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Chapter 1

Overview

N. Bernstein definierte die Fihigkeit des zentralen neuronalen Systems (ZNS) viele
Freiheitsgrade eines physischen Korpers mit all seiner Redundanz und Flexibilitéit
zu kontrollieren, als das Hauptproblem der Motorsteuerung [5]. Er wies darauf
hin, dass kiinstliche Mechanismen normalerweise einen, manchmal zwei Freiheits-
grade (DOF) haben; Wenn die Anzahl der DOF weiter zunimmt, wird es uner-
schwinglich, sie zu kontrollieren. Das Gehirn scheint jedoch eine solche Kontrolle
miihelos durchzufiihren. Er schlug vor, wie das Gehirn damit umgehen kann: Wenn
eine motorische Fihigkeit erworben wird, schriankt das Gehirn die Freiheitsgrade
kiinstlich ein und lédsst nur ein oder zwei zu. Mit zunehmendem Schwierigkeitsgrad
“befreit” das Gehirn allméhlich den zuvor festgelegten DOF und wendet bei Bedarf
die Steuerung in Richtungen an, die korrigiert werden miissen, um schlielich das
Steuerungsschema zu erreichen, bei dem alle DOF ”frei” sind. Dieser Ansatz zur

Reduzierung der Dimension der Motorsteuerung ist auch heute noch relevant.

Eine der moglichen Losungen fiir das Bernstetin-Problem ist die Hypothese
von motor primitives (MPs) - kleinen Bausteinen, die komplexe Bewegungen
darstellen und das motorische Lernen und die Erledigung von Aufgaben erleichtern.
Genau wie im visuellen System kann es von Vorteil sein, eine homogene hierarchis-
che Architektur zu haben, die aus dhnlichen Rechenelementen aufgebaut ist [63].

Bei der Untersuchung eines so komplizierten Objekts wie des Gehirns ist es
wichtig zu definieren, auf welcher Detailebene gearbeitet wird und welche Fra-

gen beantwortet werden sollen. David Marr [49] schlug drei Analyseebenen vor:
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1. computational, analysieren welches Problem das System 16st; 2. algorithmic,
Abfrage welche Darstellung das System verwendet und welche Berechnungen es
durchfiihrt; 3. implementational, herrausfinden von wie solche Berechnungen von
Neuronen im Gehirn durchgefiihrt werden. In dieser Arbeit bleiben wir auf den
ersten beiden Ebenen und suchen nach der grundlegenden Darstellung der Motor-

leistung.

In dieser Arbeit stellen wir ein neues Modell von motorischen Primitiven
vor, das mehrere interagierende latente dynamische Systeme umfasst und eine
vollstindige Bayessche Behandlung erlaubt. Das Modellieren im Bayessche Rah-
men muss meiner Meinung nach der neue Standard fiir das Testen von Hypothe-
sen in den Neurowissenschaften werden. Nur der Bayessche Rahmen gibt uns
Garantien, wenn es um die unvermeidliche Fiille von latenten Variablen und Un-

sicherheiten geht [P1, P2, P3].

Die spezielle Art der Kopplung von dynamischen Systemen, die wir in [P1],
basierend auf dem Produkt von Experten [33], vorgeschlagen haben, hat viele
natiirliche Interpretationen im Bayessche Rahmen. Wenn die dynamischen Sys-
teme parallel laufen, ergibt sich eine Bayessche Cue-Integration. Wenn sie auf-
grund der seriellen Kopplung hierarchisch organisiert sind, erhalten wir hierar-
chische Prioritéten iiber die Dynamik. Wenn eines der dynamischen Systeme den
sensorischen Zustand reprisentiert, kommen wir zu den sensor-motorischen Primi-
tiven. Die kompakte Darstellung, die sich aus der variationellen Behandlung ergibt,
ermdglicht das Lernen einer Bibliothek motorischer Primitiven. Separat gelernt,
kann die kombinierte Bewegung als Matrix von Kopplungswerten dargestellt wer-

den.

Wir haben eine Reihe von Experimenten durchgefiihrt, um verschiedene
Modelle von Motorprimitiven zu vergleichen [P2, P3]. In einer Reihe von 2-
Alternative-Forced-Choice-Experimenten (2AFC) unterschieden die Teilnehmer
natiirliche und synthetisierte Bewegungen und fiihrten so einen graphischen Turing-
Test durch. Sofern verfiigbar, sagte der Bayessche Modellwert die Natiirlichkeit der

wahrgenommenen Bewegungen voraus. Fiir einfache Bewegungen wie das Gehen
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zeigen der Bayessche Modellvergleich und psychophysische Tests, dass ein dy-
namisches System ausreicht, um die Daten zu beschreiben. Bei komplexeren Be-
wegungen wie Gehen und Winken kann die Bewegung besser als ein Zusammen-
schluss mehrerer gekoppelter dynamischer Systeme dargestellt werden. Wir haben
auch experimentell bestitigt, dass die Bayessche Behandlung des Modelllernens
an Bewegungsdaten der einfachen Punktschidtzung latenter Parameter iiberlegen ist.
Experimente mit nichtperiodischen Bewegungen zeigen, dass sie trotz hoher kine-

matischer Komplexitit nicht von einer komplexeren latenten Dynamik profitieren.

Mit einem vollstdndig bayesianischen Modell konnten wir den Einfluss der
Bewegungsdynamik und Pose auf die Wahrnehmung von Natiirlichkeit guantita-
tiv entflechten. Wir haben bestitigt, dass eine umfassende und korrekte Dynamik

wichtiger ist als die kinematische Darstellung.

Es gibt zahlreiche weitere Forschungsrichtungen. In den Modellen, die wir fiir
mehrere Teile entwickelt haben, waren die kinematischen Teile vollig unabhéngig,
obwohl die latente Dynamik auf einer Reihe von interagierenden Systemen fak-
torisiert wurde. Die Wechselwirkung zwischen den kinematischen Teilen kon-
nte also nur durch die latenten dynamischen Wechselwirkungen vermittelt wer-
den. Ein flexibleres Modell wiirde eine Interaktion auch auf kinematischer Ebene

ermdoglichen.

Ein weiteres wichtiges Problem betrifft die Darstellung der Zeit in Markov-
Ketten. Diskrete Zeit Markov-Ketten sind eine Anndherung an die kontinuierliche
Dynamik. Da angenommen wird, dass der Zeitschritt festgelegt ist, stehen wir vor
dem Problem der Zeitschrittauswahl. Zeit ist auch in Markov-Ketten kein expliziter
Parameter. Dies verbietet auch eine explizite Optimierung der Zeit als Parameter
und eine Folgerung (Inferenz) dariiber. Beispielsweise werden bei einer optimalen
Steuerung die Randbedingungen normalerweise zu genauen Zeitpunkten festgelegt,
was kein 0kologisches Szenario ist, bei dem die Zeit normalerweise ein Parameter
der Optimierung ist. Wenn Sie die Zeit zu einem expliziten Parameter in der Dy-

namik machen, kann dies moglicherweise Abhilfe schaffen.

In den néchsten Kapiteln geben wir einen kurzen iiberblick iiber die Mo-
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torsteuerung und die Motivation hinter der Verwendung von Motorprimitiven fiir
dieses Problem: einen kurzen iiberblick iiber die Bayessche Statistik und warum
dies wichtig ist, gefolgt von Kapitel 3 iiber Motorprimitive und Motorsteuerung
im Gehirn. Kapitel 4 befasst sich mit der motorischen Steuerung durch das
Gehirn, und Kapitel 5 behandelt den Gauschen Prozess und seine Verbindung mit
kiinstlichen neuronalen Netzen. Diese Kapitel sollen dem Leser helfen, die Zusam-
menhinge zwischen Bayessche Statistik, Gau-Prozess, neuronalen Netzen und Mo-

torsteuerung zu verstehen.
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N. Bernstein defined the ability of the central neural system (CNS) to control
many degrees of freedom of a physical body with all its redundancy and flexibility
as the main problem in motor control [5]. He pointed at that man-made mechanisms
usually have one, sometimes two degrees of freedom (DOF); when the number of
DOF increases further, it becomes prohibitively hard to control them. The brain,
however, seems to perform such control effortlessly. He suggested the way the brain
might deal with it: when a motor skill is being acquired, the brain artificially limits
the degrees of freedoms, leaving only one or two. As the skill level increases, the
brain gradually “frees” the previously fixed DOF, applying control when needed and
in directions which have to be corrected, eventually arriving to the control scheme
where all the DOF are "free”. This approach of reducing the dimensionality of

motor control remains relevant even today.

One the possibles solutions of the Bernstetin’s problem is the hypothesis of
motor primitives (MPs) - small building blocks that constitute complex movements
and facilitite motor learnirng and task completion. Just like in the visual system,
having a homogenious hierarchical architecture built of similar computational ele-

ments may be beneficial [63].

Studying such a complicated object as brain, it is important to define at which
level of details one works and which questions one aims to answer. David Marr
[49] suggested three levels of analysis: 1. computational, analysing which problem
the system solves; 2. algorithmic, questioning which representation the system
uses and which computations it performs; 3. implementational, finding how such
computations are performed by neurons in the brain. In this thesis we stay at the

first two levels, seeking for the basic representation of motor output.

In this work we present a new model of motor primitives that comprises mul-
tiple interacting latent dynamical systems, and give it a full Bayesian treatment.
Modelling within the Bayesian framework, in my opinion, must become the new
standard in hypothesis testing in neuroscience. Only the Bayesian framework gives
us guarantees when dealing with the inevitable plethora of hidden variables and

uncertainty [P1, P2, P3].
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The special type of coupling of dynamical systems we proposed in [P1], based
on the Product of Experts [33], has many natural interpretations in the Bayesian
framework. If the dynamical systems run in parallel, it yields Bayesian cue integra-
tion. If they are organized hierarchically due to serial coupling, we get hierarchical
priors over the dynamics. If one of the dynamical systems represents sensory state,
we arrive to the sensory-motor primitives. The compact representation that follows
from the variational treatment allows learning of a motor primitives library. Learned

separately, combined motion can be represented as a matrix of coupling values.

We performed a set of experiments to compare different models of motor prim-
itives [P2, P3]. In a series of 2-alternative forced choice (2AFC) experiments par-
ticipants were discriminating natural and synthesised movements, thus running a
graphics Turing test. When available, Bayesian model score predicted the natural-
ness of the perceived movements. For simple movements, like walking, Bayesian
model comparison and psychophysics tests indicate that one dynamical system is
sufficient to describe the data. For more complex movements, like walking and
waving, motion can be better represented as a set of coupled dynamical systems. We
also experimentally confirmed that Bayesian treatment of model learning on motion
data is superior to the simple point estimate of latent parameters. Experiments with
non-periodic movements show that they do not benefit from more complex latent

dynamics, despite having high kinematic complexity.

By having a fully Bayesian models, we could quantitatively disentangle the
influence of motion dynamics and pose on the perception of naturalness. We con-
firmed that rich and correct dynamics is more important than the kinematic repre-

sentation.

There are numerous further directions of research. In the models we devised,
for multiple parts, even though the latent dynamics was factorized on a set of inter-
acting systems, the kinematic parts were completely independent. Thus, interaction
between the kinematic parts could be mediated only by the latent dynamics interac-
tions. A more flexible model would allow a dense interaction on the kinematic level

too.
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Another important problem relates to the representation of time in Markov
chains. Discrete time Markov chains form an approximation to continuous dynam-
ics. As time step is assumed to be fixed, we face with the problem of time step
selection. Time is also not a explicit parameter in Markov chains. This also pro-
hibits explicit optimization of time as parameter and reasoning (inference) about it.
For example, in optimal control boundary conditions are usually set at exact time
points, which is not an ecological scenario, where time is usually a parameter of
optimization. Making time an explicit parameter in dynamics may alleviate this.

In the next chapters we give a brief overview of motor control and motivation
behind the use of motor primitives for this problem: a brief overview of Bayesian
statistics and why it is important in, followed by a chapter 3 on motor primitives
and motor control in the brain, extended further in chapter 4 by theories applicable
to tackle the question of motor control by the brain, and finalizing by a chapter 5 on
Gaussian Process and its connection to artificial neural networks. These chapters
are intended to help the reader to understand the connections between Bayesian

statistics, Gaussian Process, neural networks, and motor control.
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Chapter 2

Bayesian Statistics

”Given for one instant an intelligence which could comprehend all the
forces by which nature is animated and the respective situation of the
beings who compose it—an intelligence sufficiently vast to submit these
data to analysis—it would embrace in the same formulate the
movements of the greatest bodies of the universe and those of the lightest
atom; for it, nothing would be uncertain and the future, as the past,

would be present in its eyes.”

— P--S. Laplace, A philosophical Essay on Probabilities

2.1 Reasoning about uncertainty

When dealing with any real world system, one has to account for the uncertainty
either implicitly (e.g. Tikhonov regularization[82], decision boundaries in Empiri-
cal Risk Minimisation [73]) or explicitly, in Bayesian way, clearly stating the prior
beliefs and accounting for the full (approximate) posterior. A rigorous motivation
behind probability in reasoning about uncertainty was given by Frank Ramsey [66,
32]. According to him, a rational agent, that accepts some intuitively reasonable
criteria of rationality, must follow the rules of probability when reasoning about
environments that are deterministic but not fully observed or stochastic in nature.
Formally, o-algebra is a collection of sets closed under complement and count-
able unions. A triplet of (€2, F, P), where ) is a nonempty base set of possible

outcomes, F' is o-algebra over €2 - a set of events, and P is a normalized to 1
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measure on (€2, I), is a probability space [43, 7]. Random variable is a function
of elementary outcomes [43]. From the properties of measure follows that prob-
ability of an event is the sum of probabilities of elementary outcomes it contains:
P(X) = ¥, ex plas)izi € Q.

Next, we may introduce the concepts of joint and conditional probabilities.
Joint probability of two events A and B is equivalent to the probability of a single
event A N B. Conditional probability P(A|B) may be introduced by any of the
following equivalent statements: conditioning of probability measure P on event B

creates a new measure PB

* by only considering such possible worlds (outcomes) where the event B hap-

pens;

* by setting the measure of the event complementary to B to 0. The remaining
elementary outcomes in event B have to be renormalized to make Pp a valid

probability measure.

From the whole set of possible outcomes {2 we consider only those which are
contained in B. Thus, we limit the space of possible events to be consistent with

the fixed (observed) B; probability of the event complementary to B is 0:

P(A|B) = Pp(A) (2.1)
Py(B) = (2.2)
Pg(-B) = (2.3)
Pp(A) o< P(A, B) (2.4)

This changes the probability measure over F' and requires additional renormal-

ization by the support set of B:

P(A, B)
ZbeBp( )
_ P(4,B)
~ P(B)

P(A|B) = (2.5)

(2.6)
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This introduction of conditional probability is consistent with Kolmogorov’s
definition [43]. Notice that P(A|B) is a function of B and a probability measure
over A. From this, by simple algebraic manipulations we get the following two

possible factorizations of joint probability:

P(A, B) = P(B|A)P(A) 2.7)
= P(A|B)P(B) (2.8)

The Bayes’ formula now is just a step away:

P(B|A)P(A)

P(AIB) = =5

2.9
It does not provide any additional advantage over the original concept of con-
ditional probability and completely relies on it, but has a nice interpretation when

the joint probability P(A, B) is described as a Bayesian network.

A causal stochastic process with a set of hidden and observed variables can
be represented as a directed acyclic graph, a Bayes network [61]. Even though the
full factorization of any joint probability of the variables can be performed in many
ways, the factorization that represent causal links between them has a meaningful
and useful interpretation. If we consider a simple causal graph A — B, by con-
ditioning on observed B we may infer the probability distribution of unobserved
causes A, if our assumptions about the process (joint distribution of A and B) are
correct. Thus, the Bayes’ formula equips us with a mathematically solid method of
probabilistic model inversion, computing posterior beliefs conditioned on observa-

tions.

2.2 Model comparison

The Bayes’ formula rescues us when we are not sure about the underlying data
generating process and have multiple hypothesis. Assume two models (hypothe-

ses) about how the data X was generated, M, and M, with parameters 6. Then
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comparing the models boils down to inferring the posterior distribution over them:

p(X|M;) = / p(X10, M,)p(6]M;)d6 2.10)

1
PO = / p(X18, My)p(6| M. )p(M,)d6 @.11)

where i € {a,b}, Zyr = ;1,4 P(M;|X) is a normalizing constant.

For reasonably complex datasets (e.g. containing continuous variables) we can
construct an infinite space of possible models (hypotheses) explaining the data !.
To compare two parametric models, we can compute the ratio of their probabilities,

known as Bayes factor:

po _ PMA|X)  p(My) [ p(X]0, Ma)p(0]M,)d6

b p(Mb|X) B p(]\/[b) fp(X|97Mb)p(9!Mb)d0 (2.12)

An attentive reader may now notice that in Bayesian framework, model com-
parison is just conditioning on data in a model that comprises the models to be
compared linked by an additional model selection variable on top — inference over

a single discrete latent variable.

2.3 Learning as belief update

In the problem of model identification one may be faced the questions of how many
parameters make a good model, will it result in overfitting or underfitting the avail-
able data [8]. The Bayes’ rule solves such problems. Given the model is correct
and the prior distribution has a reasonable support (probability of true parameters
is not zero), updating to the posterior always accounts for the data properly, even if
the data size is only one sample.

Imagine we have an intelligent agent in a complex environment. Be the en-

vironment fully observed for a moment, and the agent were equipped with infinite

'Such model space comprises every possible generative process of the data. We may also create
such model space by constructing a mapping from an infinite space of finite strings (in terms of Kol-
mogorov complexity theory - functions that generate the data) to the model space, thus, enumerating
them. As the space of possible models in this setting is potentially infinite, we can only compare
distinct models (points in the model space, or strings in the function definition space) relatively to
each other.
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computational resources, it would be possible for him to simulate and predict the
future simply integrating its evolution function as well as any effect of his actions.
If, however, such environment is intrinsically stochastic, or deterministic but not
completely observable, the agent must deal with it as with a stochastic system. In
such environment being rational means updating the beliefs representing the hid-
den variables according to the Bayes rule. This setting is similar to the one Laplace
[45] used to justify proper treatment of uncertainty as unavoidable feature of human

knowledge and treating it according to the rules of probability.

2.4 Variational Inference

Exact Bayesian inference requires computing the normalization constant (renormal-
izing the conditioned hypothesis space), which is usually an intractable problem.
Numerous approximations were developed to add to its tractability [8].

The simplest one is just point estimate of the posterior after conditioning -
maximum a posteriori (MAP). It seeks for such parameter value that maximizes the

joint model probability:
Orrap = arg max p(data, 0) (2.13)
0

MAP completely ignores the probability mass or other possible modes [47].
Thus, contrary to the full Bayesian update, MAP approximation may lead to rather
incorrect parameter values.

A popular approximation scheme is variational inference, when an arbitrary
parametrized distribution is fitted to the true posterior by maximizing the probability
of observed data (model evidence) [8].

Consider a simple model p(X,0) = p(X|0)p(d) where observed sensory data
X is parametrised by a set of hidden variables: # — X. Let us introduce a paramet-
ric recognition probability density ¢(0|X) - a probabilistic mapping from observa-
tion X to hidden variables ¢, which may represent the observer’s beliefs about the
environment. Recognition density has a natural interpretation in the Bayesian brain

framework: it is a learned approximation of the true posterior of causes # having
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sensory input X, that can be quickly computed. For any model its evidence reads:
p() = [ p(XI8)p(6)d8 2.14)

By adding mutually cancelling exp log transformation and introducing the

recognition density we get:

p(X) = / p(X,0)d0 = explog / q(9|X)];E?|")?)) d9 (2.15)

We will use the Jensen’s inequality [8] for convex functions:

FE(X) < E((X)) 2.16)
In integral form it reads:

([ stowtoie) < [ slatepmaras @.17)
A very handy convex function is f(z) = — log(z). It often simplifies compu-

tations when working with probabilities as log(a - b) = log(a) + log(b).

Finally, by taking the log of both sides of Eq. 2.15 and applying the Jensen’s

inequality we get the model evidence lower bound (ELBO):

p(X,0)
logp(X) > /q(@\X)log 201X do (2.18)
ELBO = [ a(61x) 108 P59 49 2.19

:/q(9|X) logp(X,G)dQ—/q(H\X)logq(ﬂX)dH (2.20)

Now we may optimize ELBO w.r.t. the parameters of the recognition density
q(0]X). Such optimization of ELBO can be interpreted as minimization of Gibbs
free energy and forms one of the core principles of the Free Energy brain hypothesis
[23].

In my work I used ELBO to find the approximate posterior and compute the
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Bayes factors. It also allowed me to compare the contributions of different parts of

the model to perceptual validity.



Chapter 3

Brain and Motor Control

Until now the motor cortex remains not well understood, raising numerous hypothe-
sis about the representations and computations it performs, as neural activity corre-
lates with separate muscle activations, synergies, complex movements, kinematics,
dynamics, goal, and many other features of movements [58, 38, 25, 75, 76]. Surely,
cerebellum, basal ganglia, sensory areas, frontal lobe are impossible to ignore when
it comes to sensorimotor learning, precise control, planning and decision making
[44]. Here we give a quick overview of some experiments that shed light on the
functional role of motor areas of the brain and their ability to generate motor out-

put.

