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Abstract

We propose a mathematical model for malaria with age-heterogeneous biting rate from
mosquitos. The existence of the model, the local behavior of the disease free equilibrium
are explored. Furthermore the model is extended to an optimal control problem and the
corresponding adjoint equations and optimality conditions are derived. Age dependent
parameter values are estimated and numerical simulations are carried out for the model.
The new model better accounts for difference in biting rates of mosquitos to different age
groups, and improvements in stability to the explicit algorithm. The optimal control is

also shown to depend on the age distribution of the biting rate.
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Chapter 1

Introduction

Malaria is a parasitic disease that infects an estimated 228 million individuals and kills
an estimated 405,000 [1] people a year. The disease is especially prevalent in Africa and
is a major health risk for children, killing 207,000 children a year. The disease is both
preventable and curable. Methods and strategies for combatting the spread of malaria
continue to be a major issue for the World Health Organization in Africa.

Malaria is caused by 5 different species of Plasmodian Parasites. The parasites vary
in the risk they pose to the infected individual. The transmission of malaria occurs as a
mosquito feeds on the blood of an infected individual. This infects the mosquito with the
parasite. Further transmission back to humans occurs when the mosquito takes another
blood meal and injects the parasite into another individual. The parasite is present in red
blood cells and can spread through blood transfusions and shared use of needles but do
not generally spread from human to human.

There have been large efforts to prevent and treat malaria in recent years. Some efforts
have been focused on controling the mosquito population through insecticide treatments,
as well as promoting the use of bed nets to lower the contact rate between the vector
population and humans. There are also preventative drugs to take preemptively. There
are concerns with the development of resistance both by mosquitos to the insecticide and
the parasite to the drug.

The focus of this paper is on the recent development of RTS,S, a vaccine for malaria. As



of 2019, the vaccine is in a phased introduction stage, starting in the countries of Ghana,
Kenya, and Malawi. The goal of this paper is to explore the dynamics of the spread
of malaria in the presence of a vaccine. The specific method of transmission, through
a mosquito, makes the dynamics of malaria unique and separate from analysis of other
diseases.

The use of differential equation in mathematical epidemiology has been going on for at
least a century. Ordinary differential equations are use to model the change in susceptible
and infected populations with respect to time. The purely time dependent models are
heavily explored and are taught usually in an introductory mathematical modeling class.
The paper of Kermack and McKendrick [2] in 1927 introduces an extra variable of time
since infection. This leads to a set of partial differential equations instead of the traditional
ordinary differential equation. The additional variable allows modeling of factors such as
recovery rate from infection as a function of the duration of the infection. Some examples
of age since infection models and their use can be found in [3]. Although the model in this
thesis is not an age since infection model, many of the techniques used in these models
also apply to the model in this paper.

Age-demographic structured models look to account for the impact of demographic
age on parameters for both modeling population and diseases. For example it is clear that
not all countries have the same age profile for their residents. Furthermore, diseases such
as malaria have different effect on individuals of different age groups. Children under 5
have been more likely to die as a result of malaria compared to all other age groups. A
tull introduction to age structured models can be found in [4]. An example of an age-
demographic structured model can be found in [5]. In fact in [5], we see an application of
techniques in optimal control to evaluate strategies to vaccinate populations, which we

follow carefully in this thesis. This thesis will use an age-demographic model to model



malaria.

The basic reproduction number is a common measure of the transmission rate of a
disease. In epidemiology it describes the number of secondary cases from an infectious
individual in a fully susceptible environment. It turns out that there is a mathematical
value that can be derived from examining the asymptotic behavior of the model that
agrees with the physical definition. For the case of ordinary differential equations, the
problem of finding the basic reproduction number has been thoroughly explored in [6].
There are many more examples of the derivation found in [7]. For age-structured models
the mathematical derivation of the basic reproduction number is not as simple. In most
cases, we can only prove a small potion of the asymptotic stability results given for the
case of ordinary differential equations in [6]. An example of the derivation of the basic
reproduction number for partial differential equations (both age demographic and age
since infection models can be found in [8, 3]

There have been several papers examining mathematical models for malaria. Previous
models have been focused on strategies such as bed nets and some models for vaccines
[9, 10,111}, 12,3]. Our model, in contrast with other models explored is an age-structured
model that investigates the effects of vaccinations as well as accounts for biting preferences
of mosquitos for different age groups.

There are also extensive explorations into the numerical simulations of various aspects
of population and disease models. For ODE models, there are extensive texts for simu-
lation of population dynamics in many textbooks, for example [13]. For disease models
there are sometimes concerns for preservation of the number of individuals in the total
population, leading to invariant preserving algorithms.

For age structured models, there are several approaches for numerical simulations

such as Euler-Riemann [4] formulations along the characteristic and estimations of integral



4

equations associated with the partial differential equations for the model [14]. There are
also works into higher order numerical methods for the age structured population models
[15],[16]. Forward backward sweep methods for optimal control problems are explored
in [17, 18]

The thesis is structured as follows. In the second section, we introduce the model of
interest and explain the structure of the age heterogeneous force of infection parameter
and present the model assumptions. We will place emphasis on the derivation for the
force of infection and the important property of preserving the number of total bites.

In the third section we analytically explore the model. We prove the existence of
the model using Banach Fixed Point Theorem. We furthermore find the disease free
equilibrium and analyze perturbations of the disease free equilibrium. We derive a
mathematical formulation of the basic reproduction number and justify why this agrees
with the physical definition of the basic reproduction number.

In the fourth section we look at optimal control formulations of the model and derive
the formulas for optimal vaccination rates using sensitivities and adjoint function meth-
ods. We do not include the proof of existence of the solutions for the adjoint or the optimal
control and leave that for a later work.

In the fifth section, we present numerical methods for solving age-structured epidemic
models. This includes both explicit and implicit first order Euler-Riemann Methods
for both the state equations. We furthermore present an implicit method for solving the
adjoint equation and a forward backward sweep method used to solve the optimal control
problem.

In the sixth section we present analysis and derivation of age-dependent parameter
values. The death and birth rates of Nigeria are modeled. Furthermore, we derive

estimates for the age dependent disease induced death rates through data from the World



Health Organization.

The seventh section contains various numerical simulations. First, there are simula-
tions of the initial model and the difference the age dependent force of infection has on
our model. Then there are numerical simulations showing the benefits to stability that
the added assumption from an age-dependent force of infection allows. Lastly there are
some results concerning optimal control.

The appendices include parts of the proofs of theorems in the thesis that were exces-
sively long and similar to previous proofs in other works. They were included for the

purpose of completeness.



Chapter 2

Derivation of Model

2.1 Model Formulation

Let s(t, a), in(t, a), r4(t, a), vn(t, a) be the population density of individuals age a at time ¢ for
the susceptible, infected, recovered and vaccinated human populations respectively. We
use the subscipt & to indicate the density is for human populations. The support of sy, i, 1
and vy, is [0, A] X [0, T], where A is the maximum age of an individual and maximum time

T > 0. We have total population density at age a and time t given by
nh(tl 61) = Sh(t/ ﬂ) + ih(t/ ﬂ) + 7"h(t/ ﬂ) + Uh(t/ ﬂ)
The total population count at time ¢ is given by integrating over all age groups
A
Ni(t) = f ny,(t,a)da
0
Then a logistic death rate is given by

un(a, Np) = tno(a) + pniNy (2.1)
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with the condition that lim,_,4- to(a) = co. The birth rate is given by a function b,(a) and

the total density of births at time ¢ is given by the integral

A
f by(a)ny,(t, a)da
0

All individuals are born susceptible, without any immunity and without infection. We
closely follow the dynamics of the spread of malaria in formulating the rest of the model.
Infected individuals recover at rate (,(a), recovered individuals lose immunity at rate
yn(a), susceptible individuals are immunized at rate £,(a) and lose vaccine immunity at
rate 1,(a). There is an additional death rate for infected individuals of 6,(a).

Furthermore let S,(t) and I,(t) be the number of susceptible and infectious mosquitos
at time t. The subscript v is use to indicate the mosquitos, which is usually refered to
as a vector. In epidemiology a vector of disease is any agent that carries and transmits
infectious pathogens into another living organism. So for the case of malaria, mosquitos
are the vectors of disease. They have a death rate of u, and a constant recruitment rate of
N,. All mosquitos are recruited free of malaria infections. Let Ny(t) = S,(t) + I,(t) be total
mosquito population.

The force of infection of the disease is from human to mosquito and vice versa. The

force of infection from vector to human is given by the formula

L NOp@  _ pipLip)
Ny(t) LA p(g)nh(t, a) fOA p(a)nh(t, a)da

Avh(a/ t) = plﬁ

where p(a) is the age distribution which bites are distributed, p; is the probability of

infection after a bite from an infectious mosquito, g is the contact rate between humans



and mosquito. The force of infection from human to mosquito is

1 p@jin(t, a)da
fOA p(a)ny(t,a)da

/\hv(t) = P2,3

A full explanation of the force of infection is found after the full model.

We have the full model below

I5itim) | I5ubi@) _ ) (@t + pn(a, N(®) + En@)slt, a) + va@ra(t @) + ma(@)on(t, )

ot da
(2.2)
aihg' 2. aiha(f{ D = henlt a)si(t,0) — (Cala) + 00@) + e, Ny ()it
ar’}(i’ 2 a”;(f; D — @it a) ~ ia) + s, N Ot )
av’;(:’ 2 8”’;,(;’ D~ &@slt,0) ~ (ua, Nu) + m@)ontt, )
dsjft) = Ao = (o + Aro(£)So(8)
D)~ 50 ~ o0

We have initial conditions

sn0(0,a) = spo(a), ino(0, @) = ino(a), r10(0, a) = ro(a), vio(0, a) = vyo(a)

S4(0) = Se0, I,(0) = Lo
and the boundary condition
A
su(t,0) = f bi(a)ny(t, a)da, i, (t,0) = r,(t,0) = v4(¢,0) = 0
0

Note: We use £(a) as the vaccination rate so that a disease free equilibrium is well
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Figure 2.1: Human Population Dynamic

defined. For optimal control formulation in a later section we will use an age and time
dependent vaccination rate &,(a, t).

Figure[2.1]has an illustrated flow chart for the dynamics of the human population.

2.2 Derivation of Force of Infection

Many previous models for the spread of malaria contain the assumption, either through
omission of an age variable or a force of infection not dependent on age, that the age of
an individual does not affect the force of infection of an individual. In previous models,

the force of infection from vector to human in previous models took the following form

I,
Avh(t) = plﬁﬁh

This can be interpreted as the following. There are I, mosquitos biting at a rate of . Then

since there are a total of N humans, the rate that any individual receives a bite from an
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infectious mosquito is f I{%} Then the probability of a bite from an infectious mosquito
infecting the human individual is p; so the rate at which a susceptible human is infected
is plﬁi—z. Note that not all of the I, bites goes to susceptible humans, some may go to

individuals in infected, recovered or vaccinated groups which are not affected by the bites.

Sp

The total number of bites to susceptible individuals is given by I, 3.

The age homogeneous force of infection from human to vector is

I
Aio(t) = pzﬁ]\—?h

We have that g is the biting rate of a mosquito, and ;Thh is the proportion of bites to
infected individuals. p, is the probability of a mosquito developing infection from biting
an infected individual. pzﬁij—’; is the force of infection from human to vector.

The formulation of the heterogeneous biting rate rests on idea of preserving the total
number of bites. This approach differs from other approaches that try to account for
the effects of bed nets[11]. The key difference between those examples and our model
is treatment like insecticide covered bed nets may change the number of bites that a
mosquito gives in its lifetime. In contrast, we are trying to account for difference in the
distribution of the bites to different age groups, not variation in the number of bites due
to treatments. Given a mosquito bites a person, certain age groups may have a higher
chance of receiving that bite. For example, newborns may be isolated in hospitals and
indoors and may have less exposure to mosquitos, while individuals of age 5 and older
may be more active and spend more time outdoors, increasing their exposure to mosquito
bites.

We show the formulation of the heterogeneous force of infection for discrete age groups

then extend the idea to the continuous case. Suppose there are a total of B bites between



11

mosquitos and humans. Suppose further that the human group is split into three groups
1,2 and 3 with M;, M, and M; individuals respectively. Let each groups have preference
weights pi, p2, p3 respectively. Then let the preference for a person in group M; being

bitten be

Pi
p1My + poMy + p3M3

We observe that summing the preferences over all people

Pi Pi Pi
M + M, + M; =1
lel + PZMZ + p3M3 ! lel + PZMZ + p3M3 2 lel + p2M2 + p3M3 3

pi

Thus we can think of ST M oM,

as the probability of a single individual from group i
being bitten given a bite occurs. Then let B be the total number of bites. Then the average
number of bites distributed to a person in group M,; is

Pi
p1My + poM; + psM3

We can also in our case let B be the biting rate instead of the number of bites.
We extend the idea to the continuous case. Let p(a) be the preference function over
age group for receiving a bite. Given a mosquito bites someone, the probability density

of any single individual of age a being infected is

pa)
17 pym(t, bydv

If the biting rate is 5, we have by integrating over all humans

A A d
f - p@) ny(t,a)da = fOA,Bp(a)nh(t, a)da =B
0 [ pO)m(t, b)db 7 pym(t, bydb
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preserves the number of bites/biting rate.
Likewise from humans to mosquitos, if § is the number of bites or biting rate, to find
the number of bites that infects mosquitos, we want to integrate over the infectious density

to see how many mosquito bites were to infected individuals.

A ., |
f - ﬁp(ﬂ) lh(t, a)da _ ﬁ 1{6 p(ﬂ)lh(t, g)
o [" p(b)ny(t, b)db T pmte 00

The above is the total number of bites/biting rate of mosquitos to infected individuals.

So the force of infection for an individual of age a is

/\Uh(tl (Z) = plﬁlv A p(a)
fo p(a)ny(t,a)da

and the force of infection from vector to human is also modified as

[ playin(t, a)da
fOA p(a)ny(t, a)da

/\hv(t) = PZ,B
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Chapter 3

Analysis of Model

In this section we work with the model from derived in the previous section. The first
part involves proving the existence and uniqueness of a solution to the partial differential
equations we provided. This is the necessary starting point to any problem. Then find the
disease free equilibrium of the model and we examine the local asymptotic behavior of the
disease free equilibrium. Then we explore the threshold value derived for the asymptotic

stability of the disease free equilibrium and its interpretation.

3.1 Existence of a solution

We prove theorems concerning the boundedness and existence of the solution to our
model.

We have the following assumptions
e by(a) is a non-negative function on L'(0, A) with [by,(a)| < b for some positive bound b.

e Lyo(a) is an unbounded function on L'(0, A) and there exists some y; > 0 such that

pno(a) = pr

e Ly1(a) is a non-negative function on L'(0, A) with |u1(a)l < wp for some positive

bound .

e 1,(a) is a non-negative function on L(0, A) with [n,(a)| < ), for some positive bound
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M-

e ,(a) is a non-negative function on L'(0, A) with |y,(a)| < ) for some positive bound

Vh-

e (,(a) is a non-negative function on L'(0, A) with |Cy(a)| < C, for some positive bound

Ch-

e 0;(a) is a non-negative function on L(0, A) with |6,(a)| < ), for some positive bound

On.

e &,(t,a) is a non-negative function on L*(0, T; L'(0, A)) with

sup &y(t, a)da < &,

£20
for some positive bound &,. If &,(t, a) is not dependent on ¢ then [£,(a)| < &, for all a.

® p1,p2, Ay, Uy are positive constants. We let p15, pof < C for convenience.

e p(a) is a non-negative function on L'(0, A) with p(a) < p for some p > 0.

The last assumption can be made into p(a) < 1 since if we have some non-negative function
p1(a) and K is a positive function then consider p,(a) = Kpi(a). Then the force of infection

using p; and p, are equivalent.

P pr(@)Ix(t) __ Kpi@)h(®) __ p@h()
[ pr@mt,bydb [ Kot b)db [ pa(bym(t, bydb
A foA p1(a)in(t, a)da foA Kp1(a)iy(t, a)da foA pa2()iy(t, a)da
ho - = =

[ or®mt,bydb [ Kot b)db [ pa(byns(t, bydb

For proofs it will be more convenient for notation if we assume p(1) < 1. For writing a
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numerical algorithm it will be more convenient to leave p(a) as a reasonable non-negative
function

We note that some papers have the assumption &,(t,a) < 1 based on the idea that
we cannot vaccinate more than a proportion of 1 of the population per year. This is not
reasonable as &(t,a) is a rate not a proportion. For example consider the population of
Minnesota State University-Mankato. If the University has a campaign to vaccinate all
students against the flu in the period of a week then the rate at which the student popu-
lation is vaccinated is 52 vaccinations per person per year. We see that this formulation is
reasonable and so the assumption that &,(t, a) should be bounded by 1 does not necessarily
make sense. We do make the assumption that the number of vaccinations at any given
time is bounded by some number.

We will further use one more assumption:

A
f p(a)n,(t,a)da > m
0

for some m > 0 for all t. This assumption states that first that n, does not tend to 0. A
proof that Nj(t) > m’ for some m’ > 0 is shown in [19]. The assumption also states that the
group of individuals that recieve no bites as a result of the age distribution of the bites i.e.
age where p(a) = 0 is not the support of n;,.If that were the case then the formulation of
the age dependent force of infection preserving the number of bites does not make sense
since mosquitos may be biting but fOA p(a)ny(t,a)da = 0 indicates no person can recieve
that bite.

