ) := q(St+τ )
p(St+τ )

, which represents a measure for the relative difference between the

risk-neutral and the physical measure. From equation (2.2) it follows

m(St+τ ) = c · U ′(St+τ ) (2.17)

The utility function satisfies U ′(x) > 0 and U ′′(x) < 0 for risk-averse investors, U ′′(x) > 0

for risk-seeking investors, and U ′′(x) = 0 for risk-neutral investors. As the risk-neutral

measure (q) is given from current option market prices and c being a constant, the utility

derivative U ′ fully determines the pricing kernel.

Under the Implied-CRRA and Lognormal-CRRA models, the representative investor is by

assumption risk-averse, such that the pricing kernel is monotonically decreasing. Empirical
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studies however discovered a historically U-shaped, non-monotone kernel for the S&P500

index (Bakshi et al. 2010; Brown and Jackwerth 2012). A U-shaped pricing kernel around

St implies risk preferences where investors are risk-averse on losses, and risk-seeking on

profits. Figure 2.8 shows the estimated 1-month pricing kernels for each option pricing

model, showing that the historical pricing kernel is indeed non-monotone. When computing

the expected physical option payoffs, one essentially utilizes the left part of the physical

density for puts (which pay only when the asset price falls below the option strike), and

the right part of the physical density for calls (above the strike). While the left part of a

U-shaped pricing kernel is accurately modeled as monotone decreasing under risk-averse

preferences, the right part of a U-shaped kernel is increasing. Therefore realized mean

S&P500 put returns were well predicted by the Implied-CRRA model, while negative mean

realized call returns were unexplainable. In the risk-adjusted option-implied approach, a

U-shaped pricing kernel would require a non-monotone utility derivative; however, the

approach was derived under the explicit assumption of a risk-averse investor with convex

utility, such that negative expected call returns cannot be generated under the approach.

Figure 2.8: S&P500 pricing kernel.
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The figure shows the S&P500 pricing kernels (m) on 11/20/2008. The Implied-CRRA Kernel
(mImp.−CRRA) uses the Implied-CRRA physical and risk-neutral densities, the Lognormal-
CRRA kernel (mLog.−CRRA) uses the Lognormal-CRRA physical and risk-neutral densities,
and the Historical kernel (mHistorical) uses the empirical physical and risk-neutral densities.
The option-implied risk-neutral and physical densities were constructed from the respective
put prices as in (Figlewski 2010). The historical physical density was estimated via a
Gaussian kernel smoother on the monthly discrete distribution of index levels (ST ). The
discrete distribution of ST was estimated by applying the historical 1-month S&P500 index
returns to the prevailing index level adjusted by the implied S&P500 dividend yield.
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2.5 Conclusion

This paper studied the option-implied risk-adjusted approach by Brinkmann and Korn

(2018) in predicting mean realized S&P500 index option returns in perfect markets. The

approach extracts the option-implied expectations of a representative investor with risk-

averse utility to capture the wedge between the risk-neutral and physical measure. The

approach was able to explain the option mispricing puzzle with respect to S&P500 put

returns. The approach is highly flexible and dynamic as it instantly adjusts to changes in

current option market prices and can be equipped with arbitrary risk-averse preferences to

determine the expected option return for different classes of representative investors.

A prediction error test showed that the option-implied approach with CRRA utility can

well explain the magnitude of mean put and ITM call returns, where it was also superior to

the standard Black Scholes model as well as the risk-neutral approach. However, none of

the tested option pricing models could reproduce the highly negative mean realized OTM

call returns. Negative expected call returns require a U-shaped pricing kernel, which is

however not compatible with risk-averse preferences as assumed by the implied risk-adjusted

approach. We conclude that S&P500 puts and ITM calls were fairly priced under the

Implied-CRRA model over the sample period, while OTM call returns were unexplainable.



3 Option Return Volatility

Abstract

Option return volatility can far exceed the underlying volatility due to the high implied

leverage and represents an important measure for option risk. The paper studies the

theoretical and empirical properties of S&P500 call and put return volatilities over finite

and instantaneous holding periods in a Black-Scholes setting. I derive and illustrate

properties and sensitivities of option volatility with respect to maturity, physical drift

rate, dividend yield, moneyness, underlying volatility, and the risk-free rate over different

holding horizons. While theoretical option volatility is found to behave similarly when

comparing hold to maturity or selling prior to maturity horizons, significant differences

exist for instantaneous holding periods with respect to the physical drift rate and maturity.

In an empirical test, I find that realized S&P500 put volatilities can be explained by the

Black-Scholes model, while S&P500 call volatilities were unexplainable reconfirming parts

of the option mispricing puzzle.

Acknowledgment: We would like to thank Olaf Korn for helpful comments and suggestions. This work
was supported by the Deutsche Forschungsgemeinschaft [UH 107/4-1, KO 2285/3-1].
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3.1 Introduction

Equity options provide the opportunity for high implied leverage on both long and short

positions in the underlying. They can be combined to replicate a desired payoff structure

or manage the risk of investor portfolios. The volatility of option returns hereby represents

an important measure for option risk.

The known option mispricing puzzle states that mean realized option returns could not

be fully explained by standard option pricing models in perfect markets due to extreme

negative S&P500 put returns, overshooting and skewed option-implied volatilities, and

negative delta-hedged option returns1. As found in this paper, one can observe a similar

puzzle with respect to the volatility of call returns.

While no previous paper yet studied option volatility, some studies investigate the relation

between expected option returns and underlying volatility. Hu and Jacobs (2016) present

analytical expressions for expected option returns under the Black-Scholes model and find

that expected call (put) option returns increase (decrease) with underlying volatility. Cao

and Han (2013) state that delta-hedged option returns decrease with an increase of the

idiosyncratic volatility of the underlying confirming the low-volatility anomaly for option

markets. Goyal and Saretto (2009) find that long-short option portfolios sorted on the

volatility risk premium generated abnormal returns. They surmise investor’s overreaction

to extreme stock returns due to temporarily overstated option implied volatility.

This paper presents a first study on the volatility of option returns in perfect markets.

Section 3.2 provides analytical expressions for option volatility under the Black-Scholes

model for instantaneous, before-expiration and hold-to-expiration holding periods. Section

3.3 illustrates the cross-sectional option volatility sensitivities under each holding period for

the different option pricing parameters such as strike, maturity, risk-free rate, underlying

volatility, moneyness, physical drift rate. Section 3.4 provides an empirical study on

S&P500 option volatilities to compare the realized and predicted values over different

holding periods, moneyness and maturities. Section 3.5 concludes.
1Bondarenko (2014); Chambers et al. (2014); Goyal and Saretto (2009); Bates (2000); Bakshi et al.

(2003)
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3.2 Option Volatility

The realized return of a European call (RC
t,T ) or put (RP

t,T ) option with strike K held from

time t ≥ 0 to maturity T > t is given by the ratio of the option payoff at time T over the

option price (Ct, Pt) at time t:

RC
t,T = (ST −K)+

Ct
− 1 (3.1)

RP
t,T = (K − ST )+

Pt
− 1 (3.2)

The expected option return follows as the ratio of the expected option payoffs under the

physical (P) over the risk-neutral (Q) measure:

E[RC
t,T ] = EP [(ST −K)+]

e−r(T−t)EQ[(ST −K)+] − 1 (3.3)

E[RP
t,T ] = EP [(K − ST )+]

e−r(T−t)EQ[(K − ST )+] − 1 (3.4)

The call return variance V (RC
t,T ) and volatility v(RC

t,T ) follow as

V (RC
t,T ) = EP [(RC

t,T − E[RC
t,T ])2] (3.5)

= EP [(St+τ −K)+2]− EP [(St+τ −K)+]2
C2
t

, (3.6)

v(RC
t,T ) =

√
V (RC

t,T ) (3.7)

where τ = T − t denoting the remaining time to maturity of the option.

Under the Black-Scholes-Merton model (Black and Scholes 1973; Merton 1973), the un-

derlying price at maturity St+τ is Lognormally distributed and the call variance follows

as

V (RC
t,T ) = S2

t e
τ(2µ+σ2)N(d∗3)− 2KSteµτN(d∗1) +K2N(d∗2)− (eµτStN(d∗1)−KN(d∗2))2

C(τ, St, σ,K, r)2

(3.8)
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with z∗ = ln K
St
−(µ−σ2/2)τ
σ
√
τ

, d∗1 = ln St
K

+(µ+σ2/2)τ
σ
√
τ

, d∗2 = ln St
K

+(µ−σ2/2)τ
σ
√
τ

, d∗3 = ln St
K

+(µ+1.5σ2)τ
σ
√
τ

, and
C(τ, St, σ,K, r) = StN(d1) − e−rτKN(d2) representing the Black-Scholes call price with
d1 = ln St

K
+(r+σ2/2)τ
σ
√
τ

, d2 = ln St
K

+(r−σ2/2)τ
σ
√
τ

, volatility σ, risk-free rate r and physical drift rate
µ. A detailed derivation of the option return variances can be found in the appendix 3.6.1.
Analogously the put variance can be derived as

V (RPt,T ) = S2
t e
τ(2µ+σ2)N(−d∗

3)− 2KSteµτN(−d∗
1) +K2N(−d∗

2)− (eµτStN(−d∗
1)−KN(−d∗

2))2

P (τ, St, σ,K, r)2 , (3.9)

where P (τ, St, σ,K, r) = e−rτKN(−d2)− StN(−d1) denotes the Black-Scholes put price.

A continuous dividend yield d can further be introduced via substituting St := Ste
−dτ into

equations (3.8), (3.9).

When the option is not held to maturity but priorly sold at market price at time t+ h, the

realized return of a call or put over a holding period h < τ = T − t is given by the ratio of

the option price at time t+ h and the current option price at time t:

RC
t,h,T = CT−h

Ct
− 1, (3.10)

RP
t,h,T = PT−h

Ct
− 1 (3.11)

The expected option returns follow as

E[RC
t,h,T ] = EP(C(τ − h, St+h, σ,K, r))

C(τ, St, σ,K, r)
− 1 (3.12)

E[RP
t,h,T ] = EP(P (τ − h, St+h, σ,K, r))

P (τ, St, σ,K, r)
− 1 (3.13)

The expected option price at time t+ h is evaluated under the physical measure (P) to

capture the filtration of realized underlying prices up to time t+ h.

The variance of call returns for a holding period h < τ follows as

V (RC
t,h,T ) = EP [(RC

t,h,T − EP(RC
t,h,T ))2] (3.14)

= EP(RC
t,h,T

2)− EP(RC
t,h,T )2 (3.15)

= EP(C(τ − h, St+h, σ,K, r)2)− EP(C(τ − h, St+h, σ,K, r))2

C(τ, St, σ,K, r)2 (3.16)
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Under the Black-Scholes model with Lognormally-distributed underlying prices, the call

variance and volatility over a period h < τ follow as:

V (RC
t,h,T ) =

∫
R C(τ−h,Steµh−

1
2σ

2h+σ
√
hz ,σ,K,r)2 1√

2π
e−

z2
2 dz−

(∫
R C(τ−h,Steµh−

1
2σ

2h+σ
√
hz ,σ,K,r) 1√

2π
e−

z2
2 dz

)2

C(τ,St,σ,K,r)2

(3.17)

v(RC
t,h,T ) =

√
V (RC

t,h,T ) (3.18)

Analogously, the put return variance and volatility over period h equals:

V (RP
t,h,T ) =

∫
R P (τ−h,Steµh−

1
2σ

2h+σ
√
hz ,σ,K,r)2 1√

2π
e−

z2
2 dz−

(∫
R P (τ−h,Steµh−

1
2σ

2h+σ
√
hz ,σ,K,r) 1√

2π
e−

z2
2 dz

)2

P (τ,St,σ,K,r)2

(3.19)

v(RP
t,h,T ) =

√
V (RP

t,h,T ) (3.20)

A detailed derivation can be found in the appendix 3.6.2.

Finally, consider the realized call return for an infinitesimal holding period h→ 0:

RC
t,0,T = dCt

Ct
(3.21)

Recall that in the Black-Scholes model, the dynamics of the underlying under the physical

measure are given by

dSt = σStdWt + µStdt (3.22)

where dWt represents standard Brownian Motion increments.

Applying Itó’s Lemma to a twice-differentiable claim C(St, t) : R2
+ 7→ R yields

dCt = δCt
δSt

σStdWt +
(
µSt

δCt
δSt

+ 1
2σ

2S2
t

δ2Ct
δS2

t

)
dt (3.23)



CHAPTER 3 OPTION RETURN VOLATILITY 36

The infinitesimal return variance follows as:

V (RC
t,0,T ) = V (dCt)

C2
t

(3.24)

=
( δCt
δSt
σSt)2dt

C2
t

(3.25)

The infinitesimal call and put return volatilities follow as

v(RC
t,0,T ) = ∆t

√
dtσSt

C(τ, St, σ,K, r, d) (3.26)

v(RP
t,0,T ) = |∆t − e−dτ |

√
dtσSt

P (τ, St, σ,K, r, d) (3.27)

with ∆t = e−dτN((ln(St/K)+(r−d+0.5σ2)τ)
σ
√
τ

. A detailed derivation can be found in the appendix

3.6.3.