The main function of the brain, besides regulation of homeostasis, is to pro-
cess sensory information and consequently produce motor output. Brain is required
for motion. Llinas [46] indicates that sea squirt in its larval form has a tiny (ap-
proximately 300 cells, 100 of which are neurons) brain-like ganglion that allows
it to move through the environment, while in its adult form it attaches itself to a
substrate and digests most of its brain. (It is worth mentioning that this statement
is questionable, Mackie and Burighel [48] point out: “’In fact, adult ascidians have
perfectly good brains, an order of magnitude larger than those of their larvae, and
their behaviour is as finely adapted to sessility as that of the larvae to motility.”) It is
easy to extend motor control on regulation of homeostasis too, one just has to con-
sider physical body as a part of the environment. From this very general perspective

brain is just a large function that converts sensory input into output signals, affect-
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Figure 3.1: Brain-environment interaction loop. If body is considered to be a part of the
controlled environment, homeostasis control follows the same principles as motor control.

ing the exogenous environment via activation of muscles or modulating the release
of hormones for the endogenous part of the environment (Fig. 3.1). The free energy
principle [23] makes no distinction between such environments, thus unifying these

two kinds of actions.

3.1 Motor programs

The lowest level of motor control is performed by spinal cord. From the studies
of locomotion in decerebrated cats [29] we may conclude that spinal cord alone is
able to generate different walking patterns. Different periodic patterns of activations
can be observed even in an in-vitro preparation of brainstem and spinal cord [77].
Even deafferenated mesencephalic cat can produce a locomotor pattern [31, 30].
This indicates that even in mammals the very simple patterns of behaviour and
locomotion can be driven by relatively simple neural circuits developed in the neural
system in the early stages of development. Such simple neural circuits are called
central pattern generators (CPGs) and are considered to be the core elements of
locomotion generation mechanism in insects and animals [72].

As for the primary motor cortex (M1), for a long time it had been viewed as
a fine controller, able to activate a single muscle. This idea comes from short (10-
50 ms) microstimulation studies, when each such electric stimulation of different
regions of M1 could produce a reproducible twitch of different muscles (see e.g.
[19] for the first experiments on mapping of monkey brain). This led to a rather
simple cortical map of the whole body onto M1.

Neural activity in motor and premotor cortex areas is, however, rather complex.

It can be correlated with many features of motor production, like direction, speed,
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force (see e.g. [24] for the population coding of direction in M1). Recently it was
demonstrated that a much longer, with behaviorally relevant duration of 500 ms, lo-
cal stimulation of the primary and premotor cortex in monkeys evokes complex and
semantically meaningful motions [28, 27]. Such maps represent the complex reper-
toire of movements specific to a particular monkey [26]. Perhaps the most complex
movement that was initiated by such type of stimulation is the one resembling a
defensive action [28, 13], when particular regions in polysensory zone (PZ) were
excited. It recruits almost the whole body: “Stimulation of these sites evoked a
constellation of movements including blinking, squinting, flattening the ear against
the side of the head, elevating the upper lip, shifting the head away from the sensory
receptive fields, shrugging the shoulder, and rapidly lifting the hand into the space
near the side of the head as if to block an impending impact” [13]. The monkey did
not avoid an obstacle placed on the limb path, bumping into it. Neuronal activity in
that area was highly correlated with defence behaviour triggered by an air puff to
the face. Such complex movements could be induced also in monkeys anaesthetised
with barbiturates. Thus, Graziano argued that it was not a reaction to a fictive sen-
sory input. It is hard to say, however, what kind of sensation monkeys had during

the stimulation.

These motor maps can change and evolve as animals acquire skills [51] or
get trained to perform specific tasks. Experiments with rats [65] demonstrated
that when a region corresponding to some stereotypical movement (reaching) is
lesioned, the rat lost the ability to perform that movement. After the recovery and
re-training a new region could be found near the lesion site that would evoke the

same reaching movement if stimulated.

In another study on monkeys [59] the complexity and statistical properties of
the microstimulation induced movements were analysed. The recovered muscle
synergies and their statistics from intracortical stimulation matched the ones of nat-
urally performed reaching and grasping movements. This supports the hypothesis
that motor control learning is driven by the natural environment statistics, so suc-

cessfully applied to the analysis of visual system receptive fields formation [57].
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The authors conclude that rich voluntary movements originated in cortex are hy-
pothetically performed by a complex temporal activation of the underlying muscle

synergies circuits.

While the CPGs and muscle synergies simplify the problem of locomotion
generation and simple reaching-and-grasping, fine motor control and precise object
manipulation seem to rely more on cotrical control. Neural pathway tracing with
rabies virus in monkeys [68] reveal two types of connections of M1 to motor neu-
rons. The “old M1” corticospinal neurons innervate motor interneurons, which are
known to be recruited in the reflexes, CPGs, and muscle synergies [72]. The “new
M1” cortico-motoneuronal cells have direct connection to motor neurons, thus al-
lowing the precise cortical control on single muscle level. The proportion of such

direct connections correlates with the dexterity of different species.

Observations and motor control experiments with humans lacking propriocep-
tive signals (damaged afferent neural pathways) [69, 50] suggest that rich motor
production is possible without any sensory feedback. “The patient could perform a
surprising range of other rather less complex motor tasks even with his eyes closed.
Thus individual digits could be activated independently without practice and he
could even touch his thumb with each finger in turn using either hand” [69]. He
could even draw complex patterns in the air with fingers with his eyes closed, and
drive a manual shift car in complete darkness. Surprisingly, precision of fast move-
ments was not different from health subjects, even without visual feedback. Only
in tasks that required precise feedback, like slow movements, stabilization (con-
stant force, constant position, walking, etc.), fine force control, performance was
degraded. The longer the task lasted, the worse was the performance due to the
accumulation of errors. The authors conclude that the timing, sequence, and pat-
terns of muscle activations, which they call “motor programmes”, could be executed
without any external feedback when somatosensory feedback was crucial for tasks

that require error correction.

Experiments with healthy participants [15] demonstrated that a very small

number of components of muscle activation patterns is enough to perform a large
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Figure 3.2: Internal models in the brain. Forward model receives a copy of the motor
command, old state estimation, and produces the next sensory estimation. The difference
between the prediction and the actual state estimation drives the learning of both the forward
and inverse models. (Adapted from [52, 40])

set of fast-reaching movements. Such temporal activation patterns, or synergies,
form a low-dimensional manifold and greatly simplify planning and control. 4-5 of

of such synergies were enough to explain 73-82% of the data variability.

3.2 Sensory Feedback

We have seen that motor production is possible without any sensory input. For
precise motions, sensory data provides the necessary information to adjust the motor
commands. Motor control and learning, thus, are the main research directions in the
field of biological motor production.

One can argue that the role of the motor system feedback is to deal with sen-
sory and motor constrains and imperfections, to compensate for the stochasticity
of the environment, muscles, and the brain itself. Muscle response properties are
particularly volatile. Noise in motor system scales proportionally to the signal am-
plitude. Temporal delays, which are inevitable in neural information processing
systems, further reduce the controllable subspace.

Largely inspired by engineering approaches, mathematical optimal control the-
ory, and Bayesian multisensory integration, the biological motor system is viewed
as a chain of transformations of concrete motor commands into muscle activations
and an error compensating feedback controller.

For robust feedback control in an uncertain environment one has to have an

approximate model of that environment, especially when the controller has delays
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in information processing, like in every neural system. This resulted in the hypoth-
esis about forward and inverse models of the controlled environment [90, 40] (Fig
3.2). Motor commands are neural activations that represent motion in some ab-
stract space (of sensory expectations). Inverse model maps a motor command onto
muscle activations, while forward model predicts the sensory outcomes. Prediction
error drives the learning and adaptation of the models. Physiological recordings
from cerebellum, lesion studies, and clinical observations give a lot of evidence that
the brain may implement the forward and inverse models for short time scales [89,
17, 81]. For planning and longer time scales, more cortical areas are recruited, like
posterior parietal cortex for visually guided movements [9], and frontal lobe for
decision making [12], essentially rendering the whole brain a feedback controller.

In the next chapter we will discuss some approaches aiming to explain com-
putations required for brain to be a motor controller, residing on the computational
level of the Marr’s hierarchy.

In my work CPGs and muscle synergies naturally relate to the latent dynamical
systems and latent to observed mappings. Hierarchical coupling may represent the

top-down activation of the CPGs. Sensory coupling relates to the feedback control.



Chapter 4

Approaches to Motor Production

While the problem of perception, at least in principle, can be solved by employ-
ing Bayesian inference [42], perception alone is not sufficient to make an agent
act. Optimal control and reinforcement learning explain actions as optimization of
some reward (or cost) function. In free energy framework [23] actions affect the en-
vironment to change it into accordance to internal beliefs. Bayesian motor control
explains how to reduce the motor control problem to a probabilistic inference. Here

we overview these theories of motor production.

4.1 Optimal Control. Continuous time

Some of the observed phenomena of motor production, like optimality, variance of
trajectories, can be explained if approached from the optimal control and decision
theory perspective [84, 83]. Body and environment dynamics can be described by a

system of stochastic differential equations with certain constraints:
dr = f(z,u)dt + g(x,u)dW 4.1)

where z is the full system state vector, u is the control signal emitted by the
neural system, and I is Wiener process (white noise) [56]. Matrix-valued func-
tions f and g are called drift and diffusion coefficients correspondingly and repre-
sent deterministic and stochastic components of the dynamics, like muscle forces

and body dynamics under neural control signal f(x,u)dt and control multiplicative
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noise g(x,u). By providing a cost functional

() u()) = / 1((t), u(t), t)dt 42)

which gives the expectation of the integral w.r.t. of all the possible stochastic
trajectories starting from x,, we seek for the optimal control function u*(-) that

minimizes C':

u* = argminE, [C(z(+), u(+))] 4.3)

In general case, due to the nonlinearity and high dimensionality this problem

is unrealistic to solve exactly, but assuming some additional constraints and struc-
ture on the dynamics and cost functions, exact solution for the classical Linear-
Quadratic-Gaussian (LQG) control problem exist. For non-linear dynamics an in-
teresting and promising Path Integral Control [39] approach reduces the problem to
a path integral ([37]) which can be approximately solved by sampling or free energy

minimization, effectively creating a link to the Bayesian methods.

4.2 Optimal Control. Discrete time

Dealing with continuous time makes us work with differential equations. By switch-
ing to discrete time, we can employ many powerful numerical optimization methods
and thus hope to solve more complex problems. Here we just give a formulation
starting from decision process in discrete time, and describe an important statement
on which the solution hinges - the Bellman’s optimality principle.

For a fully observed environment and discrete time, Markov Decision Process
(MDP) [6, 78] can be formulated as follows : given a probabilistic state transitioning
matrix p(sy41]8¢, a;) and stationary immediate reward probabilities 7 (s, 1, S, ag) ~
p(r|S¢41, St, ar), produce actions to maximize the expected cumulative reward. Time
horizon can be set fixed (¢,,,, = T'), or infinite. In the latter case we are interested
in the sum of exponentially discounted rewards. If the environment has hidden

variables the agent can not observe, we say that the decision process is partially
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Figure 4.1: Markov decision process. At every time step ¢ the agent performs an action
at, causing the environment to change its state to sy 1, and receive reward 7. In graphical
models circles represent random variables, and arrows indicate the direction of statistical or
causal dependencies. [62].

observable (POMDP).

Generally, solving an MDP results in a policy - a probabilistic function that
tells which action to take given the observed state, a ~ 7(als).

Let’s consider a fixed time horizon MDP with finite state space. Expected
immediate reward following some policy 7 is a reward expectation w.r.t. the next

state, and reads:

RW(St) = E81+1,at [T(St+17 St, at)ﬂ(at|3t)] 4.4)

Next, we introduce value function for each state as the expected reward fol-

lowing some policy 7:

Vi(t,s) =E

St+1...ST‘ﬂ‘

T
Z R.(s;) | st = 3] 4.5)

i=t

where the expectation is taken w.r.t. all possible trajectories under the policy 7.
Notice that isolating out one decision step, the value function reveals the fol-

lowing recursive property:

Vﬂ(ta S) = RTF(St) + H‘ESt+1|St,7T [Vﬂ<t + 17 St+1)] (46)

= Rx(st) + Z 7 (ast) Z [p(se41lse, ) Va(t + 1, s041)] 4.7

St+1

This results in the following recursive equations, which formulate the Bell-
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man’s optimality principle [4]:

V*(t,s) = max [r(sb a) +Eg sa V(T + 1, stﬂ)ﬂ (4.8)
7*(a|s) = arg max [r(st, a)+ Eg, o psa [VI(E+1, st+1)ﬂ 4.9)
(s, a) = By, 1 [r(Si41, Sty )] (4.10)

These equations, which iterate backwards in time constructing the full value
function and the optimal policy, are the core of dynamic programming. The com-
plexity of dynamic programming resides in the size of the value function, which is
[1,—; » D, where D; is the range of i—th state variable. Due to the exponential
increase in the size of the optimal value function and policy their applicability is
limited only to problems with small state space. For continuous domains one can
use fine discretization, but such approach works only for very simple state spaces.
When the reward function is unknown and has to be learned at the same time, the

problem is formulated as Reinforcement Learning (RL) [78].

Despite the complexity of the problem, by making a reasonable assumption
that in real world the value function complexity has some structure and can be
approximated well by a complex parametrized functions (e.g. deep neural net-
works), iterative optimization of V'(s) was demonstrated to reach an impressive
performance [53]. On the other side, simple linear or RBF approximations of the
policy function is sufficient to solve many optimal control problems faster and with
better cost, indicating that end-to-end deep RL has an advantage mostly because of

the elaborate sensory system they provide [64].

Optimal control in redundant setting, when the number of controllable dimen-
sions is larger than required to perform the task, also gives rise to correlations be-
tween muscle activations, and synergies [83]. The so-called controlled manifold,
the part of the state space which is actually affected by the control signal, is rel-
atively low-dimensional; when the noise model is control-multiplicative, as is it

often the case in biological systems [36], any control signal adds more noise to the
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system, thus control in dimensions which do not affect task performance is harm-
ful and not needed. It is known as minimum intervention principle [83]. This had
been suggested as the solution for the dimensionality problem for biological motor
production.

So far the best performing optimal motor control methods rely on crafting the
cost functions, discrete time, iterative optimization, differentiable environments, or
even manually engineered and tuned solutions.

Learning from rewards in natural environment usually sets another problem -
as the rewards are usually sparse and distant in time from the actions that led to
them, identifying the correct action to reinforce becomes a non-trivial task. This
problem is knows as credit assignment,

Reinforcement learning paradigm had been successfully applied to explain
some aspects of learning in the brain, conditioning, dopaminergic system. Prob-
ably, correlation of dopamine dynamics with some of learning signals in temporal
difference algorithm as reward system representing reward prediction error [54, 74],

As for biological plausibility of optimal control, I would like to indicate some

of the important incoherences:

* Optimal control requires the value function, defined explicitly, or learned, as

in the Reinforcement Learning paradigm.

* Even though movements can be expressed as optimal solutions w.r.t. some

cost, it may not be a consequence of optimizing that function.

* Optimal control is invariant to the learning procedure, it explains only the
end-result. From the Marr’s perspective [49], optimal control resides on the

top (computational) level.

A more compelling approach, as one may see in the following sections, is
Bayesian; it frames the problem of motor production as inference, and value func-
tion as beliefs. The free energy principle explains how actions follow from approx-

imate Bayesian inference minimizing sensory surprise.
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4.3 Free Energy and Active Inference

The free-energy principle [23] developed and popularised by Karl Friston attempts
to be the unifying theory of the brain, perception and action. In this paradigm an
agent is evolved to occupy some rather small subset of all the possible environment
states. Note that agent’s state is just a part of the full state of the environment. The
environment evolves according to its stochastic dynamics, moving the agent away
from their preferable set of states (natural habitat). The agent is equipped with a
sensory system receiving s and is also able to act on the environment. The goal of
the agent is to minimize its surprise about the environment by in the following two
ways: (a) adapting the sensory system through explaining the environment, which
results in Bayesian inference on the causes of the sensory inputs, thus learning the
model of the environment and making it less surprising; (b) acting on the environ-
ment to make it less surprising, thus resisting the natural increase of the entropy and

moving to the preferred states.

Reformulating the above, the agent’s internal state is a weighted compromise
between the prior expectations about their ideal environment and information about
the actual environment state provided through the sensory system; the weighting is
done w.r.t. the uncertainties. The actions are performed to adjust the environment
to fit the internal state. As the exact minimisation is intractable, a variational lower
bound on surprise is used, which equals to free energy minimisation. Formally, in

the most basic form, this results in the following optimization:

py = arg min F'(8;, p) 4.11)
I

ar = 7T(§’ N) = arg min E§z+1|§t7a [F(gt-l-lu /'Lt-l-l)] (412)

where F'(5, i) is the free energy lower bound on surprise having sensory state
s, v 1s the explanation of the sensory inputs (recognition density parameters), a is
the emitted action. This approximation also gives rise to the compromise between

the sensory adaptation and acting on the environment we mentioned before.

For continuous time models, optimization of imaginary sensory evolution vec-
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tor field indirectly results in the optimal policy ([22]). The agent then produces
actions to follow the path leading to minimization of free energy and eventually

reaching the preferred distribution of sensory input.

Let’s consider the following example: an anthropomorphic agent is dreaming
of grasping a cup with a hand, as it may be a preferred (expected) state at some point.
The cup is on the table, but the agent’s internal state represents it almost grasped. A
series of actions a, are executed according to the equation (4.12), gradually mini-
mizing the free energy until the cup is grasped. The sensory input expectations now

match the actual sensory signal.

Active inference goes further on exploiting the Bayesian framework and re-
cruits prior beliefs about motions and trajectories [60]. Such priors allows forming
a much richer space of motor output than the cost function used in optimal control;
according to Helmholtz decomposition, a sufficiently smooth vector field (policy
representation) can be decomposed in a curl-free and a divergence-free components
[21]. The curl-free part can be specified by the value function, while the divergence-
free (periodic) requires more elaborate tricks like having path value, trajectory op-

timization, stationary state distribution prior [79].

While the Free Energy brain theory is very appealing and was able to give
explanation to numerous processes in the brain, it lacks scalable implementations,
action production was demonstrated only on toy examples, the desired state is ex-
plained as an optimization of free energy through the evolutionary process. As a
very general principle it does not suggest or prefer any particular implementation,

and can absorb any Bayesian approach.

4.4 Bayesian Perspective

Generating actions can be viewed as an inference in a Bayesian network represent-
ing an MPD. It is completely in agreement with the Free Energy principle, and can

serve as its algorithmic level.

Continuous space discrete time Bayesian inference for MDP was suggested

in [16] and rigorously formulated in [85] and extended in [34]. Toussaint [85] in-
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Figure 4.2: Graphical model for Markov decision process. State transitions i ...zTp_1
and actions ag . . . ar—1 must be inferred having the Markov chain conditioned on the initial
state xo and the goal z7.

Figure 4.3: Bayesian Markov decision process. Function ~ defines a prior over the controls
ag ...ap—1. When sampled trajectories {zg ...z} are observed, inferring posterior of
equals to inverse optimal control.

dicated that MAP estimate in a goal conditioned Markov chain results in solving
the corresponding MDP (Fig. 4.2). Message passing algorithm [62], that pro-
vides efficient inference in Markov chains, combined with iterative expectation-
maximization procedure for policy optimization results in a fast and robust solution
for the MDP. This optimization procedure must be performed after every current

observation z. to account for the changes in the environment optimally:

T
a, = arg maXHp(:ctH\xt, a) (4.13)

Ge t=c

By setting a prior distribution on the control function, we arrive at the
Bayesian optimal control (Fig. 4.3). Essentially, functional prior p(aq . ..ar|y)
defines a Markov random field, that in general case can be factorized as
HZ: p(a¢lag ... a;—1,7). In this case, conditioning the full model on observed
trajectories and performing Bayesian inference allows identifying the posterior of

the control, giving a Bayesian solution to the Inverse Optimal Control. The control
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generating function prior saves us from the problem of specifying the cost function;
it also allows generating periodic (solenoidal) movements, which are required for
gait, as well as non-periodic, like reaching and grasping.

The widely accepted framework of forward and inverse models in the brain
[90], when viewed from the Bayesian perspective, boils down to explicit repre-
sentation of the forward dynamics probabilities p(x;,1|z¢, a;) and action posterior
p(a¢|zii1, z¢) in the brain, probably with multiple time scales. These probabili-
ties can be learned form the experience and constantly being updated. The exact
mechanism of learning and adapting is a subject of numerous experiments. It has
been suggested that such forward model constitutes an intuitive physics model of

the environment [41].

4.5 Motor Primitives

Just like in the visual system, where hierarchies of similar computations promote
generalization, one may expect modularity in motor control [63]. Such modular-
ity may be present on every layer of representation: muscle synergies, kinematics,
joint dynamics, task grammar [20]. It is still not clear what exactly such building
blocks” are, but modularity in motor production and control can greatly simplify it
(Fig. 4.4).

Motor output driving the muscles is not random; it has some structure. At-
tempts to find this structure, while following the biological constraints, produced a
set of hypothesis about the generative process for the EMG, kinematic, and other
motor data. Many motor primitive models are inspired by physiological studies of
spinal cord and are mathematical models of CPGs and force fields.

A family of low-level motor primitives, called synergies, comes from the as-
sumption that the motor output X is a linear combination of a small number of

components (sources):

X=WS+x (4.14)
i~ N(0,0%) (4.15)
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[ activations ]

[ muscles ]

Figure 4.4: Motor primitives hypothesis. A set of learned pattern generators can be acti-
vated to produce a desirable motion. Equipped with feedback mappings they form feedback
controllers. A small number of such motor primitives is sufficient to control a large task
manifold.

where W - weights, S - concatenated sources, > - Gaussian noise. One can classify
kinematic MPs into temporal, spatial, and spatio-temporal, depending on which di-

mensions the sources represent [18]. For temporal MPs, S € RM.T

represents M
temporal sources. Multiplied with W €™ we get D components for the full data
X € RPT, In spatial MPs source matrix S € R:P represents M sources of di-
mension D. The weights W €™ are time dependent. Correspondingly, in spatio-
temporal MPs sources contain rich spatial and temporal activation patterns, essen-
tially factorizing the data X similar to the Singular Value Decomposition (SVD).