Assume that p1,p2p < C. We can make the assumption that the initial conditions

integrated ver the age profile is bounded. Let M be some positive number such that the
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initial conditions satisfy

A

f Spo(t, a)da <
OA

f iho(t, a)da <
0

M

8

M

8

A

f ro(t,a)da < A—/I
0 8
M

8

A
f Uno(t, a)da <
0

M
Svoﬁg

IUO <

|

We then define the state solution space with fixed initial function

X = {(Sh/ Iy iy Uns So, o) € L7(Q) X L™(Q) x L™(Q) X L™(Q) x L™(0, T) X L™(0, T)

A A

M
sup sy (t, a)|da < —, sup |zh(t a)lda < —, sup [t (t,a)lda < —
0<t<T Jo 0<t<T Jo 0<t<T Jo 4’

4 M
sup |o,(t, a)|da < , IS | < , |I | < —ae.t.
0<t<T Jo 4

810(0, a) = sno(@), ino(0, a) = ino(a), r10(0,a) = 10(a), Vno(0, @) = vko(a)

54(0) = Su0,1(0) = vO}
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where Q = (0, T; L'(0, A)). Then we have the following bounds

INL(E)| = [Sk(t) + Ln(t) + Ry(t) + V()|

= |Sp(B)] + ()] + [RR(E)] + [Vi(B)l

A A A A
< f n(t, a)lda + f (¢, @)lda + f ru(t, a)lda + f (on(t, a)lda
0 0 0 0

M M M M
< — — — — =
_4+4+4+ M

4
A

. M

o< [ lidoie < 5
0

p1Blop(a) CM
|A v(t)l = <
h foA pa)ny(t,a) 4m
u(B)] = p1p fOA p(a)in(t, a)da B p1p foA p(a)iy(t, a)da 3 CM
vh = < <
| p@mt,a) Cmta |

Then consider the following functional L : X — X. The functionals are derived

by looking at implicit solutions to the partial differential equations for the model. The

derivations are included in Appendix A.

L(Sh/ ih/ "h, On, Sv/ Iv) = (Ll (sh/ Z.h/ Yh, On, SUI IU)/ LZ(ShI ih/ Yh, On, SUI Iv)/ LS(ShI Z.h/ Yh, On, SU/ Iv)

’ L4(Sh/ Z'h/ "h, On, Svl Iv)l L5(Sh/ ih/ "h, On, Svl Iv)/ Lé(sh/ ih/ "h, On, Svr Iv))
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Ll (Sh/ ih/ i, On, S?Jl I?J) =

Sho(a — t)e_ jg Avh(T/a_t+T)+‘uh(a_t+TrNh(T)>+§(a_t+7:)d7f

+ fOt()/(ﬂ —t+p)r(t,a—t+p)+na—t+po(ta—t+p)x

t
o fp A (Ta=t+7)+ iy, (a—t+T, Ny (7)) +E(a—t+T)dT dp

ift<a

A a
j(; bh(ﬂ)nh(t —a, a)dae‘fo Apn (T t=a+7)+pp (t=a+1,Ny (1)) +E(t—a+T)dT

+ foa(y(t —a+pr(t,t—a+p)+nt—a+po(tt—a+p))X

o fp A (T =a+7)+ iy (F=a+T,Ny (1)) +E(t—a+1)dT dp

ift>a

LZ(Sh/ ih/ Y1, On, SZJ/ IZJ) =
iola — e i Ca—t+r)tppa—t+ TN, (0)+5(a—t+1)d

t - J) ca-t —t+1,N S(a—t+1)d
+f0 Aon(T,a =t +p)sy(t,a—t+p)e J, Ca—t+)+pp(a—t+T Ny (0) +0(a—t+1) po

ift<a

t — (M- - -
fo Aon(T, £ —a + p)su(t, t —a + p)e J, clt=at )yt (t=a+ T Ny(O)+8(t-a+1)de dp

ift>a
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L3(Sh/ ih/ "1, On,y SZJ/ I?J) =
rhO(a _ t)e_ fot y(a—t+1)+py(a—t+7,Ny(1))dt

— fpt y(a—t+1)+uy(a—t+7,Ny(1))dt

+ fot Cla—t+pig(t,a—t+pe dp
ift<a

t
j(;t C(t a4+ p)lh(t,t —a+ p)e—fp y(t—a+1)+y1,(t—a+T,Nh(T))dep

ift>a

L4(Sh/ ih/ Yh, Op, SZJ/ I?J) =
th(a _ t)e— for n(a—t+1)+uy(a—t+1,Ny(1))dt

t
_Lq(a—t+’c)+y;,(a—t+I,Nh(T))dep

+ fOt E@a—t+p)sy(t,a—t+ple

ift<a

- fpt n(t=a+1)+uy(t—a+1,Ny,(7))dt

fot E(t—a+p)sy(t,t —a+pe dp

ift>a

t t _ t
Ls(Shy i T, Oy Sor L) = Sope™ b Mohudt f Age™ b M@ iy
0

and

t t 1t
Lo(Sh i T, Oy Sor L) = L™ b #497 + f Aol(p)e” b e Het gy
0
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Then we have the following theorem

Theorem 3.1.1. There exists a unique solutions the system [2.2| with the initial conditions and
boundary conditions given with the assumptions given earlier in this section on some finite time

domain [0, T].

Proof. The proof of this theorem is similar to proofs of existence in a previous works for
a similar model [19]. For completeness most of the proof is included in the appendix but
we explain the general steps here. We used a contraction mapping principal to prove the
existence of a unique solution. More specifically we will use Banach Fixed Point Theorem
which reads: If (X, d) is a complete metric space with a contraction mapping T : X — X
then there exists a unique fixed point. There are two steps, first we prove that L maps X to
X on some finite time interval in Appendix B. Then we prove that it is satisfies a Lipchitz
condition on a finite time interval in Appendix C proving that L is a contraction. Then
the result of the theorem follows immediately from Banach Fixed Point theorem as a fixed

point of L is a set of functions that satisfies the equations m|

3.2 Basic Reproduction Number

We find and explore the asymptotic stability of the disease free equilibrium of the model
We first introduce two simpler models, one with just the susceptible compartment
and another with the addition of the vaccination compartment. We find the steady states
for both models then show the asymptotic stability and derive the basic reproduction

number for the full model.
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3.2.1 Logistic Population Model

We first consider a typical age structured population model for logistic growth. First

consider the system

o—?Shé()i, a) N 882(,2' a) = —u(a, Nu(B)su(t, a) (3.1)

sn(0,a) = spo(a)

A
sh(t,O):f br(a)s,(t, a)da
0

where we have the logistic death rate pa, Ny(t)) = uno(a) + paN(t) of the form described
in the original model derivation. The generalization of the following two result for this

model can be found in Iannelli and Milner [4] and is adjusted for our specific model
Theorem 3.2.1 (Theorem 5.4 Iannelli and Milner). If Ry = fOA bh(a)e‘ﬂ mo®db gy > 1 then the

model has a unique non-trivial steady state given by

o~ o #n®5)db

fOA o= b w4,

p'(@=S
where S* is the solution to S* in

A
1= f bh(a)e'fo 1 (b,S°)db
0

Theorem 3.2.2 (Proposition 6.6 Iannelli and Milner). Let the assumptions of Theorem

hold. Then if additionally we have

o~ o o@®)db

is a non-increasing and convex, we have that for Ry > 1 then the corresponding equilibrium is

asymptotically stable.
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We will assume all of these conditions are satisfied and we have a non-trivial equilib-

rium for the total population.

3.2.2 Disease Free Model

We look at the disease free model to find the disease free equilibrium and prove it is
asymptotically stable when the disease is not present. The disease free model with just

the susceptible and vaccinated compartments is

8sh(t,a) + 8sh(t,a) _

ot on = (@ Nu®) + Ex@)su(t, a) + n(@)on(t, a) (3.2)
80;18(:, a) + 90;,8(;, a) _ En(@)sn(t, @) — (un(a, Nu()) + nu(a))on(t, a)

with initial condition

sn(0,a) = spo(a)

on(0,a) = vpo(a)

and boundary conditions

A
sh(t,O):f by(a)ny,(t, a)da
0

Z)h(t, 0) =0

Since the population equilibrium is asymptotically stable, assume the total population
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p(t,a) = su(t, a) + vy(t, a) is at equilibrium p*(a) and consider the variable

ui(t, a)
p*(a)

uh(t/ Ll) =

We have the relation M =1 - u(t,a). Then we have the new reduced system
p*(a) y

Aoy (t, 0 (ta) o'
ut,a)  dut,e) _ Z5T  E5p@) — ot a) -

T @ QP (3.3)
don(ta)  dont, *
:w§”+vgm+w@smm)

= En(@)(1 — uy(t, a)) + nu(a@)un(t, a)

with initial condition

Op (0/ a)
u,(0,a) =
n(0, ) 7 (0)
and boundary condition
leh(t, 0) =0

Theorem 3.2.3. The model has the non-trivial equilibrium

v'(a) = poo(a) f“ Eh(g)e—f:(éh(b)Jrﬂh(b))dbda
0

5'(a) = peola) = v"(a)

and it is globally stable.

Proof. We can in fact solve Equation(3.3) by solving along the characteristic curve in the
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same way we found the functionals for Model 2.2|and find that the solution is

[, &n)e F 10+ a®f s+ y0a—t) ifa-t>0
u(t,a) =

[ En)e b e g ifa—t<0

Thus for large t, we have that

u(t,a) = f Eh(o)e_fgaﬂ(b)+éh(b)dbdg
0

which is the steady state. |

3.2.3 The Disease Free Equilibrium and Local Asymptotic Stability

We will linearize the system 2.2|around the disease free equilibrium under the following
assumption, when we make perturbations to the equilibrium the total population age
profile, n;,(a) will remain the same as the one for the disease free equilibrium, 7; (). The
total population N; is also fixed.

After we do so, the solution to the linearized system is assumed to be separable
and take a specific form. Then we show that given certain conditions are satisfied, the
perturbations converge to 0 and so the disease free equilibrium is asymptotically stable.

The idea of this method is to find the properties of the simpler linearized system and
make conclusions about the non-linear system.

Let the disease free equilibrium be the one given in Theorem [3.2.3]

(5(a), i'(a), 7" (a), v"(a), Sy, 1)) = (7(a),0,0,v°(a), Sy, I;)
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Let

s(t,a) = s'(a) + w(t,a),iy(t,a) = x(t,a), r(t,a) = y(t,a), vx(t,a) = z(t, a)

So(t) = 5, + k(t), L(t) = I(¢)

We now have the following equation for w(t, a)

dw(t,a) N Jdw(t,a) _ dsy(t,a) N dsp(t,a)  ds(a)

ot oa ot oa da

= —(Awla, t) + un(a,N,) + En(a))si(t, a) + yr(@)ru(t, a) + nu(a)on(t, a)
— [=(un(a, N;) + &n(a))s;(a) + nu(a)o*(a)]
_(-beta
17 plsyne(s)ds
+ (@) (0" () + z(t, 2)) + (un(a, N) + E(a))s),(a) — n(a)o*(a)
_ __Pipp@)t)
1 pym(s)da

+ yn(@)y(t,a) + nu(a)z(t, a)

+ 00,N}) + £@ @) + w(t,0) + 1 @y(t,)

(s"(a) + w(t, a)) = (un(a, Ny) + E@@))w(t, a)

We linearize this to get

Jolt,a)  dulta) __ pbp@s @
ot o [ p(s)m(s)ds

1(t) = (un(a, Ny) + E@)w(t, a) + yu(@)y(t, a) + nu(@)z(t, a)
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We work on x(t, a) next

ox(t,a) N ox(t,a) _ din(t, a) N din(t,a)
ot da ot da
= Aun(t, a)su(t, a) — (Cu(a) + On(a) + pn(a, Nu(t)))in(t, a)
_ _P1Bp@l®)
fOA p(s)m; (s)ds

(s"(a) + w(t,a)) — (Cu(a) + On(a) + pn(a, N,))x(t, a)

We linearize this to get

dx(t,a) N dx(t,a)  p1pp(a)s’(a)

ot dn fOA P(S)nZ(s)dsl(t) ~ (O 00 il N

Next iS y(t, ﬂ),
8 t,a 8 t,ll (97;1 t, a (97 t,a

ot da Ot da
= Gi(@)in(t, a) — (yn(@a) + un(a, N))ru(t, a)

= Cu(a)x(t, a) — (yn(a) + un(a, Ny))y(t, a)

This equation is already linearized. Then for z(t, a),

0z(t,a) dz(t,a)

o on
_dny(t,a) N dry(t,a)  dv'(a)
ot oa da

= &u@si(t,0) = (N} + 1@)ont,) = | = (e, Ny) + m@)oj0) + E@o’@)|
= 563 + 0(t,0) — (e N7) + 1@)0}0) + 2(8,)
-] - (@ N + @)@ + @ @)

= c@w(t, a) — (pnla,Ny) + y(a))z(t, a)
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We also keep track of the boundary conditions

A
w(t,0) = x(t,0) = fo by(a)n; (a)da
x(t,0) =i,(t,0) =0
y(t,0) =1,(t,0) =0

z(t,0) = vy(t,0) =0

Now we move onto the vector equations

dk(t) _ dSq()

dt st
= AU - (Hv + /\hv(t))sv(t)
A
,a)d
s mﬁ& pa)x(t,a) ") + k)
| ps)n(s)ds
A
p (a)x(t,a)day, A
= Ao - (uv + 2ﬁ£° - )(A_ k()
fo p(s)n*(s)ds Ho
A
,a)d
= _Hvk(t) - pZﬁ{é p(a)X(t a) a(ﬁ + k(t))
[ pm(s)ds  He
We linearize this
dk(t) papA N
= k() - (a)x(t, a)d
dt o [ ps)(s)ds fo A



28

Lastly we have

dal(t) B dl,(t)
7 o st

= Ao(B)So(t) — ol (t)
_pﬁﬁfmwﬂtﬂw(
fo 4 p(s)n*(s)ds

A,
o k) - it

We linearize this to get

dl(t)

—p = el +

P2
o fOA p(s)n*(s)ds

A
f p(a)x(t,a)da
0
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The full linearized system is
Jw(t,a) dw(t,a) __ pipp@s(a)
d T on 7
fo p(s)n*(s)ds
A

w(t,0) = f by(a)n, (a)da
0
ox(t,a) N dx(t,a)  pipp(a)s’(a)

I(t) = (un(a, Ny) + E@)w(t, a) + y(a)y(t, a) + n(a)z(t, a)

[(t) = (C(a) + 6(a) + pn(a, N}))x(t, a)

ot da fOA p(s)n; (s)ds
x(t,0) =0
ay(t, Ay(t,
y;t a) + y;a a) = C(a)x(t,a) — (y(a) + Hh(a, N}:))y(t/ a)
y(t,0)=0
) P)
Z(&tt’ s foa D — ayolt, ) - (e, Nj) + y@)z(t,a)
z(t,0) =0
dk(t) pzﬁAU A
Tar - Hek) - (@)x(t, a)d
dt H i foA SO jo‘ p(a)x(t, a)da
dal(t) P2BA A
_:_vl(t)+ ()(t, )d
= 1 poym(s)ds fo PR DA

Next we input the eigenfunctions

w(t,a) = w(a)e", x(t,a) = x(t,a)e", y(t,a) = y(t,a)e, z(t, a) = z(a)e

k(t) = ke, I(t) = TeM
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Then we get the following system

dw(a) _ _ p1ppa)s’(a)
da [ poym(s)ds
w(t,0) = fo ’ by(a)r,(a)da
WIX@) _ pipp@)s (@)
da [ psym (s)ds

x(t,0) = ¥(0)eM = 0

w(a)Aet + et

le™ = (un(a, N;) + E@)@(@)e” + y@)y(a)e + n(a)z(a)e

x@)AeM + e IeM — (L(a) + 6(a) + wn(a, N;))x(a)e

g + " o - () + pula, N
y,0) =T =0
Zre + " ED  sarme - (e, N;) + y@)E@)e"
2(t,0) = Z(0)e™ = 0
B = e - — PP [ aeray
o ;) e (s)ds

- _ Ay A
INeM = —p leM + Apzﬁ f p(a)x(a)eda
bo J; p(s)n(s)ds Vo
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We can divide by e to get the system

, dw@ _ pipp@s'(a)

da fOA p(s)n*(s)ds
A
w(0) = f by(a)n, (a)da
0
(@) _ pifp@s (@
da fOA p(s)m: (s)ds
x(0)=0

-
y(@A + Zl—ia) = C(a)x(a) = (y(@) + un(a, N))y(a)

w(a)A 1 - (un(a, N3 + E@))w(a) + y(@)y(a) + n(a)z(a)

x(@)A + I - (C(a) + 6(a) + pn(a, N;))x(a)

7(0) =0
2@t + 2 = @)@ - (e, Ny) + y(@)E@
Z0) =0

A
kA = —‘uv% - Apzﬁ/\v f p(a)x(a)da
o [ ey (s)ds Jo

p2BA

) ) A
IAN = —pl + - f p(a)x(a)da
o [ p(ey(s)ds Jo

We look at the equations for x(a), y(a) and 1. We solve for X(a) in

dx(a) _ pipp(a)s‘(a)

xX(@)A + =
da fOA p(s)n; (s)ds

1 - (L(a) + 6(a) + pula, N;)%(a)
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We have the following

@) | @) (A + C(a) + (a) + wn(a,N3)) = —p @@

da f p(s)n; (s)ds
CZZ (x(a) ol A+CBYO0)+ Nh)db) — ok AT+ (0N} p1pp(a)s” (a) )

fo p(s) h(s)ds

Then with the initial condition x(0) = 0 we have

(a)e [ A+CO+ N _ f b A+CB)+6(B) (b N; b p1Bplo)s’ (‘7) o
0 f p(s)nh(s)ds

So we have

X(a) = f = [ A+L@)+5)+upb,N;)db _FIPFAT )= \P) p1pp(0)s’ (G)
7 o

For y(a) we have

(@) + y()

WO | Fla)d + (@) + e, ;) = C@)FC)

di(y(a)ejg) A+y(b)+p (b,N;l)db) — efo A+y(b)+un(b,N;)db C(Q)E(ll)
a

= C(@)x(a) = (y(@) + (e, Ny))y(a)
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Then with the initial condition y(0) = 0 we get

a
y(a)efoa A+y®)+pn(b,N; )b _ f efog A+y(b)+un(b,N;)db C(O)E(G)dd
0

Thus

(a) = f e A0 NI (0)F(0)do
0

So we now have the system

%(a) = f o [ sy PO 4
’ 1 ) (s)ds

y(a) = f e~ b ORI (o) 0)do
0

A
N = ] + Apzﬁ A f p(a)%(a)da
o [} pE(s)ds Jo

Now we consider several cases:
e X(a)£0,1#0
e X(1)£0,1=0
e X(a)=0,1#0
e X(a)=0,1=0

For each of those cases we would like to show that R(A) < 0 under certain conditions.
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Since this would imply that for all fixed a,
}im w(t,a) = }im x(t,a) = }im y(t,a) = tlim z(t,a) = }im k(t) = }iml(t) =0

from which we can conclude the disease free equilibrium is locally asymptotically stable.

e x(a) # 0,1 # 0. This is the most difficult of the cases but also the one that will
characterize the behavior of the disease free equilibrium. We plug in x(a) into the

equation for Ito get

R f p(a) f - P PR 1y,
f p(s)m; (s)ds

Since [ # 0 we have that

A
A=—p,+ AP 2o f p(a) f — ¥ A+Cb)+0(b)+uay(b,N;)db p1Bp(o)s(o) doda
‘uvj(; p(S)n*(S)dS 0 f p S)nh(s)ds

This is equivalent to

1= Pzﬁ;\v f fplﬁP(G)P(“)S 0) o I A+CO+OO)+ N 35 7,
(yv+/\)yvf0 p(s)n*(s)ds <o f p(s)m; (s)ds

We call the right hand side the characteristic equation and let

G(A) = p2P A f f p1pp(o)p(a)s’ (G) = [} 4O +5O)+ N, )b g 5 0
(yv+A)yvf p(s)n*(s)ds f p(s)m; (s)ds

This function has the following properties

Lemma 3.2.4. There exists a real values solution in the interval (—u,, 00) to G(A) = 1. The

solution is only real value solution on the interval (—,, o) and is positive if G(0) > 1 and
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the is negative if G(0) < 1.