Formulas (3.26) - (3.27) intuitively define the instantaneous return volatility of the option

by the volatility of the instantaneous underlying price change v(dSt) = σSt
√
dt times the

sensitivity of the option price to a change in the underlying price ∆t scaled by the option

price.

3.3 Cross-Section of Option Volatilities

This section illustrates the cross-sectional relation between the Black-Scholes option volatil-

ities and the option pricing parameters based on a standard parameter set estimated

from monthly S&P500 index prices provided by Optionmetrics IvyDB over the period

01/1996 − 07/2015: r = 0.0280, µ = 0.0965, σ = 0.1773, d = 0.0176, K = St = 100,

t = 0, T = τ = dt = 1. The following illustrations therefore refer to the volatilities of

at-the-money S&P500 European options under the Black-Scholes model.

Figure 3.1 presents the cross-section of call and put volatilities for variying time to maturity

(τ) and moneyness (K/S). One can observe that call (put) option volatility increases

(decreases) with time to maturity for finite holding periods in panels (a) and (b). The

assumed positive physical drift rate (µ > 0) leads to an expected increase of the stock price
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over time such that call options will more likely expire in the money allowing for higher

payoff variability, while puts more likely expire worthless in which case any underlying

volatility is absorbed. For infinitesimal holding periods in panel (c), the call and put

volatilities are nearly identical (call and put deltas are around 0.5 and the option prices are

approximately equal) and monotone decreasing with time to maturity. It seems surprising

that option volatilities hereby behave differently for infinitesimal and finite holding periods.

In the infinitesimal case, the delta of both call and put converges to zero for increasing

time-to-maturity, while the call and put prices increase, such that call and put volatilities

both decrease strongly with time to maturity. Furthermore unlike under finite holding

periods, infinitesimal option volatilities are independent of the phyisical drift rate of the

underlying.

Figure 3.1 shows that at-the-money call volatility is always higher than put option volatility

for varying time to maturity, which can be explained by the fact that the put payoff is

bounded between 0 and K, while the call payoff is unbounded above zero.

Panels (d)-(f) show that call and put volatilities increase with lower moneyness (higher

K/S ratio for calls and lower K/S ratio for puts) since out-of-the-money options are more

risky with higher implied leverage. A call with a strike of zero (K/S = 0) equals a long

position in the underlying and risk-free asset, such that the underlying volatility σ poses a

lower bound to the call volatility. Put volatility is only bounded by 0 as a strike going to

infinity implies an almost certain (risk-free) put payoff equal to the strike.
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Figure 3.2 presents the cross-sections of call and put volatilities for different underlying

volatilities (σ) and physical drift rates (µ). Call volatility overall increases with underlying

volatility for all three holding periods in panels (a) to (c), which does not seem surprising

as the call payoff is sublinear in St. The initial non-monotone region of call volatility

against underlying volatility can be explained by the fact that both option payoff volatility

and option price increase with underlying volatility, where one can observe a small region

where the call payoff volatility increases less strongly than the option price.

One can further confirm that call volatility is always higher than put volatility in panels

(a) and (b) as the call payoff is unbounded while the put payoff is bounded. For the

instantaneous holding period in panel (c), the put volatility can be higher than the call

volatility. From an instantaneous view, at-the-money call and put options are equally

affected going out-of-money and in-the-money for an instantaneous change in the underlying

price, such that volatilities may be determined by the difference in option prices rather

than payoff sensitivity.

Put volatility exhibits a non-monotone concave curve for varying underlying volatility and

finite holding periods in panels (a) and (b) of figure 3.2. The put payoff is bounded from

both below and above, unlike the call. When the underlying volatility equals 0, a put

option cannot have any volatility. When underlying volatility increases, it adds chances

for positive payoffs, such that put return volatility increases. However, when underlying

volatility goes to infinity, put return volatility cannot go to infinity as its payoffs are

bounded between 0 and K. The price of the put option in the Black-Scholes model is

known to monotonically increase with underlying volatility up to an upper bound Ke−rτ .

The observed put return curves over the finite holding periods imply that the volatility

of the put payoff first increases stronger than the put price, then increases less than the

put price. For infinitesimal holding periods, panel (c) shows that put volatility decreases

with underlying volatility, which implies that the put price increases stronger than the put

payoff volatility for an increase in the underlying volatility.

For varying underlying physical drift rates (µ), call volatility increases monotonically with

the underlying drift rate for finite holding periods in figure 3.2 panels (d) and (e). A

higher drift rate increases call volatility by enabling additional positive payoffs which
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otherwise would have been absorbed at the option strike. Furthermore, the option price

under the risk-neutral measure is independent of the physical drift rate, such that the only

dependency is in the option payoff. The infinitesimal volatilities of call and put payoffs are

independent of the physical drift rate and therefore constant in panel (f).

Put volatility decreases with the underlying physical drift rate for finite holding periods in

panels (d) and (e) of figure 3.2 as a higher expected return on the underlying increases the

probability to hit the upper strike barrier where the put payoff is constant zero. The put

price is also independent of the physical drift rate under the risk-neutral measure.
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Figure 3.3 presents the option volatility curves for varying risk-free rate r and dividend

yield d. Panels (a) to (c) show that a higher risk-free rate always increases the call price as

it increases the opportunity cost from holding the underlying, while the expected physical

option payoff is unaffected, such that call return volatility decreases. Conversely, the put

price decreases with an increase of the risk-free rate while its payoff remains unaffected,

such that put return volatility increases.

The dividend yield in panels (d) to (f) unlike the risk-free rate affects both the expected

option payoff and the current option price. As the dividend yield is introduced to the

Black-Scholes model via substitution St := Ste
−dτ , it is essentially equivalent to a change

in option moneyness and the observed sensitivities are therefore similar to a change in

the K/S ratio. A higher dividend yield decreases put volatility as the put price decreases

in anticipation of the underlying price drop. The put payoff volatility in the nominator

increases as the final underlying price is less likely to be absorbed by the strike K, however

the net effect is dominated by the put price increase. The call volatility shows an opposite

behaviour as it increases with the dividend yield due to a decrease in the call price, which

dominates the decreasing volatility of the call payoff.
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The hereby presented option volatility sensitivities illustrate the properties of European

S&P500 call and put options, whereby an analytical discussion thereof could still lead to

more detailed results in the limits. The option volatility formulas represent ratios of two

highly non-linear terms with semi-closed expressions, such that a graphical analysis can

give more intuitive insights into the properties of the Black-Scholes option volatilities. The

sensitivities may further change when bumping more than one parameter, e.g. comparing

out-of-the money options with long-term maturities and in-the-money options with short-

term maturities. There exists an infinite space for the 6 option pricing parameters in the

Black-Scholes model. This study focuses on an illustrative comparative-static analysis of

at-the-money option volatility.

3.4 Empirical study on S&P500 Option Volatilities

The following empirical study estimates the Black-Scholes option volatilities for the S&P500

index over the period 01/1996 – 07/2015 and tests whether they coincide with the realized

volatilities. The setting of the test follows the approach in Broadie et al. (2009).

The option pricing data was obtained from the OptionMetrics IvyDB US database and

filtered following standard methodology (Goyal and Saretto 2009; Cao and Han 2013):

S&P500 1-month options with 28 to 29 days to maturity (depending on bank holidays) and

expiration on the 3rd Friday or Saturday of the month were selected. The option bid-ask

spread was filtered to be greater than the minimum spread of $0.05 when the option mid

price was below $3, and greater than $0.1 minimum option spread else. The midpoint

prices of call (Ct) and put (Pt) options were filtered by the arbitrage-free boundaries:

[Ste−dtτ − Ke−rtτ ]+ < Ct < Ste
−dtτ and [Ke−rtτ − Ste

−dtτ ]+ < Pt < Ke−rtτ . Best bid

and ask quotes, daily trading volume, open interest, implied volatility were filtered to be

non-zero and the last trade date of the option had to be available. S&P500 option payoffs

were calculated from the index open price on the settlement day. The final sample contains

19.912 one-month options over 235 months, with 50 puts and 35 calls per month on average.

Call and put options with specific moneyness were obtained via a quadratic fit over each

month’s sample implied volatilities, following the methodology in Chambers et al. (2014)
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and Broadie et al. (2009). When considering option returns with holding periods below 1

month, the same methodology as above was applied.

The study assumes the following parameters estimated from the time series of monthly

realized S&P500 logreturns as well as the corresponding average risk-free rates and implied

dividend yields provided by Optionmetrics IvyDB over the sample period 01/1996 – 07/2015:

r = 0.0280, µ = 0.0965, σ = 0.1773, d = 0.0176. The option strikes vary from 94% to

106% of the underlying price. The underlying price is set to St = 100 (noting that option

volatility does not depend on the level but the ratio of St and K). The time to maturity

equals τ = 28/365 with holding periods h = τ , h = 0.5τ and h→ 0. The infinitesimal case

where h→ 0 is approximated by the smallest available holding period of one business day

as dt = 1/252.

Following the approach in Broadie et al. (2009) where a test of realized mean option returns

is presented, the study compares realized and predicted option return volatilities under

the Black Scholes model based on the mean prediction error. The significance of the mean

prediction errors as differences between the mean predicted and realized monthly option

volatilities was inferred from the distributions of 25.000 simulated Black-Scholes option

volatilities with sample paths of 235 months (the sample period 01/1996 – 07/2015) for

moneyness categories from 0.94 to 1.06. Figure 3.4 illustrates the distributions of the

simulated hold-to-maturity Black-Scholes option volatilities together with the corresponding

predicted and realized S&P500 volatilities. One can observe that consistent with the

previous findings, out-of-money option volatilities were considerably larger than in-the-

money volatilities. Realized call volatilities were consistently lower than simulated call

volatilities under the Black-Scholes model, while realized put volatilities were close to the

model, which is surprising as the option mispricing puzzle is often described as put puzzle.

Table 3.1 presents the option return prediction test comparing the mean 1-month realized

S&P500 option volatilities with the predicted Black-Scholes option volatilities for different

moneyeness and holding periods (h = τ, h = 0.5τ, h→ 0). The realized option volatilities

represent the standard deviations of realized S&P500 option returns, the predicted option

volatilities were calculated from the derived equations under the Black-Scholes model

using the discussed set of estimated parameters. For h = τ , realized option returns were



CHAPTER 3 OPTION RETURN VOLATILITY 46
Fi

gu
re

3.
4:

Si
m

ul
at

ed
,p

re
di

ct
ed

an
d

re
al

iz
ed

S&
P5

00
op

tio
n

vo
la

til
iti

es
.

C
al

l V
o

la
ti

lit
y 

(K
/S

=0
.9

4)

0.
55

0.
6

0.
65

0.
7

0.
75

0.
8

0.
85

v(
R

t,h
,T

C
)

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Frequency

v(
R

t,TC
) 

S
im

ul
at

ed

v(
R

t,TC
) 

P
re

di
ct

ed

v(
R

t,TC
) 

R
ea

liz
ed

)

C
al

l V
o

la
ti

lit
y 

(K
/S

=1
)

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

1.
9

2

v(
R

t,h
,T

C
)

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Frequency

v(
R

t,TC
) 

S
im

ul
at

ed

v(
R

t,TC
) 

P
re

di
ct

ed

v(
R

t,TC
) 

R
ea

liz
ed

)

C
al

l V
o

la
ti

lit
y 

(K
/S

=1
.0

6)

2
3

4
5

6
7

v(
R

t,h
,T

C
)

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

Frequency

v(
R

t,TC
) 

S
im

ul
at

ed

v(
R

t,TC
) 

P
re

di
ct

ed

v(
R

t,TC
) 

R
ea

liz
ed

)

P
u

t 
V

o
la

ti
lit

y 
(K

/S
=0

.9
4)

1
2

3
4

5
6

7

v(
R

t,h
,T

P
)

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

Frequency

v(
R

t,TP
) 

S
im

ul
at

ed

v(
R

t,TC
) 

P
re

di
ct

ed

v(
R

t,TC
) 

R
ea

liz
ed

)

P
u

t 
V

o
la

ti
lit

y 
(K

/S
=1

)

1
1.

1
1.

2
1.

3
1.

4
1.

5
1.

6
1.