Clearly, spatial synergies resemble the spinal force fields, while temporal ac-
tivation components represent the spinal travelling waves, CPGs, or activations of
the corresponding muscle synergies by motor cortex.

Analysis of kinematic data with component analysis (PCA), independent com-
ponent analysis (ICA), anechoic mixture model (AMM), and smooth instantaneous
mixtures (SIM) suggested AMM as the best candidate for such linear mixture. The
representation of human gait trajectories with AMM requires only three components
that can be shifted in time [18].

In the Temporal Motor Primitives model [11] motor output is created by acti-
vating a small set of sources that change their output in time. Linearly combining
the sources with weights matrix produces the output. By changing the weights dif-
ferent outputs can be created. Learning the embedding of the weights allowed in-

terpolation between the parameters of movements. When trained on data, generated
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by an optimal control solver for a walking task, the TMPs could drive a humanoid
robot to produce a parametric walk with different step sizes. It must be noted that
the robot was walking without any feedback, thus TMPs running as a feed-forward
controller.

Another type of movement primitives - Dynamic Motor Primitives (DMPs) -
relies on learnable differential equations [35]. Controllers, constructed on top of
differential equations with contracting property, guarantee the stability of generated
motion. Combined with reinforcement learning methods, like Covariance Matrix
Adaptation [70] or Path Integral Policy Iteration [39, 80], such MPs allowed for
faster learning and modularity of the control. Thus we can conclude that real world
reinforcement learning tasks benefit from parametric policies with good properties,
and learned (sensori-)motor primitives may be interpreted as memories, storing op-
timal solutions. They promote learning and result in better generalization and avoid
having to re-optimize we want to repeat an action [71, 11].

The type of motor primitives I suggested in my work is modular, as opposed to

DMPs. Spatial synergies arise from the low dimensionality of the latent dynamics.



Chapter 5

Gaussian Process

The basic building block for our models of movement primitives is Gaussian Pro-
cess (GP). In this chapter we review GP and its connection to linear regression and
neural networks. GP is a non-parametric Bayesian method, which makes it particu-
larly interesting for system identification applications: here non-parametric means
that the number of parameters grow with the amount of training data, thus par-
tially relieving the researcher from the problem of model search. Being a Bayesian
method is also allows us to treat the uncertainty right. The drawback of GP is,

however, its high training cost, as we explain later.

5.1 Linear Regression. Bayesian Perspective

Let’s consider the following supervised machine learning problem: given training
data points X = {z;},Y = {y;},i € 1...N,z; € RP and fixed basis functions
B(x) = {bj(z)},j € 1...M, find the regressor coefficients w; assuming that

observation noise is Gaussian:

&~ N(0,0°) 51
M

Yi = Z w;bj(x;) + & (5.2)
j=1

Here we are interested in full Bayesian treatment of this problem (see e.g.
[67]). By putting prior distributions on weights w and noise o, we arrive to the

graphical model at Fig. 5.1. By integrating out the parameters of the model, poste-
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T

Figure 5.1: Bayesian linear regression. N noisy data points (x;, y;) are observed. The map-
ping f(x) is approximated by weighted sum of M basis functions b(x). To indicate multiple
instantiations of parameters and random variables we used the standard plate notation [8].

rior predictive distribution for new inputs reads:
P I, X, Yo0) = [ bl XYW, o) )W 53)

For simplicity, we put Gaussian prior with mean zero on W. Later, in the artificial
neural network, this prior can be interpreted as a regulariser causing weights decay.
With such prior the linear model gains in tractability. We may notice that prior pre-
dictive distribution is a huge Gaussian: as the prior on every weight is a Gaussian,
every basis function value becomes a coefficient for these Gaussians, and then we
just sum them up. As a sum of weighted normally distributed random variables is

still a Gaussian, the combined prior on Y is a Gaussian.

p(w;) = N(0,1) (54
p(wibi(x;)) = N(0, bi(z;)?) (5.5)
p(y;) = N(O, Z bi(z;)* + 0°) (5.6)

=1

We will use the following equation to marginalize out normally distributed vari-
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ables:

p(x) = N(z|p, X) (5.7)
pylz) = N(y|Az, A) (5.8)
(o) = [ plole)pla)da (59)
= N(y|Ap, ASAT + A) (5.10)

This integral in 5.9 can be carried out by a change of variables z = Az and inter-
preting it as a convolution. Two-sided Laplace transform [86] B{-}(-) allows us to

sum up the cummulants of the Gaussian densities in the s-domain:

p(y) = / N(ylz, N (A7 2|, E)ldTl(A”dz (5.11)
= /N(y — 2[0, AN (2| Ap, ALAT)dz (5.12)
=B~ {B{N(y — 2[0, ) }(s)B{N (2| A, AZAT) }(s)} () (5.13)
=B"! {exp (%STA3> exp (STAM + %STAZATS) } (y) (5.14)
=B"! {exp (STAM - %ST(AEAT + A)s) } (y) (5.15)

= N(y|Ap, ALAT + A) (5.16)
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Now we are equipped with right tools to integrate out I in 5.23:

W eRM: W, =w, (5.17)
XeRPN X, =2 (5.18)

Y e RV Y, =y (5.19)

B e RN B, . = b;(z;) (5.20)

p(W) = N(W|0,T) (5.21)
p(Y|X, W) =N(B*"W,15?%) (5.22)
pYIX,0) = [ (VX W,0)p(W)aW (523)
= N(0, B"B + 10?)) (5.24)

Integrating out the weights resulted in a Gaussian distribution for Y. Notice that
the covariance matrix K,, = BT B + Io?, which we obtained by applying Eq.
5.10, is a function of inputs X. This matrix has a special name, Gram matrix, and
defines the pairwise correlation structure of the outputs Y. Thus, we have arrived to
Gaussian process - a stochastic process which outputs Y are normally distributed
w.r.t inputs X (time, sample index, etc.). If outputs are normally distributed w.r.t.

some covariance matrix, the posterior predictive is just a conditional Gaussian [67]
p(y*|:17*, X? Y) = N(y*|K$*7$K;iY> Kx*,x* - Ka:*,xKx_,i:Kﬂf,x*) (525)

From this equation we see the complexity of GP prediction - because of the
Gram matrix inversion it is O(N?3), which makes it suitable for datasets of order of

no more than thousands of data points.

Also notice that every element of BY B matrix is a dot-product of the corre-
sponding basis function values: B B; ; = [b,(x;)]" [by(2;)],v € {1... M}. For a
large enough number of basis functions computing the covariance matrix becomes
unfeasible. We may, however, construct B7 B directly, without the explicit map-
ping onto the basis functions (also often referred to as feature space). For this we

use some results from functional analysis. We seek for such functions &(-, -) of two
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inputs which are equivalent to a dot-product of these inputs represented in some

feature space. Such functions must meet the following condition (Mercer’s) [73]:

k(z,2") = k(2', x) (5.26)

Y(f|f:x = R): / f(@)k(z,2") f(x)dxdx >0 (5.27)
XXX

This defines a positive (semi-)definite kernel (-, -), which is similar to the definition

of positive (semi-)definite matrix, but operates in a continuous domain.

5.2 From Neural Network to Gaussian Process

Gaussian Process allows many interpretations: an infinite-dimensional Normal dis-
tribution (continuous limit of Eq. 5.24), a prior over functions, a non-linear regres-
sion etc. Here we clarify its connection to neural networks. To our knowledge, this
connection was first made explicitly in [55] in the context of Bayesian treatment
of artificial neural networks. The conclusion is that GPs with some kernel func-
tions are computationally equivalent to a multilayered perceptron. This connection
is relevant to my work as I used GPs to model neural network computations. Let’s
construct such network by introducing neurons with Radial Basis Function (RBF)

receptive field:
1 _ 2
RBF,(z) = exp (‘5%) (5.28)
We can always construct such receptive fields by adding responces of neurons
with sigmoid activation functions according to the universal approximation theorem

[14, 10]. The simplest approximation of the RBF can be achieved with only two

sigmoid functions, i.e. two neurons:

1 1
N1—|—exp(31:—,u—1)+1—|—exp(u—31:—1)

RBF,(z) —1 (5.29)

In our simple feed-forward network (Fig. 5.2) input vector [ is fed into the

hidden layer H. Every pair of neurons H; has an Gaussian-like (RBF) receptive
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hidden layer

input layer

Figure 5.2: Feed-forward neural network with three layers.

field, with maxima equally spaced on some range of allowed inputs. The output
layer O performs linear readout from the hidden units. We may notice that compu-
tationally this network is equivalent to the linear regression in some feature space:
hidden units map inputs to a high-dimensional feature space, linear readout is just
a linear combination of activated functions in that space. Again, as in the Bayesian
regression example, we may compute the covariance values of the inputs z and z’
defined by such network with A hidden neurons (Eq. 5.24) and RBF activation,

which reads:

¢(z) = [eXp (—%(x_l—f)z)LlM (5.30)
(¢(z), p(2")) = ieXp (—%(x_l—?“)z) exp (—%@/;—2“)2) (5.31)

Complexity of computing activations of such network grows linearly with the num-
ber of hidden units, and for N data points the covariance matrix of activations re-
quires O(N * N x M) evaluations of RBF. By setting the number of hidden units

to infinity, we may, however, perform a transition to the continuous domain and
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compute such covariance matrix analytically:

fim (o(a),0(a")) = [ e (—EM) exp (—1@';—2“)2) i (532)

M—00 - 2 2 2
o 12(p—0.5(x + 2'))? 10.5(x — 2/)?
= /_Oo exp (—5 B exp 5 7 du
(5.33)

B 1, 1(z—a)?

where Z (31%) = v/wl2, normalizing constant for a Gaussian with covariance $/°.

We see, that such RBF neural network in the limit of number of hidden units to
infinity is equivalent to a GP with a similar looking kernel function. This integrated
covariance function is known as ARD (Automatic Relevance Determination) kernel
function. When trained, the influence of input dimensions on the output depends on
the value of coefficients /;. As [; goes to infinity, the corresponding representation
of the input in the feature space becomes smoother w.r.t. input dimension ¢ and less

relevant to the output.

A curious reader may ask what kinds of feature functions one can use to con-
struct the covariance matrix. The answer is, essentially, any rich enough class of
functions. Sometimes it is possible to make such transition to infinite number of
functions as we did with RBFs and derive an analytic equation for the correspond-
ing kernel (see, e.g. derivation of covariance function for sigmoidal neural networks
in [87]). Also, one can use an arbitrarily complex (deep) neural network to construct
a rich an flexible feature space, and then feed it into some kernel function to make

it compatible with the GP framework ([88]).

In summary, we give a quick path from brain to GP: use artificial neural net-
works to model computations performed by biological neurons, add Bayesian treat-
ment to handle uncertainty, find a class of networks where some of the Bayesian
computations can be carried out analytically, which converge to GP in the limit of

infinite capacity.

At this point the reader should be sufficiently equipped with the motivation
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and links between the computational (GP) and implementational (neural network)
levels of representation to justify the abstraction of the network architectures and
working solely in more mathematical domain, like priors on functional mappings
posed by GPs. This allows us to leverage the analytical machinery of mathematics
with computational methods for optimization to achieve results in often intractable
problems, while keeping the interpretation in terms of artificial neural networks

always possible.
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Abstract. We present a full variational treatment of the Coupled Gaus-
sian Process Dynamical Model (CGPDM) with non-marginalized coupling
mappings. The CGPDM generates high-dimensional trajectories from
coupled low-dimensional latent dynamical models. The deterministic vari-
ational treatment obviates the need for sampling and facilitates the use of
the CGPDM on larger data sets. The non-marginalized coupling mappings
allow for a flexible exchange of the constituent dynamics models at run
time. This exchange possibility is crucial for the construction of modular
movement primitive models. We test the model against the marginalized
CGPDM, dynamic movement primitives and temporal movement primi-
tives, finding that the CGPDM generally outperforms the other models.
Human observers can hardly distinguish CGPDM-generated movements
from real human movements.
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1 Introduction and Related Work

Planning and execution of human full-body movements is a formidable control
problem for the brain. Modular movement primitives (MP) have been suggested
as a means to simplify this control problem while retaining a sufficient degree
of control flexibility for a wide range of task, see [4] for a review. '"Modular’ in
this context usually refers to the existence of an operation which allows for the
combination of (simple) primitives into (complex) movements.

Technical applications of modular MPs have also been devised. For example
in computer graphics, especially combined with dynamics models 7] and robotics,
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e.g. the dynamical MP (DMP) [9]. Each DMP is encoded by a canonical second
order differential equation with guaranteeable stability properties and learnable
parameters.

To lift the restriction of canonical dynamics, the Coupled Gaussian Process
Dynamical Model (CGPDM) [17] learns both the dynamics mappings and their
coupling for a given movement. The learning is accomplished in a Gaussian
process framework. The Gaussian process (GP) is a machine learning staple for
classification and regression tasks. It can be interpreted as an abstraction of a
neural network with a large, possibly infinite, hidden layer. Its advantages include
theoretical elegance, tractability and closed-form solutions for posterior densities.
It affords high flexibility but has poor (cubic) runtime scaling in the data set size.
We improve this scaling with deterministic, sparse variational approximations
using small sets of inducing points (IPs) and associated values [16] for each MP,
resulting in the ’variational CGPDM’ (vCGPDM). This yields a linear run-time
dependence on the number of data points.

The CGPDM builds on the Gaussian process dynamical model (GPDM) [18],
where a latent dynamics model is mapped onto observations by functions drawn
from a GP. The GPDM can model the variability of human movements [I5]. Sparse
variational approximations have been developed for GPDM-like architectures
[6] and even deep extensions thereof [I1]. However, with the exception of the
CGPDM, all these approaches have a 'monolithic’ latent space(s) and thus lack
the modularity of MPs. While deriving a variational approximation is not trivial,
we expect it to avoid overfitting and yield a good bound on the marginal likelihood
[2].

Our target application here is human movement modeling, but the vCGPDM
could be easily applied to other systems where modularized control is beneficial,
e.g. humanoid robotics [5].

We introduce the vVCGPDM in section [2| In section |3} we first benchmark the
vCGPDM against other MP models. Second, we determine the degree of human-
tolerable sparseness in a psychophysics experiment. In section [ we propose future
research.

2 The model

A CGPDM is basically a number of GPDMs (the ’parts’) run in parallel, with
coupling between the latent space dynamics. See [I7] for a graphical model
representation. The model operates in discrete time ¢ = 0,...,T. For every
part ¢ = 1,..., M there is a Q*-dimensional latent space with second-order
autoregressive dynamics and inputs from the latent spaces of the other parts. Let
x! € R be the state of latent space i at time ¢. Then

xp = fl(®p g, i g, a2y, (1)

We chose a second-order model, because our target application is human movement
modeling, and the literature indicates (e.g. [I5]) that this is a good choice for
this task. However, we note that this can be easily changed in the model. The
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latent states ! give rise to D'-dimensional observations yi € RP " via functions
g'(.) plus isotropic Gaussian noise 7;

Y, =g' (@) + 1 (2)

The functions g'(.) are drawn from a GP prior with zero mean function and a
suitable kernel. In a vCGPDM, the functions f(...) are also drawn from a GP
prior with zero mean function, and and a kernel that is derived with product-of-
experts (PoE, [8]) coupling between the latent spaces of the different parts, as
described by [I7]: each part generates a Gaussian prediction about every part
(i.e. including itself). Let ;7 = £ (2! _,, 2! ) be the mean of the prediction of
part 4 about part j at time index ¢, and o*7 its variance. Following the standard
PoE construction of multiplying the densities of the individual predictions and
re-normalizing, one finds

. . i3\ 2
= x [TV (el at)  (3)
2 i

p(allai’,a) =

(2rad)

where o/ = (37, oy jl) ! It was shown in [17] that the individual predictions a5/
can be marginalized out in closed form. We will keep the individual predictions,
because this allows us to couple a previously learned dynamics model for a part
(including its predictions about the other parts) to any other dynamics model for
the other parts, thus obtaining a modular MP model.

The form of eqn. [3] indicates the function of the coupling variances: the
smaller a given variance, the more important the prediction of the generating
part. When the o’/ are optimized during learning, the model is able to discover
which couplings are important for predicting the data, and which ones are not,
see [17]. Put differently, if an a* is small compared to o #ii , then part 7 is able
to make a prediction about part j with (relatively) high certainty. Furthermore,
as demonstrated in [I7], the o/ can be modulated after learning to generate
novel movements which were not in the training data.

The basic CGPDM exhibits the usual cubic run time scaling with the number
of data points, which prohibits learning from large data sets. We therefore
developed a sparse variational approximation, following the treatment in [TGITT].
We augment the model with IPs 7¢ and associated values v* such that g¢(rf) = v°
for the latent-to-observed mappings ¢g¢(X?) (referred to as 'LVM IPs’ in the
following), and condition the probability density of the function values of g¢(X?)
on these points/values, which we assume to be a sufficient statistic. We apply the
same augmentation strategy to reduce the computational effort for learning the
dynamics mappings, which are induced by 2%7 and u®/ (referred to as ’dynamics

IP).
Key assumption of the vCGPDM: to obtain a tractable variational
posterior distribution ¢ over the latent states x; = (2} 1,..., 7} Qi)’ we choose

a distribution that factorizes across time steps 0,...,7T, parts 1,..., M and
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dimensions 1,...,Q" within parts, and assume that the individual distributions
are Gaussian:

T M Q°
, . L
q(@p, .. xp) = [ T1[] al=is) s a(=@i,) = N(ui g 0ty) (4)
t=0i=1q=1

This approximation assumption is clearly a gross simplification of the correct
latent state posterior. However, it allows us to make analytical progress: a free-
energy evidence lower bound, ELBO (see equn. 8 of [16] and eqn. S20 in the online
supplementary materia]E[) can now be computed in closed form if we choose the
right kernels for the GPs. We opt for an ARD (automatic relevance detection)
squared exponential kernel [3] for every part-i-to-j prediction GP:

& (X, X))

y 1
k9 (X, X') =exp | —= Z i (5)
q

2
q

and a radial basis function kernel for the latent-to-observed mappings. The com-
putations yielding the ELBO are lengthy (and error-prone) but straightforward.
The details can be found in section 2 of the online supplementary material.
Whether our simplistic approximation assumption (eqn. 4)) is useful depends on
the data, but at least for human movement it seems appropriate (see section .

3 Results

We implemented the model in Python 2.7 using the machine-learning framework
Theano [I] for automatic differentiation to enable gradient-based maximization of
the ELBO with the scipy.optimize.fmin_1_bfgs_b routine [I0]. Latent space
trajectories were initialized with PCA.

While the sparse approximations in the vCGPDM greatly reduce the memory
consumption of the model, they might also introduce errors. Also, our fully
factorized latent posterior approximation (eqn. 4) might be too simple. We tried
to quantify these errors in a cross-validatory model comparison, and in a human
perception experiment.

3.1 Human movement data

Comparisons were carried out on human movement data. We recorded these data
with a 10-camera PhaseSpace Impulse motion capture system, mapped them onto
a skeleton with 19 joints and computed joint angles in angle-axis representation,
yielding a total of 60 degrees of freedom. The actors were instructed to walk
straight with a natural arm swing, and to walk while waving both arms. Five
walking-only and four walking+waving sequences each were used to train the
models.

! available at http://uni-marburg.de/wk8VE
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3.2 MAP is worse than variational approximation

0.000 -

A B
'Walk' dataset 'Walk+wave' dataset
0.005 = Best MSE 0.030 = Best MSE 20000
IZ3 Best ELBO's MSE [ 29000 IZ3 Best ELBO's MSE
2T Best ELBO 0.025 BT Best ELBO [ 17500
Best MSE's ELBO Best MSE's ELBO
0.004 B3 Best MSE's F 20000 B3 Best MSE's L 15000
0.020
k12500
w 0.003 15000 Q  w 2
2 3 2o01s F 10000 2
0.002 [ 10000 0.010 I 7500
I 5000
0.001 5000 0.005
k2500
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vGPDM
vCGPDM,
U+L
MAP GPDM
MAP CGPDM, |
U+L
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vCGPDM,
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MAP GPDM
MAP CGPDM, |
U+L

Fig. 1. Model comparison results. Shown is the average squared kinematics error on
held-out data after dynamic time warping (MSE) and the variational lower bound on
the model evidence (ELBO), where available. Error bars are standard errors of the
mean. A: walking dataset. B: walking+waving dataset. For model descriptions and
further details, see text.

To check how the predictive quality is affected by our sparse variational
approximation, we conducted a comparison by five/four-fold cross-validation of
the following models for walking/walking+waving. Our cross-validation score is
the kinematics mean squared error (MSE), computed after dynamic time warping
[14] of trajectories generated by initializing the model to the first two frames of
a held-out trial onto the complete held-out trial: 1.) a GPDM with maximum-a-
posteriori (MAP) estimation of the latent variables [18], called MAP GPDM in
fig. [1} 2.) a fully marginalized two-part (upper/lower body) CGPDM with MAP
estimation of the latent variables [I7], called MAP CGPDM U-+L. 3.) Their
variational counterparts, vCGPDM U-L and vGPDM. We experimented with
# LVM IPs=4,...,30, and # dynamics IPs= 2,...,30. The MSE optima were
near 10-15 IPs for both. All latent spaces were three-dimensional. 4.) Temporal
movement primitives (instantaneous linear mixtures of functions of time) [5]. We
used up to 10 primitives, the MSE optimum was located at ~ 6. 5.) Dynamical
movement primitives (DMP) [9]. We used between 1-50 basis functions, the lowest
MSE was found at = 15.