Proof. We work on the existence of a solution first. The function G(A) is continuous
given the age dependent parameters in it are continuous, which is true by the

assumptions of our model. Then since

1 = [ A+L(0)+5(b)+uy(b,N; )db

— o0, and e approaches a constant as A — —p;
Uy + A

we have that

lim G(A) = oo
A=—py
Furthermore since
1 — 0, and ¢~ b OO+ ON)D _y 0 55 ) 5 oo

Ho +

we have that
}ltim G(A) =0

Thus G(A) = 1 has a solution in the interval (—p, — o0). For the second claim in the

lemma since

and e 1 A+L(0)+6(b)+uy(b,N; )db

to + A

are both strictly decreasing function of A on (—pu,, ) we have that G(A) is strictly

decreasing on (-, ©0) as well. Then this gives that there is only one real solution to
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G(A) = 1in (—py, 00) and furthermore if G(0) > 1 this solution must be positive and

if G(0) < 1 then this solution must be negative. O

This lemma tells us that for G(0) > 1, the disease free equilibrium is unstable since
for fixed a at the perturbations x(t,4) and I(t) have shape e* which will grow for

solutions A > 0 From here we can prove the following

Lemma 3.2.5. If G(0) < 1, then any solution (including complex) of G(A) = 1 has negative

real part.

Proof. Let A = a+ wibe a solution to G(A) = 1 and assume for contradiction « > 0. In
particular we keep in mind from the hypothesis that G(0) < 1 we have that G(a) < 1.

Then we have the relations
lo + i + py| > | + ol

and

a+wi| —

le le] = &
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The first inequality depends on a > 0 and the second does not. So

IG(a + wi)|

2A A ' .
— ' plpZﬁ : v f f p(a)p(a)s*(a)e— ﬁz a+wl+y(b)+6(b)+‘uh(b'Nh)dbdeﬂ
(Up +a + a)i)yv(fo p(a)s*(a)da)? Yo Jo

2AU A
= Al f f p@p(o)s (@)
|tto + @ + wil o fo p(a)s*(a)da)? Jo Jo

2 A
< PleAﬁ Ay f f p(@)p(0)s' (@)ee" e fo”y(b)+6(b)+yh(b,N;)dbdea
o + alu(J; p@)s (@)day? Jo Jo

ea+ﬁiea—(r e~ f; y(b)+0(b)+uy (b,N;)dbdea

=G(a) <1

We now have a contradiction since G(a + wi) = 1. Thus R(A) must be negative for all

solutions of G(A) = 1 O

Thus we have shown for this case, if G(0) > 1 the disease free equilibrium is unstable

and if G(0) < 1 then the disease free equilibrium is asymptotically stable.

e X(a) # 0,1 = 0. This case cannot occur as if you plugf = 0 into the equation for x(a)

you get x(a) = 0.

e X(a) = 0,1 # 0 For this case notice the equation for I after plugging in X(a) = 0 is

—yzj =\l

Since I # 0 we get that the only solution is A = —pu, < 0.

® X(a) = 0, = 0 We note that by plugging in x(a) = 0 into y that y(a) = 0. So the
only possible non-zero functions are x(a) and z(a). This is equivalent to studying the

asymptotic stability of the system [3.3lwhich we previously looked at.
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We have proven the following

Theorem 3.2.6. Let

G(A) = PP f ! f p1pp(o)p(a)s’(o) o= [ A+CO+ O+ N 7 574
(Ho + A) o fOA p(s)n*(s)ds Yo Jo fOA p(s)m; (s)ds

then the disease free equilibrium is unstable if G(0) > 1 and locally asymptotically stable if G(0) < 1.

The basic reproduction number, which we describe in detail in the next section, is

given by

, e A . *
Ry = /G(0) = Z1P25 f f p(a)p(a)s*(a)e‘fa CO+O+m N 454,
B3, plsyn*(s)dsy? Jo  Jo

3.3 Interpretation of Ry = 1/G(0)

We now work on interpreting Ry = 4/G(0), which is called the basic reproduction number.

We derived the form

ZA A . %
60) = PR [ [ poypars o (00
(U%(fo p(s)n*(s)ds)? Jo Jo

The previous section showed Ry is a threshold value for the asymptotic behavior around
the disease free equilibrium. Now we compare this to the definition of basic reproduction
number in epidemiology, which is the number of secondary cases from a single infectious
case in a completely susceptible environment. We can do a change of integration order,

keepinginmind 0 <o <a <A,

2 A A A . 7 *
GO0 = — f f p(0)p(@)s’(a)e™ b COO NI o
1 fo p(s)n*(s)ds)? Jo Jo
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Then we rearrange to get

A * A
G(0) = f Plfp(a)s (0) f Pjﬁp(a)/\v o [ OO BN g1
0 Wy fi p&)(s)ds Yo, [ pls)n*(s)ds

Suppose we are in a disease free equilibrium and we introduce one infectious mosquito.
Then the average lifespan of a mosquito is Hi Furthermore the rate of people age o

infected by a mosquito is
p1pp(o)
A
Iy pym(s)ds

This is A.,(0) with I, = 1. So the total density of susceptible people age o this mosquito

infects is (rate*number of people*lifespan)

pifp©@)s(©) 1

Ri(0) =
T e eds i

Then consider a person who is infected atage . A person may exit the infected category by
either dying naturally(u;), dying from the disease (0y,) or recovering (). The probability

they are still sick at agea > o is

o= Ji CO+OO) (BN, )b

and the rate at which this person of age a infects mosquitos is

Pzﬁp(a)
[ p(sym(s)ds

Then there are A,/u, susceptible mosquitos. So the number of mosquito a person who

got sick at age ¢ infects is given by the integral of the product of the survival probability
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and the density of mosquitos infected over age 4,

A
Ry(0) = f M . ﬁe— S CO+oO)+un®N;db 14
o fo p(s)n(s)ds  Ho

Thus we see that

Ry(0)R2(0)

is the density of mosquitos infected in a disease free environment through an individual

infected at age o by an infectious mosquito. Thus

A
R5 = G(0) = fo R1(0)Ry(0)do

is the total number of susceptible mosquitos infected by a single infected mosquito in a
disease free environment. Our earlier theorem agrees with the notion that if Ry = m <
1 then the disease will die out since there are not enough new infections to replace the
original, but if Ry = /G(0) > 1 then there will be enough replacements of the original
infectious mosquito to keep the disease from dying out. The square root represents the
geometric mean, it is sometimes omited from literature since the threshold value remains

at 1 for both Ry and G(0).



41

Chapter 4

Optimal Control

We now introduce an optimal control formulation of our model. We change &,(a), the

vaccination

rate to one that is time dependent, &;(t,4). This will allow us to change the

value of the vaccination rate as a function of time. Thus we have the system

ash;’ D, asha(fl’ L ~(Aan(@, t) + (@, Ni(®) + En(t, a))su(t, a) + yu(a)ru(t, a) + nu(@)ou(t, a)
(4.1)
aih;’ D . (%ha(g 8 _ Aun(t, a)su(t, a) — (Cu(a) + On(a) + pn(a, Nu(t)))in(t, a)
arh(g? s arh;f{ D - G@it,n) - (yn(@) + wn(a, Nu(£)ru(t, a)
avha(,f’ D, ‘9”’;‘;' D — &yt a)sult, ) — (e, Nu(®) + m@)on(t, )
ds;ft) = Ao = (o + Aro(H)So(t)
T = 50~ ekt

We have initial conditions

$10(0, a) = spo(@), ino(0, @) = ino(a), 10(0, @) = rno(a), vro(0, a) = vyo(a)

SU(O) = SUO/ Iv(o) = Iy
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and the boundary condition

A
su(t,0) = f bp(a)ny,(t, a)da, i,(t,0) = r,(t,0) = v,(t,0) =0
0

All other parameters and aspects of the system remain unchanged. We then introduce a

cost function

T A
(E) = f f [Bin(t,a) + CEnt, si(t, @) + DEx(t, a)]
0 0

where B is the cost of treating an infected individual per year and C is cost of administering
a vaccine to a person. D is some small positive constant. The integral measure the cost
of treating sick patients and vaccinating individuals over time span 0 to T. The goal of

our analysis will be to find a function &(t, ) that will minimize J(&) with the restriction of
equation

Theorem 4.0.1. The map L : X — X introduces in an earlier section[ref] is differentiable in the

following sense:
L(u + €l) — L(u)
€

- (\IIS/ \I]i/ ‘IIV'\I]U/ CDS/ q)l)

foru e Xande — 0and 1 € L*(Q). Furthermore they satisfy equations



VY, N 8\11
ot ot
IV, N IV,
ot ot
v, N v,
ot ot
v, N v,
ot ot

dCDS
dt
do;

ar
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L) (1)
pp(@) g Wt ) + it

L,(t)su(t, a)(f0 p(a)(Ws(t, a) + Wi(t,a) + WV.(t,a) + V,(t,a))da)
- Ty(t)? )

- cEh(tl a)\ys(tl a) - Sh(t/ (Z)l + y(a)‘{jr(t/ El) + n(a)\va(t, El)

A
- ‘Llh(a, Nh(t))\ys(t/ El) - Sh(tl a)‘uhl (a) f \I]s(t, El) + ‘I]i(t/ ll) + \I]r(tl a) + \I]U(t/ a)da
0

NI A0 0
= piBp@ 75 W) + - su(t )

L,(t)su(t, a)(f0 p(a)(\Ws(t,a) + Wi(t,a) + W.(t,a) + Vy(t,a))da)
B T)(t)? )

— (un(a, Nu(t)) + 6u(a) + Cu(a))Wilt, a)

A
it @) [ W) 4 Wi0,0) + 1 0,0) +
0

= Cu(@)Wi = (pn(a, Ni(t) + y(a))'V,

— ry(t, @)t (a) fo ’ W,(t,a) + Wi(t,a) + V,(t,a) + W, (t, a)da
= &ult, )Ws(t,a) = si(t, )l = (un(a, Ni(#)) + (@) Vo

— vy(t, a) i () fo ’ W,(t,a) + Vi(t,a) + V,(t,a) + W, (t,a)da

A
~ -pa( ) + h e (”T)f(/f’”)d”sv(t>
Tu(t) fo p@)(Wy(t,a) + W(t, a) + W, (t,a) + W,(t,a))da
Tu(t)?
t (@)Wi(t, a)da
B0 + ke s
]h(if)f0 p(a)(Ws(t,a) + Wit a) + W.(t,a) + WV, (t, a))da
Tu(t)?

5.(1) - 1D

Sv(t)) — U ®;
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The initial conditions are
W,(0,a) =0,¥;(0,a) =0,¥,(0,a) =0,V,(0,a) =0

D,(0) = 0,2i(0) = 0

The boundary conditions are
A
‘ys(ti O) = f b(ﬂ)(\ys(t, El) + \I]i(tl ﬂ) + \I]r(t/ ﬂ) + \Pv(t/ ﬂ))dﬂ
0

Wi(t,0) =0, W,(t,0) =0, W, (t,0) =0
Proof. The proof is the first half of Appendix D(Chapter O

Theorem 4.0.2. The adjoint equations for the system [£.1|are

dps  9Ips _ prpp@l

o Vor T T, P PO bt Enpe = po)
Sy L, ™
_ PzﬁT]: p(@)(qs — q:) — P(a);;lﬁ 0 sn(t, b)p(b)(ps(t, b) — pi(t.b))db — ps(t, 0)b(a)
h h

A
+ f i (b)(su(t, )ps(t, b) + 1u(t, b)pi(t, b) + ri(t, b)p:(t, b) + vn(t, )po(t, b))db
0

- Cé&y
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op; 8
a]z ((Uh + 6h)pz + Ch(pz pr) + P ﬁ

~p(@)(qs — q:)

- pzﬁ]f ~p(@)(qs — q) — )pzl P Sh(t, b)pb)(ps(t, b) — pi(t.b))db — ps(t, 0)b(a)
Th Th 0

A
+ f i (b)(su(t, D)ps(t, b) + iu(t, b)pi(t, b) + 1(t, b)pi(t, b) + vn(t, D)po(t, b))db
0

-B
dpv, dp,
8;1 + (9_pt = tnpr + Yu(pr — ps)
S, L (™
B mﬁ]{: p@)qs — ) - p(a)ﬁzl 2 [ st Dpp.0,6) ~ pieab — .6, 0
h h 0
A
+ f 1 (b)(su(t, B)ps(t, b) + in(t, b)pi(t, b) + ri(t, BYp,(t, b) + vy(t, bYpo(t, b))db
0
ap, O
5 + apt = WnPo + Mu(po — Ps)
v IU .
- pzﬁTjg p@)@s - ) - p(a)szl 2 [ st Dp0.te5) = p )M = ., 00
h h 0
A
; f i (O)si(t, D)ps(t,b) + it D)pi(t, b) + i, LYo, b) + vu(E, D)po(t, b))db
daqs
dqt = Hofs t p213] q - )
dql Plﬁp(a)sh

—pi)da

with initial conditions

ps(T,a) = pi(T,a) = p(T,a) = p,(T,a) = 0

qs(T) = qi(T) =

and boundary conditions

ps(t’A) = pl(tlA) = pr(tlA) = pv(t/A) =0

Proof. The proof is in the second half of Appendix D O
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We now assume the existence of a solution and uniqueness of the adjoint equations
and the optimality conditions. The existence and uniqueness of the adjoint would be
proved with the same method as the existence and uniqueness of the state equations,
using Banach fixed point theorem. Proof that the optimal control exists uses Ekelands

Principal. These are left unfinished due to time restrictions.

Theorem 4.0.3. Assuming the adjoint equations and the optimal control exists and are unique we

have that the optimal control satisfies

. (ps - Pv - C)Sh
& = max(0, L=
Proof. Again the derivation of these values are included in Appendix D m]

The equations above will at the very least allow us to run numerical simulations.
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Chapter 5

Numerical Methods for disease model

5.1 State Equations

The Euler-Riemann and Backward Euler-Riemann Methods are used along the character-
istic lines of the PDE model to produce simulations. More specifically, we partition the
temporal domain [0, T] into M equally sized intervals and the age domain into N equal

sized intervals such that % =4

= 4, 1.e. the step sizes are the same in both variables. Let the

step size be denoted by At. We now introduce the notation for convenience
ti = iAt,Llj = ]At,

and also

(&) = &t a)

where ¢, can be replaced by any of the parameters, the time index is in the superscript
and the age index is in the subscript. Furthermore we let (sh)f be the estimate of s at age
a; and time t;, where we can replace s, with any of the other state functions. Again the

time index is in the superscript and the age index is in the subscript.
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Then let
_(Ahv + Up + Eh)(tl (Z) 0 Vh(t/ {Z) nh(t/ El)
Alt.q) = Ano(t, a) —(tn + On)(t, a) 0 0
0 Cu(t, a) —(un + yn)(t, a) 0
En(t, a) 0 0 ~(n + 1)t a) |
and
—(Ao ) 0
B(f) = (Ano(f) + o)
Ano(t) —Uy
Ay
b=
0
Also let ) )
su(t, a)
n S,
wtay =" o =77
ru(t, @) L(t)
un(t, a)

Then the state equations of the model can be written as

ou(t,a) du(t,a)

T + - A(t,a)u(t,a)
do(t)
7 = B(t)’()(t) +b

Then the Euler method can be used on the characteristic of the PDE to arrive at the first



49

order scheme

uj+1 Z/tj ‘

i+1 i 7,
A’

At lul

vj+1 -0l ..