7

v(
R

t,h
,T

P
)

0

20
0

40
0

60
0

80
0

10
00

12
00

Frequency

v(
R

t,TP
) 

S
im

ul
at

ed

v(
R

t,TC
) 

P
re

di
ct

ed

v(
R

t,TC
) 

R
ea

liz
ed

)

P
u

t 
V

o
la

ti
lit

y 
(K

/S
=1

.0
6)

0.
6

0.
65

0.
7

0.
75

0.
8

v(
R

t,h
,T

P
)

0

20
0

40
0

60
0

80
0

10
00

12
00

Frequency

v(
R

t,TP
) 

S
im

ul
at

ed

v(
R

t,TC
) 

P
re

di
ct

ed

v(
R

t,TC
) 

R
ea

liz
ed

)

T
he

fig
ur

e
sh

ow
s

th
e

hi
st

og
ra

m
s

of
ea

ch
25

.0
00

sim
ul

at
ed

B
la

ck
-S

ch
ol

es
ca

ll
an

d
pu

t
vo

la
til

iti
es

,t
he

pr
ed

ic
te

d
op

tio
n

vo
la

til
ity

an
d

th
e

re
al

iz
ed

op
tio

n
vo

la
til

iti
es

w
ith

di
ffe

re
nt

m
on

ey
ne

ss
(K

/S
)

fo
r

th
e

S&
P

50
0

in
de

x
ov

er
th

e
sa

m
pl

e
pe

rio
d

01
/1

99
6

–
08

/2
01

5.
O

pt
io

n
pr

ic
in

g
pa

ra
m

et
er

s
w

er
e

fix
ed

at
S
t

=
K

=
10

0,
r

=
0.

02
80

,µ
=

0.
09

65
,σ

=
0.

17
73

,d
=

0.
01

76
.



CHAPTER 3 OPTION RETURN VOLATILITY 47

calculated as the ratio of the option payoff at maturity and the initial option market prices

minus one. For h = 0.5τ and h→ 0, realized option returns were calculated by the ratio

of the option market price at the end of the holding period and the option market price

at initiation minus one. To obtain option prices with exact moneyness each month, a

quadratic fit with flat extrapolation over the monthly implied volatility curve was applied

(see Brinkmann and Korn (2018)).

For calls, the Black-Scholes model was rejected at the 5% level for almost all moneyness

ratios and holding periods due to high significant prediction errors. All of the call volatility

prediction errors are negative as realized call volatility was lower than under the Black-

Scholes model. As the physical payoff distribution was directly fitted from the realized

S&P500 returns, the observed significant prediction errors were caused by the call prices.

The significantly lower realized S&P500 call volatilities point to the well-known option

overpricing stylized fact. One can observe that consistent with the Black-Scholes model,

realized call volatilities increase with the K/S ratio as presented in figure 3.1.

For put options, the Black-Scholes model was not rejected at the 5% level for all moneyness

ratios when held to maturity. For h = 0.5τ , the Black-Scholes model was rejected at

the extreme moneyess where K/S = 0.94 and K/S = 1.06. The fitted implied volatility

curves to obtain option prices with exact moneyness were extrapolated flat, which may

induce a bias on the extreme ends of the K/S ratio. Note that the prediction error of

the out-of-money put (K/S = 0.94) is quite high at over 99%, however the variation of

the simulated out-of-money put volatilities was so high that this error did not lead to a

rejection.

The option volatility prediction test in table 3.1 followed the approach in Broadie et al. (2009)

by fitting the Black-Scholes model parameters to the distribution of realized underlying

returns to infer both model option prices and expected option payoffs. However, this

approach ignores the information contained in the option market prices as well as time

varying parameters. Therefore the following second option volatility prediction test allows

for time-varying monthly underlying parameters and option-implied volatilities instead of

realized underlying volatility in table 3.2. The monthly implied volatility was estimated via

a quadratic fit over the monthly option-implied volatility samples. The monthly underlying
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physical drift rate was estimated as the sum of the current risk-free rate and the mean

realized market risk premium over the sample period (the difference between the mean

risk-free rate and the mean realized drift rate). The monthly implied dividend yield

estimates on the S&P500 were provided by Optionmetrics IvyDB.

To test whether the realized option volatilities are consistent with the Black-Scholes model

in the dynamic setting, the following z-score time series were generated for calls (zCt ) and

puts (zPt ):

zCt =
RC
t,h,T − E(RC

t,h,T )
v(RC

t,h,T ) , (3.28)

zPt =
RP
t,h,T − E(RP

t,h,T )
v(RP

t,h,T ) (3.29)

The expected option returns (E(RC
t,h,T )) were calculated based on the holding period h.

The hold-to-maturity expected option return (h = τ) under the Black-Scholes model was

derived in Hu and Jacobs (2016):

E(RC
t,T ) = e(µ−d)τStN(d∗1)−KN(d∗2)

C(τ, St, σ,K, r, d) − 1, (3.30)

E(RP
t,T ) = KN(−d∗2)− e(µ−d)τStN(−d∗1)

P (τ, St, σ,K, r, d) − 1 (3.31)

with d∗1 = ln St
K

+(µ−d+σ2/2)τ
σ
√
τ

, d∗2 = ln St
K

+(µ−d−σ2/2)τ
σ
√
τ

, using a dividend yield d via substitution

St := Ste
−dτ .

For a finite holding period h < τ , the expected option return under the Black-Scholes

model is defined as

E(RC
t,h,T ) = EP(C(τ, St+h, σ,K, r, d))

C(τ, St, σ,K, r, d) (3.32)

=
∫
RC(τ − h, Ste(µ−d)h− 1

2σ
2h+σ

√
hz, σ,K, r, d) 1√

2πe
− z

2
2 dz

C(τ, St, σ,K, r, d) − 1, (3.33)

E(RP
t,h,T ) = EP(P (τ, St+h, σ,K, r, d))

P (τ, St, σ,K, r, d) (3.34)

=
∫
R P (τ − h, Ste(µ−d)h− 1

2σ
2h+σ

√
hz, σ,K, r, d) 1√

2πe
− z

2
2 dz

P (τ, St, σ,K, r, d) − 1 (3.35)
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The above integrals were approximated using trapezoidal integration.

The infinitesimal expected option returns where h→ 0 follow from Itó’s lemma in equation

(3.83):

E(RC
t,0,T ) = EP(dCt)

Ct
=

(
(µ− d)St δCtδSt

+ 1
2σ

2S2
t
δ2Ct
δS2
t

)
dt

Ct
(3.36)

Therefore:

E(RC
t,0,T ) =

(
(µ− d)St∆t + 1

2σ
2S2

t Γt
)
dt

C(τ, St, σ,K, r, d) , (3.37)

E(RP
t,0,T ) =

(
(µ− d)St|∆t − e−dτ |+ 1

2σ
2S2

t Γt
)
dt

P (τ, St, σ,K, r, d) (3.38)

with ∆t = e−dτN((ln(St/K)+(r+0.5σ2)τ)
σ
√
τ

, Γt = e−dτN ′(d1)
Stσ
√
τ

.

Under the Black-Scholes model, the volatilities of the above z-scores (v(zC,Pt )) equal one

such that I test the hypothesis H0 : v(zC,Pt ) = 1 (H1 : v(zt)C,P 6= 1), whereas the distribution

of v(zC,Pt ) was generated by drawing 25.000 times with replacement from the time series of

zC,Pt .

Figure 3.5 illustrates the distributions of the simulated hold-to-maturity z-score volatilities,

the corresponding predicted volatility of 1 and the realized z-score volatilities. One can

observe that the realized call z-score volatilities were significantly lower than one, while

the realized put z-score volatilities were close to one, again indicating that the call prices

are too high.

Table 3.2 presents the results of the dynamic option volatility test. Surprisingly, the Black-

Scholes model is now rejected even stronger for the realized call returns in all moneyness

and holding period categories except h = 0 with K/S = 1.06 based on the mean absolute

prediction error. One would expect that using the implied volatilities which perfectly match

the option prices, as well as monthly parameters for r, d and µ, would result in superior

prediction results. The volatility of the z-score test statistic depends on the accuracy of the

predicted option volatility but also the expected option return, which cannot be separated

in this setting. For the put options, the Black-Scholes model is not rejected as before in
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almost all cases except out-of-money instantaneous volatilities; the absolute prediction

errors here are mostly lower than under the static prediction test.

In conclusion, both prediction tests reject the Black-Scholes model with respect to realized

call volatilities over finite and instantaneous holding periods, while realized put volatilities

were not rejected for all holding periods except instantaneous out-of-money put volatilities.

The instantaneous option volatilities had the highest rejection rates in both tests, however

the realized instantaneous option volatilities were only approximated by 1-day option

returns, such that the rejection of the instantaneous option volatilities may partly express

discretization errors.
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3.5 Conclusion

The paper studied option return volatility in a perfect markets setting. I provide analytical

expressions for option return volatility under the Black-Scholes model for instantaneous,

before-expiration and hold-to-expiration time periods. The theoretical cross-sectional

option volatility sensitivities for the option pricing parameters are further illustrated and

an empirical test on realized S&P500 option volatilities against the Black-Scholes model is

conducted.

I find that at-the-money Black-Scholes call volatility over finite holding periods increases

with time to maturity, underlying volatility, underlying physical drift and dividend yield,

and decreases with the risk-free rate and moneyness. At-the-money Black-Scholes put

volatility over finite holding periods decreases with time to maturity, underlying physical

drift, dividend yield and moneyness, can increase and decrease with underlying volatility,

and increases with the risk-free rate. Option volatilities under the Black-Scholes model

behave similarly when held to maturity or sold prior to maturity, but differences exist

for the instantaneous holding period where at-the-money call volatility decreases with

time-to-maturity, and both call and put volatility are independent of the physical drift

rate.

Empirical tests on S&P500 1-month option volatilities show that Black-Scholes option

volatilities were rejected with respect to realized call volatilities over finite and instantaneous

holding periods, while put volatilities were not rejected for these holding periods except

instantaneous out-of-money put volatilities.
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3.6 Appendix

3.6.1 Option volatility held to maturity

The realized option return of a call (RC
t,T ) or put (RP

t,T ) option with strike K which is held

from time t ≥ 0 to maturity T > t is given by the ratio of the option payoff at time T over

the option price (Ct, Pt) at time t:

RC
t,T = (ST −K)+

Ct
− 1, (3.39)

RP
t,T = (K − ST )+

Pt
− 1 (3.40)

The expected return of a call or put option follows as the ratio of the expected option

payoffs under the physical (P) over the risk-neutral (Q) measure:

E[RC
t,T ] = EP [(ST −K)+]

e−r(T−t)EQ[(ST −K)+] − 1 (3.41)

E[RP
t,T ] = EP [(K − ST )+]

e−r(T−t)EQ[(K − ST )+] − 1 (3.42)

Hu and Jacobs (2016) derive the expected physical call payoff in the context of the

Black-Scholes model as

EP [(St+τ −K)+] =
∫ ∞
z∗

(Steµτ−
1
2σ

2τ+σ
√
τz −K) 1√

2π
e−

z2
2 dz (3.43)

= eµτStN(d∗1)−KN(d∗2) (3.44)

with z∗ = ln K
St
−(µ−σ2/2)τ
σ
√
τ

, d∗1 = ln St
K

+(µ+σ2/2)τ
σ
√
τ

, d∗2 = ln St
K

+(µ−σ2/2)τ
σ
√
τ

. K denotes the option

strike, St the underlying price at time t, σ volatility of the underlying, drift-rate µ under

the physical measure, time to maturity τ and expiration date T . N(·) represents the

cumulative standard Normal distribution.
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The expected call return follows from equations (3.41) and (3.44) as:

E[RC
t,T ] = eµτStN(d∗1)−KN(d∗2)

C(τ, St, σ,K, r)
− 1 (3.45)

where C(τ, St, σ,K, r) = StN(d1)− e−rτKN(d2) denotes the Black-Scholes call price under

the risk-neutral measure with d1 = ln St
K

+(r+σ2/2)τ
σ
√
τ

, d2 = ln St
K

+(r−σ2/2)τ
σ
√
τ

.

The expected put return follows analogously as

E[RP
t,T ] = KN(−d∗2)− eµτStN(−d∗1)

P (τ, St, σ,K, r)
− 1 (3.46)

with P (τ, St, σ,K, r) = e−rτKN(−d2)− StN(−d1).

The variance of call returns is defined as

V (RC
t,T ) = EP [(RC

t,T − E(RC
t,T ))2] (3.47)

= EP(RC
t,T

2)− EP(RC
t,T )2 (3.48)

= EP((St+τ −K)+2)− EP((St+τ −K)+)2

C(τ, St, σ,K, r)2 (3.49)

Hereby note that it holds V (RC
t,T ) = V (RC

t,T + 1).

The squared first physical moment EP((St+τ −K)+)2 follows directly from equation (3.44).

The second physical moment can be derived as follows:

EP((St+τ −K)+2) =
∫ ∞
z∗

(Steµτ−
1
2σ

2τ+σ
√
τz −K)2 1√

2π
e−

z2
2 dz (3.50)

=
∫ ∞
z∗

(S2
t · e2µτ−σ2τ+2σ

√
τz − 2KSteµτ−

1
2σ

2τ+σ
√
τz +K2) 1√

2π
e−

z2
2 dz

(3.51)

The latter two integration terms hereby follow from equation (3.44) as they constitute the

same integrals just over different constants (let S ′t = −2KSt and K ′ = K2):

∫ ∞
z∗
−2KSteµτ−

1
2σ

2τ+σ
√
τz 1√

2π
e−

z2
2 dz = −2KSteµτN(d∗1), (3.52)∫ ∞

z∗
K2 1√

2π
e−

z2
2 dz = K2N(d∗2) (3.53)
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with z∗ = ln K
St
−(µ−σ2/2)τ
σ
√
τ

, d∗1 = ln St
K

+(µ+σ2/2)τ
σ
√
τ

, d∗2 = ln St
K

+(µ−σ2/2)τ
σ
√
τ

.