The results are plotted in fig. [[] Generally, all models perform better on
the walking only dataset, than on walking+waving. This might be due to
the latter being a more complex movement, as can be seen in the movie
modular_primitives.avi in the online supplementary material. Of all tested
models, the 2-part vCGPDM performs best in terms of MSE. It is significantly
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better than the full-capacity (no IPs) MAP models, i.e. the development of a
variational approximation which needs to store only ~ 10 IPs rather than ~ 104
data points was well worth the effort. Furthermore, note that the Best ELBO’s
MSE (i.e. the MSE at the maximum of the ELBO w.r.t the #IPs) is a fairly
good predictor of the best MSE, which indicates that our simple variational
approximation is useful for model selection via ELBO. Further evidence for this
is shown in fig. 1 of section 4 in the online supplementary material: we plotted
MSE vs. ELBO for the vCGPDM U+L, symbols indicate different # LVM IPs.
The negative correlation between MSE and ELBO is clearly visible. Furthermore,
timing results for the vVCGPDM can found in section 5 of the supplement, con-
firming the theoretical expectations of linear learning time scaling in the data
set size for the vCGPDM.

Note that the vCGPDM U+L outperforms the vGPDM particularly on
the ’walking+waving’ dataset. This shows the usefulness of having modular,
coupled dynamics models when the (inter)acting (body)parts execute partially
independent movements. A visual demonstration of that modularity can be found
in the video modular_primitives.avi in the online supplementary material.

3.3 A small number of IPs is enough to fool human observers

Next, we investigated the number of inducing points needed for perceptually plau-
sible movements with a psychophysical experiment: We showed human observers
(n = 31, 10 male, mean age: 23.8+3.5a) videos of natural and artificial movements
side-by-side on a computer screen. The artificial movements were generated by the
vCGPDM U+L. After presentation, the participants had to choose the movement
which they perceived as more natural. Examples of stimuli are provided in the
online supplementary material in the movie example_stimuli.mov The walking
sequences used for training and 9 additional walking sequences were used as
natural stimuli. Each subject completed 1170 trials in randomized sequence,
judging all artificial stimuli. We also tested for stimulus memorization effects
via catch trials with previously unused natural movements in the last quarter of
the experiment, finding none. All experimental procedures were approved by the
local ethics commission.

Results are shown in fig. [2} A: we computed the frequency fge, of choosing the
vCGPDM-generated movement across all subjects as a function of the number
of dynamics IPs and the number of LVM IPs. At best, we might expect fgen
to approach 0.5 when the generated movements are indistinguishable from the
natural ones. We fitted those data with a logistic sigmoid m and
a Bernoulli observation model, using two different regressor functions r(.): a
soft-minimum between the number of IPs and the MSE. Panel B shows the fit
of fgen with MSE, panel C shows 107-fold crossvalidation results for the two
regressors, using the average negative log-probability on the held-out data as
score. Error bars are standard deviations. ’Constant’ is the constant regressor, any
other regressor should predict better. 'Data’ uses the data mean of the individual
#IP combinations as a predictor, and constitutes a lower bound on the cross
validation score.
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Clearly, fgen increases with the number of IPs, approaching (but not quite
reaching) 0.5 for a sufficiently large number of IPs, this is true for the MSE
regression, too. Hence, MSE is a good predictor of perceptual performance.
Furthermore, a rather small number of IPs is sufficient for modeling this data.
This allows for compactly parametrized MPs.

Cross-validation results
X MSE regression 0.555
Psychophysics data 0.50 16 9
16 0.45 & 0.550 1
14 £
14 0.40 § 0.545
12 035 412 & 0.540
g 030 E g
E 10 : s 10 2 0535
s 025 3 5}
> T g >
© 0.530 1
o 8 020 § 4
* 6 015 6 5 05251
4 0.10 4 | 0.520
2 0.05 2 > P <
X5 S S N
5 10 15 0.00 5 10 15 S &L
#IP LVM #IP LVM g <&

Fig. 2. Perceived naturalness of the model, as a function of the number of inducing
points (#IP) A: Rate of perceiving vCGPDM-generated stimulus as more natural than
natural stimulus, averaged across all participants. B: Regression of data in panel A,
MSE as regressor and logistic sigmoid as psychometric function. C: Regression model
comparison with 107-fold cross-validation. Softmin and MSE perform comparably well.
Both are close to optimal.

4 Conclusion

We developed a full variational approximation of the CGPDM, the vCGPDM,
which obviates the need for sampling the latent space trajectories [6]. We demon-
strated that the vCGPDM with a small number of IPs performs better than
the full-capacity CGPDM with a MAP approximation to the latent states, and
that the vCGPDM is also able to outperform other contemporary MP models,
most likely due to its learnable dynamics. Next, we showed that it produces
perceptually believable full-body movements. While perceptual evaluations of
full and sparse GPDM-like models [I5] have been done before, we are the first to
investigate systematically the number of IPs of all model components required for
perceptual plausibility. Furthermore, we showed that the MSE and the number
of IPs can be used to predict average human classification performance almost
optimally. This indicates that the model selection process on large databases of
training movements for the model could possibly be automated.

We are now in a position to learn a large library of movements with a CGPDM,
and study its compositionality. This is possible due to the compact representation
of each MP. Instead of direct connections between parts in the vCGPDM, it
is also conceivable to embed the parts into a hierarchical architecture, like [I5].
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While the vCGPDM is suitable when the number of parts is relatively small
(computational complexity O(T * M * (M * #IP)3) per optimization iteration), a
hierarchical architecture might enable more computational savings for many parts.
A further direction of future research are sensorimotor primitives, i.e. MPs that
can be conditioned on sensory input [I2/TTJT3] which we will implement by adding
sensory predictions to the latent-to-observed mappings. Acknowledgements
DFG-IRTG 1901 'The Brain in Action’, DFG-SFB-TRR 135 project C06. We
thank Olaf Haag for help with rendering the movies, and Bjérn Biidenbender for
assistance with MoCap.
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Supplementary Material: The Variational
Coupled Gaussian Process Dynamical Model

Dmytro Velychko, Benjamin Knopp, Dominik Endres*
December 10, 2019

1 Partial optimization of variational distribution
for simplified ELBO

While optimizing the full variational posterior in augmented Gaussian Processes
models the following type of term appears often in the ELBO equation:

Rg(u).a(0) = [ atw)(F(a(w). ) +10g 2

- / 4() (g(v), w)dus + / ¢(w) log p(u)du — / ¢(w) log g (u)dus
(s1)

To simplify the optimization of such terms, we would like to carry out the
optimization with respect to the density ¢(u) analytically, so as to remove the
dependency on ¢(u). To this end, we calculate for the optimal variational ¢*(u)
in the above equation. This approach was suggested in [1], however, it is not well
described there. Here we give an extended derivation. A necessary condition
for maximality is a vanishing functional derivative under the constraint that the
density g(u) is normalized to one:

/q(u)du -1=0 (52)

which is fulfilled at the stationary points of the Lagrangian
Xlatw,ato) = Rlaw o)+ ( [ atwiau 1) ($3)
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where A is chosen so that holds. Taking the derivative of X (¢(u), ¢(v)) and
setting it to zero yields

M = f(¢(v),u) + logp(u) —logg(u)+ 1+ A=0 (S4)

q(u)
and therefore, denoting Z = exp (—\ — 1)
q"(u) = exp(f(q(v),u) +logp(u) + 1+ ) (85)
4" (w) = () exp(f(a(v), w) (56)
Z=exp(-2-1) = [ p(w)exp(flav). u)du ($7)
Substituting the optimal ¢*(wu) into the original term, we get:
_ (1 p(u)
R(q(v)) 7 P(w) exp(f(a(v), u))(f(g(v),u) +log 1 T () exp(/ (@), )))du
= [ ot el (atw).w) (1o ”;‘ifj}ﬁ{ﬁ;’(’gug) du
Z b)
—lo5(2) ;[ plu) exp(Fla(v),w)du
— g [ pw)exp(f(a(v),w)du (38)

This is the simplified version of , which depends only on ¢(v) because
¢‘u) = ¢*(u) has been determined by optimization.

2 vCGPDM ELBO derivation

Here we give the extended derivation of the ELBO from the main paper. Let’s
assume we deal with M parts. The model reads:

X ={x°...x"} (S9)

X' ={x}.. . xh}zic R®' (S10)
Y'={yo--yrhiy; €RY (S11)

FPUXL,) ~ 97’(0 (@, 2 ,)) (512)
HN U@ ,), Ta?) ;00> 0 (S13)

ga(X") ~ 97’(0’ kg, ")) (S14)
gy = 9a(X") (S15)

Yid NN(gfivIﬂl)wB >0 (Sl6>
p(ag) = N ([0, 1) (517)



Here and following upper indexes are part-related, lower indexes indicate
dimensions.

We have M x M latent dynamics mappings, which are combined into M
mappings with the Product of Experts - multiplying and renormalizing the
distribution from separate partial predictions. Each of the M x M mappings is
augmented with some inducing inputs and outputs: f7* : 29* — u/?. The full
augmented joint distribution of the model reads:

p(ylg)p(glz, v)p(v)p(z, flu)p(u)
r M
= Hp(y"lgi)p(giwivvi)p(vi)l p(z, flu)p(u)

i=1

plx,u, f,v,9,y)

r M D; ) ) ) ) . .
- 11 [Hmymga)p(gawaw] p<v1>]
1=1 Ld=1

[ M _ M M S _
X l p(i{f", a:’z})] H Hp( Vo1 Ty, )
t=1 Li=1

i=1j=1

(M M N M _
iECy [_Hp@ca)] (S18)

i=1j=1

The full proposal variational posterior is:

q(z,u, f,v,9) = p(glz, v)q(v)p(flz, u)q(z)q(u)
T M M

= p(gle,v)q() | [TT] ] p(#7"

t=1i=1j=1

Jlllt—lv w{):t—lv ujl'i> q(x)Q(u)

(S19)



The ELBO is:

£(6) = / o(@,u. ,v.9) log (”E]‘a“;f }”;g’g’)")> (520)
0 p(yilgl)
= :1: , U :ci ’Ui O ﬂ
2;/.% v p(ggle’, v')g(x')g(v") log S0 (S21)
M M
+ [atw Z/qm)q(w o/ T[Tt o)
X long(:cH{f:t’Z,oz:’l})dft> dmtdw_t]
+ q(u) log SEZ; du
+ / a(ao) log p(ao)dazo + H(q(x)) (822)

The part is the GPLVM ELBO and is given in [2]. Next, we consider
only the ELBO component which is relevant for the dynamics and apply the
sufficient statistics assumption: knowing ’ , and u/+? is sufficient for the f7*
distribution. The innermost integral is:

M M
A= / HHp .f% x’ L) 108;1_[17 thft’Z’Oé’L )df,
i=1j=1
]\/I [ Al . . . .. . . . .
= Z/ [T ot 12l w) | logp(ai|{fi", o' })d S
=17 |j=1
M ]
:Z/ HN |;Lf]1 Spii) log NV ( a:t|aZZa 4 Tag)df!
i=1 | j=1
M ] M ] M
:Z —gtr aiZ(a;3)2Sﬁ,i +logN(w;\aiZa;iluﬁ,i,Iai)
i=1 j=1 | j=1
(S23)
. -1
e = K5 (KDL)W (S24)
S..=K" | K (Kijlz”)_ K (S25)
t z! !, z! 27 z! .z
M
ai=0 ;)" (526)
j=1



Now let’s take the integral over a:

B = / q(x_¢) Adxrda 4
1 M . -1
3 (e [ - (1) W)
v =
1, .
—log Z(Ta:) = a7 [tr(Sa;) + HE g
M .. . —1 .
i (Y et vl (KoL) w)
j=1
M M _ 1 .
- 70@22(}]10{1@1“]17—' (szjv D 7) \I’Jkl(w tr & )(Kikzlzk 1) uk’l
j=1k=1

The sum over time points:

c=> B
t=1
M T 1 M _

=30 (D | e et w0 - (L) )
=1 t=1 Jj=1
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(S28)

For every i € 1... M we may stack up the u"? into u’ and construct a large
block matrices F* and stacked matrices G’ with elements

Z‘I’””w]m )] (K’;Jzz,“)_1 (S29)

Z“ el 1 (K% )1> (S30)

fk—ala a,”(K” )

zJ1z11




For j +# k: \Ilg’k’i(wit,a:ﬁt) = \Iljlz(a:{t)\lf]fz(w’jt) . Otherwise U7 (2 ,, &’ ) =
The sum over time points must be expressed as a quadratic form w.r.t. the
augmenting outputs w:

f%uiT}'iui+uiTgi+’Hi
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M= 1=
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Il
—
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c=>7c (S32)
=1
Ct = _i(uz o fzflgz)T]:-z(uz _ J—_-zflgz) 4 5ng‘/—_-zflgz 4 Hz (833)
- Z 1 M o | -1
H' = Z *Eai Z(O‘j_,il)Q tr {‘pg)’z(mj—t) - (K‘;_:l’le) \I/le(m]—t)]
t=1 j=1
1
—log Z(Io;) — 5%‘_1 [tr(Smi) + “gi“miH (S34)

Finally, we may write the dynamics ELBO, also accounting for the optimal
variational g(u) (see eq. and using p(u') = H]Ail p(u’t) = Hjle N0, K i zii) =
N (w0, K ,.i 5.i) where K ,.i ,.i is a block-diagonal covariance matrix:

M
- [— log Z(F"™  + K i i) — %g”fifl(fifl + K i poi) TFTIG 4 log Z(]—"il)}
=1
Moy ,
+y {leTf“gl + 7—[] + H(q(x)) (S35)
i=1

This is even lower bound on the ELBO due to the sufficient statistics assumption
for the f7* distribution. It is easy to notice that the optimal proposal ¢(u) =
M i .
[L.2; ¢(u?) - factorized.
We optimize the full ELBO w.r.t. the parameters of ¢(x), augmenting inputs
z, kernel parameters, and couplings . After the optimization the optimal g(u)



is computed as:

. 1 _ .
q(u’) = Zp(ul)exp(cz)

= N0, K o erp(— g (w! — FGTF (ul ~ FAG)
=N@(KZL L +F) WG (KL +FH ™ (S36)

P PRI

3 ARD RBF kernel V¥ statistics. Full covariance
variational parameters case.

Consider the following form of the approximate variational posterior distribution
of X:

N

q(0) = [ N@nlpz,. 1) ($37)

n=1

Here we derive the W statistics for the variational lower bound for the case when
the {Sp}n=1.. ~ are full covariance matrices and the ARD SE kernel is defined
as:

k(z, ') = oFexp (—; Z W) (S38)

In matrix notation:
A =diag(A1 ... Q) (S39)
k(z,x') = ofeap <;(m —z )\ — m')) (S40)

where A, are the ARD factors.
The Py statistic is easy to calculate and it does not depend on the covariance
matrix:

- /U?N(mn“‘na Sp)d,

= Uj%/./\/'(a:nmn,Sn)da:n

= Uj% (S41)
N

Uy =Y Uj=No} (S42)
n=1



The ¥, statistic:
(1) pm = /k(:cn,zm)./\/'(mnmn,Sn)dmn
= /o?exp (—;(wn —zn) Az, — zm)> N(xp|p,, Sp)dx, (S43)
Next, complete the ARD SE kernel to a scaled Gaussian distribution:

(Y1)nm = 012‘ / ggi;a?exp <_;(x7“ - wm)Tkil(mr - xvn)) N(xn|py,, Sn)dx,

07 Z(N) //\/(:Bn|zm7 MN (@ |y, Sn)des, (S44)

Noticing the product of two Gaussians, which is an unnormalized Gaussian, the
integral boils down to the scaling coefficient, which is a Gaussian value:

(U1)pm = J}%Z()\)N(zm\un, A+.Sp)

= 0}(2m)%2\/]A| ! exp (—;(zm — 1) " A+ 5) Hzm —un))

(2m)Q/2\/IA + Syl

_ o?\/%exp (‘;(zm = ) (A Sn) T (2 — “")>

II5-1 A 1
— g2y 2e= _ _ T 1 _
=0y A+ S, exp < 2 (2m = Hy)" A+ Sn) (2m Hn)> (S45)

(546)
The U4 statistic integral can be solved in the same manner:
(\IIQ)mm’ = /k‘($n, zm)k(zm’awn)/\[(wn|un7 Sn)dwn

= (022(V) / N (@ |2 NN (@ 2y NN (@2, S )y (S47)



Here we have to multiply the Gaussians twice:

(V2 = (320 [ N el 20
XN (@n| A+ AT AT 2 AT 20), AT AT TN (@0 ey, Sn)da,

= (3200 [ N, 2O (@0 2222 N @ 5,

= (320N oz, 2) [ N 2252 N @ S0

(O'fZ( NN (Zmr | Zms 2X) /N 71|M A JrS YN (2, |mean, precision)dax,,

Zm+ Zm A

= (07Z(N)°N (zm |2, 2A)N (| Sn) /N(azn|mean,precisi0n)dwn

2 2
m m A
- (U;Z(A))QN(zm/|zm,2)\)_/\/0‘"‘% 218

Zmt+ Zm A

=o}(2 = 4

For the case of the diagonal covariance S, the W3 statistic looks simpler [2] as it
does not require inversion of the A + S,, and % + S,, matrices.



4 Relationship between ELBO and MSE

vCGPDM MSE vs ELBO, 'Walk+wave', U+L

1
0.010 1 #lvm IPs=4

#lvm IPs=5
0.009 A #lvm IPs=10
#Ilvm IPs=15
0.008 - A #lvm IPs=20
0.007 A ‘ ‘
7a7
0.006 A
I
0.005 A
e |
— A
0.004 - 2 S

0.003 +

* oo

MSE

0.002

15000 16000 17000 18000 19000 20000
ELBO

Figure 1: Mean-squared kinematics error, MSE, vs. evidence lower bound,
ELBO, for different number of LVM IPs, indicated by symbols. The negative
correlation between ELBO and MSE for a given number of LVM IPs is clearly
visible. Furthermore, note that the highest ELBO corresponds to an MSE that
is very close to the optimal (lowest) one, i.e. ELBO can be used for model
selection.
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5 Learning time of vCGPDM and MAP CGPDM

learning times
1000 T T T

vCGPDM
| MAP CGPDM

600 -

800

t [sec]

400

200,

100 200 300 400 500 600 700 800 900 1000
data points

Figure 2: Learning times, including Theano compile times, for a three-part
vCGPDM with 10 IPs for all parts and corresponding MAP CGPDM. The linear
learning time scaling of the vCGPDM is evident, whereas the MAP CGPDM
shows cubic scaling. Thus, the vCGPDM can be used on large data sets which
is infeasible for the MAP CGPDM.
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Abstract: We describe a sparse, variational posterior approximation to the Coupled Gaussian Process
Dynamical Model (CGPDM), which is a latent space coupled dynamical model in discrete time.
The purpose of the approximation is threefold: first, to reduce training time of the model; second,
to enable modular re-use of learned dynamics; and, third, to store these learned dynamics compactly.
Our target applications here are human movement primitive (MP) models, where an MP is a reusable
spatiotemporal component, or “module” of a human full-body movement. Besides re-usability
of learned MPs, compactness is crucial, to allow for the storage of a large library of movements.
We first derive the variational approximation, illustrate it on toy data, test its predictions against a
range of other MP models and finally compare movements produced by the model against human
perceptual expectations. We show that the variational CGPDM outperforms several other MP models
on movement trajectory prediction. Furthermore, human observers find its movements nearly
indistinguishable from replays of natural movement recordings for a very compact parameterization
of the approximation.

Keywords: Gaussian processes; variational methods; movement primitives; modularity

1. Introduction

Two formidable problems that the human brain has to solve are planning and execution of
movements of its body. As a means to simplify these problems while keeping a sufficient degree of
control flexibility for a wide range of tasks, modular movement primitives (MP) have been suggested
(see [1,2] for reviews). There is no universally accepted definition of the term “movement primitive”.
For the purposes of this paper, an MP is a spatiotemporal component of a human (full-body) movement
that may be produced by mapping a latent state onto observable variables, such as joint angles.
The latent state can be generated by dynamical systems [3] or source functions [4,5]. “Modular’
usually refers to the existence of an operation which allows for the spatial, temporal or spatiotemporal
combination of (simple) primitives into (complex) movements.

Two prominent examples, where this operation is the linear combination of stereotypical
time-courses or muscle-coactivations, are called temporal MP-models [6-9] or spatial MP-models [10,11].
While these models are inherently modular, the assumption of stereotyped MPs makes it difficult for a
control system built out of these primitives to respond to perturbations. A type of MP which can be
controlled on-line more easily is the dynamical MP (DMP) [3], which has been developed for robotics
applications. In this approach, each primitive is encoded by a canonical second order differential
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equation with guaranteeable stability properties and learnable parameters. A DMP can generate both
discrete (e.g., reaching) and rhythmic (e.g., walking) movements and drives the trajectory of one degree
of freedom, e.g., a joint angle. Modularity arises because of the latter property, which might be viewed
as an “extreme” form of the modularization that we investigate here, where one movement module
might affect several degrees of freedom. Similarly, recent extensions of the DMP framework allow for
the reuse of a DMP across end-effectors via kinematical mappings [12] or across tasks [13].