=Bv +b
At ¢
Which leads to
ulth = (I + AtA)u]

o/ = (I + AtB)v! + Atb

where [ is the identity matrix of appropriate size. The boundary values are computed
using the trapezoid method. We do not use the value at 2 = 0 since b,(0) = 0.

N-1

At
(50 = B + i+ i+ o)+ 2 ) @+ i+ i+ )
i=1

(in)y = 0
(fh)é =0
(o)) =0

We have the evaluations used in Af and B/.

(Aow)] = p1P P (I y
h
]
(Ahv)] - Pzﬁ}—
h

()] = ao@;) + i (@)N!
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The values of Ny, Ty, |4 are computed using the trapezoid method as well.

N-1
. t [ . . .
Np = S| o+ 2 ) 0] + )|
) i=1

i N-1 .
)= 2o + 2 Y e + pearm) |

i=1

_ N-1 ] .
Ji = = POy +2 Y p@)p)] + p(A)(ih)iv]
- i=1

We define the backward Euler method by the following. Let

() = (o + ), 0 h(t, @) ()i
A (Aol —(un),, — On)isn | 0 0
0 (Cn)ir1 ~(tn)y = ()ina 0
(&l 0 0 )y = ()i
S _ —_(Ahv)j - U, 0
(Ano) — o

Then we have the implicit scheme

j+1 uj
Ui — W i+,
At B % R NN |
Uj+1 — vj — .
= — B]+1U]+1 + b

We note that the population totals such as Nj, T, and J, are not implicit. We can rearrange
this to get the backward Euler Scheme.

j+1 _ _ AjHIN-1. ]
iy = ([=AAL ) 1

ot = (I - AtB*YY (0 + Ath)
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The inverse matrix is not computed, instead we use LU factorization to solve the system

of equations.

5.2 Adjoint Equations

The idea behind evaluating the adjoint equations are the same as the state equations but
special care must be given to the fact that the boundary and initial conditions are given
on the opposite side of the domain. So in a sense we will be traversing the characteristics
used for the state equations backwards. A first order implicit and explicit algorithm will
be given below.

Let p = [ps,pi, prpol” and g = [gs,4:]" The adjoint equations an be written in the
following form.

PP

= + 5 = Di(t,a)p + Da(t, a)q + Ds(t,a)

dq

a = El(t)ql + EQ(t)



where
Aon(t, @) + pn(a, t) + En(t, a)
0
D1(t, Ll) =
~rn(a)
i —1n(a)
= —A(t,a)"
_1 —1H
Ao(t,0)So(Hp(a) 1 —1
D (t, a) =
i Tu(t) 1 1
1 -1
_1<
1 I,
Ds(t,a) = (_ p(a)j;gﬁ
h

_Avh(tl a)

un(a, t) + on(a) + Cu(a)

0

0

Tu(t)

0
—Cu(a)
n(a, t) +yu(a)
0

A
fo su(t, DYpB)p(t,b) — pi(tb))db - pu(t, 0)b(a)
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—&n(a)
0

0

Ha(a ) + @) |

A
b [ O DB+ i)+ Db+ 0t e )
0

v /\v _Av
El(t)z'” FAw(®) = Ai(®)

0

A
Ez(t)=(f0 piBp(@)si(t, a)

Céh (a/ t)

B

0

0

o

Tu(t)

0
(ps(t/ ﬂ) — Pi(t, a))da) I ]
1
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We formulate the explicit first order scheme by the following

j+1

P Pl j
S = O+ )50+ (D)
L — g o .

q At q — (El)]+1q]+1 + (Ez)]+l

which gives us the schemes

= (I - AKD))plt| — AHD,) g/t — AKD3)/!]

i+1

= (I = AHE))g"™ = AH(E,)

the implicit scheme is formulated below. All terms except D3 and E, can be made implicit.

j+1

Pz+1At pz (Dl){p{ + (Dz)qu + (DB){:ll
j+1 _ 4j . ;
Tt = €y + ()™

Which leads to

g =+ (E)) g™ = AHE)™)

= (I + A(D)) M plT) = AKD,)q — AKD3)T))

In practice we do not compute the inverse, we use LU factorization to solve the system.
Also note the order of computation, we compute the g first for the time step then compute

the p values.
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In both the explicit and implicit cases the integrals are evaluated using trapezoid rule :

A
fo st )p(a@)(plt;, a) — pi(ty, @)
At . . . N-1 . . . . . .
~ S| @@ - 00 +2 Y 60lp@) @] - () + Elp e - )|
i=1
A
f pm (@) (su(t, a)ps(t, a) + in(t, a)pi(t, a) + ru(t, a)p,(t, a) + vi(t, a)p,(t, a))da
0
= S O + ) + (e + @)
N-1
+2 ) @) () (p)] + @) (p)] + 1)) + @] (po)))
i=1

AP+ @ + ek + @]

A t, 0 J i i
| %WW' o)~ p)da ~ g[%«mg - ()

the boundary and initial conditions are all set to 0.

5.3 Forward Backward Sweep Method

We present the forward-backward sweep method first introduced in [17] and further

application to optimal control problems are explained in [18]].

The steps of the algorithm are as follows, set € > 0 small.
1. Initialize &, =0
2. Run the algorithm for the state equation with &,.

3. Run the algorithm for the adjoint equation with the state equation derived from Step

2 and &
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4. Use the adjoint equations to find the a new &, using the optimality condition

(Ps = Po — C)si
D

), €)

&;, = min(max(0,

5. If|&, — E;I < € then we take &; as our approximation of then optimal vaccination rate.

If not then take &, = & and repeat from Step 2.
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Chapter 6

Parameter Values

The parameters in Table |6.1{and their explanations can be found in Chitnis, Hymen and
Cushing [20]. The maximum age was chosen as 90 from the population data available
and the recruitment rate for the vector population was chosen so that it is significantly
larger than the human population. We make the assumption that the mosquito population
should be about 100 times the total human population. We will adjust the uj; parameter
so the total human population is near 300 people and we set the mosquito recruitment
to 2 - 10°, which will give us a mosquito population of A,u, = 2-10°/(365/21) ~ 115068

mosquitos.

6.1 Age dependent parameters

We use the age dependent parameters for the country of Nigeria derived in [21].
For birth rate we use

by(a) = cBu(a)

where

By(a) = B exp{—p2(a — B3) — exp[—Pa(a — B3)]}
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Parameter Description Baseline values and range
age Max age of adults in years 90 years
Ay Recruitment rate of mosquitoes per year | 10"
o Natural death rate of mosquitoes per year | 32 € [365/28,365/14]
mB }C,::;tad Rate from vector to human per 9 € [2.6,32 - 365]
B }C}Z:;tact Rate from human to vector per 8 € [0.001 - 365,027 - 365]
Vh Rate of loss of immunity per year 2 €[1/50,4]
Rate of loss of HV acquired-immunity per
" year in vaccinated groups of humans 1/4ll/5 1]
0, R.ate of development of temporal immu- 1e[1/2,6]
nity per year

Table 6.1: Descriptions of age-independent parameters of the malaria model

with least square estimates

B1 = 0.0001218

B> = 0.3022
Bs = 78.38
Bs = 0.04006

. A . .y .
and constants determined so s;(0) = fo by(a)sn(0,a)da. This condition gives us that the
solution is continuous.

¢ = 0.449569941624713

The death rate will take logistic form

un(a, Ni) = uno(a) + umNy
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with

tno(a) = pe(a) + wm(a) + po(a)

where

Hc(a) = exp{_ﬁca}

tm(a) = ay exp{=Pu(a —ym) — exp[m(a — ym)l}

Qo
A—-a

‘uo(a) =

A =90 the maximum age and the least square parameter estimates are

@, = 0.09959
B. = 0.6776
@, = 0.1277
B = —0.09171

—

Om = —0.0006743

Vo = 66.78
@, = 0.05859

Figure(6.1) shows the birth and death rate fitted over the data for Nigeria data. For
the value of uj1, we choose it to be constant and set it equal to .0001, which will set the

population size to around 300.
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Birth rate fuction shape { age death rate vs. data
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Figure 6.1: Left: Birthrate function shape. Right: Death rate estimates. The open circles

are data retrieved from the United Nations website.

We assume the additional death rate due to malaria follows the following distribution

1
C'm 0<a<90

op(a) =
0 a>90

The additional death rate will be steady around rate c for age 0 — 5. It will then drop
quickly to a value close to 0. We will use data obtained from a WHO report in 2009 to
determine the value of c. This is the most recent report with estimates for the number of
malaria cases and deaths for 0-5 year olds. The shape of the additional death rate allows
us to assume for the purpose of finding an appropriate value of c that the additional death

rate is constant between ages 0 and 5 at rate c. We use the following relation

(# of infected individuals) - (averageinfection time) - (Prob of dying from the disease)

= Average number of deaths due to infection

We restrict to age 0 to 5. The number of infected individuals age 0 to 5 in one year is

34096000 and the number of deaths due to malaria in one year is 219000. The disease
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induced death rate for 0 to 5 year olds is assumed constant at ¢, so the probability of dying

from the disease over a year is 1 —e™°.

Then since the death rate pjo(a) is smaller than (, the recovery rate, and infections

last for a relatively short amount of time, we assume that the average time a infected
A A

. . . . . _C _ _1 _ _ _A ~

individual stays infected is fo e “da = j(; efda=1-e"=1

Then we have the equation

34096000 - 1 - (1 — ™) = 219000

We solve for ¢ to arrive at

o —ln(l 219000

- 34096000) ~ 006444

%102 Disease Induced Death Rate, 4, (a)
T T T T

Figure 6.2: Age-dependent disease induced death rate.

The vaccination rate is kept as constant over time at rate .2
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6.1.1 Preference Function, p(a)

The major advantage of our model is the ability to have heterogeneous biting rates. We
use three different functions to model the age exposure likelihood for mosquito bites.

Uniform Distribution: We start with the original preference distribution from the
model with homogeneous biting rate.

5% if0<a<90

0 ,else

Logistic Curve We use an age-dependent function to account for the differences in
exposure for different age groups. Newborns are relatively protected from outside factors,
having no risk of being bitten at birth, and the opportunity to come in contact with
mosquito increases as they gain the ability to walk and become more active. We account
for this with the following curve, which has lower values for newborns and drastically

increases by the age of 4.

0 ,a<0
pla) = (ﬁ—lﬁ) ,0<a<90
0 ,a> 60

Figure (6.3) show the curve p(a). The value for newborns is consistent with our previous
explanation, p(0) = 0. Furthermore for this curve, the preference for humans over 10 is
relatively uniform.

Skewed Normal:We have a skewed normal that concentrates bites from the age of
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5-30.

= f:’éé% Lot Lif0<a<60
6.2)

0 , else

Logistic Shape Preference Function 0o Skewed Normal Preference Function ) Uniform Preference Function

Figure 6.3: Left: Logistic Shape Preference Function. Middle: Skewed Normal Logistic
Function. Right: Uniform Preference Function.

6.2 Optimal Control Parameters

We choose B = 10 and C = 1 as the cost of treating an infected person per year and cost of
vaccinating an individual respectively. We choose B larger than C to reflect that treatment
of an infected individual costs more than vaccinating an individual. Several tests were

done with B larger but they yield similar results.
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Chapter 7

Numerical Results

7.1 Numerical Simulations of the State Equation

We first run numerical simulations for the state equations to show the impact of the
age-heterogeneous biting rate.

Fugure shows the equilibrium population densities under different preference
functions. We see that the preference function makes a noticeable difference in the shape
of the infected population. The logistic shape preference function has a peak at a larger
age. The Skewed Gaussian shows infections concentrated to younger adults reflecting the
concentration of the Skewed Gaussian curve in those ages.

The age profile Uniform preference function has sharp changes near age 0. This is due
to the fact that p(0) = 0 for the logistic shape and Gaussian preference curves while that is
not the case for the Uniform preference function. This creates a sharp increase/decrease in
the densities near 0 since newborns are moving to the infected compartment immediately
at birth. This can cause problems for explicit schemes and may lead to instability on the

numerical solution.
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_ Population Density, Implicit Method, Logistic Shape Preference, Step Size 1/52 B Population Density, Implicit Method, Uniform Preference, Step Size 1/52

12 12

Susceptible Susceptible
Infected Infected

Recovered Recovered
Vaccinated Vaccinated

Age

4 _Population Density, Implicit Method, Skewed Gaussian Preference, Step Size 1/52

Susceptible
Infected

Recovered
12 Vaccinated

Density

Figure 7.1: Population Densities for model under several preference functions.
7.2 Stability Improvements

The stability of the explicit method for different preference function is shown in Figure
and Figure(7.3). Figure shows the age distributions at several points in time
using the Uniform preference function. The smaller time step of At = .01 shows a stable
approximation. Comparing the different time steps, we observe with a time step of
At = .04, the numerical approximation overshoots the correct value near 0.

Figure(7.3) shows numerical simulations for Skewed Gaussian and Logistic shaped
preference functions. We have the same step size of At = .04 but the two numerical
approximations do not have stability issues near 0 like the Uniform preference function.

The overshoot does not occur since we have that p(0) =~ 0 for both the Skewed Gaussian



65

. Infected Individual Density, Explicit Method, Uniform Distribution, Step Size 0.01 15 Infected Density, Explicit Method, Uniform Distribution, Step Size 0.04
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Figure 7.2: Left: Age Profile over time for Uniform Preference Function. Right: Age
Profile over time for Skewed Gaussian Shape Preference Function. Both at step size .04

and Logistic Shape preference curves.
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Figure 7.3: Left: Age Profile over time for Logistic Shape Preference Function. Right: Age
Profile over time for Skewed Gaussian Preference Function. Both at step size .04

7.3 Optimal Control Simulations

We now examine the results of the optimal control system. For optimal control simulations
we used the logistic shape preference function. Figure shows the optimal control

value for the vaccination rate &,(t,a). We note several features, we have that there is no
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vaccination for age 0-3. This is due to the shape of the preference function. Children of
age 0-3 have significantly smaller force of infection than all other ages. This results in no

vaccination at lower ages.

Figure 7.4: Vaccination Rates for B=10and C =1

Figure[7.5shows the time profiles under the optimal vaccination rate. We see in general
the total infected human and vector population have decreased steadily. In contrast the
susceptible and vaccinated population shows changes in behavior at around .4 time. The
sharp change in behavior is due to the sudden drop in the vaccination rate at around time
4. The susceptible population decreases and the vaccinated population increase during
times the vaccination is active.

Figure[7.6]shows the age profile at time ¢ = 1 of the susceptible, infected and vaccinated
human populations. The sharp discontinuity observed in the infected age profile and the
non-differentiability of the age profile near age 3 in the other profiles are due to the sharp
difference in the optimal vaccination rate for individuals between the age of 0-3 and other
age groups.

Figure shows the Optimal Control under different parameter values. We used
treatment cost of infected individual per year B = 100 and cost to vaccinate an individual
C = 1. So the cost of treating an infected individual is even greater than the previous case.

We see that the shape is the same but the sharp fall in the vaccination rate occurs later at
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Infected Human Population over Time o 10

Susceptible Human Population over Time

05
Time

Infected Vector Population over Time

Population Count

Figure 7.5: Top: Time Profile of Human Populations with Optimal Control Vaccination
Rate. Bottom: Time Profile of Vector Population with Optimal Control Vaccination Rate.

Vaccinated Population Age Profile at t=1

Infected Population Age Profile at t=1 55210

Susceptible Population Age Profile at t=1

Figure 7.6: Age Profile of Human Populations with Optimal Control Vaccination Rate at
t = 1. From left to right: Susceptible, Infected, Vaccinated
around time .8. This is due to the increase cost of treatment, it is more cost effective to
vaccinate the individual even if they are not vaccinated for a long time. We note we only
examine the cost within the 1-year period so if any patients are infected near the end of
the time frame then they do not impose a large cost..
We make the observation that the shape of the border between max vaccination and
0 vaccination in the vaccination rate function with respect to age and time has a similar
shape to the age preference function shape. In Figure[7.8 we have the optimal vaccination

rate when we use the uniform and skewed Gaussian preference functions. The shape of
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Figure 7.7: Vaccination Rates for B =100 and C =1

Age

Time Time

Figure 7.8: Vaccination Rates for B = 10 and C = 1. Left: Uniform Preference Rate, Right:
Skewed Gaussian Preference Rate

the cutoff for the vaccinations reflects the shape of the preference curve. Vaccinations stop
after uniform time for the Uniform preference rate except near the maximum age 90. For
the skewed Gaussian, the vaccination is only applied to ages 5-40 where the preference
function focuses the biting preference. The shape of the cutoff between max vaccination

rate and 0 vaccination rate depends on the shape of the preference function.
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Chapter 8

Conclusions

In this thesis we introduced an age-demographic model for the spread of malaria. We
place emphasis on the age-dependent force of infection, which accounts for difference in
biting rates between different age groups from mosquitos while preserving the total num-
ber of bites. The existence of a solution to the partial differential equations describing our
model was shown. The basic reproduction number was derived by examining the asymp-
totic stability properties of the disease free equilibrium. Furthermore we interpreted the
basic reproduction number derived in this fashion as the number of secondary mosquito
infections from a single infectious mosquito through humans. An optimal control prob-
lem on minimizing the cost of vaccinations and infections was introduced. The adoint
equations and optimality conditions for the optimal control problem was introduced. The
paper ends with introduction of numerical schemes and their results with respect to our
model. The numerical results show that the age-dependent force of infection changes the
shape of the infected individual density, as well as improve stability for explicit schemes.
Furthermore the optimal control simulations show the vaccinations should focus longer

on age groups that have higher force of infection rate.
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Chapter 9

Appendix A

We run through the derivations of the functional and theorems used in the existence
theorem in Chapter 3.