The first part of the integral in equation (3.50) can be arranged as

∫ ∞
z∗

S2
t · e2µτ−σ2τ+2σ

√
τz 1√

2π
e−

z2
2 dz = S2

t e
2µτ

∫ ∞
z∗

1√
2π
e−

1
2 ·2σ

2τ+ 1
2 ·4σ
√
τz− z

2
2 dz

= S2
t e

2µτ
∫ ∞
z∗

1√
2π
e−

1
2(z2−4σ

√
τz+2σ2τ)dz

= S2
t e

2µτ
∫ ∞
z∗

1√
2π
e−

1
2(z2−4σ

√
τz+4σ2τ−2σ2τ)dz

= S2
t e

2µτ+σ2τ
∫ ∞
z∗

1√
2π
e−

1
2(z2−4σ

√
τz+4σ2τ)dz

= S2
t e

2µτ+σ2τ
∫ ∞
z∗

1√
2π
e−

1
2(z−2σ

√
τ)2

dz

= S2
t e

2µτ+σ2τ
∫ ∞
z∗−2σ

√
τ

1√
2π
e−

1
2 z

2
dz

= S2
t e

2µτ+σ2τ
∫ −z∗+2σ

√
τ

−∞

1√
2π
e−

1
2 z

2
dz

= S2
t e
τ(2µ+σ2)N(d∗3) (3.54)

with d∗3 = − ln K
St
−(µ−σ2/2)τ
σ
√
τ

+ 2σ
√
τ = ln St

K
+(µ−σ2/2)τ+2σ2τ

σ
√
τ

= ln St
K

+(µ+1.5σ2)τ
σ
√
τ

.

Finally we can plug the results into the call variance from equation (3.47):

V (RC
t,T ) = S2

t e
τ(2µ+σ2)N(d∗3)− 2KSteµτN(d∗1) +K2N(d∗2)− (eµτStN(d∗1)−KN(d∗2))2

C(τ, St, σ,K, r)2 (3.55)

And call volatility follows as

v(RC
t,T ) =

√
V (RC

t,T ) (3.56)

The derivation of put variance follows analogously:

V (RP
t,T ) = EP [(RP

t,T − EP(RP
t,T ))2] (3.57)

= EP(RP
t,T

2)− EP(RP
t,T )2 (3.58)

= EP((K − St+τ )+2)− EP((K − St+τ )+)2

P (τ, St, σ,K, r)2 (3.59)
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Solving the first expectation term:

EP((K − St+τ )+2) =
∫ z∗

−∞
(K − Steµτ−

1
2σ

2τ+σ
√
τz)2 1√

2π
e−

z2
2 dz (3.60)

=
∫ z∗

−∞
(S2

t · e2µτ−σ2τ+2σ
√
τz − 2KSteµτ−

1
2σ

2τ+σ
√
τz +K2) 1√

2π
e−

z2
2 dz

(3.61)

The above integration terms are identical to equation (3.51), except for the integration

limits. Using the symmetry property of the standard Normal distribution, we can flip the

limits and set opposite signs:

∫ z∗

−∞
−2KSteµτ−

1
2σ

2τ+σ
√
τz 1√

2π
e−

z2
2 dz = −2KSteµτN(−d∗1) (3.62)∫ z∗

−∞
K2 1√

2π
e−

z2
2 dz = K2N(−d∗2) (3.63)∫ z∗

−∞
S2
t · e2µτ−σ2τ+2σ

√
τz 1√

2π
e−

z2
2 dz = S2

t e
τ(2µ+σ2)N(−d∗3) (3.64)

The put return variance follows as

V (RP
t,T ) = S2

t e
τ(2µ+σ2)N(−d∗3)− 2KSteµτN(−d∗1) +K2N(−d∗2)− (eµτStN(−d∗1)−KN(−d∗2))2

P (τ, St, σ,K, r)2

and put return volatility

v(RP
t,T ) =

√
V (RP

t,T ) (3.65)

An extension for a continuous dividend yield d can be achieved by substituting the

underlying price with the dividend-discounted price as St := Ste
−dτ :

V (RC
t,T ) = S2

t e
τ(2(µ−d)+σ2)N(d∗3)−2KSte(µ−d)τN(d∗1)+K2N(d∗2)−(e(µ−d)τStN(d∗1)−KN(d∗2))2

C(τ, Ste−dτ , σ,K, r)2

(3.66)
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and

V (RP
t,T ) = S2

t e
τ(2(µ−d)+σ2)N(-d∗3)−2KSte(µ−d)τN(-d∗1)+K2N(-d∗2)−(e(µ−d)τStN(-d∗1)−KN(-d∗2))2

P (τ, Ste−dτ , σ,K, r)2

(3.67)

with z∗ = ln K
St
−(µ−d−σ2/2)τ

σ
√
τ

, d∗1 = ln St
K

+(µ−d+σ2/2)τ
σ
√
τ

, d∗2 = ln St
K

+(µ−d−σ2/2)τ
σ
√
τ

, d∗3 = ln St
K

+(µ−d+1.5σ2)τ
σ
√
τ

.

3.6.2 Option volatility over finite holding periods

When the option is not held to maturity but priorly sold in the market at time t+ h, the

realized return of a call or put option over a holding period h < τ = T − t is given by the

ratio of the option price at time t+ h and the current option price at time t:

RC
t,h,T = CT−h

Ct
− 1, (3.68)

RP
t,h,T = PT−h

Ct
− 1 (3.69)

The expected option returns follow as

E[RC
t,h,T ] = EP(C(τ − h, St+h, σ,K, r))

C(τ, St, σ,K, r)
− 1 (3.70)

E[RP
t,h,T ] = EP(P (τ − h, St+h, σ,K, r))

P (τ, St, σ,K, r)
− 1 (3.71)

The expected option price at time t+ h is evaluated under the physical measure (P) to

capture the filtration of realized underlying prices up to time t+ h.

The variance of call returns for a holding period h < τ follows as

V (RC
t,h,T ) = EP [(RC

t,h,T − EP(RC
t,h,T ))2] (3.72)

= EP(RC
t,h,T

2)− EP(RC
t,h,T )2 (3.73)

= EP(C(τ − h, St+h, σ,K, r)2)− EP(C(τ − h, St+h, σ,K, r))2

C(τ, St, σ,K, r)2 (3.74)

The call variance in equation (3.74) hence requires the derivation of three expected values:
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The denominator equals the squared call price, which can be directly calculated under the

Black-Scholes model as C(τ, St, σ,K, r)2 = (StN(d1)− e−rτKN(d2))2.

The first term in the nominator can be written out by plugging the geometric Brownian

motion St+h = Ste
µh− 1

2σ
2h+σ

√
hz and calculating the expectation for Z ∼ N(0, 1):

EP(C(τ − h, St+h, σ,K, r)2) =
∫
RC(τ − h, Steµh−

1
2σ

2h+σ
√
hz, σ,K, r)2 1√

2πe
− z

2
2 dz (3.75)

The second term in the nominator follows analogously:

EP(C(τ − h, St+h, σ,K, r))2 =
(∫

RC(τ − h, Steµh−
1
2σ

2h+σ
√
hz, σ,K, r) 1√

2πe
− z

2
2 dz

)2
(3.76)

The call option holding period variance follows as:

V (rCt,h,T ) =

∫
R C(τ−h,Steµh−

1
2σ

2h+σ
√
hz ,σ,K,r)2 1√

2π
e−

z2
2 dz−

(∫
R C(τ−h,Steµh−

1
2σ

2h+σ
√
hz ,σ,K,r) 1√

2π
e−

z2
2 dz

)2

C(τ,St,σ,K,r)2

(3.77)

And call option holding period volatility

v(RC
t,T ) =

√
V (RC

t,T ) (3.78)

Analogously, the put option holding period variance can be found by simply replacing the

call price with the put price:

V (rPt,h,T ) =

∫
R P (τ − h, Steµh−

1
2σ

2h+σ
√
hz , σ,K, r)2 1√

2π
e−

z2
2 dz −

(∫
R P (τ − h, Steµh−

1
2σ

2h+σ
√
hz , σ,K, r) 1√

2π
e−

z2
2 dz

)2

P (τ, St, σ,K, r)2

(3.79)

And put option holding period volatility

v(RP
t,T ) =

√
V (RP

t,T ) (3.80)
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with P (τ, St, σ,K, r) = Ke−rτN(−d2)−StN(−d1). One may further introduce a continuous

dividend yield d via discussed substitution St := Ste
−dτ . The above integrals are numerically

approximated via trapezoidal integration.

3.6.3 Option volatility over infinitesimal holding period

Consider the option return for infinitesimal holding periods h → 0. Recall that in the

Black-Scholes model, the instantaneous dynamics of the underlying under the physical

measure are given by

dSt = σStdWt + µStdt (3.81)

where dWt represents standard Brownian Motion increments.

Applying Itó’s Lemma to a twice-differentiable claim C(St, t) : R2
+ 7→ R and noting the

quadratic variation of a Brownian motion as 〈dWt〉 = dt yields

dCt = δCt
δSt

dSt + 1
2
δ2Ct
δS2

t

〈dSt〉 (3.82)

= δCt
δSt

σStdWt +
(
µSt

δCt
δSt

+ 1
2σ

2S2
t

δ2Ct
δS2

t

)
dt (3.83)

The infinitesimal return of C(St, t) is given as

RC
t,0,T = dCt

Ct
(3.84)

The infinitesimal variance follows as

V (RC
t,0,T ) = V (dCt)

C2
t

(3.85)

=
V ( δCt

δSt
σStdWt)
C2
t

(3.86)

=
( δCt
δSt
σSt)2dt

C2
t

(3.87)
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The infinitesimal call and put volatilities follow as

v(RC
t,0,T ) = ∆t

√
dtσSt

C(τ, St, σ,K, r, d) (3.88)

v(RP
t,0,T ) = |∆t − e−dτ |

√
dtσSt

P (τ, St, σ,K, r, d) (3.89)

with ∆t = e−dτN((ln(St/K)+(r−d+0.5σ2)τ)
σ
√
τ

.



4 A New Look at the Low-Volatility

Effect
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Abstract

A widespread anomaly in financial markets is the inverse relation between volatility and

future returns: the low-volatility effect. We take a new look at this phenomenon in the

market for equity options. Our empirical results show that the negative association between

stock return volatilities and option returns is not a general pattern, but is conditional on

market makers being net short in options. If they are net long, the effect can even be

reversed. The conditional nature of the low-volatility effect in option markets stresses the

importance of market imperfections and the reaction of market makers in explaining the

anomaly. Moreover, the conditional low-volatility effect contains important information for

option market investors because it is three to four times stronger than the unconditional

effect.
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4.1 Introduction

Volatility is negatively related to future returns. This empirical regularity, often called the

low-volatility anomaly or the low-volatility effect, is one of the most interesting puzzles

in financial economics and has been observed in many markets (Ang et al. 2006, 2009).

Cao and Han (2013) have documented a specific variant of this anomaly: delta-hedged

option returns decrease with an increasing idiosyncratic volatility (IVOL) of the underlying

stock. In this paper, we provide new empirical evidence on the low-volatility effect in stock

options that sheds new light on the economic forces behind the anomaly. By doing so, we

contribute to a better understanding of the anomaly generally.

We propose and investigate the conditional low-volatility effect, arguing that a negative

relation between stock volatility and future option returns is conditional on market makers

being net short in options. If market makers are net long in options, there can be a converse

relation, leading to a high-volatility effect. A reason for this conditional low-volatility effect

is based on the idea that high IVOLs cause problems for market makers in option markets

because they are accompanied by high volatility risk that cannot be hedged easily due to

a lack of volatility derivatives for individual stocks. If there is end-user buying pressure,

market makers need extra compensation in the form of higher prices for writing options

on high-volatility stocks, driving option returns down. If there is selling pressure by end

users and market makers need to buy options, then option prices need to be lower, leading

to higher returns for options on high-volatility stocks. The effect may not be symmetric,

however. As short positions in options impose a higher risk on market makers than long

positions in terms of maximum losses, the low-volatility effect could be stronger than the

high-volatility effect, causing an inverse relation between volatility and option returns on

average—that is, an unconditional low-volatility effect.

Our empirical results provide clear evidence for a conditional low-volatility effect. An

inverse relation between stock volatility and future option returns holds for a fraction of

options only. Using double-sorts based on stock volatility and a proxy for market-maker

positions, only those quintiles where market makers are most likely to hold short positions

show a low-volatility effect. For the quintiles where market makers are most likely net
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long in options, the effect can be reversed. This conditional high-volatility effect, however,

is much weaker than the conditional low-volatility effect and not statistically significant.