We describe a model that learns MPs composed of coupled dynamical systems and associated
kinematics mappings, where both components are learned, thus lifting the DMP’s restriction of
canonical dynamics. We build on the Coupled Gaussian Process Dynamical Model (CGPDM) by [14],
which combines the advantages of modularity and flexibility in the dynamics, at least theoretically.
In a CGPDM, the temporal evolution functions for the latent dynamical systems are drawn out of a
Gaussian process (GP) prior [15]. These dynamical systems are then coupled probabilistically, and the
result is mapped onto observations by functions drawn from another GP. One drawback of the CGPDM
is its fully non-parametric nature, which results in cubic scaling (with the dataset size) of learning
complexity and quadratic scaling of MP storage size, i.e., the CGPDM can not be learned from large data
sets, and its effective parameterization is not compact. We improve both scalability and compactness
with deterministic, sparse variational approximations [16]. In this sparse variational CGPDM, each MP
is parameterized by a small set of inducing points (IPs) and associated inducing values (IVs), leading
to a compact representation with linear scaling of the training complexity in the number of data points,
and constant storage requirements. This compactness is important for real-world applicability of the
model, since there might be more primitives than muscles (or actuators) across tasks, as pointed out
by Bizzi and Cheung [17]: the motor “code” might be sparse and overcomplete, similar to the sparse
codes in early vision [18]. Table 1 provides an overview of the key MP models which we compare in
this paper.

Table 1. Overview of movement primitive models compared in this paper. (v)CGPDM, (variational)
coupled Gaussian process dynamical model; (v)GPDM, (variational) Gaussian process dynamical
model; TMP, temporal movement primitives; DMP, dynamical movement primitives. Modular,
learns reusable MPs. Scalable, below cubic learning complexity with respect to the data set size;
Compact, size of the effective parameterization does not grow with the data set size; Canonical
dynamics, dynamics model specified before learning; Learned dynamics, dynamics model is a
free-form function.

Modular Scalable Compact Canonical Dynamics Learned Dynamics

vCGPDM v v v X v
CGPDM X X X X v
vGPDM X v v X v

GPDM X X X X v
TMP v v v X X
DMP v v v v X

Our target application here is human movement modeling, but the vCGPDM could be easily
applied to other systems where modularized control is beneficial, e.g., humanoid robotics [9].

We briefly review related work in Section 2 and introduce the vCGPDM in Section 3. The derivation
of the variational approximation is outlined in Section 4. In Section 5, we first illustrate the vCGPDM
on artificial data. Second, we benchmark the vCGPDM against other MP models. Third, we perform
an experiment to quantify the degree of of human-tolerable sparseness in a psychophysics experiment.
Fourth, we demonstrate modular movement composition with the vCGPDM. In Section 6, we propose
future research directions based on our work.

This paper is a substantially extended version of our earlier conference publication [19].
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2. Related Work

The Gaussian process (GP) is a machine learning staple for classification and regression tasks [15].
A GP is a prior on functions R — R from a Q-dimensional input space to one-dimensional
output. By drawing D times from the GP, functions from R — RP can be realized. Its advantages
include theoretical elegance, tractability and closed-form solutions for posterior densities. Its main
disadvantage is cubic runtime scaling with the number of data points. Several solutions have been
proposed for this problem. Many of these involve a sparse representation of the posterior process via a
small set of IPs, which may [20] or may not be a subset of the data points [21]. If the input space is
unobserved, one obtains a GP latent variable model (GPLVM), for which sparse approximations have
also been devised [22]. One problem with sparse GP approximations is their tendency to overfit [22],
leading to incorrect variance predictions [23]. In that paper, it is also demonstrated that the problem
can be alleviated by a variational approximation, which prompted us to develop a similar approach
for the CGPDM: as in [24], we extend the sparse GPLVM in time, but we use an autoregressive
dynamical system.

If the temporal evolution function of this dynamical system is also drawn from a GP,
the resulting model is called Gaussian Process Dynamical Model (GPDM), which can be learned
by maximum-a-posteriori approximation if the observed dimension D is greater than the latent
dimension Q [25]. Figure 1 (left) shows a graphical model representation of the GPDM, and introduces
the related notation which we use throughout the paper. Slices “:” indicate collections of variables
along one integer index. Multiple slices refer to collections along multiple indices, e.g., X; are the
latent variables of all parts and time-steps. The GPDM can model the variability of human movements
and has been used for computer animation with style control [26-28]. It has also been used with
an additional switching prior on the dynamics for motion tracking and recognition [29] and deep
variants have been devised [30]. However, with the exception of the coupled GPDM [14,19], all these
approaches have a “monolithic” latent space and thus lack the modularity of MPs. One reason for this
might be the fact that, for the maximum-a-posteriori approximation to work, the latent space has to
be lower-dimensional than the observed space, Q < D. If, as explained above, we want a modular,
possibly overcomplete (i.e., the effective Q > D) set of MPs, we need learning approaches that are
robust to overfitting. The works of Frigola et al. [31] indicate that such approaches may be obtained
with variational approximations. In the following, we therefore introduce a variational approximation
to CGPDM learning and inference based on an approach similar to Frigola et al. [32], but, as in [30],
we aim to obviate the need for sampling altogether to allow for fast, repeatable trajectory generation.
While deriving a variational approximation is not trivial, we expect it to avoid overfitting and yield a
good bound on the marginal likelihood [33]. Figure 1 (right) shows the graphical model of the GPDM
augmented by IPs and IVs. This augmentation yields a tractable variational approximation to the
GPDM’s posterior [30].
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Notation and Abbreviations (v)GPDM

Gaussian process GPDM variational approximation to vGPDM
dynamical model posterior of GPDM

discrete time index t=1,...,T mean and kernel function u, k(.,.)

latent space dimensionality Q latent states X € RQ

observed space dimensionality D observable variables Jt € RDP

Gaussian process prior GP(u k(.,.) Inducing points/values IP/IV
latent-to-observed function F(x) dynamics function F(F_2,%1)

IP of latent-to-observed function | 7. = (71,7,...) IP of dynamics function Z. = (21,72, ..)
IV of latent-to-observed function | 7. = (¥, 05,...) IV of dynamics function . = (ily, 10y, ...)

Figure 1. Modular building blocks of the vVCGPDM. (Left) The Gaussian process dynamical
model (GPDM). A latent, second order dynamics model generates a time-series of vector-valued
random variables X; which are drawn from a multivariate Gaussian distribution with mean function
f(%_2,%_1). The components of this mean function are drawn from a Gaussian Process GP (1, k(.,.)).
Each observable ¥; is drawn from multivariate Gaussian distribution with mean function F(%¢),
which have a Gaussian process prior, too. (Right) The GPDM augmented with inducing points
and values for a sparse representation of the posterior process [23]. This enables faster variational
Bayesian learning and inference, because the augmented GPs are effectively parameterized by these
points (here, 7., Z.) and corresponding values (here, .,ii.) rather than by the full dataset. They may be
thought of as prototypical examples of the corresponding functions, e.g., Ty = §(7x). Slice notation “:”
indicates collections of variables. For details, see text.

3. The Model

The basic building blocks, or “parts”, of the CGPDM are a number of GPDMs run in parallel. In the
context of human movement modeling, e.g., they may be thought of as body parts. A part evolves
in discrete time t = 0, ..., T and is endowed with a Q-dimensional latent space, a D-dimensional
observed space and second-order autoregressive dynamics described by a function f (X—p, X—1).

The component functions ( f(%i_a, J?t,l)) have a Gaussian process prior GP(u, k(.,.)) with mean
q

function y and kernel k(.,.) Second-order dynamics seem to be a good choice for our target application
of human movement modeling [34], but the order can be easily altered simply by concatenating
previous states into one larger vector. Let ¥; € RY the state of latent space of the part at time ¢
(see Figure 1, left). This latent state produces observations iy € RP via the function §(¥;) as well
as isotropic Gaussian noise with variance B. The components (§(%;)); of this function are drawn
from a Gaussian process prior, too. GPDMs can be learned from data via a combination of exact
marginalization and maximum-a-posteriori learning of the latent dynamics [25].

While the GPDM is a very expressive model, it suffers from poor runtime and memory scaling
with the data set size due to its non-parametric nature, which it inherits from the involved GPs.
We remedied this problem by an approach pioneered in [23]: augmenting the GPs with inducing points
(IPs, here: 7., Z.) and associated inducing values (IVs, 7, if) (see Figure 1, right). These IP/IV pairs might
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be thought of as prototypical examples of the mappings represented by the corresponding functions,
eg., z'f;c =i (7). Note that the IPs are not drawn from a prior, whereas the IVs are. Hence, the latter
are model parameters, whereas the former are not: IPs are merely parameters of the approximation,
or “variational parameters”. This augmentation allows for the derivation of a closed-form evidence
lower bound (ELBO) on the marginal likelihood of the model.

In a CGPDM, the latent spaces of the parts are coupled to each other. We index parts by
superscripts i = 1, ..., M. The index notation in such models can be confusing for first-time readers,
we provide a notation and index overview in the tables below Figure 2. In our target application,
the coupling may reflect the influences which parts of an articulated body have on each other during the
execution of a movement. The coupling is implemented by having the parts make Gaussian-distributed
predictions 3?';’] about each other’s latent states with means generated by M x M many mean coupling
functions f ij (56';_2, 55:;71) and coupling variances all. i indexes the origin part of a coupling, and j its
target. Thus, f” refers to the dynamics function for part i. The components of f’/ (¥, J"C'Ll) are drawn
from GPs. As described in [14], these predictions are combined with a product-of-experts construction
(PoE [35]), including the predictions which a part makes about its own future. A product-of-experts
construction forces the experts to agree on one prediction (Equation (1), left), which amounts to
multiplying the individual predictions (Equation (1), right) and renormalizing (Equation (1), middle):

. P 2
exp |:1 (_‘/706] ZZ ] x£a1§/x£71)> :|

PN (¥ ) 0) = 3 TN (BIF9(E o %)) )
2

where o/ = (Zi(oci'f)’l)_l.

To understand the function of the a’/, consider the form of Equation (1): the smaller a given
variance, the more important the prediction of the generating part. We optimize the a’/ during learning,
letting the model discover which couplings are important for predicting the data. In other words,
whenever an a’/ is small compared to ' #, then part i is able to make a prediction about part j
with (relatively) high certainty. Furthermore, the &’/ can be modulated after learning to generate new
movements, as shown below.

In the followmg, we denote all relevant timesteps before time t with subscript —¢, e.g.,

J'c'j p = (xi 2 t ;) for a second- order dynamics model. We showed in [14] that the individual

predictions of part i about part j, xt can be exactly marginalized, leading to a GPDM-like model for
each part with a dynamics kernel given by the «; j-weighted mean of the individual coupling kernels:

S
» (¥, %', % %)
J (71 F17/ M —»M/ N f XXy X
K (P 7 2, 2 ) = o Z 7 2

However, doing so results in a model which lacks modularity: after learning, it is difficult to
separate the parts from each other, and recombine them for the production of new movements that
were not in the training data. We facilitate this modular recombination by restating CGPDM learning
such that we can keep an explicit, sparse representation of the coupling functions. Another reason for a
sparse representation is that the CGPDM exhibits cubic run time scaling with the data points, which it
inherits from the composing GPDMs. To remedy these problems, we follow the treatment in [16,30]:
we augment the model with IPs 7 and associated IVs &' such that g (rk) = z_)“k for the latent-to-observed
mappings ¢'(). Then, we condition the probability density of the function values of g’() on these
IPs/IVs, which we assume to be a sufficient statistic. Likewise, we reduce the computatlonal effort for
learning the dynamics and coupling mappings by inducing them through 7.’/ and ii: Tl (also known as
“dynamics IPs/IVs”). See Figure 2 for a graphical representation of the augmented model.
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Notation and Abbreviations (v)CGPDM

Coupled Gaussian process variational approximation to

dynamical model CGPDM posterior of CGPDM vCGPDM
latent states, part i at time ¢ X e RQ Inducing points/values P/1v
latent states, part i before ¢ X, latent predictions of part j i
about part 7 at time ¢ t
b bl iables, ; . .
observable variables 7t € RP Gaussian process prior GP(u,k(.,.)

parti at time ¢

latent-to-observed

dynamics function, part i

coupling function, part j-to-i
mean and kernel of GP prior
on dynamics function, part i

IP of latent-to-observed
function, part i

fi’i(fi—zf fiq)
i (56{672’ 54—1)

e, KAC,)

F=(7,7,...)

function, part i

coupling variance, part j-to-i
mean and kernel of GP prior on
latent-to-observed function, part i

IP of dynamics function,
part j-to-i

Wi
po, kg'(,.)

- (H/,i i

20,2y, ..

)

IV of latent-to-observed R IV of dynamics function, i i
function, part i o= (7, 7-) part j-to-i = (7,7,
Index Summary
Spart  _from—part,to—part gfrom—part,to—part — from—part,to—part
time IV —index ftime IP—index
—part —part —part
time  YIV—index TP —index
21 . =21
d-th component of vector Zz~ : (23" )4

Figure 2. (Top): Graphical model representation of the augmented Coupled Gaussian Process
Dynamical Model (vCGPDM). Shown is a model with two parts, indicated by the superscripts
i,j € {1,2}. Each part is a vGPDM (see Figure 1), augmented with inducing points 7’ and values i’
for variational inference and learning, and modular re-composition of learned GPDM components.
Observed variables i/ and latent-to-observed mappings g’ (¥!) omitted for clarity. The vVGPDMs interact
by making predictions about each other’s latent space evolution via functions fl/ (J'c’é_z, 56?71 ), here
flz() and f7'1 (). Their predictions are product-of-experts combined with the predictions made by each
GPDM’s dynamics model (functions f” (3?1_2, 3?171)). (Bottom): Notation and index summaries.



Entropy 2018, 20, 724 7 of 25

Besides introducing IPs, computing an ELBO requires a simplifying assumption about the latent
state posterior, which is intractable. We choose a posterior distribution g over the latent states ¥
that factorizes across time steps 0, ..., T, parts 1,..., M and latent dimensions 1, .. ., Q' within parts.
Furthermore, we assume that the individual distributions are Gaussian:

T M Q ‘ , . .
q(%5,..., ") = H)Hnlq«fi)q) i q((®)g) = N (g, 0t0)- ®)
t=0i=1q=

While this approximation is clearly a gross simplification of the correct latent state posterior,
with the right choice of kernels, an ELBO can now be computed. Our approximation assumption
(Equation (3)) seems appropriate for human movement data, see Section 5. Whether it is also useful
for other data remains to be determined.

As for a tractable kernel, we decided to use an ARD (automatic relevance determination) squared
exponential kernel [36] for every part-i-to-j prediction GP:

T 1 & (3 = (7))
I t/q t/q
kl](xit,xl,t) = exp _EtEZ_tZT (4)

1 q
and a radial basis function kernel for the latent-to-observed mappings. Next, we outline the key steps
of the derivation of the ELBO.

4. Computing an Evidence Lower Bound for the vCGPDM: An Overview

In this section, we provide an overview of the derivation of the evidence lower bound (ELBO)
for the vCGPDM,; for details, the reader is referred to Appendix C. We construct a sparse variational
approximation by augmenting each of the M x M dynamics and coupling mappings fl] () with
IPs and IVs. The variational distribution of the latent variables, q(¥:) = q(%},...,¥M) factorizes
according to Equation (3). We let g(i#!) and q(&!) be unconstrained distributions, which will turn
out to be multivariate Gaussians. In the following, we denote the coupling function values at t with
fil = fUi(%,) and likewise §i = ¢/(¥}). The factor structure of the joint density of the augmented
model follows from the graphical model (see Figures 1 and 2):

-,
e

(i, &,T, %, f7, 7

i,z )p (i |2) ®)

Z4,7) = p(71§)p(§|%, 5., F)p(B]F ) p(%, f

Note that we marginalized (most of) the functions f**() here, keeping only their values at the
latent points ¥: and at the IPs. Hence the dependence of §: on 7. Likewise, f* depends on Z7". For easier
notation, we omit spelling out the dependence of the IVs on the IPs in the following. Thus,

M D; ) )
p(718) = ]—{d 1P((9’f)d|(§f)d) (6)
M D; ) ) .
p&1%,7) = [T pr((&)al%, (7)) 7)
i=1d=1
M , M M y
p(7) = Hp(ﬁf); p(itr) = qu(ﬁ?’l)- (8)
i= i=1j=

where Equation (6) follows from the assumption of independent observation noise. Equation (7) is a
consequence of the Gaussian process prior on the ¢'(), which makes the components of g} independent.
The density of the latent variables and the individual parts’ predictions can be factorized as:

-,
,”

Jitr) = p(&|f i) p(f

) ©)

™

p(x,
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with

p(EIfy, o) (10)

<

~—~

R

T
=L

~—
I

= L~
= '1:12

':lz

p(fr|i

p(f 1t 1’x{)t 1/#”) (11)

.*
||
N
Il
-
Il
-
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where Equation (10) follows from the graphical model and the product-of-experts construction
(Equation (1)). An empty slice (t < 2 for a second-order dynamics model) implies no conditioning.
The first two latent states at t = 0,1 are drawn from independent Gaussians, [TY, p(Z))p(%).
Equation (11) is one possible way of factorizing the augmented Gaussian process prior on the coupling
function values: when f’] () is marginalized, the function values at time ¢ depend on all past function
values and latent states. We use this particular factorization for analytical convenience. Note that the
dependence of the right hand side of Equation (11) on 566: ;1 does not contradict the factorization order
of Equation (9), because it depends only on latent variables from timesteps prior to t. Furthermore,
we choose the following proposal variational posterior:

i) (%)q(ir;) (12)

9(§, %, T, f, ) = p(§1, 0)q(@)p(fr

with p(g|%,7:) given by Equation (7), p(f*|ii*) by Equation (11) and q(#) by Equation (3).
The densities q(7) and q(if) are unconstrained except for normalization. With these distributions,
we derive the standard free-energy ELBO [36], denoting © = (¥, ", /i, 7., §):

log p(7) = £(0) = [ dog(©)log (L)) 13

exploiting the assumption that the IPs 7/ and IVs @' are sufficient statistics for the function values §'.
As we explain in detail in Appendix C, after cancehng common factors in the variational posterior
(Equation (12)) and the joint model density (Equation (5), cf. [16]), we find that the ELBO can be
decomposed into one summand per part that describes the quality of the kinematics mapping
(latent-to-observed) L’;'dn, and one summand for the dynamics Lg,:

M .
L(O) =Y Liy+ Layn (14)

i=1
where

Loy = X [ 450000000 (@l (D) 1og P DEN. g

is—up to the Shannon entropy of approximating posterior of the latent dynamics variables H(q(¥)) =
— [dxig(¥')log (q(%))—equal to the Bayesian GPLVM ELBO of [16]. The remaining integral

cW=/MWW'[/wUmm(ﬂm Gl mwmm,>ﬂ
(16)

e i I, " .
+ [ gz og HED + [ a0 ) log () + H(a())
is derived in detail in Appendix C. Brleﬂy, we use the assumption that the IPs and IVs " and iil" are

sufficient statistics for the function values ft Optimizing with respect to g(ii* :) can be carried out in
closed form using variational calculus and yields
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Liyn(©) > log [ p(*) exp(C(i)di* + H(q(%) (17)

where C (i) is given by Equation (A31). The inequality is due to the sufficient statistics assumption,
which introduces another approximation step that lower-bounds L,,,. We now have all the ingredients
to compute the ELBO for the whole model, and learn it.

5. Results

We used the machine-learning framework Theano [37] for automatic differentiation in Python 2.7
(Python Software Foundation. Python Language Reference, version 2.7. Available at http://
www.python.org) to implement the model, and learned via optimization of the ELBO with the
scipy.optimize.fmin_1_bfgs_b routine [38]. Latent space trajectories were initialized with PCA.
We obtained the best ELBOs by first optimizing all parameters jointly, followed by a blocked
optimization procedure. We optimize three groups of parameters: latent points and variances,
kernel parameters and couplings, and IPs. The number of iterations of the blocked procedure
depended on the application; we provide details in the sections below.

The advantage of the sparse approximations in the vCGPDM is that memory consumption of the
model is greatly reduced. However, this approximation might also introduce errors, along with the
fully factorized latent posterior (Equation (3)). We tried to quantify these errors in a cross-validatory
model comparison, and in a human perception experiment.

5.1. Synthetic Data

We demonstrate the learning of coupled dynamical systems on a synthetic dataset. First, we draw
two dynamics transition functions ¢!, ¢> € R? — R? from a GP with an RBF kernel, and then we
generate latent trajectories according to:

7 =g'(%y) (18)
T =0.1g" (%)) +0.9¢*(F_1) (19)

at T = 300 timepoints. Thus, we get two first-order, coupled latent dynamical systems, each of
dimensionality 2. The trajectory in Latent Space 1 is independent of Latent Space 2, whereas Latent
Space 2 is weakly coupled to Latent Space 1. Then, for each of the two parts, we draw 10 observed
trajectories from another two RBF GPs with inputs on the latent trajectories. The latent trajectories are
shown in Figure 3A,C. Figure 3B,D displays the corresponding observed trajectories. We learned a
second-order vCGPDM from these data, iterating the blocked optimization until convergence of the
ELBO to machine precision. We chose a second order system for this learning example, because the
human movement models in the following are second-order vCGPDMs, too.