First we look at the equation
Y (t LZ) (t LZ) d(t LZ)
da A ’

with initial condition y(0,4) = y(a) and boundary condition y,(t,0) = °(¢). we look for

solutions along the characteristic line. Consider the case of t < 4, and let y(t) = y(t,t + a).

Ay(t,t+a) + dy(t,t+a)
ot da

We have that y(0) = y(0,a0) = yo(ag) where ayp = a — t. Then since %y(t) =

Let () = c(t, t + ap) and d(t) = d(t, t + ap)

d_ o _

() = SO + A
which can be rearranged as

L6y - 2y = ey
which is equivalent to

%(e‘ I HG(r) = d(Fe” ['a(oie
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So we integrate from t = 0 to t.

l‘d e ~ t_ N
L d_p(e j(; C(T)dTy(p))dp = f d(p)e foﬂ C(T)dep

0

which gives along with the initial condition the solution

£
7t = F(0)eb 1 f d(p)e” 1" dp
0

If we have the case of t > g, then we integrate from t — a to a instead to get

t
(t) = y(t — ayeh €O 4 f Gy I gy

t—a

where now y(t — a) = y°(t — a).

Thus by applying the above to each of the equations in we get that the solutions
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can be written as

Ll (Sh/ ih/ i, On, S?Jl I?J) =

Sho(a — t)e_ jg Avh(T/a_t+T)+‘uh(a_t+TrNh(T)>+§(a_t+7:)d7f

+ fOt()/(ﬂ —t+p)r(t,a—t+p)+na—t+po(ta—t+p)x

t
o fp A (Ta=t+7)+ iy, (a—t+T, Ny (7)) +E(a—t+T)dT dp

ift<a

A a
j(; bh(ﬂ)nh(t —a, a)dae‘fo Apn (T t=a+7)+pp (t=a+1,Ny (1)) +E(t—a+T)dT

+ foa(y(t —a+pr(t,t—a+p)+nt—a+po(tt—a+p))X

o fp A (T =a+7)+ iy (F=a+T,Ny (1)) +E(t—a+1)dT dp

ift>a

LZ(Sh/ ih/ Y1, On, SZJ/ IZJ) =
ihO(a _ t)e_ fOr Cla—t+1)+pp(a—t+1,Ny(1))+o(a—t+1)dT

! - [l -t —HT N —t+7)d
+f0 Aon(T,a =t +p)sy(t,a—t+p)e J, Ca-t+0)+pp(a—t+T Ny () +o(a—t+1) po

ift<a

t
fou An(T, t —a+p)sy(t,t—a+ p)e‘fp C(b=a+7)+pap(t=a+ TNy (0) +o(t-a+D)dT dp

ift>a




L3(Sh/ ih/ "1, On,y SZJ/ I?J) =
rhO(a _ t)e_ fot y(a—t+1)+py(a—t+7,Ny(1))dt

- fpt y(a—t+1)+uy(a—t+7,Ny(1))dt

+ fot Cla—t+pig(t,a—t+pe dp
ift<a

t
j(;u C(t—a+ p)int t—a + p)e—fp y(t—a+’[)+yh(t—ll+T,Nh(T))dep

ift>a

L4(Sh/ ih/ Y, Ony SZJ/ I?J) =

Uho(ﬂ _ t)e— for n(a—t+1)+up(a—t+1,Ny(1))dt

+ fOt E@a—t+p)sy(t,a—t+ple

ift<a

ift>a

We also get that

t f _
Ls(Sh, i, 7, Ons So Io) = Sope™ b MOt 4 f Age™ b M@ hadt g,
0

t
_Lq(a—t+’c)+y;,(a—t+I,Nh(T))dep

76



and

s t _ t
Le(Sn, i, 71, On, So, 1)) = Lge™ bt 4 f Ano(p)e f”AhU(T)wvdeP
0
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Chapter 10

Appendix B

We prove the map L maps X to X as claimed in Chapter 3. We will use the following many

times. Consider

™ b f@o)

If we have the conditions p < a, and f(0) > 0, then the integral fp ’ f(o)do > 0 and so

e b7 < 1

This will case for all of the exponential terms below. Then suppose (sy, iy, 1, U, So, I,) € X,
then it is clear that all terms including the parameters and inside of integrands are positive

almost everywhere,

L1(Sn, in, 7, On, So, L)(t,a) = 0
Lo(Sn, in, Tn, On, So, L) (t,a) > 0
Ls(sn, in, 11, O, So, Lp)(E,a) 2 0
La(S, in, 71, 0n, So, I)(t,a) 2 0

Ls(sp, in, Tn, O, So, Lp)(£) = 0

L6(Sh/ ih/ Y, On, Sv/ Iv)(t) >0
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almost everywhere. Then we just need to prove each of these are bounded by %. For the
equation for t > a, since t and a are independent, we can switch the order of integration.
We need to prove the following

. . M

|Ll (Sh/ Uy Thy Ony Sv/ Iv)(t/ a)lda < Z
0

For t < A, we can do this by splitting this into two integrals one 0 to f and t to A on which
the function will evaluate differently. The second integral from ¢ to A can be widened to
0 to A since the functions evaluate positively so it works for upper bounds. For the first

integral we keep the integration bound 0 to .

We cover the second segment first

A
[ s, 50106 )
t

A
<f
0

+ f (Y@a-t+prt,a—t+p)+n@a—t+pout,a—t+p)x
0

ShO(a _ t)e— fot Aon(Ta—t+7)+up (a—t+7,Ny (1)) +E(a—t+1)dT

e fpt Aon(Ta—=t+7)+pp(a—t+7,Ny (1)) +E(a—t+1)dT

A
Sf
0

+ f (@t +p)lira(t,a -t +p)| + Ina— £+ Pllost,a— t + p)x

sno( e Jy Awn(a-t+0)y+ppa—t+T Ny (D) +E(@—t+T)dT

f A (Ta=t+7)+ iy (a—t+T,Ny (1)) +E(a—t+1)dT

f |snolda + f f [ru(t,a —t + p)ldp + nf lon(t,a — t + p)ldpda

“ —t+A—/It
8 Tyt

—A—/I+tA—/I(+)
BERR AN
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and for the equations for t < a, we first compute
A
f [nu(t — b,b)ldb < MA
0

from the fact that for fixed t,

A
j‘muumubswf
0

then for ¢ sufficiently small,

A t A
ijW%@WS]l[WW@W&SWSM
0 0 0

Then we can compute

t
f |Ll (Sh/ Z'h/ Yy, Op, SU/ IU)(t/ a)ldﬂ
0

:fot

+f(y(t—a+p)rh(t,t—a+p)+n(t—a+p)vh(t,t—a+p))x
0

A
f bh(b)nh(t _ b, b)dbe‘ j: Aon (T t=a+1)+py (t—a+7,Ny (1)) +E(t—a+1)dT
0

e j; Avh(T,t—a+'r)+yh(t—a+T,N;,(’())+é(t—a+’c)d’cdp'db

t A
Sfo‘fo |by(b) 1y (t — b, b)db

+ f(ly(t —a+pllr(t,t —a+p)l+Int—a+pout,t—a+p))lx
0

= i Aon(Tt—a+ D)+ (t—a+7,Nj (D) +E(t-a+1)d

b " Aon(Tt=a+T)+pay (t=a+ TNy (1) +&(t-a+1)dT

dpdb

t A A A
_ f b f ma(t — b, b)db + f in(t,t—a+ p)ldp + 1 f fonlt, £ —a + p)ldpda
0 0 0 0
! M M

< t(bM + y% + n%)
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So by taking the sum, we see that for t small enough

A t A
f |L1 (Sh/ ih/ ¥, Op, SZJ/ Iv)(t/ a)|da = f |L1(Sh/ ih/ "h, Op, Sv/ IU)(t/ ﬂ)ldﬂ + f |L1 (Sh/ ih/ ¥, Op, SZJ/ Iv)(t/ ﬂ)lda
0 0 t
M M M M
< = - - -
S3 +t(4(y+17)+bM+)/4 +1]4)
4

M

IA

If t > A then we can still use the bound derived second above to get for f small enough

A t
. . M
[ i o Su )l < [ a0, S 16 ol <
0 0

We note that t small may force t < A.
We have similar results for the other equations, the necessary inequalities are shown
below and we have the conclusions at the end.

For L,,

A
f \L(h, i, T4 Ok, So, L)(t, @)\da
t

:foA

t t
+ f /\Uh(T,a 4 p)Sh(t,ﬂ 4 p)e—fp C(a—t+1)+p;,(u—t+1,Nh(1))+U(a—t+’[)d1dp
0

A
< fo lho(a — )

t
+ f (0 — £+ p)lsn(t,a— £+ )l
0

A A
= f lino(a — t)|da + f f Aon(T,a =t + p)llsu(t,a — t + p)ldpda
0 0o Jo

A ¢ A
< f lino(a — t)|da + f % f Isn(t,a — t + p)ldadp
0 o 4m J,
M

Mo
=8 " 16m

iola — te” Jy Cla=t+0)+py(a—t+TNj () +o(a—t+D)dT

da

e J Ca—t+0)+py (a—t+T Ny (1) +o(a—t+0)d

o I ' La—t+7)+ pp(a—t+T, Ny (1) +o(a—t+T)dT

dpda




and

For L;
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f
f |L2(Sh/ ih/ Yh, Ony Svl IZJ)(t/ ﬂ)ldﬂ
0

:fot

t t
- fo foa Nenlt,t = a -+ pllst £ =+ p)fle” b i eemicg,

p|da

a t
f Nt t =+ p)sult t—a+ p)e” J ct-arophn-are Ny (@) rot-a+oide g
0

da

t A
< f f [Aon(T, t —a+p)llsu(t, t —a + p)ldpda
0o Jo

SLEL Isu(t, t —a + p)ldpda

CMM CM?
<t——=t
4dm 4 16m

A
f |L3(Sh/ ih/ Yh, On, SU/ Iv)(t/ a)ldﬁ
t

A
<f
0

t t
+ fO‘ C(a —t+ p)ih(t,a — 4 p)e—fp y(a—t+1)+yh(a—t+T,N;,(T))d'rdp

rhO(a _ t)e_ jg y(@a—t+1)+up(a—t+1,Ny(1))dt

da

A
f |L2(Sh/ ih/ Yh, On, SU/ IU)(t/ a)lda
t

A
< fo a0 — )

t
+ f @t +pli(ta—t+p)l
0

e~ fot y(@a—t+1)+pu(a—t+1,Ny(1))dt

e fpt y(@a—t+1)+up(a—t+1,Ny(1))dt

dpda

A f
< f Fio(a — ] + f C@ =t + p)lin(t, a — £ + p)ldpda
0 0

A t A
= f [rho(a — t)|da + f Cf |in(t,a — t + p)ldadp
0 0 0

<M+ftCM
=8 ), "4
MM
8

+ =
4



and

t
f |L3(Sh/ ih/ Yh, Ony SZ)/ Iv)(t/ ﬂ)ldﬂ
0
t (1 ¢
f C(t —a+ p)lh(t,t g+ p)e_fv y(t—a+1)+ph(t—a+T,Nh(T))dep da
0

t t
Sf f (C(E = a+ pllia(t, £ = a -+ plfe”h 7o
0 Jo

t
< f Cflih(t,t—a+p)|dpda
Ot OA
SJNCJNMﬁJ—a+prM
‘f‘C —da

<t—
4

dpda

Then for Ly,

A
f |L4(Sh/ ih/ Yh, On, Svl Iv)(t/ a)lda
t

A
Sf
0

t ¢
4 jo‘ E(a —t+ p)sh(t,a —t+ p)e_f%’ r](u—t+T)+yh(a—t+T,N;,(T))dep

Uno (ll _ t)e_ f(; n(a—t+1)+py(a—t+1,Ny,(7))dT

da

e~ fot n(a—t+1)+up(a—t+1,Ny(1))dt

t
¢ [leat+plta-t+ple S
0

dpda

A t
S;[ WWW—QL+1‘Km—t+pm%@a—t+mumm

t A
j‘wmm—ﬂwa+1“51ﬁH%@a—t+mwmw
0 0

< E; L[‘é dp
_M_ M
8 4
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and
t
f |L4(Sp, in, *1, On, So, In)(t, a)|da
0
t t
= ‘[O f E(t—a+p)sy(t,t—a+ p)e—fp N(t=a+t)+uy (t—a+1,Nj,(1))dt dp‘ gt
t t
< f fﬂ IE(t —a+p)llsu(t, t —a+p)l e—fp N(t—a+7)+ py(t-a+T,Nj, (1))dT dpdt
0 Jo
t
< f f“ Elsn(t, t — a + p)ldpdt
0 Jo
t A
: f 5f Isu(t, t = a + p)ldpdt
0 0
t
M
< i
S j(; & 1 da
M
=t 7
Then for Ls and L,

|L5 (Sh/ Z'h/ "h, On, Sv/ Iv)(t/ a)l

t £ o
SUOe_'f(‘] Ahv(T)"'deT + fo‘ Ave LAhv(T)"'Hvdep'

t
+ f Al
0

t
< |Swolle” o Ao+ o o Jy Aol +pude dp

t
< Sl + f |Aoldp
0

M
= — +tA,
8+
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and

|L6(Sh/ ih/ Vi, Ony SZJ/ IZJ)(t/ ﬂ)l

t t t
Ivoe_fo podT + f /\hv(p)e_fp )\hv(T)+yvdep'
0

n fo @)

t
< llyol + f M)y
0

<M+tC_M
~ 8 4dm

¢ t
< |Lyol e‘fo odT e—fp Ao (T)+ o dp

With sufficiently small ¢, if we have that for t > A

A t
f |L1 (Shl ih/ A% SU/ IU)(tI a)'dﬂ < f |L1 (Sh/ ih/ "hs On,y SZ)/ Iv)(t/ ﬂ)ldﬂ <
0 0

IA

A t
f |L2(Sh/ ih/ Yh, On, Sv/ Iv)(t/ a)ld[Z < f |L2(Shl ih/ Thy Ohy SUI IU)(t/ a)lda
0 0

A
- S S -~

A t
f |L3(Sh/ ih/ "h, Ony Sv/ IU)(tl (Z)lda < f |L3(Sh/ ih/ n, Ony Svl IU)(t/ a)ldﬁ
0 0

A t
f |L4(Sh/ ih/ Y, On, SU/ IU)(t/ a)ldﬂ S f |L4(Sh/ ih/ i, On, SU/ IU)(t/ ﬂ)ldﬂ S
0 0
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andift < A

A t A
f IL1 (S, i, T, Oy So, L)(t, @)lda = f \L1 (S, i, T, Oy So L)(t, @)lda + f \L1 (S, i, Th, On, So, L)(t, @)lda
0 0 t

IA

il =

M M M
+t(z(y+n)+bM+yZ+nZ)

A t A
f |L2(Sh/ ih/ Yh, Ony SZJ/ Iv)(t/ a)|da = f |L2(Sh/ ih/ Yh, On, Sv/ IU)(t/ ﬂ)ldﬂ + f |L2(Sh/ ih/ Yh, Ony SZJ/ Iv)(t/ a)|da
0 0 t

CM?
16m

|L5(Sh/ ih/ 1, On, SU/ Iv)(t/ a)l S

i

|L6(Sh/ Z‘h/ "h, On, Sv/ Iv)(t/ a)l <

Thus we have that for finite time interval L maps X to X.
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Chapter 11

Appendix C

We prove the Lipchitz continuity. We use the following shorthand, which will simplify

the notation. Let u = (s, i, 1, v5) and v = (S,, I,) and

2]l = lIsnllzeoq) + Ninllzo() + lIrallee() + ol

and

[ol] = [Soli=,6 + Holze(0,

We first show an inequality we will be taking advantage of. We start with

l+x<e

Then we rearrange this to get

—x>1-¢

Then for x < 0, we have

—x>1-¢">0
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and so

x| > |1 — €|

Then consider the expression

o [ gi()dr _ o [ g2(1)dt

where — fg1(’f)d’( <0and — fgz(T)dT < 0. Then we have two cases, if — fgl(T)—gz(T)dT <

0, then

e—fgl(T)dT _ e—fgz('f)d"f

_ -/ gz(T)dT(e— [ 81000t _ 1)'

e f go(1)dt

IA

o~ S a1 -ga(0dr _ 1‘

IA

e—fgl(T)—gz(T)dT _ 1‘

=1 = e—fgl(T)—gz(T)dT

IA

—f&@—&@ﬁ
_ f 21(7) - (D)
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On the other hand if — f g2(7) = g1(1)dT < 0, then

e—fgl('r)dT _ e—fgz(r)dr

So in either case we have

e—fgl(’c)d’c _ e—fgz(’c)d’c

IA

IA

IA

o glmdf(l _ o] gz(T)—g1(T)dT)

o~ Js10dt||1 _ o= [2(0-gi1(Ddr

1 — ¢~ J 82(0-81(0)dx

—f@m—&mw
jéww—&umT

<

fgmw—@umf

We will be able to use the above inequality since p0(a) > . > 0 so int integral in the

exponent will be bounded above by a negative number.
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We compute the following beforehand:

th(a —t+ T,Nhl(’f)) - yh(a —t+7 th(’[))l
= luno(@a —t + 1) + upi(a — t + T)Nm (1) — (uno(@ — t + 1) + (@ — t + )Njp2(7))|
= |uni(a =t + T)(Np1(7) + Np2 (7))

A
= Un f sn1(7, b) = s12(7, b) + i1 (T, b) — i2(T, b) + 111(7, b) — 112(T, b) + 031 (7, b) — vp2(7, b)db
0

A A
< f 5112, b) — s (t, B)ldb + f 1 (1, B) — oz, B)ldb
0 0
A A
. f 17T, b) — Fio(T, B)ldb + f (5, ) = v1alz,b)db)
0 0