Due to this asymmetry, the average (unconditional) relation shows increasing mean option

returns with decreasing stock volatility, confirming the results by Cao and Han (2013).

Separation between systematic volatility (SVOL) and idiosyncratic volatility (IVOL) via a

one-factor market model reveals that IVOL is the crucial component. When separation is

instead based on the three-factor model by Fama and French (1993), SVOL also leads to

significant effects. We interpret these findings as evidence for unhedgeable volatility risk—

that is, non-market volatility risk, being an important economic driver of the low-volatility

effect.

The results of our paper contribute to a better economic understanding of the low-volatility

effect by providing new evidence on the importance of market makers—facing market

frictions and market incompleteness—in the relation between stock volatility and option

returns. Our analysis also offers new insights for investors. If investors want to integrate the

low-volatility effect in stock options into their trading strategy, they could just concentrate

on a fraction of options: those that actually show this pattern. Moreover, the conditional

effect is about three to four times stronger than the unconditional one. Because the

conditioning variable that we use in our empirical study requires knowledge of historical

stock and option prices only, the necessary information is relatively easy to obtain. To

investigate the potential benefits for investors in more detail, we check whether the

conditional low-volatility effect is related to common factor risks in stock and options

markets and whether it remains stable over time. Finally, we explore if it is strong enough

to be exploited via a simple long–short trading strategy under transaction costs.

Our paper contributes to two strands of literature. First, it belongs to the group of

studies that investigate the low-volatility effect. Different explanations for this effect have

been put forward in the literature. One line of argument points to the extra demand for

high-volatility assets, caused either by leverage constraints that investors have to meet

(Frazzini and Pedersen 2014), the irrational behavior of private investors (Mohrschladt and

Schneider 2018), or speculative demand due to investor preferences for lottery-like payoffs

(Bali et al. 2011, 2017). Such speculative demand is also what Cao and Han (2013) have
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in mind as a reason for the low-volatility effect in option markets.1 Our suggestion of a

conditional low-volatility effect is fully consistent with these demand-based explanations.

However, we broaden the picture by looking at the supply side and ask how costly it

is to meet a specific demand. Even if end-user demand for high-volatility stocks and

low-volatility stocks were equal, if market makers have to bear higher costs to meet the

demand for high-volatility stocks, then there is still a low-volatility effect. This change of

perspective from demand towards the balancing of supply and demand may also be fruitful

for analyses of the low-volatility effect in other markets.

Second, our paper contributes to the literature on the cross section of expected option

returns. Most importantly, it shows that two well-known return patterns—the low-volatility

effect, as discovered by Cao and Han (2013), and the “expensiveness effect” by Goyal and

Saretto (2009)—are closely related, because expensiveness serves as a conditioning variable

to proxy market-maker positions in our study. Our paper also complements other results

on specific regularities in option returns by stressing the importance of conditioning on

market-maker positions (Kanne et al. 2018), the importance of the different risk profiles of

long versus short positions in options that are reflected in margin requirements (Hitzemann

et al. 2018), and the general importance of market imperfections for the understanding of

the cross section of expected option returns (Christoffersen et al. 2018).

Our paper is structured as follows: In Section 4.2, we introduce the conditional low-volatility

effect and develop hypotheses for our empirical investigation. Section 4.3 describes our

data set and the data processing. Next, we present our main results on the conditional

low-volatility effect in Section 4.4. In Section 4.5, we provide additional results, centering

on the extent to which the effect is beneficial for investors. Section 4.6 concludes.
1Further evidence on the relation between lottery-like preferences and option returns is provided by

Byun and Kim (2016).
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4.2 Volatility and Imperfect Markets: The Conditional

Low-Volatility Effect

This paper takes a new look at the economic forces behind the low-volatility effect in

options markets. In particular, it investigates a potential link between the low-volatility

effect and market imperfections. Market imperfections and volatility are related because

stochastic IVOL is an important non-hedgeable risk for market makers, and the magnitude

of volatility risk is likely to grow with the volatility level.2 Non-hedgeable risks lead to

inventory risk, and inventory risk can have significant effects on option prices and returns

(Garleanu et al. 2009). Does such a link, however, suffice to constitute a low-volatility

effect? Should delta-hedged option returns be lower or higher when market imperfections

are more severe? That is, should option returns decrease or increase with growing stock

volatility? In our view, the answer depends on whether market makers are net long or net

short in options. If there is end-user buying pressure and market makers end up with net

short positions in options, market imperfections should lead to higher option prices and

lower returns. Therefore, option returns should decrease with stock volatility and there

is a low-volatility effect. If market makers are net long, however, higher stock volatilities

should be associated with higher option returns and there is a high-volatility effect. This

argument leads to our first hypothesis.

Hypothesis 1: Delta-hedged option returns decrease with stock volatility in the cross

section for options with net short positions of market makers, leading to a low-volatility

effect. For options with net long positions of market makers, option returns increase with

stock volatility, leading to a high-volatility effect.

Hypothesis 1 conjectures a low-volatility effect that is conditional on the net position

of market makers being negative. Conversely, if market makers are net long, a positive
2This latter point is in line with standard option pricing models. In the model by Heston (1993),

variance risk is proportional to volatility. In the model by Christoffersen et al. (2018), both market variance
risk and idiosyncratic variance risk are proportional to market volatility and IVOL, respectively.
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relation between volatility and option return should appear: that is, stocks with higher

volatility will have options with higher expected returns. However, the two settings of

negative versus positive net positions of market makers may not be symmetric. Consider a

market maker who has bought a call option. The downside risk of this position is capped

at the option premium. In contrast, if the market maker had written the call, the downside

risk of the position is unlimited. Such differences between long and short positions in terms

of risk are also reflected in margin requirements, leading to different margin costs. It is

therefore reasonable to conjecture that stock volatility affects option returns more severely

if market makers have to deal with short positions, as stated in our second hypothesis.

Hypothesis 2: The relation between stock volatility and option returns is not symmetric

with respect to a net short or net long position of market makers: the conditional low-

volatility effect is stronger than the conditional high-volatility effect.

If Hypothesis 2 were true, it could resolve the empirical puzzle of an unconditional low-

volatility effect that is associated with market makers being net long on average (over all

stocks) in stock options (Ni et al. 2008; Muravyev 2016; Christoffersen et al. 2018).3 If

more stocks show a high-volatility effect (market makers being net long in stock options)

than low-volatility effect (market makers being net short in stock options), but the latter

effect is much stronger, then the unconditional effect could well be a negative relation

between stock volatility and delta-hedged options returns.

When investigating the link between stock volatility and option returns, conditioning on

the market-maker position is not the only issue to consider. It is also crucial to be precise

about the relevant volatility concept. Because it is non-hedgeable risk that causes problems

for market makers’ inventories, the hedgeable and non-hedgeable parts of volatility should

be distinguished. This distinction is not necessarily the same as that between SVOL and

IVOL, however, because the latter depends on the specific factor model employed in an

empirical study. If market imperfections are the root cause of the low-volatility effect, then
3However, these studies also show a very large variation in market-maker positions between option

series. That is, although market makers are net long on average, there are many stocks where market
makers are net short in the respective options.
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what matters should be the availability of liquid hedging instruments for volatility risk,

leading to our third hypothesis.

Hypothesis 3: Only volatility risk that cannot be easily hedged via volatility derivatives

is relevant for the low-volatility effect.

Hypotheses 1 to 3 take the perspective that market imperfections are at the heart of the low-

volatility effect. Even if these hypotheses are supported empirically, potential alternative

explanations for the conditional low-volatility effect are still to be considered. The reason

is that these alternative explanations may have important consequences for investors.

First, there is the question of whether the observed empirical patterns are at least partly

explained by risk premiums for common factor risks. If investors try to incorporate options

into factor-investing strategies, this information is key to making judgments about the

potential to generate alpha and achieve diversification benefits. Second, is the conditional

low-volatility effect big enough to offer significant trading profits even after accounting for

common risks and transaction costs? If the answer is yes, then at least part of the effect

could be a result of market inefficiencies. The question of whether such market inefficiencies

still exist or were reduced over time is another important piece of information for investors.

We investigate these issues in the penultimate section of this paper.

4.3 Data and Data Processing

Data Sources and Filters

Our first major data source is the OptionMetrics IvyDB database. This database contains

information on all US exchange-listed individual equity and index options. For our analysis,

we use the daily closing bid and ask quotes of options written on individual stocks, deltas,

implied volatilities (IVs), and the matching stock prices. Deltas and IVs are calculated

by OptionMetrics’s proprietary algorithms, which account for discrete dividend payments

and the early exercise of American options. OptionMetrics also provides 365-day historical
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return volatilities of the options’ underlying stocks. The sample period for the options

data is from January 1996 to August 2015.

We use similar data filters as in previous studies (e.g., Goyal and Saretto 2009; Cao and Han

2013; Kanne et al. 2018) to reduce the impact of recording errors. We drop all observations

where the option bid price is zero, the bid price is higher than the ask price, the bid–ask

spread is lower than the minimum tick size, and the mid price is smaller than $1/8. Options

written on stocks with an ex-dividend date during the option’s remaining time-to-maturity

as well as options that violate obvious no-arbitrage conditions are also excluded. Moreover,

we require a non-missing delta, IV, and 365-day historical volatility (HV), to retain an

observation in our sample.

Our second major data source is the Center for Research in Security Prices database. Daily

stock returns from the database are matched with the options data to calculate historical

30-day stock volatilities. Finally, we use Kenneth French’s database to obtain the returns

of specific factor portfolios. These factor portfolios are required to distinguish SVOL from

IVOL and to control for potential factor risk premiums. Risk-free interest rates are also

taken from Kenneth French’s database.

Delta-Hedged Option Returns

Following Cao and Han (2013), we take the end of each month and select for each underlying

stock the put and call options that are closest to at-the-money and have the shortest

remaining time-to-maturity of all options with a maturity of at least one month. We also

require the actual moneyness to fall within the range [0.8, 1.2], with moneyness measured

as the ratio of spot price to strike. We then calculate delta-hedged option returns for calls

and puts according to

RC
t,t+τ = max (St+τ −KC , 0)−∆C

t St+τ − (Ct −∆C
t St) e r τ

Abs(Ct −∆C
t St)

, (4.1)

RP
t,t+τ = max (KP − St+τ , 0)−∆P

t St+τ − (Pt −∆P
t St) e r τ

Abs(Pt −∆P
t St)

, (4.2)
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where t refers to the day when we set up the delta-hedged option position (end of month)

and t+ τ is the last trading day of the option. St and St+τ denote the matched prices of

the underlying stock at times t and t+ τ , respectively, KC and KP are the options’ strike

prices, and ∆C
t and ∆P

t denote the deltas. The option prices Ct and Pt are the closing mid

prices at date t. According to Equations (4.1) and (4.2), we use the returns of delta-hedged

call and put options that buy one option contract and sell delta shares of the underlying

stock. The above return definitions also consider that a positive initial value (at date t) of

a delta-hedged option requires some capital which could alternatively be invested at the

risk-free rate. If the initial value is negative, the delta-hedged option provides some capital

that could alternatively be obtained via risk-free borrowing. Because our delta-hedged

option returns take these opportunities for risk-free investing or borrowing into account,

they are to be interpreted as excess returns.

[ Insert Table 4.1 about here ]

Given our data period and the data filters, we have 357,551 delta-hedged call returns and

359,136 delta-hedged put returns. As the data period covers 236 months, we have on average

1,515 calls and 1,522 puts in a cross section. However, the number of observations per cross

section increases over time. Panels A and B of Table 4.1 provide some descriptive statistics

of the delta-hedged call and put returns. Average delta-hedged returns are negative for

both calls and puts and show a very large dispersion. The return period (time-to-maturity

of options) is, on average, close to 50 days and the moneyness of the options is close to one.

Stock-Return Volatilities

To investigate the cross-sectional relation between option returns and stock volatilities, we

need to calculate volatilities in a next step. Again, we closely follow Cao and Han (2013).

For every stock and every date t, we calculate the standard deviation of daily stock returns

over the previous 30-day period.4 This is our measure of total volatility (VOL). To separate
4To maintain a sufficient number of observations, we require to have at least 17 daily returns available

over this period.
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IVOL from SVOL, we use either the market factor or the three-factor model by Fama

and French (1993).5 Because liquid derivatives contracts are available to hedge changes in

market volatility—for example, futures on the Chicago Board Options Exchange Volatility

Index (VIX)6—the one-factor model should be more appropriate than the three-factor

model in distinguishing between hedgeable and non-hedgeable7 volatility risk. This is what

we will exploit to test Hypothesis 3. Panel C of Table 4.1 shows some descriptive statistics

of the (annualized) volatilities that we use in our study. On average, IVOL is greater than

SVOL whether the one- or three-factor model is used. We also see the extent to which the

three-factor model changes IVOL versus SVOL values compared to the one-factor model.