The results are shown in Figure 3E-H. Plots on the left half were generated with four IPs, plots in
the right half with ten IPs. Figure 3E displays the initial positions of the dynamics IPs (blue circles) at
the beginning of learning, connected circles form one second-order IP. Green crosses are the kinematics
IPs (latent-to-observed mapping). Initial latent points (dashed blue lines) were obtained from the first
two PCA components of the training data. Blue and red line segments are examples of the dynamics
mapping: the end-points of the blue segments are the inputs, the distal endpoint of the red segment is
the output. As one might expect, the initial conditions do not describe a dynamics which can produce
trajectories resembling those in the training data: the black line is the mean latent trajectory, and
Figure 3G shows the corresponding observable trajectories.
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(A-D) Two-dimensional latent dynamics trajectories and

corresponding observed 10-dimensional time series. Part 2 is weakly influenced by Part 1, Part 1
is not influenced by Part 2 (see Equation (18)). (E) Initial positions of second-order dynamics IPs
(connected blue circles) and latent-to-observed IPs (green crosses). Line segments are examples of
dynamics mapping inputs (endpoints of blue segments) and values (distal endpoints of red line
segments). Black line: mean trajectory, generated by iterating the mean dynamics mapping from
the same starting point as in (F) Latent space after learning. (G) Generated observable time series
before learning (solid) and training data (dashed). (H) Generated time series (solid) after learning.
Only three of the ten observable trajectories are presented for clarity. (Bottom) Learned couplings
(see Equation (1)); ELBOs and MSEs rounded to two significant digits. Couplings ol reflect the
dependency structure between parts: Part 1 is not driven by Part 2, but influences Part 2.
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After learning, the latent trajectories appear to have a limit cycle (black line, Figure 3F), which is
required to reproduce the training data. Furthermore, note that the inducing points align with that
cycle, and the example mappings (blue and red line segments) indicate clearly how the latent trajectory
is formed by iterating the GP mapping. Cross coupling GP mappings omitted for clarity. Note that the
vCGPDM with ten IPs can model more complex latent dynamics manifolds than the four-IP vCGPDM.
The observable trajectories (Figure 3H) look very similar to the training data up to a small phase shift,
particularly for the 10 IP model. This observation is confirmed by the reduced mean squared trajectory
error (MSE) between generated and training data after learning, which was evaluated after dynamic
time warping [39] of the generated trajectories onto the training data. The MSEs are listed in the table
at the bottom of Figure 3, where “final” indicates the values after learning, while “initial” indicates the
values at the onset of learning after the latent space trajectories had been initialized to the first two
PCA components of the training data. That learning was successful is also indicated by the increased
final ELBO, which is higher for the 10 IP model.

We also provided the learned coupling as in this table. Recall that a low (high) « means a large
(small) influence of the corresponding part on the dynamics. The dependency structure between the
latent spaces was correctly identified during learning: a>! >> al'!, i.e., Part 2 has almost no influence
on Part 1. In contrast, a!? ~ 2422, which indicates that Part 1 weakly controls Part 2.

5.2. Human Movement Data

Model comparisons and psychophysical tests were carried out on human movement data.
We employed a 10-camera PhaseSpace Impulse motion capture system, mapped the resulting position
data onto a skeleton with 19 joints and computed joint angles in exponential-map representation,
yielding a total of 60 degrees of freedom. Five walking-only and four walking + waving sequences
each were used to train the models, as well as ten movements where the human participants were
seated and passed a bottle from one hand to the other. Dynamical models were initialized with starting
conditions taken from the training data. The blocked optimization was run for at most four iterations,
which was enough to ensure convergence. It was terminated earlier if ELBO values did not change
within machine precision between two subsequent iterations. Furthermore, we recorded another nine
walking sequences for catch trials during the perception experiment, to rule out memorization effects.
Generated and recorded sequences were rendered on a neutral avatar. Examples of stimuli, for different
numbers of IPs, can be found in the movie example_stimuli.mov in the Supplementary Materials.

5.3. Variational Approximations are Better than MAP

We performed cross-validatory model comparison on the following datasets: walking, walking +
waving and passing-a-bottle. Examples of these data are shown in the movies in the Supplementary
Materials: S1_example_stimuli.mov and S4_pass_the_bottle.mkv. We performed four-, five- and
ten-fold crossvalidation, the number of folds was dictated by the dataset size. We were trying
determine how the sparsely parameterized vCGPDM performs in comparison to the full CGPDM,
and several other MP models from the literature. Held-out data were always one complete trial.
Models were trained on the remaining data and the generated trajectory was compared to the held-out
one. Cross-validation score was the mean-squared error (MSE) of the kinematics after dynamic time
warping [39] of trajectories generated by initializing the model to the first two frames of a held-out
trial onto the complete held-out trial. We used dynamic time warping to compensate a slight phase
difference in generated motions, which would otherwise lead to a much larger and uninformative
MSE. We compared the following models:

e a GPDM with maximume-a-posteriori (MAP) estimation of the latent variables [25], called MAP
GPDM in Figure 4;

e  afully marginalized two-part (upper/lower body) CGPDM with MAP estimation of the latent
variables [14], called MAP CGPDM U+L;
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e a three-part CGPDM model (left hand, right hand, and body) for the non-periodic “passing a
bottle” dataset;
their variational counterparts, vCGPDM 3-part, vCGPDM U+L and vGPDM,;
temporal MPs (TMP, instantaneous linear mixtures of functions of time) [9]; and
DMPs [12].
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Figure 4. Model comparison results. We plotted the average squared kinematics error on held-out
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data after dynamic time warping (MSE) and the variational lower bound on the model evidence
(ELBO, Equation (A22)), where available, accompanied with corresponding model training time.
Error bars are standard errors of the mean. (A,B) Walking dataset; (C,D) walking + waving dataset;
and (EF) “passing a bottle” dataset. Low MSE and high ELBO are better. For details, see text.
Figure partially adapted from [19].
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All latent spaces were three-dimensional. We tried 4-30 latent-to-observed IPs and 2-30 dynamics
IPs. The MSE optima were near 10-15 IPs for both the walking and the walking + waving datasets,
and near eight IPs for the “passing a bottle”. MAP GPDM and MAP CGPDM learning do not use any
approximations or inducing points; they are the full GPs with covariance matrices K € RT*T.

For the TMPs, we used up to 10 primitives; the MSE optimum was located at approximately six.
For the DMPs, we used between 1 and 50 basis functions, and the lowest MSE was found around 15.

The results are plotted in Figure 4. Generally, the walking + waving movement is more difficult
to reproduce for all models than walking only: the MSE of the latter is lower than that of the former,
and the ELBO is higher. This indicates that the latter is a more complex movement, see also the movie
modular_primitives.avi in the online Supplementary Materials. The two-part vCGPDM reaches
the lowest MSE compared to all other models. Clearly, it is better than the full-capacity (no IPs)
MAP models, which means that the extra effort of developing of a variational approximation which
explicitly represents an approximation to the latent states” posterior and needs to store only ~10 IPs
rather than ~10* data points was well spent. In addition, the best ELBO’s MSE (that is, the MSE
at the maximum of the ELBO) is a fairly good predictor of the best MSE, which justifies our simple
variational approximation for model selection.

The vCGPDM U+L outperforms the vGPDM particularly on the “walking + waving” dataset.
This shows the usefulness of having modular, coupled dynamics models when the (inter)acting
(body)parts execute partially independent movements.

The vCGPDM with three parts for “passing a bottle” does not show a clear advantage over
the monolithic model in the cross-validation test, and is on par with the TMP model. However,
dynamics factorization did not affect the performance either. This may be indicative for the strong
coupling necessary to successfully pass an object from one hand to the other. Such a strong coupling is
parsimoniously expressed by having a single latent dynamical system drive all observable degrees
of freedom.

The timing results show that the training times of the vCGPDM are usually less than 15 min.
Error bars are standard deviations, estimated across all numbers of IPs and cross-validation splits.
The rather large training time for the TMP model is due to the implementation from [9] which optimizes
a rather large covariance matrix between all MPs.

5.4. A Small Number of IPs Yields Perceptually Convincing Movements

We conducted a psychophysical experiment to quantify the perceptual validity of the generated
movements. More specifically, we investigated the model complexity required for perceptually
convincing movements.

Experiment: Thirty-one human observers (10 male, mean age: 23.8 £ 3.5a) participated in a
two-alternative forced-choice task to distinguish between natural and generated movements (see
Figure 5 for an example of an experimental trial). Natural movements consisted of 15 walking
movements. The artificial movements were generated by a two-part (upper/lower body) vCGPDM.
We used 2-16 dynamics IPs and 4-16 latent-to-observed IPs. We chose these numbers based on pilot
tests to span the range from clearly unnatural to very natural looking movements. To test whether
participants simply memorized the 15 natural stimuli during the experiment, we added 10 catch trials
in the last quarter of the experiment where previously unused natural movements were tested against
the known natural stimuli. The trial sequence was randomized for every subject. All experimental
procedures were approved by the local ethics commission.
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Figure 5. Psychophysical Experiment. In each trial, a natural and a generated movement were
simultaneously presented to participants (left). After presentation, they used the arrow keys to choose
the movement perceived as more natural (right). There was no time limit on the response, but typically
participants responded quickly (less than 1 s). After the response, people were asked to fixate a cross in
the middle of the screen, which appeared for a second. The length of the stimuli was 1.8 s, with a total
of 1170 presentations. A video of the experiment called S2_experiment_demo.avi is provided in the
Supplementary Materials.

Results: We computed the confusion rate, i.e., the frequency of choosing the model-generated
movement as more natural across all participants as a function of the number of IPs for the dynamics
and latent-to-observed mappings. Optimally, we might expect this rate to approach % when the
generated movements are indistinguishable from the natural ones. We investigated if the confusion
rate approached this limit, how it depends on the mean-squared residual error on the training data,
and how this error is connected to the ELBO. The results are plotted in Figure 6. We also fitted the
confusion rate data with a logistic sigmoid m;;(g#-rc) (solid line in Figure 6A), and the MSE with
an exponential function (solid line in Figure 6, right). Each data point represents one combination
of dynamics/latent-to-observed IP numbers, indicated by width and height of the ellipses. Clearly,
confusion rate increases fairly monotonically with decreasing MSE, as indicated by the good logistic
sigmoid fit. Furthermore, models with more IPs also tend to yield higher confusion rates. A sufficient
number (>10) dynamics IPs is more important than a large number of latent-to-observed IPs, which can
be seen by the very narrow ellipses in the region with high MSE, and many wider ellipses in the lower
MSE part of the figure. A similar observation can be made about the relationship between ELBO and
MSE (Figure 6B). It indicates that ELBO is already a good predictor for the model performance. For a
very small number of dynamics IPs, increasing the number of latent-to-observed IPs does not decrease
the MSE as much as increasing the dynamics IPs does. Moreover, note that the relationship between
MSE and ELBO becomes fairly monotonic when ELBO > 28,500, which is where human perceptual
performance can be predicted from ELBO. While the confusion rate has not quite reached its theoretical
maximum in our experiment, these results are evidence that human perceptual expectations can be
nearly met with very compactly parameterized MP models (Figure 6C,D). Moreover, good dynamics
models seem to outweigh precise kinematics. We found no evidence for stimulus memorization from
the confusion rates of the catch trials.
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Figure 6. (A) Confusion rate between natural and vCGPDM-generated stimuli as a function of
mean-squared residual error (MSE) on the training data, averaged across all participants. Each data
point represents one combination between number of IPs/IVs for the latent-to-observed mapping
(indicated by ellipse height) and number of IPs/IVs for the dynamics mappings (ellipse widths).
A confusion rate of 0.5 indicates that human observers are not able to distinguish replays of real
movements from model-generated counterparts. The vCGPDM is approaching this limit from below
for a fairly small number of IPs/IVs. Solid line: fit with logistic sigmoid function. (B) Relationship
between training MSE and ELBO. Solid line: fit with exponential function. Additional dynamics IPs
contribute more to the reduction of the MSE than latent-to-observed IPs. MSE and therefore confusion
rate can be predicted well from ELBO if ELBO > 28,500. (C,D) Influence of number of dynamics IPs on
the confusion rate and MSE, respectively, for a selected number of latent-to-observed IPs. The confusion
rate has a broad maximum around 8-12 dynamics IPs, whereas the MSE has a shallow minimum at
that location.

5.5. Modularity Test

Next, we examined if the intended modularization of our model can be used to compose novel
movements from previously learned parts. We trained a vVCGPDM consisting of one part for the
lower body (below and including pelvis), and a second part for the upper body. Twenty-five IPs
for the latent-to-observed mapping of each part were shared across all movements. The walking
MP, parameterized by 16 IPs for the lower-body dynamics and the lower-to-upper mappings,
was also shared. We used a different set of 16 IPs for the upper body MPs between arm-swing and
waving. Furthermore, the coupling &/ were learned anew for each combination of upper/lower
MPs. The resulting latent space trajectories are plotted in Figure 7. All generated trajectories
(solid lines) are on average close to the training data (dashed lines). While the walking trajectories
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for the lower body are very similar for the two movements, the upper body trajectories clearly differ.
Movements generated from this model are very natural (see video S3_modular_primitives.mov in
the Supplementary Materials). This is a first demonstration that the vCGPDM with non-marginalized
couplings can be used to learn a library of compactly parameterized MPs, from which novel movements
can be produced with little additional memory requirements (i.e., new coupling &/ only).
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Figure 7. (Top) Modularity example. Shown are 2D projections of generated 3D latent space
trajectories (solid) and training data (dashed). Blue: walk + wave movements; red: walk + normal
arm swing. Dynamics IPs re-used across movements for lower body. (Bottom) Cross-validation MSEs
of non-modular and modular vCGPDM. Modular vCGPDM was trained on the combined dataset;
training time (*) is shared between both movement datasets.

For a quantitative evaluation, we looked at the leave-one-out cross-validation MSEs of the
vCGPDM trained on datasets separately and modular vCGPDM trained on both datasets (see Figure 7,
bottom). Within the standard errors, MSEs are equal, indicating that modular re-use of previously
trained components does not necessarily sacrifice accuracy, while reducing storage requirements.
Training time for the modular vCGPDM is larger due to the learning of the combined dataset and
optimizing the couplings afterwards. This time would be amortized if more compositional movements
were learned, where previously learned parts could be reused.
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6. Conclusions

The vCGPDM, a full variational approximation to the CGPDM, allows for learning a deterministic
approximation of latent space trajectories, and compactly parameterizing dynamics and kinematics
mappings. First, we showed that the sparsely parameterized vCGPDM outperforms the full-capacity,
monolithic CGPDM employing MAP to approximate the latent dynamics posterior. It also surpasses
other current MP models; we speculate that this is accomplished by its learnable dynamics.

Second, we demonstrated that our compact representation of the latent space dynamics, and of
the latent-to-observed mapping, enables the model to generate perceptually convincing full-body
movements with a fairly small number of IPs To our knowledge, a systematic investigation of the
number of IPs needed for perceptual plausibility had not been done before, albeit more monolithic
models were in the focus of earlier studies [27,34,40]. Moreover, we demonstrated that a high enough
ELBO can be used to predict average human classification performance, which might allow for an
automatic model selection process when training the model on large databases. Within the range of
IPs which we tested, the ELBO was still increasing with their number. We chose that range because
we wanted to see how few IPs would still lead to perceptually indistinguishable movements. Due to
experimental time constraints, we did not investigate perceptual performance at the point where the
ELBO begins to decrease with increasing IPs (i.e., the approximately optimal model), but we plan to
do that in the future.

Third, we showed that the model can be employed in a modular fashion, using one lower-body
dynamics model, and coupling it to two different models for the upper body. Note that the
lower-to-upper coupling function was the same for the two upper-body models. Each of these
models, including the coupling functions to the other model parts, may therefore be viewed as a
modular MP that is parameterized compactly by a small number of IPs and values. This sparse
parameterization allows us to infer modular MPs from a large collection of movements, and investigate
their composition. To generate complex movement sequences, we will put a switching prior on top of
the dynamical models, as in [29].

We are currently researching sensorimotor primitives, i.e., MPs that can be used to predict sensory
input and be controlled by it via conditioning. This conditioning can take place on at least two
timescales: a short one (while the MP is running), thus effectively turning the MPs into flexible
control policies, such the probabilistic MPs described by Paraschos et al. [41], and a long timescale,
i.e., the planning of the movement. This could be implemented by learning a mapping from goals and
affordances onto the coupling weights, comparable to the DMPs with associative skill memories [42].
There is evidence that humans modulate the coupling between their MPs during the planning stage:
whole-body posture changes have been observed in anticipation of reaching for a goal object in a
known location, even if the object is currently invisible [43].

Lastly, we note that our CGPDM could be used as a flexible policy model for PILCO-style
reinforcement learning (Probabilistic Inference for Learning Control, [44]). PILCO requires a dynamics
model that can propagate uncertainties through time; the vCGPDM is able to do that. Thus, our model
could be used as a lower dimensional dynamics model which can capture the dependencies between
observable variables via latent space uncertainties.

Supplementary Materials: The following are available online http://www.mdpi.com/1099-4300/20/10/724/s1,
Video S1: example_stimuli, Video S2: experiment_demo, Video S3: modular_primitives, Video S4: pass_the_bottle.
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Abbreviations

The following abbreviations are used in this manuscript:

MP movement primitive

DMP dynamical movement primitive
gpP Gaussian process

GPDM Gaussian process dynamical model

CGPDM  coupled Gaussian process dynamical model
vCGPDM  variational coupled Gaussian process dynamical model

P inducing point
v inducing value
MSE mean squared error

Appendix A. Exact Variational Optimization of Parts of the ELBO

While optimizing the full variational posterior in augmented Gaussian processes models with
respect to the IVs, the following type of term appears several times in the ELBO equation:

R(q(it), (7)) = [q(i) ( f(r(@ )+logpégg)dﬁ
——fqﬁ r(9), i)dii + [ q(if) log p(if)dii — [ q(if) log q(if)dii

(A1)

To simplify the optimization of such terms, we would like to carry out the optimization with
respect to the density ¢(if) analytically to remove the dependency on g(if). Note that we allow
only q(if), 7(7) to vary, while the functions f(r(7), i) and p(if) are assumed to be fixed. To this end,
we calculate for the optimal variational g*(if) in the above equation. This approach was suggested
in [23], however, it is not well described there. Here, we give an extended derivation. A necessary
condition for maximality is a vanishing functional derivative under the constraint that the density (i)
is normalized to one:

[a@aii—1-0 (A2)
which is fulfilled at the stationary points of the Lagrangian

X(a(a)7(3)) = Ra(@), @)+ [ gt 1) (*3)

where A is chosen so that Equation (A2) holds. Taking the functional derivative of X (q(i), 4(¥)) and
setting it to zero yields

= f(r(9),il) +logp(ii) —logq(ii) —1+A =0 (A4)

7°(i) = exp(f(r(0), ) + log p(d) 1+ A) (A5)
(@) = —p(i) expl£(7(3), ) (A6
Z=exp(-A+1) = [ p(@) explf(r(3), 0))di (A7)

Substituting the optimal ¢* (if) into the original term, we get:
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R(r(7)) = [ Lp(ii) exp(f(r(7), ) (f(r(a),g) +log - p(if)
= [ 2p(i) exp(f(r(3), i) (

»)) dit (A8)

=log(Z) 4 [ p(it) exp(f(r(7),i))dii
= log [ p(if) exp(f (r(v), i))dii

This is the optimized version of Equation (A1), which depends only on r(7).

Appendix B. ARD RBF Kernel ¥ Statistics. Full Covariance Variational Parameters Case.

During the computation of the ELBO, it is necessary to evaluate expected values of Gaussian
process kernel functions under the variational posterior distributions. Here, we derive these
expectations, referred to as ¥ statistics in the literature [16], for the type of kernel we used in this paper:
an automatic relevance determination, squared exponential kernel (ARD RBF). The ARD RBF kernel is
defined as:

12 ((f)q—(f)f,)2> (A9

k(%,X') = o2 exp (—
f 2 q; Ag

where A, are the ARD factors, UJ% is the variance of the kernel and Q is the dimensionality of X.
In matrix notation:

A = diag(Ar ... Ag) (A10)
k(% ¥') = o7 exp (—;(9‘5 —TA (7 - f’)) (A11)

Let ¥ be a random variable drawn from multivariate Gaussian distributions with mean ji and
covariance matrix S. Consider the following form of the approximate variational posterior distribution
of ¥:

q(%) = N (%ulii, S) (A12)

The ¥ statistic is the expectation of the kernel for two identical arguments, which is easy

to calculate:
Yy = fk(ic'n,fn)/\/'(fﬂﬁn,sn)dfn
= fa%/\f(a‘c’n\ﬁn,sn)dfn (AL3
= J%fN(fﬂﬁnzsn)dfn

— 52
_o'f

The Y statistic is the expectation with respect to one kernel argument, given that the other
is constant:

¥, = [k(ZZN(Z|f, S)dx a1
(¥—

= [ofexp (~H(F -2 (F-2)) M@, 5)

To evaluate the integral, complete the ARD RBF kernel to a scaled Gaussian distribution with
covariance matrix A and mean Z:

¥, ffz exp( Lz —2)T 1(372))/\/(@\%,5”)%
(7|2

= A) [N (%2, VN (2|1, S)dx .
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with Z(A) = (271)2/2,/]A|. The integral over the product of two Gaussians can be carried out to yield
(see [45], Identity 371):
Y1 =07 ZMN(E, A +9)

= UJ% (271)Q/2\/|A]|

Z-iTA+9) 7 E- 7))

(271)Q/2 exp(—%(
(2m) m
J%\/K; (*% ﬁ)T(A+5)‘1(Z—ﬁ)) (A16)

=0} 1 oxp (~3(E-M)TA+5) 7 E- 7))

The ¥, statistic integral, which correlates two kernel function values at different points Z and Z/,
can be solved in a similar manner: first, by collecting terms in the exponents and completing quadratic
forms, and second, by the application of Identity 371 from [45]:

¥, = [k(Z D)k, ©)N (Z|ji, S)d¥

VN (%, S)dx (A17)

For the case of a diagonal covariance matrix S the ¥ statistic can be simplified further [16].