A A
< un sup f 19021, B) = $12(5, B)ldb + sup | lim(z, b) — ina(z, B)ldb
0
A

O<t<t O<t<t JO
A
+ sup [rm (7, b) — 112(7, b)|db + sup [0 (T, b) — vpa(7, b)ldb)
O<t<t JO O<t<t JO

< Mm(HSm = spallz=0) + llim — i2)llee(@) + Irn1 — rmellr=(q) + llom — Uh2||L°°(Q))

< wmllupm — up|
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and

A A
f p(b)ny (T, bydb — f p(b)np(t, b)db'
0 0

| ’ P

A A
< pA( [ toun(r,b) = siae Mo+ [ lin(s0) = i, bl
0 0

<

A
f (5, b) = i, b)db|
0

A A
; f 17 (T, b) — 1o, B)ldb + f o1a(t,) = oia(r, b))
0 0

A A

< pA( sup | Ism(T,b) = spa(T, b)ldb + sup | |ini(T, b) — ina(7, b)ldb

O<t<t JO O<t<t JO

A A
+ sup f [rm (T, b) — 112(7, b)|db + sup |01 (T, b) — vpa(T, b)ldb)
0

O<t<t O<t<t JO

= pA(llsn1 = sw2llr=(q) + llin1 — in2llz=(q) + lIrm — Tr2llie) + lom — vn2llie(q))

= pAllup — upsl|
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and

|/\vh1 (ﬂ, T) - /\th(a/ T)l

Ivl(T) IUZ(T)
@ :
oo L o@ma®,0db [ po)ma(b, wdb)'

Iﬂﬂﬁmmea%+@m£%@mwﬂww
1 p®)ma(0,0)db [ p©)ma(b, b
L(0) [ p®malb, Db — Lo(x) [ p0)ia(b, 7)db
[ p®ma, b [* p®)ma(b, 7)db
| La(® [ p®)mia(, b + Lo(@) [ p®)ma b, T)db‘
17 p®)ma(0,0db [ p®)ma(b, )b

a(@) = Lol 120 [ p®l0112(b, ) = 11 (b, T)Db )
| p®ma, bl | [ o) b, dbl [ p©)mia(b, T)db]
< Cp () @)

L2 (T)p .
0 (lIsm1 = sm2llze0) + lin1 — n2llzeo) + I = Tr2llee (@) + lon — vnallie(q))

< Cp(

+
1
< Cp(#v1 ~ Loli=0s

Mp .
+ m(”shl = Spallee(@) + llim = tn2llre(@) + lrn — riallioq) + llom — Uh2||L°°(Q)))

2

4m?2

Cp
< ;Hvl — 0o + 1ep1 — upol|

We note that X is the complete metric space with one of the restrictions being they
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share the same initial conditions. So sjg(a) = sj1(a), then
A
As = f
0

A
< f Isgl(a -1 - 522(a —1)|
0

521 (El _ t)e_ fot Aot (T,a=t+7)+py(a—t+17,Npy (7)) +E(a—t+1)dT

t
_ ng(ﬂ _ t)e—fo Aoz (T,a—t+7)+py(a—t+1,Njp (1)) +E(a—t+1)dT

da

e I Aot (Ta—t+0)+ (@t Nj () +E@—t+0)dT

+ |522(a - t)| e~ fot Aot (T,a=t+7)+ 1y (a—t+17,Njy (7)) +E(a—t+1)dT _ e~ fot Ao (Ta—t+7)+up(a—t+7,Npp (1)) +&(a—t+1)dT d

[
< —
8 0 0

— (Aot a—=t+ 1)+ upla—t + 17, Nip(7)) + E(@a -t + 1))d7

a

—f(/\Uhl(T,a—t+T)+yh(a—t+T,Nh1(T))+E(u—t+7))
0

da

At
< % f f Ao (T,0 =t +T) = Aga(T,a — £+ T)| + |un(a — t + T, Njio (7)) — pin(a — £ + 7, Njp(7))|dtda
o Jo

M (A Cp CM
< — pntllun — upoll + —llor — vo|| +
8 Jo Jo m

e
4m?
tA CMp? ACM
< < (um + 4—n£)||uhl — upall + ¢ P

lum — wpplldtda

lo1 — 0|

Similarly we have

A
0

A t
Sf(; |i21(a—t)|‘—foC(a—t+T)+yh(a—t+T,Nh1(T))+6(a—t+T)

igl(a 3 t)e_ j(;t Cla—t+7)+pp(a—t+T,Ny, (1) +0(a—t+1)dT _ igz(a _ t)e‘ fot Ua—t+7)+py(a—t+7,Npp (1)) +6(a—t+1)dT da

—(Cla—t+1)+ pup(a—t+1,Np(r)) +06(a—t+1))dt|da

A A ot
< (j(: Iigl(a — t)lda)f(; fo lun(a —t + 7, Njn (1)) — un(a — t + 7, Nip(7))ldda

M
< tgyhllluhl — ||
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A
_ 0 — [My(a- -
Ag = jo‘ 9 (a—te |y y@—t+1)+pp(a—t+T, N (0)dt _ 1,22(” —fe” o Y@=t 0+ a7 Njp (0)dt da
M
< tg,”hl””hl — U]
A t
AV — f 021 (IZ _ t)e—fo n(a—t+7)+up(a—t+7,Ny (1))dT _ 02 (El _ t)e— fot n(a—t+1)+up(a—t+1,Nyp (1))dt d
0 2 @

M
< tgumﬂum — ||
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Next we have

Bs

L L

t
_ (y(a 4 P)i”hz (ta—t+ P) + 77(” —ty P)th (ta—t+ P)) e fp A2 (Ta—H7)+ py (a—t+T,Njp (1)) +E(a—t+1)dT

t
(@ —t+p)ria(t,a—t+p) + @t +p)oa(t,a—t+p)) x e b rn@trnmatoN@) ot

dpda

o 5 " Nont (Ta—t+0)+up (a—t+T, Ny (1) +E@—t+1)dT

At
< L j; (y(@@a—t+p)rmt,a—t+p)—y@a—t+prp(ta—t+p)) dp

Fa—t+pyata—t+p)lle J Ao (a=t+0+pna—t+T N (D) +E@-t+r)dT _ o) " N2 (Ta—t+T)+ 1 (a—t+T,Njp (1)) +E (a—t+7)dT

+l(n@—t+pom(t,a—t+p)—na—t+pop(t,a—t+ p))|'

Yo i " Nont (Ta—t+0)+ 1y (a—t+T,Nyy (1) +E@—t+1)dT

dp

+In(a—t+p)owa(t,a—t+p)

Xe fpt Aot (T,a—t+7)+py(a—t+17,Njy (7)) +E(a—t+1)dT e fpt Aoz (T,a—t+7)+pp(a—t+7,Njp (1)) +E(a—t+1)dT

da

t A t M A t
< )/f f lrm(t,a —t +p) — rp(t,a —t + p)ldadp + f )/Z f f [Aopi(T,a —t +7) — Aga(T,a — t + 7)|
0o Jo 0 0 Jp

+ lun(@ —t + 7, Niu (7)) — pn(a — t + 7, Nio(7))|dtdadp

t A
+1 f f [on1(t,a —t + p) — vip(t, a — t + p)ldadp
0 Jo

t M A t
. f M f f M (5,0 = £+ 17) = Aga(t, @ — £+ 7)
0 4 0 p

+ |pun(a =t + 7, Nj (1)) — un(a — t + 7, Nipp(7))|dtdadp

< YHlrm = ru2llee@) + Ntllon — vnallie(q)

(y + n)MA? (C CMp?
# L (o — ol = =l + gl = )
m 4dm
(y + n)MA? (C CMp?
< 7+ )l = sl + T (o = o+ (S o — e

(y + n)MA? Cp

= L 2P o )+

+ nMA?%\/CMp?
(7/ 1) )( 4m€ +Mh1)||uh1—uh2||
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Next

B,

=f0A

= (Aua(a = £+ psatia =+ )

s

- " La—t+7)+ pp(a—t+T, Ny (1) +6(a—t+7)d7

t t
f Aga(T,a—t+ P)Sm (ta—t+ p)e_ fp C(a—t+T)+up(a—t+7,Nj (1)) +6(a—t+1)dT
0

I ' C(a—t+"£)+yh(a—t+T,Nh2(T))+6(a—t+f)d’r)

Ao (T,a =t +p)s(t,a — £+ p) = Au(T,0 =t + p)sip(t,a -t + P)‘

X le

+ [Aon2(T,a — t + p)spp(t,a —t + p)l

% e I ' L@t 0 4y (a— TN (D) +5(a—t+0)dT o i " Ca—t+7)+pp(a—tHT,Njp (1) +6(a—t+7)d7

dpda

A t
< f f M (5,0 — £+ 1) = Aun(T, 8 — £+ P)llswa(t,a — £+ )
0 0

+ Ao (T,a = t+p)lisi(t,a — t+p) = spa(t,a — t +p)|

N CM2
16m

fC(a—t+’c)+‘uh(a—t+”cNhl(T))+6(a—t+T)

—(Cla—t+1)+ up(a—t+1,Np(t)) +6(a—t+1))dt|dpda

CMp2 CMp 4
——IIvl = all + =l = all + = Ishl(t,a —t+p)—sp(t,a—t+p)ldadp
f f CM?p
16m
CMp? CMp CcM?
< fo Wpllvl — 0ol + 4m§ lun1 — upoll + o ||5h1 — spalle@dp + f(; ‘fo %”Wﬂ — upldpda

CMp*> CMp ACM?pun

Cp
< t—|lvy — vo|| + ¢ + + -
< llo1 — | ( e 1 16 )||uh1 Upa|

dpda

f pn(@ —t + 7, N (1)) — pn(a — t + 7, Njp(1))d7
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and

Br

L L

— (C(a —t+p)ip(t,a—t+pe

¢
C(a —t4 P)im (t,ﬂ —t4 p)e_fﬂ y(a—t+1)+uy(a—t+7,Np1 (1))dT

_ f; y(a—t+7)+up(a—t+1,Npp (T))dT)

dpda

o~ by @ttt N (D)

At
Sf f |C(a—t+plin(t,a—t+p)—Ca—t+ppta—t+p)
0o Jo

t t
+lCa—t+ P)ihz (a—t+ P)| o fp Y(a—t+0)+uy(a—t+T, Ny (1))dt o fp y(a—t+1)+up(a—t+7,Npp (1))dt dp da

¢ A
< f Cf lin(t,a—t+p)—ipnta—t+p)lda
0 0
— f y@a—t+1)+ua—t+1Npu(t)— (y@a—t+1)+ uu(a—t+1,Np(r))dr|dadp

N M fA t

Y 1, ;
t M A t

< f Cllim = in2llz=(g) + oy f f pn(a =t + 7, Ni (1)) — un(a — t + 7, Njp(1))dt
0 0 p

t M A t
< f Cllup — upoll + sz f tnillum — uplldtdadp
0 0 p

MA?
< t(C+ i il ] 1 Hin

dadp

)”uhl — upp||
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and

By

=f0A

- (é(a —t+p)spp(t,a—t+pe

t
f E@a—t+p)su(t,a—t+pe f; na=tee) =t N ()T
0

f’f r](a—t+T)+p;,(u—t+T,Nh2(T))dT) da

dp

f; n(a—t+7)+u,(a—t+1,Njy (1))dt

o

At
Sf f |E@a—t+p)sm(t,a—t+p)—Ea—t+p)spta—t+p)
0o Jo

t t
+ |£([1 —t+ P)Shz(t,ﬂ —t+ ]9)| e—J}; n(a—t+1)+py(a—t+1,Njy (7))dT . 8_‘]’; n(a—t+7)+p(a—t+1,Njp(7))dt dpdll

¢ A
< f Ef Isp1(t,a —t +p) —spp(t,a —t +p)lda
0 0
- f n@a—t+1t)+up(a—t+1,Nu(t)) - (na—t+1)+ ua—t+ 1 Np(r)))dt|dadp

.\ M fA t

n 4 ), ,
t M A t

< f Ellsm = snalli=q) + Ubry f f pn(a —t + 7, Ny (1)) — pna — t + 7, Njp(1))dT
0 0 P

t M A t
< [ et -wall+ oy [ [ sl - waldvdody
0 0 4

NMA? i
4

dadp

st(<§+

)||uh1 — Uppl|

Now we also have the following. The calculations are almost identical to the calcula-
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tions used in Bg

Cs
t 1
L,

A
SLJ; y(t—a+pyrmt,t—a+p)—y(t—a+prtt—a+p))l

t—a+prt,t—a+p)+nt—a+p)o,tt—a+p)) X ¢~ J An(etmar e (tar Ny @) Et-arde| g g
4 p p)tn p p p

o i " Nont (T t=a+0)+ap (t—a+T, Ny (1) +E(t—a-+T)dT

dp

+ly(t —a+ p)rp(t,t —a+p)|

Yo J Ao (=4 D)+ (t=a+ T N (D) +E(E-a+T)dT o I " Mot (T =+ T)+ iy (t—a+T,Njp (1) +E (t—a+T)dT

o fpt Ao (TE=a+7)+up (t=a+7, Ny (1)) +E(t—a+1)dT

+ |t —a+p)ou(t,t —a+p)—nt—a+p)op(t,t—a+p))

dp

+ Nt —a+p)op(t,t—a+p)l

e I ' Aom (=4 D)y (t=a+ T Nj (O)+E(t-a+0)dT o 5 " N (Tt—=a+7)+ 1y (t—a+7,Njpp (1) +E(t—a+T)dT d

t~A
< )/f f lrm(t, t —a+p) —rp(t,t —a+ p)ldpda
0o Jo

t M A t
v f Y4 f f Ao (5 =+ 7) = Ayl £ =2 + )
0 4 0 14

+ lun(t —a + 7, Ni (7)) — pn(t — a + 7, Npo(7))ldtdpda

t A
+1 f f o1 (t, t —a +p) —op(t, t —a + p)ldpda
0o Jo

t M A t
+fn—f fIAvhl(T,t—aH)—Avhz(@t—a+f)|
0 4 0 4

+ |pun(t = a + 7, N (1)) — un(t — a + t, Nip(7))ldtdpda

< YHlrm = riallee@) + Ntllon — vnallie(Q)

(v + PDMA? C CMp?
+tL(Wp|lvl_02”+ 4mf ||uh1—uh2||+,llh1||uhl_uhZH)

4
+1n)MA? (C CMp?
<y + ptlann — wnal + 1L P (S i Y — sl
+ MMA? C + MMA?\ CMp?
= P ol + LN 0 i — il
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t 1
Ci= ‘ f f Ao (T, £ —a+p)s(t, t —a+p)e J ey (t=a+oNi (D) +3(t-a+)de
[ v 7 7
0 Jo

fpt C(t=a+1)+py(t=a+7,Npp (1)) +0(t—a+T1)dT )dpda

~ (Aaale,t = a+ plsiatt = a + ple

i

- (Avhz(’l’,t —a+psptt—-a+p

i

e fpt C(t—a+1)+pp(t=a+7,Np1 (7)) +6(t—a+7)dT

t
Aga(T,t—a+ P)Sm (tt—a+ p)e_ fp C(t=a+1)+uy (t=a+7,Nj1 (1)) +6(t—a+1)dt

Yoo i ! C(t—a+T)+yh(t—a+T,Nh2(T))+6(t—a+T)dT)

dpda

Aoi(T,t —a+p)sm(t,t —a+p) = Ayp(t,t —a+p)spp(t,t —a+ p)'

X

+ [Aon2(T,t — a + p)spa(t, t —a + p)|

o I ' C(t-a+ 1)+ (t-a+ T Nj (D) +0(t—a+T)dT - I " C(t-a+7)+ pp (t—a-+T, Ny (7)) +5(t—a-+7)d

X dpda

t A
< f f M (5, = 2+ P) = Auia(, £ —a + P)llsma(t, £ —a+p)
0 0

+Aan (Tt —a +pllsat,t —a+p) = sialt, t —a+p)l
CM?p
" 16m

—f Ct—a+1)+u(t—a+1,Npu(t) +06(t—a+1)
p

—(Ct—a+1)+ up(t —a+1,Npp(1)) + 6(t —a + 1))dt

dpda

t 2 A
MC CM CM
< fo Z;pnvl—vzw 4mf ||um—uhz||+4—nf fo st a = £+ p) = sia(t,a — £ + p)ldpda
LM
o Jo lém
'C

CM 2 CM t A CMZ
< fo Wpllw -0l + 4m§ [etn1 — upoll + p”Shl — SuallLedp + j; f) ﬁﬂum — Uplldpda

4m
t(CMpz . CMp s ACM?pm
4m? 4m 16m

dpda

f pn(@a =t + 7, N (1)) — pn(a — t + 7, Nip(7))d7
p

)||Mh1 = ||
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t
Cr = ‘ f f u Ct—a+p)intt—a+pe Jy yt=asts-are N @)t
0 Jo

— (C(t —a+p)ip(tt—a+p)e fptV(t_“”)“‘h“‘””’N”(T))dT)dpda

t A
j(: ]0‘
) —ﬂV(t—a+1)+#h(f—ll+T,th(T))dT)

—(C(t—a+p)ih2(t,t—u+pe

F—g+ p)lhl(t F—a+ P)e_ _ﬁ y(t=a+1)+py,(t—a+1,Np (1))dT

dpda

— fpt Y(t=a+1)+uy(t—a+7,Np1 (1))dT

t A
Sff IC(t —a+pimt,t—a+p)—Ct—a+p)plt,t—a+plle
0 Jo

e fpty(t—a+1)+yh(t—a+T,Nh1(T))dT e f; Y(t=a+1)+uy(t—a+7,Nyp(1))dt

+|C(t —a+p)i dpda

f f lini(t, t —a+p) —inp(t,t —a+p)lda
+ y 1 f yt—a+1)+u(t —a+1,Nu(t) — (Yt —a+ 1)+ uu(t —a+ 1, Nip(1)))dt
o M ([
< f Cllim = inallre @) + y— f
0 4 Jy
t M A t
< f Qs — all + 7 f f llins — wldedpda
0 4 0 14