Conditioning Variables

The core idea of this paper is that the low-volatility effect should be investigated condition-

ally by considering whether market makers are net long or net short in specific options. To

proxy market-maker positions, we take a pragmatic view and use a conditioning variable

that is based on the market prices of stocks and options. Such a conditioning variable,

based on public information only, has the advantage that a corresponding conditional

low-volatility effect could be exploited more easily via trading strategies. No proprietary

information on the actual holdings of market makers is required. The proxy that we use is

option expensiveness, measured as the difference between the option’s IV and a benchmark

volatility estimate from historical stock-return data (i.e., HV). As shown by Bollen and

Whaley (2004) and Garleanu et al. (2009), there is a strong relation between end-user

demand pressure and expensiveness, which affects market-maker positions. The higher the

expensiveness of an option, the more likely it is that market makers are net short in this

option. The implementation of the expensiveness measure uses the date t IVs of the call and

put options from OptionMetrics. For the HV benchmark, we use OptionMetrics’s 365-day

volatility for the period preceding date t, as in Goyal and Saretto (2009). Descriptive
5We use the daily data from Kenneth French’s database to obtain factor returns that exactly match

the return periods of the options.
6More information on VIX futures is provided, for example, by Shu and Zhang (2012) and Simon and

Campasano (2014).
7Volatility derivatives are not generally available for individual stocks and factor portfolios besides the

market factor.
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statistics for the expensiveness measure IV−HV are provided in Panel D of Table 4.1. In the

latter part of our paper, we provide results that are conditional on different transaction cost

scenarios. The core element of these scenarios is the option’s quoted spread. Descriptive

statistics for quoted spreads are also provided in Panel D of Table 4.1.

4.4 The Conditional Low-Volatility Effect: Empirical

Evidence

For each month in our data period, we take all delta-hedged call (put) returns and sort them

into quintiles according to the corresponding stock volatility. We use either VOL, IVOL,

or SVOL in this sort. A single sort by volatility provides evidence on the unconditional

low-volatility effect. Next, we sort the returns in each volatility quintile by IV−HV and

again build quintiles. The purpose of this second sort is an (approximate) conditioning on

net market-maker positions. With higher expensiveness, options in the respective quintiles

should have a higher likelihood of market makers holding short positions. In contrast, if

expensiveness is lower, market makers should more likely be net long in the corresponding

options. For each of the 25 resulting groups, we calculate average returns. Finally, we

obtain time-series averages of the average returns in each group.

Table 4.2 provides the results of these calculations, based on a one-factor market model

to distinguish between IVOL and SVOL. Panel A presents the results for call options

and Panel B the corresponding results for put options. The first five columns (1-low to

5-high) refer to the different expensiveness quintiles, and the last column (all) shows the

average returns over all expensiveness categories; that is, it provides the results of the single

sort by volatility. Therefore, the last column delivers information on the unconditional

low-volatility effect. The first five rows (1-low to 5-high) refer to the respective volatility

quintiles. The sixth row (5-1), contains the average returns of a long–short trading strategy

that buys the high-volatility portfolio (5-high) and sells the low-volatility portfolio (1-low).

If there is a low-volatility effect, the average return of this trading strategy should be
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negative. Positive returns of this trading strategy are indicative for a high-volatility effect.

Finally, the seventh row shows the t-values for the average returns of the 5-1 portfolios.

[ Insert Table 4.2 about here ]

The results in Table 4.2 provide clear support for a conditional low-volatility effect, as stated

in Hypothesis 1. Average delta-hedged option returns clearly decrease with total volatility

for the two highest expensiveness quintiles. Moreover, the effect is much stronger for the

highest expensiveness quintile. In terms of average 50-day returns of the 5-1 strategy, the

effect is about three times bigger in the highest expensiveness quintile (–3.7%) than in the

second highest expensiveness quintile (–1.2%) for call options. For put options, it is more

than two times bigger (–2.4% versus –1.1%). However, no low-volatility effect can be found

in the other three quintiles, meaning that the effect is only present in a fraction of the whole

data set. Average returns of 5-1 strategies are even positive for the two lowest expensiveness

quintiles, pointing towards a high-volatility effect. However, the effect is much smaller (in

absolute terms) than the effect in the highest expensiveness quintiles and not statistically sig-

nificant. This finding supports Hypothesis 2: a conditional high-volatility effect, if it exists

at all, is much weaker than the corresponding conditional low-volatility effect. Consequently,

the unconditional effect shows an inverse relation between stock volatility and future option

returns, which was first discovered by Cao and Han (2013) and is confirmed by the results

of the 5-1 strategy in the last column (all). It is also important to compare the magnitudes

of the conditional and unconditional low-volatility effects. Examining the options with

the highest expensiveness, returns of the 5-1 strategy are more than four times larger (in

absolute terms) for calls (–3.7% versus –0.8%) and more than three times larger for puts

(–2.4% versus –0.7%), as compared to a strategy based on all options.

In line with market imperfections being at the heart of the low-volatility effect in options

markets, Hypothesis 3 states that only non-hedgeable volatility risk is relevant for the

low-volatility effect. To provide evidence on this issue, we replace VOL with either SVOL or

IVOL in our sorts. In particular, we use a one-factor market model to distinguish between

the systematic and idiosyncratic parts of volatility. In such a setting, SVOL equals market
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volatility, and market volatility risk can be hedged via liquid volatility derivatives like VIX

futures.

When using IVOL instead of VOL for sorting, the conditional volatility effect appears even

stronger. If we condition on SVOL instead, there is no longer any significant low-volatility

effect even in the highest expensiveness quintile. We interpret this finding as evidence for

the dominant role of non-market volatility and non-hedgeable volatility risk, supporting

Hypothesis 3. To further substantiate Hypothesis 3, we repeat our analysis of SVOL versus

IVOL, this time using the three-factor model by Fama and French (1993) for separation.

Table 4.3 provides our results. Given that the three-factor model differently defines IVOL

and SVOL (compared to the one-factor model), the effects are slightly weaker for IVOL

but stronger for SVOL. In the highest expensiveness quintile, we now find a significant

low-SVOL effect for both calls and puts. By classifying volatility due to the two additional

factors as systematic, SVOL becomes important for the low-volatility effect. This finding

is consistent with the view that it is important whether market makers in options markets

can easily hedge the corresponding volatility risk or not. Finally, it is worth noting that

the effects of moving from a one- to a three-factor model cannot be observed by looking

at the unconditional low-volatility effect alone. Therefore, our focus on the conditional

low-volatility effect, which is much stronger in the highest expensiveness quintiles, helps us

to study more subtle aspects of the whole phenomenon.

[ Insert Table 4.3 about here ]

4.5 Benefits for Investors

In this section, we further explore the value of the conditional low-volatility effect for

investors. Our first question is whether the returns of a conditional low-volatility trading

strategy relate to some common factors that are priced either in stock or options markets.

If the returns of such a strategy were merely compensation for common factor risks, then

the value for investors is limited because more straightforward strategies exist to earn the

respective risk premiums.
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For our analysis of this question, we use a trading strategy that holds a long position in

options on low-volatility stocks (1-low) and a short positions in options on high-volatility

stocks (5-high), using the highest expensiveness quintile (5-high in Table 4.2) and IVOL

according to the one-factor market model (IVOL-1F in Table 4.2). We consider both stock

market factors and option market factors to explain the returns of this strategy. Although

we try to avoid stock price exposure by using delta-hedged option returns, these hedges

are unlikely to be perfect, and a remaining stock price exposure may be priced. To capture

such effects, we use the three factors—market (MKT), size (SMB), and value (HML)—from

the Fama and French (1993) model, the momentum factor (MOM) by Carhart (1997),

and a low-volatility stock market factor (LowVol). The latter factor uses the returns

of a long–short portfolio that buys low-volatility stocks and sells high-volatility stocks.

The term “low-volatility stocks” refers to the 1-low quintile of all stocks according to

IVOL (IVOL-1F in Table 4.2), and “high-volatility stocks” refers to the 5-high quintile

of all stocks. Inclusion of the LowVol factor ensures that our results on delta-hedged

option returns are not simply picking up the low-volatility effect in the stock market, due

to our sorting by stock volatility. We also consider option market factors. The market

volatility risk premium is approximated by the return of zero-beta straddles written on

the Standard & Poors’ (S&P) 500 Index (ZB-STR Index), as suggested by Coval and

Shumway (2001). Changes in the VIX (dVIX) are used as an indicator for the magnitude

of market volatility risk. In addition to market volatility risk, correlation risk may be

priced in the low-volatility trading strategy. As shown by Driessen et al. (2009), correlation

risk premiums can be captured via differences between the market variance risk premium

and the average variance risk premium of the component stocks. Therefore, we add the

average returns of zero-beta straddles written on all component stocks (ZB-STR Stocks)

of the S&P 500 Index as an additional factor. All factor returns cover the same return

periods as our delta-hedged option returns.

[ Insert Table 4.4 about here ]

Table 4.4 presents the results of time-series regressions that regress the delta-hedged option

returns of the 1-5 strategy on different combinations of factors. Panel A gives the results
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for call options and Panel B for put options. Model 1 explores the impact of the stock

market factors; Model 2, the importance of a market variance risk premium; Model 3, the

impact of variance risk; and Model 4, the joint influence of variance and correlation risk

premiums. Finally, Model 5 considers all factors simultaneously. The regression analysis

shows some explanatory power for certain factors. Model 1 has significant coefficients for

the MKT and HML factors, and Model 3 indicates some explanatory power of volatility

risk. These results hold for both call and put options. For call options, there seems to be

also an effect of the variance risk premium, according to Model 2. Most importantly, for

all models in Table 4.4, alphas are highly significant and very close to the average return

of a 1-5 strategy, which is 4.03% for calls and 2.67% for puts. Therefore, we can conclude

that the cross-sectional phenomenon of a conditional low-volatility effect in option markets

is not just a compensation for some common factor risks.

The second question that we ask in this section is whether the conditional low-volatility

effect is only present in the early years of our data period and disappearing over time. If

this were the case, the conditional low-volatility effect is likely to be a result of market

inefficiencies that were reduced over time and should no longer be considered by investors.

In particular, the Securities and Exchange Commission’s (SEC’s) market linkage plan,

finally becoming effective in April 2003, may have contributed to the reduction of such

inefficiencies. Moreover, we ask whether the positive average returns of our low-volatility

trading strategy merely results from a few extreme observations during the financial

crisis between June 2007 and December 2009, which would suggest that the conditional

low-volatility effect would be irrelevant for investors in normal times.

[ Insert Table 4.5 about here ]

Table 4.5 provides the average returns and alphas (according to Model 5 in Table 4.4) for

four different time periods. We consider the full period (January 1996 to August 2015),

the full period excluding the time of the financial crisis from June 2007 to December 2009,

the period until the SEC’s market linkage plan became effective (January 1996 to April

2003), and the period thereafter (May 2003 to August 2015). There is no evidence that

the conditional low-volatility effect is only driven by market inefficiencies during the early
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years of our data period. To the contrary, if we use the more recent data period from May

2003 onwards, both mean returns and alphas increase, as compared to the whole data

period. This is true for both calls and puts. If anything, the effect becomes stronger over

time and there is no indication that it should be disregarded. There is also no indication

that the effect is strongly driven by some extreme observations from the financial crisis.

Excluding the crisis period, both average returns and alphas change very little.

The third question we deal with in this section is whether the conditional low-volatility

effect can be exploited by investors via a simple trading strategy even in the presence of

transaction costs. So far, our analysis of the low-volatility trading strategy was based

on the assumption that trades can be executed at the mid quotes. Now we take option

spreads into account and consider different transaction cost scenarios. We follow Cao and

Han (2013) and assume that the effective spread (ESPR) of transactions equals a certain

fraction of the quoted spread (QSPR).8 Specifically, we assume ESPR/QSPR ratios of 10%,

25%, and 50%, respectively, following Cao and Han (2013). As a reference point, we also

repeat results under the assumption of no transaction costs (i.e., mid price [MidP]).

[ Insert Table 4.6 about here ]

Table 4.6 reports the average delta-hedged option returns and alphas (according to Model 5

in Table 4.4) of the 1-5 portfolio in the highest expensiveness quintile under the different

transaction cost scenarios. Panel A gives results for calls and Panel B gives results for

puts. Average returns and alphas stay statistically and economically significant for an

ESPR/QSPR ratio of 25%. If we move to 50%, however, we lose significance for both call

and put options. In conclusion, only investors with low transactions costs can exploit the

conditional low-volatility effect profitably, though the effect is three to four times stronger

than that of unconditional low-volatility.