Appendix C. vCGPDM Dynamics ELBO Derivation

We now present a detailed derivation of the ELBO with a focus on the dynamics component.
Assume we deal with M parts. We have M x M latent dynamics mappings, which are combined into
M mappings with product of experts—multiplying and renormalizing the distributions from all parts’
predictions about each part. Each of the M x M mappings f/() is augmented with IPs /' and IVs
iZ/', which are drawn out of the same GP priors as the mappings. For clarity, we omit spelling out
the dependence of the IVs on the IPs in the following, and we ask the reader to remember that any
distribution over IVs is implicitly conditioned onto the corresponding IPs. The full augmented joint

distribution of the model, which is derived in Section 4 (Equation (5)), is:

p(ylg, J_C"Z_;/f',ﬁ’) _

(A18)
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The full proposal variational posterior is (Equation (12) in Section 4):

9(&, %, 5, f, i) = p(&I%, a‘)q(ﬁs)p(ff*|z;,az*>q<fz>q<ﬁ )
i i |l MM i i L (A19)
= p(&1%,7)q(7) tHlH1H1p( | 1t 17 X0:—1/ ¥ )| q(%)q(i)
=li=1j=
Thus, the ELBO is given by:
DUogtom s oot M
/ dg: d%. a7 df* dii'q(§, %, 8, f,7) log (p(y A )> = 2 Liin + Lagn (A20)
q(gf/xf/vf/f: S U ) i=1
i i 7)4(3
- 2 [ @ ap @l g <xl>q<6¥)1og% (A21)

i) & . e :
+ [ aaeiog B + Y [ atsi)log pi)asi + Hig() (A22)

The term in Equation (A21), which we call Y™, £, is the GPLVM ELBO up to H(q(¥)) and is
given in [16]. Next, we consider only the ELBO component which is relevant for the dynamics
Ly (last two lines of the right hand side of Equation (A22)) and apply the sufﬁcient statistics

i ] —’]l)_
1it—17 X0:t—17 -

p( ft |x0 /U i#l"). This assumption lower-bounds L 4,n, because it constrains the variational posterior
in Equation (A19) away from the correct solution. The sum over the initial latent points in the last line
of Equation (A22) may be longer or shorter depending on the dynamics model order, here we use a
second order model. The innermost integral can then be written as:

assumption knowing 7 ; and i/ I is sufficient for the ft distribution, i.e., p( ft’

M M i —*] ~J)i M i B i g P
A = [|TII1 p(f; i) 10g£llp(xt|ft ,at)dfy

i=1j=1
S T (A 2 S B iy g P
= Zlf Hlp(f p i) | log p(X|f", e )d fy
P R
N 7M (A23)
= ‘Zlf [Hl-/\/(ft _'f,;, )] log N (%! Z (@)~ 1_t7,lflo‘i)dﬁ'l
i=1" |j= j=1
=¥ |—atr ol ¥ (/)28 i | +1og N [ Fila! Y- () i, T
i=1 =1 fi =1 fi
N N
o ¥ 7 i
Pro =K o (Kz‘?"z@") . (A24)
.. .. .. -1 .
el ] Ji i
Spi = Kff;,,fl . Kff,t,z?/" (Kz?/",z?"> Ko 2 (AZ)

M ~1
i (Z(aj,f)A) (A26)

where K are kernel matrices, obtained by evaluating the kernel function at the pairs of points indicated
by the subscripts. Equations (A24) and (A25) follow from the standard formulas for conditional
Gaussians (see, e.g., [45], Identities 352-254). Equation (A26) follows from the product-of-experts
construction (see Section 3, Equation (1)).
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The next step in the evaluation of Equation (A22) is integrating A over d¥; and ¥* ,, which
requires averaging kernel matrices. The results of this averaging are denoted by ¥ (see Appendix B

and [16] for a derivation). We denote ‘I’] i _'] f dx!_ i sete
Ixft

-1, . T L
— Qjlog V2mat — E(ocl) ! {tr(SYi) + y}%yf}} (A27)
M o , -1
(LW ) (K ) )
o ”,

c=Y 58
t=1
O I VT PPN N i\ i
=Y (0|5 L) e | (K]> ¥l )
i=1 \t=1 j=1
1 T
— log Va2 — > (a) 1{tr(8ﬁ)+y%yﬂﬂ (A28)
A iy—1 T—»T Jid (= Ji 7141
+]§1(1X] ) t:Z%yfl‘Pl( 713) < Z{',i,z]t> u

o - i g
ZTz,/(xftrx—t) (Kz;k,iz{gi) .

t=1

L M ki 1T (v -
—EMZZ(MJ) (% 4 (Kﬂ’]lw>

For every parti € 1... M, we stack up the i’ Vinto il (first by IV-index k = 1,..., K, and then by
part index such that 17[{(’ = (ﬁi)Q,-, (K-j+k)+qi+1 ) and construct a large block matrices .7-" " and stacked
vector G with block elements

Jr kl =k
}—lk_‘”‘f g <K4/uz’> [ZTJ LX)

» -1\ T
(K{;ﬁi ﬁj,f) ) (A30)
z",Z:

For j # k: ‘Y]z’k’z(flt, ) = ¢/ (J?Ct)‘}”{l(fk_t) . Otherwise, ‘I’sz (J?] X 7 ;) = ‘I’le(flt) .
We rewrite C as a quadratic form in the stacked augmenting IVs ii’ to facilitate closed-form optimization
of the dynamics ELB in Equation (A22) with respect to the stacked IV density (i) using variational
calculus, as described in Appendix A:

(Klggilff,i) - (A29)
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a
I
.mg

5 —»zT]:zu + ungz + Hl

i=1 |:
M 1 . ‘ ‘ o . . 1 ‘ ‘
=) {—2(711 = PG R - FIGN + 5 ¢ PTG+ 7—[’} (A31)
i=1
M .
c=)0¢ (A32)
i=1
c' = *%(ﬁi — FEIGHTF @ - F1gh) + %Q”ﬁ—lgf +H (A33)
) T 1 M -1 .
i — tZ‘i [2%{{(“11 )2t l\yl'( ) — (K{’]“ﬂ> b 44 (xft)]
~ =
-1 T
— log V2ra! — 5o ! [tr(S) + V%]’lf;H (A34)

After this optimization, we can write the dynamics ELBO using p(ii') = H] 1 p(”]’) =
H 1 N ()0, K H]z) = N(i'|0, Ke.iz i) where K..i .i is a block-diagonal covariance matrix with the
blocks given by the individual KAJ, K

Liyn(©) > log [ pliE) exp(C)ds + H(q()
M

—tog] ] [ pt) explC)ait + H(g(x)

i=1

-y {log [ vl exp(—3 @ — FGF i - FG i+ 6T FIG + Hl} +HE)  (A35)

=) [_ log /() dImMF ) | Fi1 4 K i |~ %g"Tﬁ'—l (F7 4+ Ky i) ' FIG - log Z(P'—l)}

I AZA: Bginfflgi + Hl] + H(g(%:))

This is the expression which we optimize with respect to q(¥;) and q(#:"). Since the stacked
dynamics IVs i do not interact across parts in this expression (Line 2), it follows that density q (i)
factorizes across parts. Their optimal density for each part is given by (cf. Equation (A6), Z is the
normalization constant of the multivariate Gaussian):

iy 1o i
q(ii') = EP(V ) exp(C')
*N(ﬂ|0 qu”)exp(_l(*l FEIGhTF (it — F71GY)) (A36)
IN(ﬁlKK:}ﬂ +F)g, (K:llﬁ, +F)
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Predicting Perceived Naturalness of Human Animations Based
on Generative Movement Primitive Models
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DOMINIK ENDRES, University of Marburg

We compared the perceptual validity of human avatar walking animations driven by six different representations of human
movement using a graphics Turing test. All six representations are based on movement primitives (MPs), which are predic-
tive models of full-body movement that differ in their complexity and prediction mechanism. Assuming that humans are
experts at perceiving biological movement from noisy sensory signals, it follows that these percepts should be describable
by a suitably constructed Bayesian ideal observer model. We build such models from MPs and investigate if the perceived
naturalness of human animations are predictable from approximate Bayesian model scores of the MPs. We found that cer-
tain MP-based representations are capable of producing movements that are perceptually indistinguishable from natural
movements. Furthermore, approximate Bayesian model scores of these representations can be used to predict perceived nat-
uralness. In particular, we could show that movement dynamics are more important for perceived naturalness of human
animations than single frame poses. This indicates that perception of human animations is highly sensitive to their temporal
coherence. More generally, our results add evidence for a shared MP-representation of action and perception. Even though
the motivation of our work is primarily drawn from neuroscience, we expect that our results will be applicable in virtual and
augmented reality settings, when perceptually plausible human avatar movements are required.
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1 INTRODUCTION

The perception of biological movement! is of paramount importance for humans: in many situations, in real life
as well as in virtual reality, it is necessary to predict internal states and goals of other actors from observed body
movements. Such predictions are facilitated by a model of relevant degrees of freedom (DOF), and the abstrac-
tion of redundant ones. Strong evidence for the existence of such a model from a neuroscientific perspective
is provided by the point-light walker experiments of Johansson (1994): just a few dots resembling the human
body’s spatial configuration and dynamics are enough for robust detection of activities like walking, dancing,
and the like. Practical evidence is given by the everlasting struggle of animators to produce perceptually valid
human animations (without relying on motion captured data).

A related abstraction problem must be solved in motor production: our bodies have many more DOFs than
needed for any given movement (Bernstein 1967); hence, the redundant DOFs need to be bound or remain un-
controlled. One way to bind these DOFs is via movement primitives (MPs) or synergies, as predicted by optimal
control feedback theory (Todorov and Jordan 2003).

This relationship between movement perception and production suggests that a shared representation might
be used to address them both, as proposed by the common coding hypothesis and the theory of event coding
(Friston 2010; Hommel et al. 2001; Prinz 1997; Shin et al. 2010; Wolpert et al. 2003). However, this hypothesis
does not specify the level of representation on which the common coding happens. We therefore investigate
whether MPs are candidates for such a shared representation. Their suitability for complex movement production
has already been demonstrated (Clever et al. 2017; Giszter 2015; Ijspeert et al. 2013; Omlor and Giese 2011), we
would like to determine how close human perceptual performance is to an “ideal observer” comprised of MPs.

The “ideal observer” assumption is motivated by the apparent ease with which we perceive and interpret our
fellow humans’ movements: we hypothesize that movement perception is another instance where we behave
nearly Bayes-optimally (Knill and Pouget 2004). Hence, human perceptual expectations should be predictable by
Bayesian model comparison between MP models. To test this hypothesis, we trained generative MP models on
kinematic data of walking movements, and compared movements based on these MPs in a Graphics Turing Test.
We are also interested in determining the model scores which are most predictive of human expectations.

2 RELATED WORK

Biological motion perception induced by point-light-stimuli is a related, and heavily investigated research topic
(for an overview, see Troje (2013)): point-light stimuli, first introduced to demonstrate the perceptual binding
of different points to one “Gestalt” (Johansson 1994), they have been used to study the perception of movement
isolated from body shape and other cues (Bertenthal and Pinto 1994; Casile and Giese 2005; Troje 2002; Troje
et al. 2005).

We are not concerned with the shape inference process from point-light-displays or stick figures, therefore
we use 3D avatars, which are closer to natural stimuli. It has been shown that human observers have a higher
sensitivity for detecting differences in movement when using 3D avatars compared to stick figures (Hodgins
et al. 1998).

Motivation to use MPs as perceptual representations of movement is given by an action-perception coupling
on the neural level (Dayan et al. 2007): the famous “2/3 power law”, an obseved invariant in curved drawing
movements, seems to have a perceptual representation in the brain. Parabolic MPs can simultaneously obey the
2/3 power law and minimize jerk, which has been proposed as a control principle for arm movements (Polyakov
et al. 2009). Perceptual experiments investigating the segmentation of taekwondo solo forms imply that higher
order polynomial MPs might be more appropriate perceptual descriptors for full-body movement (Endres et al.
2011).

IThe term “biological motion” has been used to denote a point-light display of (biological) movement. We use the term ‘human animation’
for a 3D-rendered display of movement.
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In an experiment similar to ours, it has been shown that hierarchical Gaussian process dynamical models can
synthesize hand shake movements indistinguishable from natural ones (Taubert et al. 2012). Furthermore, the
perception of emotion based on spatio-temporal MPs has been investigated by Roether et al. (2009) and Chiovetto
et al. (2018). In our study, we are interested in comparing different MP types in a unified Bayesian framework
(Endres et al. 2013) with respect to the perception of naturalness.

3 MODELS AND EXPERIMENTAL METHODS

In this section, we first introduce the investigated MP models, which are used to generate the stimuli for graphics
Turing test (McGuigan 2006). Next, we describe our experiment designed to determine the perceived naturalness
of the generated walking movements. Finally, we explain the data analysis methods used to predict the perceived
naturalness from approximate Bayesian model scores.

3.1 Movement Primitives

MPs refer to building blocks of complex movements, but there is little consensus on an exact definition. Con-
sequently, many different types of MPs have been proposed in literature (Endres et al. 2013). These types can
be classified as spatial (Giszter et al. 1992; Tresch et al. 1999), temporal (Clever et al. 2016; Endres et al. 2013),
spatio-temporal (d’Avella et al. 2003; Omlor and Giese 2011) and dynamical MPs (Ijspeert et al. 2013).

We focus on dynamical and temporal MPs in this study, as we are interested in finding a higher level repre-
sentation suitable for modeling perception, as opposed to spatial MPs, which have been used to model muscle
synergies in the spinal chord (Giszter 2015). Anechoic mixture models have been proposed to enable phase shifted
combinations of MPs (Chiovetto et al. 2018; Omlor and Giese 2011). We do not explicitly test this type of MP
here, since the relative phase shifts the walking movements we studied are negligbile.

We perceptually validate 6 generative MP models: Temporal MPs, Dynamical MPs and 4 flavors of the Gaussian
Process Dynamical Model (GPDM) (Velychko et al. 2018; Wang et al. 2008): GPDM, variational GPDM, coupled
GPDM, and variational coupled GPDM.

In this section, we can only provide a rough overview, just enough to enable readers from different back-
grounds to understand parameters of the stimuli for the psychophysical experiment. Please refer to the cited
papers for detailed information. Velychko et al. (2018) also provide graphical model representations and summa-
rize the features of the MP models presented in this chapter.

3.1.1 Temporal Movement Primitives (TMP) (Clever et al. 2016). Temporal MPs describe the stereotyped tem-
poral patterns of movement parameters (for example EMG, but also joint trajectories as well as endpoint tra-
jectories). A possible biological implementation of temporal MPs might be central pattern generators (CPGs)
(Ivanenko et al. 2004) combined with cortical top-down control. Temporal MPs incorporate a temporal predic-
tive mechanism: the complete time-course of the movement is determined at its onset. This type of MPs allows
for simple concatenation and temporal scaling.

The trajectory xx(t) of a DOF Xj, e.g., a joint angle, is a weighted sum of Q MPs Y, which are functions of
time y4(t). £;(t) ~ N(0, 0;) is Gaussian observation noise:

Q
i (t) = D Wi gtg(t) + €i(0). (1)
q=1

We treat the number of MPs as ideal observer model parameter to be determined. In general, more MPs allow
for more fine-grained temporal structure of the movement, but might lead to over-fitting. To determine the MPs
and their number, we follow the approach of Clever et al. (2016): weights w and MPs Y, have a Gaussian Process
(GP) prior and are learned from the training data by maximizing a variational lower bound on the Bayesian
model evidence (ELBO, evidence lower bound). The ELBO is equal to the negative free energy (Friston 2010). In
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keeping with the free energy/Bayesian brain theory, one would therefore expect that the ELBO should be useful
for selecting the appropriate number of MPs Q for the generation of perceptually valid movements.

3.1.2  Dynamic Movement Primitives (DMP) (Ijspeert et al. 2013). While temporal MPs directly model the move-
ment parameters (e.g., trajectories or muscle activations), DMPs describe the stereotyped elements of movement
as attractors of a dynamical system, thus enabling the prediction of the next state from the previous ones. Build-
ing on the hypothesis of separate brain areas for rhythmic and discrete movements, two kinds of dynamical
systems are common: cyclic oscillators and point attractors (Schaal 2006).

More formally: DMP models represent a movement trajectory xx () obeying a differential equation. They rely
on a damped spring system which forces xx(t) to contract to the specified goal gy, if the dampening factor is
high enough. Through the non-linear forcing function f; (Equation (2)) the trajectories can be modified. This
function is modeled as weighted sum of Gaussian basis functions ¥;(z) (Equation (4)). Time is replaced by z,
which decays exponentially to zero (Equation (3)). DMPs are learned from training data by setting the weights
w; such that the training mean-squared error (MSE) is minimal.

i = @ (Ba(ge — xi) — %¢) + fie(7) @)

T o —T (3)
Zﬁ i (1) Wi, i

filr) = lﬁl—%)"r(gk — x¢(0)). @)

The number of basis functions N is the ideal observer model complexity parameter. It serves a similar role
as the number of MPs in the TMP model: more basis functions allow for more complicated forcing functions,
which enable richer temporal dynamics. The number can, e.g., be selected by cross-validation, we investigate if
N reflects the perceived naturalness.

3.1.3  Gaussian Process Dynamical Model (GPDM) (Wang et al. 2008). Learnable dynamical systems for move-
ment representation have been proposed in the context of computer graphics: the GPDM is a state-space model,
which learns a dynamical mapping in a latent space of the whole-body movement. Such a model is also phys-
iologically attractive, because it is able to reflect the dynamic nature of the environment and the body itself,
without explicit assumptions of their form (Shenoy et al. 2013; Sussillo et al. 2015).

In contrast to DMPs, GPDMs learn a full dynamical model of latent variables Y in discrete time, which are
mapped onto the observed DOFs Xj. Both the dynamics mapping f () (Equation (5)), as well as the mapping from
latent to observed space g() (Equation (6)) are drawn from Gaussian process priors, hence the name. dt denotes
the time discretization step-size:

y(t) = f(y(t —dt)) + ey, )
Xk (t) = g (y(t)) + éx,1. (6)

There are two main drawbacks which make the GPDM unlikely as a perceptual MP model: (1) there is no
(obvious) way of a recombination operation that would make GPDMs modular. Modularity here refers to the
possibility of generating a large repertoire of movements from the recombination of a small number of MPs.
(2) Due to the non-parametric GPs prior, the movements are the movement representation, which is not compact.

A further consequence of this non-parametric prior is no explicit ideal observer model complexity parameter.
Therefore, we compare the GPDM estimated by maximum a-posterioriinference (MAP) with the other movement
primitive representations. The GPDM can also be trained by variational inference, giving rise to the vGPDM. This
is a special case of the variational coupled GPDM described in 3.1.5.

3.1.4 Coupled Gaussian Process Dynamical Model (cGPDM) (Velychko et al. 2014). The cGPDM was proposed
to make GPDMs modular. Here, one learns different dynamical models for different body parts. Each body part is
described by a GPDM, where the latent variables predict not only the next time-step of their associated body part,
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but also the temporal evolution of other body parts via coupling functions. This way, flexible coupling between
body parts is possible. The vCGPDM can be regarded as a middle ground between DMPs encoding single DOFs,
and the monolithic GPDM. The latent dynamical systems can thus be thought of as flexibly coupled CPGs routing
commands to the muscles.

As with the MAP-trained GPDM introduced in the previous section, there is no explicit ideal observer model
complexity parameter in the MAP-trained cGPDM.

3.1.5  Variational (Coupled) Gaussian Process Dynamical Model (v(C)GPDM) (Velychko et al. 2018). The vCG-
PDM compresses the movement representation of cGPDMs by introducing sparse variational approximations
with a deterministic learning scheme. Here, each MP is parameterized by a small set of inducing points (IPs)
and associated inducing values (IVs), leading to a compact representation with constant storage requirements.
Flexible recombination of these IPs/IVs for each body part enables the required modularity. The initial choice of
IPs/IVs is the only remaining source of stochasticity in the training process. It may have measurable effects, as
we will show below. We use IPs for both mappings, seving as ideal observer model parameters: “dynamics” IPs
for the dynamical model mapping, and “pose” IPs for the latent-to-observed variable mapping. More dynamics
IPs allow for richer dynamics (similar to the parameters of DMP and TMP), while more pose IPs will allow for
more (spatial) variability of poses.

An IP/IV pair might be thought of as a prototypical example for the mappings drawn from their associated
Gaussian process. They thus provide some abstraction from the observed movement and might be implemented
by small neuronal populations. Similar to the TMP, the vCGPDM is trained by maximizing an ELBO. The ELBO
can be decomposed into one summand per part that describes the quality of the latent-to-observed mapping
(“pose ELBO”) and one summand for the dynamics mapping (“dynamics ELBO”).

In our experiments, we set the number of body parts to M = 2 with one part corresponding to the upper body
and one to the lower. By setting M = 1, we recover a variational version of the GPDM, denoted vGPDM.

3.2 Experiment

Our experiment was split in two parts, with the second part’s parameter choices based on the results of the first
part. Next, we describe the participants, the generation of stimuli, and then we detail the experimental paradigm.

3.2.1 Participants. We invited 31 participants to participate in the first part of the experiment via our par-
ticipant management system (SONA System) and the university’s mailing list. Due to technical problems, we
excluded one participant from the analysis. The remaining 21 female and 9 male participants were between 19
and 44 years old (¢ = 24.7a, 0 = 5.8a). Based on the results of this first part, we invited 26 participants to perform
the second part of the experiment (19 female, age between 19 and 37 years, u = 23.9a, o = 4.2a). All participants
had normal or corrected-to-normal vision and received course credit or financial compensation (8€/h) for partic-
ipation. The experimental procedures were approved by the local ethics committee and the study was conducted
in accordance with the Declaration of Helsinki. Informed written consent was given by all participants prior to
the experiment.