MA?
S4C+y 4ym)

dpda

t
pn(t —a + 7, Nj (1)) — un(t —a + 7, Njp(1))dt
p

1001 — wpol|
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t
Cv= ‘ f f E(t—a+p)su(t,t—a+pe  ntt=aysisa-tee Nino)de
0 Jo

B (é(t o p)ShZ(t’t - p)e_ fpfn(t—a+f)+y,,(t—aﬂ,th(T))dT)dpda

¢
E(t —a+ P)Sm (t,t A+ p)e—fp n(t=a+7)+u,(a—t+1,Njy (1))dt

nt a+17)+ (= a+TN;,2(T))dT)

( (t—a+p)sptt—a+pe dpda

t A
gjo.ﬁ|£(t—a+p)sh1(t,t—a+p)—§(

e j;T](t—u+T)+yh(t—a+T,Nh1(T))d”[ e f; n(t—a+1)+py,(t—a+1,Npp(1))dT

—a+7)+y (E=a+7,Np (1))dT

+|E(t—a+p) dpda

f f Isp1(t, t—u+p)—sh2(t t—a+p)lda

+174 f (t—a+1)+uy(t—a+1,Nu(r) -t —a+ 1)+ uu(t —a+ 1, Np(1)))dt

A
Sf5||5h1—5hz||Lw(Q)+an
0 0
t M A t
< [ e —wall+ oy [ [ sl - waldvdpd
0 0 [4

NMA? L )
4

dpda

t
tn(t —a+ 1, Ny (7)) — un(t — a + 7, Nip(7))dt
p

401 — wpoll

st(£+
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We also compute the following,

Dg

:fot

A
f bh(a)nhl (t —a, a)dae_ joﬂ Aot (T t=a+7)+py (t=a+17,Npy (1) +E(t—a+1)dT
0

A
_ f bh (a)i’lhz(t —a, a)dae_ j(;a A2 (T t=a+7)+pp(f=a+7,Njp (1)) +E(f—a+1)dT dﬂ
0

e~ foa Ao (T t=a+7)+uy (t=a+7,Npy (1)) +E(t—a+T1)dT

t
Sbf [ (t — a,a) — nya(t — a,a)|
0

+ |Tlh2(t —a, a)l e~ foﬂ Ao (T t=a+7)+uy (t=a+7,Npy (7)) +E(t—a+T1)dT

—e foa Aoz (T t=a+7)+ iy (t—a+17,Njp (1)) +E(t—a+1)dT

da

t t
< bf ||t — upo||lda + Mf f Ami(T,t—a+7)+ up(t —a+ 7, N (1) + E(t —a + 1)
0 0o Jo
— (Aop(t,t—a+ 1)+ up(t —a+ 1, Nip(1)) + E(t —a + 1))dTda
b A
< thl|um — upol| +Mf f [Aoni (T, t —a+ 1) = Aga(T, t —a + 1)
0o Jo

+ [t — a + 7, Nin (7)) — pn(t — a + 7, Nja(7))|dadt

"t cp CMp?
< thllum — upell + M — o1 = ol + ——— Il — wpall + pallum — willdad
0 Jo m 4m

2

Cp CM
< thllum — upell + tMA(;HUl — ol + o et — upall + pim i — uh2||)

2

ACMp CMp
[[o1 — vo|| + t(tb + AM
4m?

=t + AM[JM)H”M — U]
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then we assume ¢ is sufficiently small such that 0 < t < A then

A

f \L1(Sn1, i1, i1, 91, Sot, To1) = La(Sn2, th2, Th2, On2, So, Luo)lda

b

Sf \L1(Sn1, in1, i1, Ona, Sot, Lor) — La(Sn2, in2, Tho, Un2, Svz, Loo)lda
tt

+f \L1(Sk1, tn1, 1, Ui, Sot, Lor) — Li(Sn2, tn2, ho, U2, Soz, Ip)lda
A

Sj; \L1(Sn1, in1, i1, Ona, Sot, Lor) — La(Sn2, in2, Th, Un2, Svz, Loo)lda

t
+ f |L1 (Shll Z'hl/ "n1, On1, SZJ]/ Ivl) - L] (ShZI ith Th2, On2, SUZ/ IvZ)lda
0
<As+ Bs+ Cs + Dg

< tKs([lum — upall + |lor — v2l])

where K is a constant. The last equality follows since all Ag, Bs, Cs, Ds all have bound

tK(|[tn1 — unal| + o1 = v2||) for some constant K as calculated above. Then similarly we have

A

f \L2(Sn1, i1, i1, On1, So1, Ton) — La(Sn2, ih2, Tha, Un2, Sz, Lu2)lda

P

Sf \L1(Sn1, in1, 'n1, On1, Sot, Lor) — Lo(Sh2, tn2, i, Un2, Svz, Lo)lda
tt

+f \L2(Sn1, i1, Tn1, On1, So1, To1) — La(Sn2, ih2, Tha, Un2, So2, Tu2)lda
A

Sfo \L2(Sn1, in1, i1, Ont, Sot, Lor) = Lo(Sn2, tn2, Tho, Un2, Svz, Lo)lda

t
+ f \L2(Sn1, i1, i1, Onts So1, Tot) — La(Sn2, in2, Tr2, U2, Soz, Lo2)lda
0
SA[+B1+C[+D1

< tKi([lum — wpall + o1 = va2ll)
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where K; is a constant.

A

f \L3(Sn1, i1, "n1, 91, Sot, To1) = La(Sn2, th2, Th2, On2, So, Lu)lda

"o

< f \L3(Sn1, in1, *n1, On1, Sot, Lor) — La(Sn2, tn2, Tho, Un2, Svz, Loo)lda
tt

+f \L3(Sk1, tn1, 1, Ui, Sot, Lor) = L3(Sn2, tn2, ha, U2, Soz, Ip)lda
A

< j; \L3(Sn1, in1, *n1, Ona, Sot, Lor) — La(Sn2, in2, w2, Un2, Svz, Loo)lda

t
+ f |L3(Sh1/ Z'hl/ "n1, On1, SZJ]/ Ivl) - L3(Sh21 ihZ/ Th2, On2, SUZ/ IvZ)lda
0
< AR +Bg+ Cgr+ Dy

< tKr(l[um = unal| + llo1 — v2l])

where Ky is a constant.

A

f \L4(Sn1, i1, i1, On1, Sot, To1) — La(Sn2, th2, Th2, Un2, So, Lu)lda

P

< f \La(Sn1, in1, i1, On1, Sot, Lor) — La(Sn2, tn2, Tho, Un2, Svz, Loo)lda
tt

+f \L4(Sn1, tn1, 1, 91, Sot, Lor) — La(Sn2, tn2, h2, U2, Soz, Ip)lda
A

< J; \La(Sn1, in1, i1, On1, Sot, Lor) — La(Sn2, in2, Tho, Un2, Svz, Loo)lda

t
+ f |L4(Sh1/ Z'hl/ T'n1,On1, Svll Ivl) - L4(Sh21 ih2/ Th2, On2, SUZ/ IUZ)lda
0
SAV+BV+CV+DV

< tKy([lun — upall + llor — v2l)

where Ky is a constant.
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Then we finish the other two components of L.

L5 (Sn1, in1, 1, On1, Swn, Lon) — Ls(Sn2, in2, 12, On2, Sozs L2l
t t
t t t t
— ‘SvOe_L A1 (T)+ plodT + f Ave_fr’ /\le(”f)"'.“vd"fdp _ (Svoe—fo Ao (T)+ podT + f Ave_fp Ahvz(T)‘*’#vdep)‘
0 0

t
t t t
< ”500””3_ fot A1 (T)+plodT _ e—fo Ahvz(1)+yvd1|| + Avf ”e—fp Mot (T)+odT _ e—fp Ahvz("f)ﬁuvd”f”dp

M t t t
< S [ A+ 11 = @)+ 07+ A [ | [ D)+ st = (0 + el
0 0 1p

M t t A
=§jﬁwM%Mmmﬁ+Mj:fMmm—MMﬂﬁ@
0 0 0

2 Cp 2
et — upall + tAA— |01 — 0ol | + t——
m 4m

MC
< t——p”Ul — 0ol +t [14n1 — o]l
8 m

4m?2

< tKsv(llum — wpnll + o1 — v2l])
where Kgy is a constant. and

||L6(Sh1/ ihl/ "1, Oni, Svll Ivl) - L6(Sh21 ih2/ Yh2, On2, SUZI IUZ)”

¢ . , t .
R R )
0 0

< I) |Anet (p) —

t 2 t t
MC CM CoM
< f __p”Ul — 0o + f 1 — upolldp + - f f [Anon (T) + o = (A2 (T) + po)ldTdp
4m am Jo Jp

CMp?
——||Ul — 0ol +

CoM (*
P it — walldp + —— Mon () = Apea(0)ldTdp
2 4dm
0 0
2

2

4m?

o~y M (@) +pode dr _ = fy M0t

dp +

dp

CpoMA (Cp
<My, o4 (Lo - ol +
m m

8 m 4m?2

[T n%—mw

< tKpy(llum — will + o1 — v2ll)

where Ky is a constant.

Thus L has Lipshitz properties.
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Chapter 12

Appendix D

We derive the results of several theorems for the optimal control results of our model. The

cost function is

T A
J(E) = fo fo [Bint,0) + CEx(t, a)sy(t, @) + DExta)’]

Given control &, let & = &nt el for some variation / and € > 0. Then the partial

differential equation corresponding to &, is

% - % = —(Auwn(t, @) + pn(a, Ny) + En(t, @)si(t, @) + yu(@)ru(t, a)
% + % = Aun(t, a)su(t, a) — (un(a, Ny) + ou(a) + Cu(a))in(t, a)
% " % = Cr(@)in(t, @) = (pn(a, Ni) + yu(@)rut, a)
% + % = &n(t, a)sy(t, a) — Cu(a)oy(t, a)

d;zj = Ay — ApoSo — oS

dl,

E = ApoSo — ‘U'ZJIU



The partial differential equations associated with 5; are

852 aSZ € €
=i 52 = ~Aat0) + (e, Np) + Ei(t, @)si(t,a) + @yt a)
dis  diy :
=1 * 2 = At 0si(t,0) = (i@, Nj) + 0u(a) + Cu(a))is(t, )
dry  ar; . . . c
=i+ 55 = G@is(t,0) = (i@, Np) + yu@)ri(t,a)
dv;  du; . . .
ot + E = éh(t/ ﬂ)Sh(t, ﬂ) - Ch(a)vh(t’ [1)
D A= A58~ St
dt — Ly ho“ v !“lv v
ﬁ = A7 S5 — Ul
gt~ e T Hel
Let
A A
Ju(b) = f p(@)in(t, a)da, Ty(t) = f pl@)ny(t, a)da
0 0
and
A A
IHOE f p(a)is (t, a)da, TE(t) = f pla)m(t, a)da
O O
and so
p(@)L(t) Ju(t)
A‘U t, = //\ 14 t) =
uw(t,a) Plﬁ To(D) no(£) pzﬁNh(t)
and

@D T
Avh(t’a) - Plﬁ TZ(t) ’Ahv(t) - pZIBNZ(t)

We introduce the following

S — 8y =1 =1y (I
.7 . h . n .

W, = lim , VWV, =lim——,¥, =lim ——,¥, = lim

e—0 € e—0 € e—0 € e—0 €
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and

. ; B Sv . IZ - Iv

O, = lim ,®; = lim

e—0 € e—0 €

Then we calculate the following preemptively
CXE (1 a)sE(t, @) + Au(t, a)si(t, @) = —plﬁp(a)( L e gy b® a))
. ’ T(®" Tu(t) ™"
_ I5(t) L) 10
= BTy — gt + e

L(t) L() L)

- T+ gt - Th(t)sha,a))

) E(8) () — L)
= @) e 5060~ .0) + =

L(H)(T;(t) — Tu(t))
T T Sh(t’“))

su(t,a)

If we divide by € and take the limit as € — 0 then

_/\eh(t a) h(t a) + Avh(t ﬂ)Sh(t ﬂ) _ Iv(t) ( )
‘Plﬁp(“’(n(t) D+ 7 gyt

L(H)sn(t, ﬂ)(fOA p@)(Ws(t, a) + Wilt,a) + \V,(t,a) + WV, (t, a))da)
Tu(t) )

€

e—0
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Similarly

¢ (1)SE _ i ®) e In(t)

NS (DSS) + AnolB)S () = —Pzﬁ(TZ S0 - 1 5.(0)
_ L@ . T JE(t)

= —Pzﬁ(T;(t) S(t) — %Sv(t) + %SU(t)
Ju(t) Jn(t) Jn(®)

- FES Ot RSO -1 Sv(t))

Ji () = Ju(t)

T
= pf( 7y 10 - Su) + s

Jn((T; () = T(®)
I OV0) S”(t))

So(t)

dividing by € and taking he limit as e — 0

A
— A5 (DSS(E) + Ao (B)So(t) T [ p@)¥i(t,a)da
= z B O R T
Tit) [ p@) (Wt a) + Pi(t, a) + P, (t,a) + W, (¢, a))da
- Th(t)z SU(t))

We also have

=&, (t, a)sy (t, a) + En(t, a)su(t, a) = =&} (L, a)(s,(t, @) = su(E, @) = su(t, ) (&}, (¢, a) — En(t, a))

We again divide by € and take the limit as e — 0.

__te€ g € g , t,
. (L a)sc(t a)€+ Enlt, Wsu(t, a) _ —EE(t, @)W, (t, a) — sy(t, a)l

e—0
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Also

ty(a, Ny (£) = pn(an (£) = (uno(@) + pm (@N(£) = (uno(a) + i (@)Nx (1))

= um(@)(N,(t) — Ny(t)))

We divide by € and take the limit as epsilon — 0.

€ € _ A
fin OO Zfen D) [ vt s wia+ w0+ .0
0

e—0 €
Thus we have

(s — (s —
(Shat ) + (Shat ) = —=A:, (t,a)s,(t,a) — Au(t, a)s(t, a) — &, (t, a)s, (t, a) + En(t, a)si(t, a)

+y(@)(r,(t,a) = ru(t, a)) + n(a)(©;,(t, a) — vx(t, a))

— pn(@, Nu(£)(s),(t, @) = su(t, a)) = 5,,(¢, a)(w,(a, N}, (1)) = pn(a,n (1))

9, =) | oli; —i)

-~ = = At st 0) + Aui(t, @)si(t,0)

— (un(a, Nu(t)) + on(a) + Cu(@))(@,,(t, @) — in(t, a))
— 1,(t, a)(uy,(a, N(t)) — pn(a, Np))

o(re — (e —
( hat 1) + (rhat ) = Cu(a) (@5 (t, a) — in(t, a)) — (un(a, Nu(8)) + y(@)(75(t, a) — ru(t, a))

— 1, (t, a)(u;(a, Ny(t)) — un(a, Ny))

(9(Uia; Un) n 8(02&; Up) = &, (t,a)sy(t, a) — Ex(t, a)su(t, a) — (un(a, Ni(t)) + ni(a))(v; (t, a) — vp(t, a))

— 0f (, a) (5, (a, Nu(t) — w(a, Nu(t)))

d(S5(t) — So(t)) L) oo Tn(®) .
o = _pzﬁ(T,j(t) Se(t) - m%(t)) — Lo(S5() = Su(h)

d(I5(t) — L(1) L® Ju(t) ¢
— 3 - Pzﬁ(msv(f) - msv(t)) = po(l(8) = L,(F))
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Then we divide each one by € and take the limit as e — 0.

V¥,
ot

IV,

ot

Vv, N
ot

v,

ot

8\11

ot

oV

~.

T

Vv,
ot

v,
ot

do
dt

[9)

do;

ar

L) (1)
pp(@) g Wt ) + it

L,(t)su(t, a)(f0 p(a)(Ws(t, a) + Wi(t,a) + WV.(t,a) + V,(t,a))da)
- Ty(t)? )

- cEh(tl a)\ys(tl a) - Sh(t/ (Z)l + y(a)‘{jr(t/ El) + n(a)\va(t, El)

A
- ‘Llh(a, Nh(t))\ys(t/ El) - Sh(tl a)‘uhl (a) f \I]s(t, El) + ‘I]i(t/ ll) + \I]r(tl a) + \I]U(t/ a)da
0

NI A0 0
= piBp@ 75 W) + - su(t )

L,(t)su(t, a)(f0 p(a)(\Ws(t,a) + Wi(t,a) + W.(t,a) + Vy(t,a))da)
B Th(t)? )

— (un(a, Nu(t)) + 6u(a) + Cu(a))Wilt, a)

A
it @) [ W) 4 Wi0,0) + 1 0,0) +
0

= Cu(@)Wi = (pn(a, Ni(t) + y(a))'V,

— ry(t, @)t (a) fo ’ W,(t,a) + Wi(t,a) + V,(t,a) + W, (t, a)da
= &ult, )Ws(t,a) = si(t, )l = (un(a, Ni(#)) + (@) Vo

— vy(t, a) i () fo ’ W,(t,a) + Vi(t,a) + V,(t,a) + W, (t,a)da

A
~ -pa( ) + h e (”T)f(/f’”)d”sv(t>
Tu(t) fo p@)(Wy(t,a) + W(t, a) + W, (t,a) + W,(t,a))da
Tu(t)?
t (@)Wi(t, a)da
B0 + ke s
]h(if)f0 p(a)(Ws(t,a) + Wit a) + W.(t,a) + WV, (t, a))da
Tu(t)?