However, this finding does not mean that knowledge of the conditional low-volatility effect

is useless for investors with higher transactions costs. To the contrary, our findings show

that the effect cannot be easily arbitraged away (due to the transactions costs) and does
8Compare Cao and Han (2013), page 246, Table 10, for analogous results with respect to the unconditional

low-volatility effect.
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not tend to shrink over time, making it more likely that the effect will persist in the future

and should be considered. For example, if investors with lottery-like preferences want to

buy options on high-volatility stocks, they should think about selecting these options from

the lowest IV−HV quintile (i.e., 1-low) instead of the highest one (i.e., 5-high). By doing

so, they would avoid the strong low-volatility effect in the highest quintile and could even

profit from the slight high-volatility effect in the lowest quintile. If we take the results from

Table 4.2, the differences in average 50-day delta-hedged returns (using IVOL-1F) when

selecting options on high-volatility stocks from the lowest IV−HV quintile instead of the

highest quintile would be 6.5% for calls and 4.5% for puts.9

4.6 Conclusions

The low-volatility effect is a well-known phenomenon in many financial markets that

challenges the intuitive idea of a risk–return trade-off. Our empirical investigation into

the low-volatility effect in stock options contributes to a better understanding of this

phenomenon. We show that the low-volatility effect is not a general pattern, but is

conditional on option expensiveness being high. Where option expensiveness is low, the

effect is even reversed, although the reverse effect is quantitatively much weaker.

Our empirical findings support the view that market imperfections and the reaction

of market makers to these imperfections are at the heart of the effect. If high option

expensiveness is a good proxy for market makers being net short in options and high

IVOL is a good proxy for severe market imperfections, the observed pattern suggests that

market makers receive a compensation because they sell at higher option prices if market

imperfections become more severe. If market makers are net long, however, they receive

a compensation because they buy at lower option prices. Because risk profiles of long

and short positions in options are different, the former compensation should be greater,

which is exactly what we observe. More generally, our analysis complements demand-based

explanations of the low-volatility effect by drawing attention to the potential costs to meet
9The calculations in Table 4.2 are based on mid quotes. If we take transaction costs into account and

repeat the calculations based on ask prices, the differences in 50-day delta-hedged returns are 7% for calls
and 4.9% for puts.
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a certain demand. This is an interesting avenue for further research in other markets as

well.

The conditional low-volatility effect that we document in this paper also provides important

information for investors in options markets. First, the conditional effect is three to four

times stronger than the unconditional one. Second, it cannot be explained by common

factor risks in stock and option markets and therefore offers some potential to create alpha.

Finally, it is stable over time and cannot easily be arbitraged away in the presence of

transaction costs. Therefore, the effect is likely to persist in the future and should be

considered in the design of investment strategies in stock options.
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Table 4.1: Summary Statistics of Options and Stock Data

Panel A: Call Options (357,551 observations)
µ σ q0.1 q0.25 q0.75 q0.9

Delta-Hedged Return –0.8% 14.9% –14.4% –8.1% 4.0% 14.2%
Days to Maturity 49.7 2.6 47.0 50.0 51.0 52.0
Moneyness (S/K) 1.00 0.06 0.94 0.97 1.03 1.06

Panel B: Put Options (359,136 observations)
µ σ q0.1 q0.25 q0.75 q0.9

Delta-Hedged Return –0.4% 12.1% –12.0% –6.9% 3.8% 12.4%
Days to Maturity 49.7 2.6 47.0 50.0 51.0 52.0
Moneyness (S/K) 1.01 0.06 0.94 0.97 1.04 1.07

Panel C: Stock Return Volatilities
µ σ q0.1 q0.25 q0.75 q0.9

VOL 46.1% 30.5% 18.8% 26.2% 57.0% 81.9%

1-Factor Model (1F)
IVOL-1F 39.1% 27.6% 14.8% 21.2% 49.0% 71.1%
SVOL-1F 20.7% 18.4% 4.3% 9.0% 26.3% 41.9%

3-Factor Model (3F)
IVOL-3F 36.0% 25.7% 13.5% 19.4% 45.0% 65.7%
SVOL-3F 26.4% 20.1% 9.0% 13.6% 32.8% 49.8%

Panel D: Conditioning Variables
µ σ q0.1 q0.25 q0.75 q0.9

Expensiveness: IV−HV –0.8% 16.6% –16.4% –6.6% 5.6% 13.5%
Option Spread 27% 30% 6% 10% 31% 61%

Note: This table shows descriptive statistics of the options and stock data that we use in our
empirical study. In particular, it presents the mean (µ), the standard deviation (σ), and different
quantiles (10%-quantile (q0.1), 25%-quantile (q0.25), 75%-quantile (q0.75), 90%-quantile (q0.9)).
Panel A shows the descriptive statistics for call options. Delta-hedged returns are calculated as
given in Equation (4.1). Panel B shows the descriptive statistics for put options. The formula for
these delta-hedged returns is given in Equation (4.2). Panel C provides descriptive statistics for
historical stock return volatilities. These refer to annualized values from a historical 30-day data
window, estimated from daily returns. We distinguish between total volatility (VOL), idiosyncratic
volatility (IVOL), and systematic volatility (SVOL). The separation between SVOL and IVOL
is either done via a one-factor market model (IVOL-1F, SVOL-1F) or via the three-factor model
by Fama and French (1993) (IVOL-3F, SVOL-3F). Panel D presents descriptive statistics of the
expensiveness measure, IV−HV, where IV denotes the implied volatility of the options, and HV is
a historical 365-day benchmark volatility. Moreover, Panel D provides descriptive statistics of the
quoted option spreads at the beginning of the return period, measured in percent of the mid price.
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Table 4.2: Average Returns of Options Sorted by Stock Volatility and Expensiveness:
One-factor Model

Panel A: Delta-hedged call returns

Option Expensiveness (IV−HV)
1-low 2 3 4 5-high all

V
O

L

1-low 0.3% –0.3% –0.4% –0.7% –1.8% –0.6%
2 0.6% –0.2% –0.6% –0.8% –2.5% –0.7%
3 1.1% –0.1% –0.5% –1.0% –2.7% –0.7%
4 1.0% 0.2% –0.5% –1.2% –3.7% –0.8%

5-high 0.7% 0.1% –0.5% –1.9% –5.5% –1.4%

5-1 0.5% 0.4% –0.0% –1.2% –3.7% –0.8%
t-stat. 1.1 1.2 –0.1 –3.8 –10.0 –2.4

1-low 2 3 4 5-high all

IV
O

L-
1F

1-low 0.4% –0.4% –0.4% –0.6% –1.7% –0.6%
2 0.6% –0.1% –0.5% –0.8% –2.4% –0.6%
3 0.9% 0.0% –0.4% –0.9% –2.7% –0.6%
4 1.1% 0.2% –0.4% –1.2% –3.8% –0.8%

5-high 0.7% 0.1% –0.6% –2.0% –5.8% –1.5%

5-1 0.3% 0.5% –0.1% –1.3% –4.0% –0.9%
t-stat. 0.8 1.5 –0.3 –4.5 –11.5 –3.0

1-low 2 3 4 5-high all

SV
O

L-
1F

1-low 0.5% –0.3% –0.6% –1.0% –3.3% –0.9%
2 0.5% –0.1% –0.6% –1.0% –3.2% –0.9%
3 0.6% –0.1% –0.6% –0.9% –2.9% –0.8%
4 1.1% –0.1% –0.3% –1.0% –3.1% –0.7%

5-high 1.1% 0.0% –0.3% –1.2% –3.8% –0.9%

5-1 0.5% 0.2% 0.3% –0.2% –0.5% 0.1%
t-stat. 1.7 0.8 1.1 –0.9 –1.3 0.3
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Panel B: Delta-hedged put returns

Option Expensiveness (IV−HV)
1-low 2 3 4 5-high all

V
O

L

1-low 0.4% 0.1% 0.0% –0.3% –1.4% –0.2%
2 0.7% 0.2% –0.1% –0.4% –1.7% –0.3%
3 1.0% 0.3% –0.1% –0.5% –1.8% –0.2%
4 1.0% 0.5% 0.1% –0.7% –2.6% –0.4%

5-high 0.6% 0.3% –0.3% –1.4% –3.8% –0.9%

5-1 0.2% 0.1% –0.3% –1.1% –2.4% –0.7%
t-stat. 0.5 0.4 –1.1 –4.0 –7.3 –2.7

1-low 2 3 4 5-high all

IV
O

L-
1F

1-low 0.5% 0.1% 0.0% –0.3% –1.3% –0.2%
2 0.8% 0.3% –0.1% –0.4% –1.6% –0.2%
3 1.0% 0.3% –0.2% –0.4% –1.9% –0.2%
4 0.9% 0.4% 0.0% –0.6% –2.6% –0.4%

5-high 0.5% 0.3% –0.4% –1.4% –4.0% –1.0%

5-1 0.0% 0.2% –0.5% –1.1% –2.7% –0.8%
t-stat. 0.1 0.6 –1.9 –4.2 –8.9 –3.5

1-low 2 3 4 5-high all

SV
O

L-
1F

1-low 0.6% 0.1% –0.2% –0.4% –2.6% –0.5%
2 0.5% 0.2% –0.1% –0.7% –2.2% –0.5%
3 0.7% 0.1% –0.1% –0.3% –2.2% –0.3%
4 1.0% 0.3% 0.1% –0.6% –2.0% –0.2%

5-high 1.0% 0.3% 0.0% –0.7% –2.7% –0.4%

5-1 0.4% 0.2% 0.2% –0.2% –0.1% 0.1%
t-stat. 1.6 0.9 0.9 –1.0 –0.3 0.5

Note: This table shows average delta-hedged options returns of portfolios sorted by stock volatility
and expensiveness (IV−HV). Panel A shows the results for calls and Panel B the results for puts.
For each month of the data period January 1996 to August 2015, delta-hedged option returns are
sorted by volatility (either VOL, IVOL-1F or SVOL-1F). Within each volatility quintile, option
returns are then sorted by expensiveness. The table reports the average delta-hedged returns for
each volatility-expensiveness combination, averaged over time. The last column (all) provides
averages over all expensiveness categories. The row denoted by 5-1 presents the results for a
long–short trading strategy that buys the portfolios with the highest volatilities (5-high) and sells
the portfolios with the lowest volatilities (1-low). The t-statistics for the average returns of these
portfolios are obtained via Newey–West estimators (Newey and West 1987), which account for
heteroskedasticity and autocorrelation of the portfolio returns.
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Table 4.3: Average Returns of Options Sorted by Stock Volatility and Expensiveness:
Three-factor Model

Panel A: Delta-hedged call returns

Option Expensiveness (IV−HV)
1-low 2 3 4 5-high all

V
O

L

1-low 0.3% –0.3% –0.4% –0.7% –1.8% –0.6%
2 0.6% –0.2% –0.6% –0.8% –2.5% –0.7%
3 1.1% –0.1% –0.5% –1.0% –2.7% –0.7%
4 1.0% 0.2% –0.5% –1.2% –3.7% –0.8%

5-high 0.7% 0.1% –0.5% –1.9% –5.5% –1.4%

5-1 0.5% 0.4% 0.0% –1.2% –3.7% –0.8%
t-stat. 1.1 1.2 –0.1 –3.8 –10.0 –2.4

1-low 2 3 4 5-high all

IV
O

L-
3F

1-low 0.3% –0.3% –0.4% –0.7% –1.8% –0.6%
2 0.8% –0.2% –0.5% –0.8% –2.4% –0.6%
3 1.0% 0.1% –0.4% –0.9% –2.7% –0.6%
4 1.1% 0.1% –0.6% –1.2% –3.8% –0.9%

5-high 0.6% 0.2% –0.7% –1.9% –5.7% –1.5%

5-1 0.3% 0.6% –0.3% –1.2% –3.9% –0.9%
t-stat. 0.8 1.8 –0.7 –4.2 –11.2 –3.0

1-low 2 3 4 5-high all

SV
O

L-
3F

1-low 0.5% –0.3% –0.5% –0.8% –2.7% –0.8%
2 0.4% –0.2% –0.7% –0.9% –2.9% –0.9%
3 0.7% –0.1% –0.6% –0.9% –3.1% –0.8%
4 1.1% 0.0% –0.6% –1.2% –3.4% –0.8%

5-high 1.0% 0.2% –0.2% –1.2% –4.5% –1.0%

5-1 0.4% 0.5% 0.2% –0.4% –1.8% –0.2%
t-stat. 1.2 1.4 0.6 –1.1 –5.2 –0.7
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Panel B: Delta-hedged put returns

Option Expensiveness (IV−HV)
1-low 2 3 4 5-high all

V
O

L

1-low 0.4% 0.1% 0.0% –0.3% –1.4% –0.2%
2 0.7% 0.2% –0.1% –0.4% –1.7% –0.3%
3 1.0% 0.3% –0.1% –0.5% –1.8% –0.2%
4 1.0% 0.5% 0.1% –0.7% –2.6% –0.4%