3.2.2 Stimuli. We employed a 10-camera PhaseSpace Impulse motion capture system to capture walking
movements of an actor, and used our skeleton estimation software (Velychko and Endres 2017) to estimate a
skeleton geometry with 18 joints, pose (Euler angles of each bone relative to the corresponding parental bone)
and position and rotation of the pelvis bone. The results were stored in the Biovision Hierarchical Data format
(bvh). From these data, we selected 49 sequences containing 3 gait cycles.

We used all 49 walking sequences to render the natural stimuli. Using the trained models, we generated 1,758
movement sequences (see next subsection), which served as artificial stimuli. Given the natural and generated
bvh-files, we used Autodesk MotionBuilder to animate a gray avatar (see Figure 1) with body size and shape
similar to the actor. We then rendered these animations into the videos used as stimuli. All resulting stimuli have
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35s

Auf welcher Seite haben Sie die

natiirlichere Bewegung until response

wahrgenommen?

-
- - |
A

Fig. 1. llustration of experimental procedure. Each trial begun with a fixation period of 0.75s. Then, participants watched
simultaneous replays of natural and generated movements for 3.5s. After the presentation the participants were asked “On
which side did you perceive the more natural movement?” and responded using the arrow keys of an keyboard.

alength of 3.5s with 60 frames per second. We supplied a demo video of some example trials in the supplementary
material to give the reader a good impression of the stimuli and the task.

3.2.3  Stimulus Generation. We trained each MP model on nine gait sequences, and used the trained model to
predict a tenth sequence. This enabled us to compute a leave-one-out cross-validation score for each model. Fur-
thermore, the predicted sequence of joint angles was used for stimulus generation, as described above. Dynamical
models were initialized with starting conditions taken from the training data. Sometimes the training procedure
failed, because it is dependent on random initial values of the optimization algorithm. We hand-labeled obvious
failures (e.g., sliding, limping, jerking, (see suppl. mat. first trial for an example)), excluding them from the data
analysis, but retaining them to enable us to check the attention of the participants. Tables 1 and 2 summarize
the tested models and ideal observer parameters. A more detailed description of the training procedure can be
found in Velychko et al. (2018). We trained each model until the training target (ELBO or training MSE) did not
change within machine precision anymore, but at most for one day. Most models were done training in a much
shorter time.

3.24 Procedure. Participants were asked to distinguish between natural and generated movements in a two-
alternative forced-choice task. For this, we designed an experiment using PsychoPy (Peirce 2009). During the ex-
periment, participants were sitting in front of a 24-inch computer screen. After reading the written instructions,
each trial proceeded as follows: (1) a fixation cross appeared for 0.75s, (2) followed by simultaneous side-by-side
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presentation of generated and natural stimuli for 3.5s, and (3) finally collecting the participant’s response, in-
dicating on which side the more natural stimulus was perceived. Participants were instructed to use the arrow
keys of a standard computer keyboard to submit their answer. They used the left index finger for the left arrow
key, and the right index finger for the right arrow key. Both avatars were walking in the same direction, which
was drawn randomly for each trial (see Figure 1).

Each participant of the first part of the experiment carried out 643 trials in four blocks, which took approx-
imately 90 minutes. With these 643 trials, 119 models were evaluated: each participant rated 1 to 10 artificial
stimuli randomly drawn from the total set of 10 artificial stimuli for each model. These were tested against a
randomized repetition of 44 natural stimuli. To test whether participants simply memorized the natural stimuli
during the experiment, we added 6 catch trials in the last quarter of the experiment where previously unused
natural movements were tested against the known natural stimuli.

For the second part of the experiment, we split the total number of 629 trials into two conditions with 314
and 315 trials, allowing the participants to participate in one or both at their convenience. Participants were
distributed equally among both conditions. Each condition was split into 7 blocks, with 30s pauses in between.
After the first part of the experiment, we determined that memorization effects could be disregarded. Hence, we
decided not to use catch trials in the second part. Sixty-seven models were tested in each condition. The available
artificial stimuli for each model were distributed equally between conditions, and presented randomized for each
participant.

3.3 Data Analysis

The rationale of the experiment is as follows: after simultaneous presentation of artificial and natural (motion-
capture-based) human animations, the participant is forced to choose the one perceived as more natural. The
answer is communicated via key press. In each trial i, we compute a random variable R; from the key press,
which assumes the value r; = 1 if the participant was fooled by the artificially generated stimulus, and r; = 0
otherwise. Thus, R; is a Bernoulli distributed random variable. We assume the confusion rate p; to be dependent
on only the ideal observer parameters of the generated stimulus, such as number of basis-functions/MPs/IPs or
model scores (see Section 3.1):

i 1-r;
pRi=r)=p;'(1—p;)' " (7)
We assume a conjugate p(oste)rior on the confusion rate p;, i.e., a beta distribution, and compute error bars
on p; under this assumption. Please note that we decided to report the confusion rate as “success”-measure from

the perspective of the model, which we want to evaluate, instead of reporting the discrimination ability of the
participant 1 — p that is frequently used in the psychophysics literature.

Power Analysis. We would like to determine if the confusion rate of an artificial stimulus with a natural stim-
ulus is less than chance. More precisely, denote hypothesis HO: p; € [0.45,0.55] and H1: p; ¢ [0.45,0.55]. We
choose the number of trials such that the falsehood of HO is discovered with power 0.8 when H1 is true, i.e.,
1 — P(Hy|H;) = 0.8. This yields a number of N = 158 trials for each parameter combination. Considering this
number and our goal to test a wide range of parameter combinations (120 in total), the resulting number of trials
is too large for a single participant. We therefore distribute the necessary trials across participants, excluding
the possibility of inter-participant comparisons.

Logistic Regression. Each stimulus parameter combination is associated with scores S; measuring the quality of
the generated movement after training: the predictive mean squared error (MSE) for all models, ELBO for TMP,
and v(c)GPDM models and dynamics- and pose-ELBO only for the v(c)GPDM models. We use logistic regression
to find the relation between these model scores and the confusion rate:

c
pi

(8)

- 1+ exp(wg + w1 S;),
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where ¢ € [0, 0.5] reflects our assumption that the confusion rate can at best approach chance level. Assuming
independence across N trials, we can compute the log-likelihood of all trials:

N
p(ri, ..., rnlwo, wi) = log (l_[P(ri)) )
N - N
= > rilog(pi) + ) (1 =) log(1 - py). (10)
i=1 i=1

We now learn the weights (w;", w') by maximizing the log-likelihood function using the scipy.optimize.
fmin_1_bfgs_b routine (Jones etal. 2001). The gradients required for this optimizer are computed with autograd
in Python 3.6.

Cross-Validation. We test the predictive capabilities of the different regressors S; using n-fold cross-validation:
the data set is split into n blocks, then weights are learned using n-1 blocks, and the log-likelihood of the left-out
block is computed. This procedure is repeated n times, and the average left-out log-likelihood is used as score.

Logarithmic Likelihood-Ratio. We compare the predictive power of the different regressors against the null
hypothesis: p; is independent of S;. We can now compute the cross-validatory log(likelihood-ratio) to evaluate the
evidence for the statement “Model score S; is more predictive of perceived naturalness than the best constant p;”.

4 RESULTS

We present the following results: participant evaluation, estimation of interesting parameter regimes, and finally
comparison of model scores regarding their predictive power.

4.1 Evaluation of Participants

Attention Checks. During all parts of the experiment, we presented participants with attention check trials,
where different, clearly unnatural stimuli had to be detected. We measured the detection rate of these stimuli.
There were 17 attention check trials in the first part of the experiment and 15/14 in the second part’s conditions.
Over all trials, the detection rate was 98.0%. Three participants of the experiment had a detection rate of under
85%. These were excluded from further data analysis.

Catch Trials. During the first part of the experiment, we collected data from 162 catch-trials. 72 responses
specified the previously unknown stimulus as more natural (44.4%). The probability that these responses are
random, i.e. that they were generated by a Bernoulli process with p = 0.5 vs. p # 0.5 (p ~ beta(1,1))is = 0.8. We
are therefore fairly certain that the participants did not use memorization strategies for their response.

4.2 Estimating Regions of Interest in Parameter Space

We evaluated the perceived naturalness of 103 models using 976 stimuli during the first experiment (see Table 1).
We collected 16902 trial responses from 27 participants in the first part of the experiment. Each participant
completed 620 trials to estimate the confusion rate of models after exclusion of catch trials and attention checks.
Across all trials, the confusion rate was 0.228. Please check the supplementary material to find a video with some
example trials (with simulated random answers) to get an impression of the visual consequences for different
models.

We used the results of this first part of the experiment to estimate more models of interest. For the TMP
models, we decided after inspection of the confusion rate (Figure 2, left) to increase the number of MPs up to 15.
Interestingly, the confusion rate seems to converge in the slightly hyper-realistic regime at p = 0.55. For the DMP
models, we decided on testing numbers of basis function ranging from 50 to 100 (Figure 2, right). The confusion
rate peaks at 80 basis functions. This does not coincide with the minimal predictive MSE, which is reached with
25 basis functions and increases from there on.
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Table 1. Overview of Generated Trials for Each MP Model Type, Number of
Attention Check Trials, and Number of Tested Parameter Combinations (After
Excluding Attention Check Trials) in the First Part of the Experiment

MP model type # Trials # Att. checks # Parameters combinations

vCGPDM 7,290 108 45
vGPDM 6,156 297 38
TMP 1,458 0 9
DMP 1,296 54

¢GPDM (MAP) 270 0 1
GPDM (MAP) 270 0 1
Total 16,740 459 102

The confusion rates of the vGPDM models peak at (35, 10), (30, 20), (20, 20), (25, 35) (#IP Dynamics, #IPs
pose) parameter combinations. These four parameter combinations are indistinguishable from natural stimuli
(Figure 3, left). We estimated, by visual inspection, the location of the maximal confusion rate assuming that the
confusion rate is described by a concave function of the parameters with additional noise. This yielded (25, 25)
as the location of the global maximum.

The measured confusion rates of the vCGPDM models are equal at (20, 15) and (20, 20). We estimated (25, 20)
to be a global maximum for the vCGPDM, in the same manner as for the vGPDM. Based on our power analysis
and time budget, we decided on testing 67 parameter combinations for vGPDM and vCGPDM each. This way,
we ended up testing 629 additional stimuli for the second part of the experiment (see Figure 4).

We also included GPDM and CGPDM models trained by MAP (maximum a-posteriori) instead of the ELBO.
We measured confusion rates of 0.000 + 0.004 for the MAP-GPDM, and 0.11 + 0.02 for the MAP-CGPDM. These
models were not tested again in the second part of the experiment. All resulting models are summarized in
Table 2.

4.3 Predicting Perceived Naturalness

Using data from both experimental parts, we predicted the confusion rate from model scores via logistic regres-
sion. The results are shown in Figure 5 for TMP and DMP models and in Figure 6 for vGPDM and vCGPDM
models. Depicted are the measured and predicted confusion rates for the tested models (columns), and different
scores (rows). Furthermore, cross-validation results are summarized as log likelihood-ratio “In K” of the predic-
tion of the respective regressors versus the constant prediction (null-) hypothesis above each graph. Each “X”
represents the confusion rate achieved by a unique parameter combination. The regression yields best results for
the TMP models. MSE and ELBO of TMP models have similar predictive capabilities, as they are highly correlated
in the investigated parameter regime. While the MSE also has predictive power for the v(C)GPDM models, the
ELBO is not a suitable regressor. Inspection of the pose and dynamic terms of the ELBO reveals that this is due
to the low score of the pose ELBO: In K ~ —0.7. The dynamic ELBO on the other hand even surpasses the MSE
for the vCGPDM (Figure 6, left). Visual inspection of the logistic regression result for the DMP models shows
that there is no simple sigmoidal relation between the perceptual validity and the DMPs MSE. This corresponds
to the mismatch between MSE and confusion rate reported in Figure 2.

4.4  Comparing Best Models of Each MP-class

We plotted the confusion rate of all MP-models over the MSE in Figure 7. Even though a small MSE indicates
better perceptual performance of the models, the relationship between MSE and confusion rate differs between
the MP-model classes. For example, the vGPDM achieves high confusion rates even with high MSE.
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Fig. 2. Confusion rate, MSE, ELBO (from top to bottom) of TMP (left) and DMP (right) models for investigated model
parameters. Data of first part of the experiment is colored blue, data of the second part is colored red.

For comparison of model performance we chose the best performing model of each MP-class, and computed
the probabilities of all 6! = 720 many possible orderings of the models by confusion rate. We assumed beta(1,1)
priors on the rate and a Bernoulli observation model, as before. The most probable ordering is TMP > vGPDM >
DMP > vCGPDM > CGPDM(MAP) > GPDM(MAP) with a probability of 0.36. We computed marginal confusion
rates and marginal pairwise ordering probabilities, see Figure 8. TMP, vGPDM, and DMP are comparable, while
all other models are clearly worse. We used the same statistical model to test if the TMP’s confusion rate is above
0.5, i.e., whether human participants perceive the model-generated stimulus as more natural than the natural
one. Given our data, we are ~ 0.99 sure of that.
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Fig. 3. Confusion rate of v(c)GPDM models in first part of experiment: Number of inducing points for the pose mapping on
the x-axis, and for the dynamics mapping on the y-axis. The attention check parameter combinations are indicated by the
white squares, where the model training procedure converged to obviously unnatural movements. Numbers on tiles are the
measured confusion rates.
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Fig. 4. Confusion rate of v(c)GPDM of first and second part of the experiment: Data of second part of the experiment are
clustered around (25, 25) for vVGPDM and (25, 20) for vVCGPDM. Confusion rates are indicated by the same color-map as in
Figure 3.

5 DISCUSSION

The tested MP models incorporate different (perceptual) predictive mechanisms: While TMPs determine the
complete time course, the dynamical models make predictions for each next time-point from previous ones.
The dynamical models therefore have advantages in feedback control applications where perturbations must be
expected. TMPs, on the other hand, make perceptual predictions, as well as planning, easy, as there is no roll-out
necessary to access the end-state of a movement.

The perceptually most valid, even hyper-realistic model is the variationally trained TMP. The shared repre-
sentation between perception and production may therefore be more abstract: one dynamics model paired with
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Table 2. Overview of Generated Trials for Each MP Model Type, Number of
Attention Check Trials, and Number of Tested Parameter Combinations in the
Second Part of the Experiment

MP model type # Trials # Att. checks # Parameters combinations

vCGPDM 4,233 17 25
vGPDM 4,097 476 31
TMP 850 0 5
DMP 1,020 0 6
Total 10,200 493 67
TMP DMP
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Fig. 5. Confusion rate of TMP (left) and DMP (right) models as function of model scores: MSE (top) and ELBO (bottom).
Blue and red ”X”s show confusion rates for model-parameters measured during experiment one and two. Green lines are
predictions of the confusion rate (perceived naturalness) from the logistic regression using the regressor corresponding the
abscissa label. Results of the cross-validation are summarized as log likelihood-ratio In K in the top left corner of each plot,
with the text color visualizing low (red) to strong (green) evidence in favour of the regressor being a good predictor of
naturalness perception. See 3.3 for more detail.

a corresponding TMP model that encodes typical (unperturbed) solutions of the dynamics model, for fast per-
ceptual predictions (Giese and Poggio 2000). Currently, we are preparing an experiment to compare TMP and
dynamical MP models regarding their specific predictive mechanism employed in movement perception.

The vGPDM is still comparable to the TMP and the DMP, but that might change with more data. All other
models are clearly worse. However, we are almost certain that the variationally approximated models are better
than their MAP counterparts, which highlights the advantages of sparse variational posterior parametrizations.

We showed that approximate Bayesian model scores (ELBO, held-out MSE) can be used to predict the perceived
naturalness of human animations. Assuming that humans are experts (i.e., nearly ideal observers) at perceiving
their conspecifics’ movements from noisy sensory input, it follows that their movement recognition performance
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Fig. 6. Confusion rate of vVCGPDM (left) and vGPDM (right) models as function of model scores: MSE, Total-, Dynamics-,
Pose-ELBO (from top to bottom). Symbols have the same meaning as in Figure 5. See 3.3 for more detail.
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Fig. 7. Confusion rate of all models vs. test MSE and prediction learned over all models. Same data as in the first rows of
Figures 5 and 6 plus cGPDM (MAP) and GPDM(MAP). Error bars denote beta standard deviation of the confusion rate.

should be near-Bayesian in general. Therefore, in particular, the perceived naturalness of a movement is expected
to be predictable by approximate Bayesian model scores of the MPs. Our confirmation of this prediction adds
evidence to the claim that human perception is nearly Bayes-optimal in many instances.

Comparison of total, dynamics, and pose ELBO as predictor for perceived naturalness of the v(C)GPDM models
yields an interesting result: total ELBO is not a good predictor, because terms related to the latent-to-observed
(pose) mapping apparently have no relevance for the perception of human animations. In contrast, dynamics
ELBO scores indicate that a faithful dynamical mapping is more important than the pose mapping.

These computational level predictions might therefore also provide some insight into the perception of hu-
man animations on a algorithmic/mechanistic level: A feed-forward neural model (Giese and Poggio 2003) has
been proposed arguing for the existence of separate motion and form pathways, where the motion pathway
is performing a form of sequence recognition. Our results can thus be interpreted as additional evidence for
importance of dynamics for perceiving human animations. Similar results have been derived from classical ex-
aminations of point light walkers (for a review, see Giese 2014): While local motion features form the simpler
explanation for the perception of point light stimuli as biological motion than form features (Casile and Giese
2005), it has also been shown that biological motion perception can be induced in absence of local motion fea-
tures (Beintema and Lappe 2002). For discrimination tasks, the information contained in the dynamics of the
movement is more important than posture (Troje 2002).

Even though DMP models can generate highly realistic movement, a disadvantage is the unclear relation be-
tween MSE and perceptual validity. This finding demonstrates that the predictive MSE is not a sufficient indicator
for perceptual performance: it is highly implausible that naturalness of a movement is evaluated by computing
its point-wise deviation from an internal prototype for this movement.

The vGPDM performs comparable to the DMP, whereas the additional modular flexibility of the vCGPDM
does not seem to be needed for our dataset: its best confusion rate is probably (86%) lower than that of the
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Parameter Confusion Error

rate
TMP 14 0.64 +0.04
vGPDM (22,28) 0.55 +0.07
DMP 80 0.54 +0.04
vCGPDM (20,20) 0.46 +0.04
cGPDM (MAP) - 0.11 +0.02
GPDM (MAP) - 0.00 +0.00

TMP -

vGPDM
DMP -0.6
eleblVE 0.00081 . 0.4
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Fig. 8. Comparison of best models: (Top) Table of best models with corresponding parameter(-combinations), confusion rate
and standard errors of beta posteriors. (Bottom) Bayesian ordering tests: probabilities that the best parameter combination
of the models in the rows yields a higher confusion rate than the models in the columns. For example, the best TMP model
(row) achieves a higher confusion rate than the best vGPDM model (column) with 87% certainty given our data.

vGPDM. This might also be due to the stochasticity in the training procedure: reachable optima depend on the
random initial values of the optimization. Thus, the determined number of IPs where we suspected the perceptual
optimum did not yield reliably high confusion rates or model scores for the second part of our experiment.

In our study, we only validated perceived naturalness of walking movements. We chose walking movements,
because they are comparatively easy to model, yet highly important especially for animators. We are currently
extending our investigation towards other, more complex movements, such as handling objects. Our hypothesis is
that the main result-the Bayesian model score predicts naturalness perception-will generalize to these different
movements as well, because at no point did we rely on features specific to walking.?

2The only exception is the specification of the DMP’s attractor model, which is not important for our main results.
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In our experimental paradigm we chose simultaneous side-by-side presentation of generated and natural
movement videos. Simultanous presentation has two advantages: At any point in time there is a base-line for
the participants. Presenting one after another would double the time of an already lengthy experiment. Still, the
presentation time is short, thus the participants had to distribute their fixations across the two simultaneously
presented videos. We will test and consider alternative paradigms, e.g., let participants rate naturalness on a scale.
The gain of information per trial might be great enough to sacrifice the indistinguishability criterion. This might
also enable inter-participant analysis, which is not possible in our paradigm, as described in 3.3 (Power Analysis).

6 CONCLUSIONS

Our study shows that MP models are capable of producing perceptually valid movements and we demonstrated
that the prediction of naturalness is possible from model scores. These results add evidence for a shared MP-
representation of action and perception and indicates the possibility of cheap, automated, and perceptually valid
model selection for applications, e.g., in virtual reality. Finding a shared representation of MPs for perception
and action could also provide a tool to study imitation learning in robots (Schaal 1999).

Congruent with previous studies, we found that parameters connected to dynamics are more relevant for
perception than those connected with pose. This result could be useful to further improve generative models
like the vCGPDM, and highlights the importance of prediction in the perception of human animations. While
the Graphics Turing Test is a suitable tool for the estimation of perceived naturalness of movement, an analysis
fixation data could shed some light on the features that drive this perception. Also, it would be interesting to
determine what causes the hyper-realism of the TMP model.

Given that temporal and dynamical MP models have different advantages in movement planning and produc-
tion, one of our current research directions is integrating such models into sensorimotor primitives, which are
joint models of movement production and perception, with the aim of a computationally feasible instantiation of
the common coding hypothesis. Sensory prediction during movement might not only be reflected in the move-
ment itself, but also retrieved by an observer of biological movement, e.g., mime art. Applying such sensorimotor
primitives to computer animation would enable a much more flexible interaction with avatars in virtual reality:
Perceptually valid primitives could incorporate environmental constraints as well as the VR users movements,
and be composed to form complex responsive behaviour of the avatar.
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