5-high 0.6% 0.3% –0.3% –1.4% –3.8% –0.9%

5-1 0.2% 0.1% –0.3% –1.1% –2.4% –0.7%
t-stat. 0.5 0.4 –1.1 –4.0 –7.3 –2.7

1-low 2 3 4 5-high all

IV
O

L-
3F

1-low 0.5% 0.2% 0.0% –0.3% –1.4% –0.2%
2 0.8% 0.3% –0.1% –0.3% –1.6% –0.2%
3 1.0% 0.5% –0.1% –0.4% –1.9% –0.2%
4 0.9% 0.4% –0.1% –0.7% –2.6% –0.4%

5-high 0.5% 0.4% –0.5% –1.4% –3.9% –1.0%

5-1 0.0% 0.2% –0.6% –1.1% –2.5% –0.8%
t-stat. 0.1 0.6 –2.3 –4.2 –8.5 –3.5

1-low 2 3 4 5-high all

SV
O

L-
3F

1-low 0.4% 0.2% –0.1% –0.4% –1.9% –0.4%
2 0.5% 0.2% –0.2% –0.4% –2.1% –0.4%
3 0.8% 0.2% 0.0% –0.5% –2.1% –0.3%
4 1.0% 0.4% –0.1% –0.7% –2.3% –0.3%

5-high 0.9% 0.4% 0.1% –0.8% –3.1% –0.5%

5-1 0.5% 0.2% 0.1% –0.4% –1.2% –0.2%
t-stat. 1.8 0.7 0.5 –1.3 –4.2 –0.6

Note: This table shows average delta-hedged options returns of portfolios sorted by stock volatility
and expensiveness (IV−HV). Panel A shows the results for calls and Panel B the results for puts.
For each month of the data period January 1996 to August 2015, delta-hedged option returns are
sorted by volatility (either VOL, IVOL-3F or SVOL-3F). Within each volatility quintile, option
returns are then sorted by expensiveness. The table reports the average delta-hedged returns for
each volatility-expensiveness combination, averaged over time. The last column (all) provides
averages over all expensiveness categories. The row denoted by 5-1 presents the results for a
long–short trading strategy that buys the portfolios with the highest volatilities (5-high) and sells
the portfolios with the lowest volatilities (1-low). The t-statistics for the average returns of these
portfolios are obtained via Newey–West estimators (Newey and West 1987), which account for
heteroskedasticity and autocorrelation of the portfolio returns.
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Table 4.4: Regressions of Average Returns of Long–Short (1-5) Portfolios When
Expensiveness is High (5-high) on Different Combinations of Factors

Panel A: Calls

Model 1 Model 2 Model 3 Model 4 Model 5

Alpha 3.75% 3.74% 3.96% 3.74% 3.84 %
(8.85) (10.49) (11.99) (10.53) (8.98)

MKT 0.255 0.063
(3.52) (0.51)

SMB 0.145 0.046
(1.05) (0.34)

HML –0.281 –0.214
(–2.69) (–2.25)

MOM –0.014 0.023
(–0.15) (0.26)

LowVol 4.362 –3.522
(0.48) (–0.39)

ZB-STR –0.252 –1.847 –1.420
Index (–4.00) (–1.69) (–1.30)

dVIX –0.263 –0.110
(–4.90) (–1.23)

ZB-STR –1.836 –0.685
Stocks (–0.85) (–0.26)

R2
adj 0.115 0.088 0.104 0.088 0.162
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Panel B: Puts

Model 1 Model 2 Model 3 Model 4 Model 5

Alpha 2.54% 2.57% 2.63% 2.57% 2.56%
(7.37) (7.81) (8.77) (7.82) (7.48)

MKT 0.158 0.113
(2.25) (1.14)

SMB 0.096 0.100
(1.01) (1.01)

HML –0.217 –0.209
(–3.14) (–3.18)

MOM –0.007 –0.013
(–0.12) (–0.21)

LowVol 0.629 0.441
(0.09) (0.06)

ZB-STR –0.875 –1.354 –1.017
Index (–1.63) (–1.42) (–1.17)

dVIX –0.139 –0.053
(–2.66) (–0.77)

ZB-STR 1.310 2.305
Stocks (0.69) (1.07)

R2
adj 0.120 0.016 0.049 0.014 0.120

Note: This table shows the results of different regression models that regress the returns of a
low-volatility trading strategy on different combinations of factors. Panel A provides the results for
calls and Panel B the results for puts. The low-volatility trading strategy holds long positions in
a low-volatility portfolio (1-low) and short positions in a high-volatility portfolio (5-high). These
portfolios refer to the highest expensiveness quintiles (see Table 4.2) and use IVOL-1F. Based on
Fama and French’s (1993) model, we consider the market factor (MKT), the value factor (HML)
and the size factor (SMB). In addition, we use Carhart’s (1997) momentum factor (MOM) and a
low-volatility stock market factor (LowVol). Factors referring to the option market are the returns
of zero-beta straddles on the S&P 500 Index (ZB-STR Index), the average returns of zero-beta
straddles written on the component stocks of the S&P 500 Index (ZB-STR Stocks), and changes in
the VIX Index (dVIX). The t-statistics (in parentheses) are obtained via Newey–West estimators
(Newey and West 1987), which account for heteroskedasticity and autocorrelation.
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Table 4.5: Average Returns and Alphas of Long–Short (1-5) Portfolios When Expen-
siveness is High (5-high) for Different Periods

Panel A: Calls

Full Period excl. Crisis ≤04/2003 >04/2003

Average Return 4.03% 4.05% 3.17% 4.54%
(11.48) (10.76) (4.26) (13.55)

Alpha 3.84% 3.74% 2.89% 4.60%
(Eight-Factor Model) (8.98) (7.09) (3.60) (12.09)

Panel B: Puts

Full Period excl. Crisis ≤04/2003 >04/2003

Average Return 2.67% 2.59% 1.38% 3.43%
(8.91) (7.74) (2.37) (14.11)

Alpha 2.56% 2.28% 1.02% 3.48%
(Eight-Factor Model) (7.48) (5.23) (1.61) (13.86)

Note: This table shows the average returns and alphas of a low-volatility trading strategy for
different time periods. Panel A provides the results for calls and Panel B the results for puts. The
low-volatility trading strategy holds a long position in a low-volatility portfolio (1-low) and a short
position in a high-volatility portfolio (5-high). These portfolios refer to the highest expensiveness
quintiles (see Table 4.2) and use IVOL-1F. Alphas are obtained from the eight-factor model (Model 5)
in Table 4.4. The full data period is from January 1996 to August 2015. The crisis period is
from June 2007 to December 2009. The t-statistics (in parentheses) are obtained via Newey–West
estimators (Newey and West 1987), which account for heteroskedasticity and autocorrelation.
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Table 4.6: Effect of Transaction Costs on Average Returns and Alphas of Long–Short
(1-5) Portfolios When Expensiveness is High (5-high)

Panel A: Calls

ESRP/QSPR MidP 10% 25% 50%

Average Return 4.03% 3.30% 2.22% 0.46%
(11.48) (9.88) (6.81) (1.29)

Alpha 3.84% 3.08% 1.96% 0.14%
(Eight-Factor-Model) (8.98) (7.42) (4.80) (0.34)

Panel B: Puts

ESRP/QSPR MidP 10% 25% 50%

Average Return 2.67% 2.16% 1.39% 0.08%
(8.91) (7.49) (4.98) (0.28)

Alpha 2.56% 2.04% 1.24% –0.10%
(Eight-Factor-Model) (7.48) (6.16) (3.90) (–0.33)

Note: This table shows the average returns and alphas of a low-volatility trading strategy for
different levels of transaction costs. Panel A provides the results for calls and Panel B the results
for puts. The low-volatility trading strategy holds long positions in a low-volatility portfolio (1-low)
and short positions in a high-volatility portfolio (5-high). These portfolios refer to the highest
expensiveness quintiles (see Table 4.2) and use IVOL-1F. Alphas are obtained from the eight-factor
model (Model 5) in Table 4.4. The data period is from January 1996 to August 2015. The different
transaction cost scenarios refer to different ratios of ESPR to QSPR: 10%, 25%, or 50%. As a
reference point, the table also includes the case without transaction costs (MidP). The t-statistics
(in parentheses) are obtained via Newey–West estimators (Newey and West 1987), which account
for heteroskedasticity and autocorrelation.



5 Conclusion

This dissertation studied the behaviour of equity and index option returns in perfect and

imperfect markets providing guidance to investors’ decision making process when trading

highly risky non-linear derivative products.

Chapter 1 provides an introduction and overview of the questions discussed in the main

chapters. Chapter 2 analyzes the behaviour of expected and realized S&P500 option

returns in perfect markets under a risk-adjusted option-implied approach and option return

volatility in the Black-Scholes model. Chapter 3 presents the derivation of and empirical

study on option return volatility in the Black-Scholes model. Chapter 4 investigates the

option mispricing puzzle in an imperfect markets setting, where option market makers

adjust their quotes based on their own net position and the underlying’s idiosyncratic

volatility due to hedging costs. This conclusion summarizes the findings of the three main

chapters 2 - 4 and provides an outlook on further research questions.

Summary on Findings in Main Chapters

Chapter 2 applied the option-implied risk-adjusted approach by Brinkmann and Korn

(2018) to predict mean realized S&P500 index option returns in perfect markets. The

approach is highly flexible and dynamic as it instantly adjusts to changes in current option

market prices and can be equipped with arbitrary risk-averse preferences. As shown through

an option return prediction test, the approach well explained realized S&P500 put option

returns under CRRA risk preferences, while S&P500 call returns were unexplainable due

to the empirically U-shaped pricing kernel.

Chapter 3 studied option return volatility in a Black-Scholes world providing analytical

expressions for option return volatility over instantaneous, before-expiration and hold-to-

expiration time periods. The cross-sectional option volatility sensitivities to the option

parameters are illustrated: At-the-money Black-Scholes call volatility over finite holding
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periods increases with time to maturity, underlying volatility, underlying physical drift and

dividend yield, and decreases with the risk-free rate and moneyness. At-the-money Black-

Scholes put volatility over finite holding periods decreases with time to maturity, underlying

physical drift, dividend yield and moneyness, can increase and decrease with underlying

volatility, and increases with the risk-free rate. Option volatilities under the Black-Scholes

model behave similarly when held to maturity or sold prior to maturity, but differences

exist for the instantaneous holding period where at-the-money call volatility decreases with

time-to-maturity, and both call and put volatility are independent of the physical drift

rate. An empirical test on realized S&P500 option volatilities against the Black-Scholes

model shows that Black-Scholes option volatilities were rejected with respect to realized

call volatilities over finite and instantaneous holding periods, while put volatilities were not

rejected for finite and instantaneous holding periods except instantaneous out-of-money

put volatilities; this result connects well with chapter 2 where mean realized put returns

but not call returns were explainable by the implied risk-adjusted approach.

Chapter 4 investigates the conditional low-volatility effect in option markets, where the

negative relation between underlying volatility and delta-hedged option returns is found to

be conditional on option expensiveness being high. For cheap options, the effect can be even

reversed but is only weakly significant. Hereby option expensiveness was used as a proxy

for market makers’ net positions in options and IVOL as a proxy for market imperfections

induced by hedging costs. The hedging of long positions in options is less risky as the

loss of the holder is capped at the option premium, while a short position in options can

cause potentially infinite losses. The asymmetry of the conditional low-volatility effect in

option markets further leads to an observed net unconditional low-volatility effect. These

findings demonstrate the importance of market imperfections, where investors in options

markets can potentially gain alpha from the observed conditional low-volatility effect in

option prices which is three to four times stronger than the unconditional one and cannot

be explained by common factor risks in the stock and option market.



CHAPTER 5 CONCLUSION 92

Research Outlook

As shown in Chapters 2 and 3 of this thesis, S&P500 put returns can be well explained

by the option-implied risk-adjusted approach and even the standard Black Scholes model.

However, none of the tested models were able to explain the mean negative realized call

returns. As discussed in Chapter 2, the realization of negative call returns when the

underlying return is positive could only be explained by risk-seeking preferences in the

region above the current stock price. As the explanation of put returns however requires

risk-averse behaviour in the region below the current stock price, the overall utility function

required to fit both call and put returns should reflect a U-shaped pricing kernel. However,

none of the known standard utility functions contain reflect such property which therefore

represents a question for future research in order to explain realized call returns in perfect

markets. Another related question in an imperfect markets setting is whether the shorting

of S&P500 call options could still lead to significant excess returns given the high spreads

and margin requirements involved in such strategies.

Chapter 4 explores the conditional low volatility effect in individual stock options revealing

an asymmetry in market makers’ option quoting: When market makers are net short in

options due to positive end-user demand pressure, they tend to sell further options only

at a significant premium when hedging error is high due to high idiosyncratic volatility

of the underlying. When market makers are net long, the effect tends to reverse but not

statistically significant. Therefore further research may explore the determinants of option

quotes where market makers being net long. The study further uses sorted option portfolios

based on the IV-HV measure as a proxy for market makers’ position, while the true position

being unknown. It may hence be important to reconfirm the above results using end-user

option demand data or other records on market maker positions where possible.
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