5.(1) - 1D

Sv(t)) — U ®;




113

The initial conditions are
W,(0,a) =0,¥;(0,a) =0,V,(0,a) =0,V,(0,a) =0

@,(0) = 0,9;(0) =0

The boundary conditions are
A
‘ys(ti O) = f b(ﬂ)(\ys(t, El) + \I]i(tl ﬂ) + \I]r(t/ ﬂ) + \Pv(t/ ﬂ))dﬂ
0

Wi(t,0) = 0, W,(t,0) = 0, W,(t,0) = 0

Let o ) ]
v, —sp(t,a)l
W, 0
v, 0

u = ,f =

v, su(t,a)l
D 0
O, 0

Then we have that L(u) = [Ll(u) Lo(u) Ls(u) La(u) Ls(u) La(u)] = f where

oV, JY, S
Liw =52 +5] +P1§f”

p1BpLusy
_ m

D; + (

I,
plif &+ )W — Y, — P,

A A
f p(a) (Vs +W; + W, + W, )da + spm f WV, +W;+ W, + W, da
0 0



114

a\I/i 8‘1’1 Iz) S
Loy = S+ S - P e PP (46,4 W,
piBpLsy (4 . 4
+ 2 p(@)(Ws + W + W, + W, )da + ip V. +W,+ VW, +W,da
h 0 0
oV, Y, A
Ls(u) = T + e GWi + (un + vn)W, + i V. +VW,+VW, +W,da
0
oV, IV, A
L4(u) = ot + ot - gh\ys + ((Uh + T]h)\pv + Oplim \ys + \Ili + \yr + \yvda
0

So S
L5(u) = dq)s + (pZﬁ]h + [,lv)(Ds + pZﬁ f p\yidﬂ - le;];l
h 0

A
o T, T f p(W; + VW, + W, + W,)da
n 0

. S, (™ So
Loy = 220 PPl o, P2F f oWida + mﬁT]f
h 0

A
7 T, T 2 fo p(Ws + VW + W, +W,)da

Next we work on the adjoint, let

_pZ_
pi
Pr
Po
VE

K



115

Then we find adjoint L* such that
(v, L(w)) = (F'v, u)

Using integration by parts, if we set py(T,a) = 0

T A
ff IV, dadt:f Wopslida - ff 5y dadt
o Jo 9

f [W(T,a)ps(T,a) — ¥s(0,a)ps(0, a)lda —f f o \I’ dadt
T
49
- f ap OPS . dadt
0o Jo Ot
Likewise if we set ps(t,A) = 0,

f a;l psdadt = f Wpslidt — f f —\Ifd dt
o Jo

f [W,(t, A)ps(t, A) — Pi(t, 0)ps(t, 0)]dt — f f W dadt

f f \I’d dt — f f ps(t,0)b(a)(Vs + ¥V, + ¥, + WV, )dadt

Likewise by if we set pi(T,a) = 0, pi(t,A) = 0,p,(T,a) = 0,p,(t, A) = 0,p,(T,a) = 0,p,(t, A) =




0,9s(T) = 0,4:T)

0,
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Thus we have that
8\11 S v
. A 7
PlﬁP oSh

f pa)(Ws +V¥; + WV, +\If)da+shyh1f WV, +V;+ V¥, +W da}psdadt

0

f 8\1/ 8\1/ Pl,Bva _ P1Ppsn
Tn ¥ Tn

@; + (uy + O + G,

Plﬁp”f p(@)(V, + W, + W, +\I’)da+zh[4h1f W+ W, + W, + W da}pzdadt
f f (% = G+ (un + )Y, +rhyh1f V. +V, +V, +W da}prdadt
f f — & + (L + i)Yo +vhyh1f V. +W;+VV,+W da}pvdadt

i o o

S, (™
B Pzﬁff f p(Vs+ W, + W, + ‘I’v)da}qsdt
Th 0
. A
dd;  p2pn , P2PSo f .
+f { dt Ty, Bt o Tw  Jo pida
Pzﬁ]hs

12 f p(W;+ WV, + W, + \I/v)da}qidt
0
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t0)b@)(V;+ V¥, +V, + V,)

wLw»—j‘j‘ 8%

N {mﬁpsh (mﬁp v

D; +
T, ' T,

+ éh + (Uh)\ys - V‘I’r - n\yv

Plﬁpvhf p@)(V, + W, + W, +\yv)da+shyh1f Y, + W, + W, +\Ifda}psdadt

a i Op; Ly
ff p p +{_p1§’p ‘I’s—pll;grphq’i’“(#hwh“:h)\yf
h h

plﬁjf;v h f p@)(Vs + V¥, + W, + W,)da + zhyhlf V. +W;+VW, +VW da}pzdadt
0

(9, 8,
ff p P \If+{ G + (un + yn)Y, +rhyh1f\11+\11+\11 +\dea}prdadt

T
qs pzﬁfh p2BSs
¥ f | T, oo+ T, f pda

av av
p oPe \1/+{ EV, + (up + )W, +vhp,ﬂf\y+\y L, +\Pda}pvdadt

S, M
_ Pzﬁ:,{ ;‘ f p(W, + W, + W, + ‘I’v)dﬂ}ﬂlsdt
0
T d ;
+f q®+&mM@ iJW f pW,da
o dt Ty
Pzﬁ]hs

= f o(W, + W, + W, + \I/v)da}q,-dt
0
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Then we rearrange to get

F: v I, s
@ L) = f f P ) it 0@ + PP 1 6 4 g @ O plﬁ,ﬁz” .

A A
f shumpsda—p ﬁ,ﬁh pi+ p(a) f i vpld + f Intmpida + f Thlmprda
0 0 0

A
f 'Uh[Jhlpz;da Eth - Pzﬁ]{: qus + Pz,BT[{: qui}‘llsdadt

a 1 oenf’s A
f f P ) ps(t,0)b(a) — p(a)f plﬁp—]pda+f Shmpsda
h 0
Lsp: A A
+ (un + On + Cy) pl+p(a)f plﬁp—hpdpwf zhyhlpida+f rnimprda
0 0

A
PZﬁ v pZﬁSv pZ,BIth pZ,BIth
f Uplmpoda — Cupr + T, pqs — T, Pqi — T2 p4s + T2 pqi}‘lfidadt

f f 2 )t 0@ - s - P(”)f M‘mfswp “

T
Lsp; 4 A A

+ p(a) plﬁf;—zhpda+£ zhyhlpida+‘fO rhyhlprda+f0 Up U poda
h

0
p2B1So p2BJ1So
TZ pqs + — = pqi}\lfrdadt
h

8 v L,Sps A
f f p ) py(t, 0)b(a) — 1ps — p(a) f plﬁp—h’?dﬁ f Sultmpsda
0

Ls)p; 4 A A
+ p(a) i plﬁf;—zhpda+f(; zhyhlpida+f0 rh[uhlprda+j; Unmpoda

pZﬁ]th Pzﬁ]hsv
Pgs + — T2

+ (U + yn)pr —

+ (un + Mw)po — pqi}‘l’vdadt

h h

T dgs (P2l 2B
+f0{ dat +( Ty +uv)qs Th q}q)dt

T d ;
+f q f P1ﬁpsh plﬁp hpZ + yquda}q) At
0
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We rearrange this

(v, L(u))
8 s 8 s I,
f f p p plif (ps — pi) + unps + En(ps — po)
L (M
B pZﬁTIS pqs = qi) = p(a);jzl ’ ; su(t, b)p(b)(ps(t, b) — pi(t.b))db — ps(t, 0)b(a)
h h

A
+ f 1 (b)(su(t, b)ps(t, b)da + iy (t, b)pi(t, b)da + r,(t, b)p,(t, b)da + vy(t, b)p,(t, b))db}‘l’sdadt

(9 j
f f ;9 + (un + on)pi + Cu(pi — py) + P ﬁ “p(@s — q:)

_ Pzﬁ]h . p(@)p1Bl,
T T Jo

p(gs —q:) — Sh(t, b)p(b)(ps(t, b) — pi(t.b))db — ps(t, 0)b(a)

A
+ f i (0)(su(t, b)ps(t, b)da + iy(t, b)pi(t, b)da + r(t, bYp,(t, b)da + on(t, DYpo(t, b))db}\lfidadt

8 ,
f f p +thr+7/h(pr ps)

BBDSe ey P pE)pte, ) - piEB)AD — pett, O
T7 T 0

A
+ f um (b)(su(t, b)ps(t, byda + i,(t, b)pi(t, byda + ri(t, b)p,(t, b)da + v(t, b)p.(t, b))db}\lfrdadt

Iy
ff —i+— +uhr)v+nh(p = Ps)

P g, gy - PO St DO ) p N s O
h h 0

A
+ f um (b)(su(t, b)ps(t, byda + i,(t, b)pi(t, byda + ri(t, b)p,(t, b)da + vy(t, b)p.(t, b))db}‘l’vdadt

T d .
. f (904 g+ pabilh o _ e
0 h

T dg; 4 p1Bpsn
+ j; { T + Uogi + T, (ps — pi)dﬂ}q)idt




Then the adjoint PDE is

L'(v) =

Integrand of J(&)

ox

rcg—
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We have the adjoint equations

dps  9ps _ p1ppl
5 T o = T, (ps — pi) + tnps + En(ps — po)

_paPISe - p@pipl, [
72 p(qs — 4i) I i

su(t, b)p(b)(ps(t, b) — pi(t.b))db — ps(t, 0)b(a)

A
+ f i (b)(su(t, D)ps(t, b)da + in(t, b)pi(t, bda + ru(t, D)p,(t, b)da + vn(t, b)p,(t, b))db
0

- C&,
opi  Ip; So
a_r; + a_pt = (un + on)pi + Cu(pi — pr) + Pzﬁh s — i)
Sy L
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with initial conditions
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ps(T/a) = Pz‘(T/ﬂ) = Pr(T,ﬂ) = py(T,ﬂ) =0

and boundary conditions

qs(T) = q(T) =0

ps(t,A) = Pi(t,A) = pr(t,A) = pv(t,A) =0

Then for the optimality condition

0<

li

- J(&, +eh) - (&)

e—0 €

K BiE + (&, + eDsg + D(E;, + el)?] = [Biy + CE;sy, + D(&;)dadt

€

T A
= f f [BY; + C& W + Csyl + D& l]dadt
0 0

T A
= (1, L'(0)) + f f (Csyl + D& Ildadt
0 0

T A
= (L(u),0) + f f [Csyl + DE; []dadt
0 0

—Shl

T ~A|
LT,

.pi

Shl

Ps

pr

»Pv_

10| (g T A
dadt + f A7+ f f [Csyl + D& I]dadt
0 0 qi 0 0

T A
= f f [(=sups + posy + Csy, + D&} )dadt
0 Jo
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Thus the optimality condition is

(s = po — O)s
D

)

&, = max(0,



Chapter 13

Appendix E: Code
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function OptimalControl ()
clc;
clear;

close all;

%%Find Equillibrium of state
%Range

af=90;

tf=1;

deltat = 1/52;

%Boundary Conditions
function y=sh@(a)
y=1500000-(1500000/90) *a;

end

function y=ih0(a)
%y=.2-(.2/90)*a;
y=0;

end



function y=rh0(a)
y=0;

end

function y=vh0(a)
y=0;

end

%Initial vacination rate matrix
N=floor(tf/deltat);
M=floor(af/deltat);

apartition = 0:deltat:af;

tpartition = 0:deltat:tf;

%% Get equillibrium
%{

xih=0%ones (M+1,N+1);

shO@mat = arrayfun(@sh®,apartition);
ihOmat = arrayfun(@ih®,apartition);
rhOmat = arrayfun(@rh®,apartition);
Sv0=10000;

Iv0=1000;%1000

vhOmat = arrayfun(@vh0,apartition);
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tic
[sh,ih,rh,vh,State,tpartition,apartition,Th,Iph]=ImplicitState(...
sh@mat,ih®mat,rhOmat,vhOmat,Sv0,Iv0,xih,tf,deltat,af);

toc

figure(l)

plot(apartition,sh(:,end))

figure(2)

plot(apartition,ih(:,end))

sheq=sh(:,end);
iheg=ih(:,end);
rheq=rh(:,end);
vheg=vh(:,end);
Sveq=State(6,end);

Iveqg=State(7,end);

%save(’StateEquillibrium’, ’sheq’,’iheq’, ’rheq’,’vheq’,’Sveq’,’Iveq’);

%%

%% Run optimization loop%{

S=load(’StateEquillibrium.mat’);

B=100;%try these



shOmat = S
ihOmat = S
rhOmat = S.
vhOmat = S.
Sv0=S.Sveq;
Iv0=S.1Iveq;
%initialize

xihold=0%*ones (M+1,N+1);

xihnew=0*ones (M+1,N+1);

z=0;

while z<100

tic

[sh,ih,rh,vh,State,tpartition,apartition,Th,Iph]=ImplicitState(...

shOmat,ih®mat,rhOmat,vhOmat,Sv0,Iv0,xihnew,tf,deltat,af);

toc

tic

[pas,pai,par,pav,q,tpartition,apartition]=ImplicitAdjoint(...

sh,ih,rh,vh,State,tf,deltat,af,xihnew,B,C,Th,Iph);

toc

z=z+1

.sheq;

.iheq;

rheq;

vheq;

xih
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xihold=xihnew;

xihnew

xihnew = min(30*ones(M+1,N+1),xihnew);

xihnew (.5)*xihnew+(.5)*xihold;
norm(xihnew-xihold, 2)

if norm(xihnew-xihold, 2)<10" (-4)
break;

end

end

figure(l)
mesh(tpartition,apartition,xihnew)
ylabel (’Age’)

xlabel (’Time’)

title(’Vaccination Rates’)

%}

%% Generate plots
%{
S=load(’StateEquillibrium.mat’);

T=load(’OptimizedResult’);

max(zeros(M+1,N+1), ((pas-pav-C).*sh)/D);
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figure(l)
mesh(T.tpartition,T.apartition,T.xihnew)

ylabel (’Age’)

xlabel(’Time’)

title(’Vaccination Rates’)

colorbar

figure(2)

plot(apartition,T.sh(:,end))

xlabel (’Age’)

ylabel (’Density’)

title(’Susceptible Population Age Profile at t=1")
figure(3)

plot(apartition,T.ih(:,end))

xlabel(’Age’)

ylabel (’Density’)

title(’Infected Population Age Profile at t=1")
figure(4)

plot(apartition,T.vh(:,end))

xlabel (’Age’)

ylabel (’Density’)

title(’Vaccinated Population Age Profile at t=1’)
figure(5)

plot(tpartition,T.State(1,:))

xlabel(’Time’)

ylabel (’Population Count’)

title(’Susceptible Human Population over Time’)
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figure(6)

plot(tpartition,T.State(2,:))

xlabel(’Time’)

ylabel (’Population Count’)

title(’Infected Human Population over Time’)
figure(7)

plot(tpartition,T.State(4,:))

xlabel('Time’)

ylabel (’Population Count’)

title(’Vaccinated Human Population over Time’)
figure(8)

plot(tpartition,T.State(6,:))

xlabel ('Time’)

ylabel (’Population Count’)

title(’Susceptible Vector Population over Time’)
figure(9)

plot(tpartition,T.State(7,:))

xlabel (’Time’)

ylabel (’Population Count’)

title(’Infected Vector Population over Time’)

%3

function y=muh0(x)

Q
1]

0.09959;

o
11

0.6776;
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c = 0.1277;

d = -0.09171;

e = 66.78;

f = -0.0006743;
g = 0.05859;

if a==90

y=0;

else

y=a*exp(-b*x)+c*exp(-d*(x-e)-exp(£*(x-e)))+(g/(90-x));

end

end

function y=muhl(a)
%y=.0000000001;
y=0.00000000016;

end

function y=muh(a,Nh)
y=muh0 (a)+muhl(a)*Nh;

end

%% Birth Rates
function y=bh(x)

a = 0.0001218;
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b = 0.3022;
c = 78.38;
d = 0.04006;

out= a*exp(-b*(x-c)-exp(-d*(x-c)));
y=out;
y=out*0.449569941624713;

end

%% liklihood of bite by age

%Probability function for contact
%Logistic Shape

function y=p(a)

y = ((1/(1+exp(-(a-4)))))-((1/(1+exp(4))));

end

%Skewed gaussian
% function y = p(x)
% y=2*(1/sqrt((400*pi)) *exp(-(x-10).72/400)) *normcdf(4* (x-10) /sqrt (200));

% end

% %Uniform
% function y=p(a)
% y=1/60;

% end

function y= deltah(a)
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y=.006444/(1+exp(2*a-14));

end

%% Implicit Methods

function [sh,ih,rh,vh,State,tpartition,apartition,Th,Iph]=ImplicitState(...

shO@mat,ihOmat,rhOmat,vhOmat,Sv®,Iv0,xih,tf,deltat,af)

%Evaluates the system of pdes using implicit forward difference

%Inputs: boundary conditions as functions, vaccination rate xih, maximum age and
time

%af,tf anf step size deltat

%Output: Soultion to pde system from initial values

%%%%%Things to check, are boundary conditions row or column vectors. Does

%%%%%deltat match row length

%Constants
Lambdav=10"(12);
% plbeta=9;

% p2beta=.8;
pl=.0246575;
p2=.00219178;
beta=365;
plbeta=pl*beta;
p2beta=p2*beta;
gammah=2;

etah=1/4;%younger recover faster
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zetah=1;

muv=365/21;

%Number intervals for each variable, should be an integer
N=floor(tf/deltat);

M=floor(af/deltat);

tpartition = 0:deltat:tf;

apartition = 0:deltat:af;

%Initialize age in first index, time in second index

sh = zeros(M+1,N+1);
ih = zeros(M+1,N+1);
rh = zeros(M+1,N+1);
vh = zeros(M+1,N+1);

State=zeros(7,N+1) ;%Sh,Th,Rh,Vh,Nh,Sv,Iv in that order
Th=zeros(1,N+1);

Iph=zeros(1,N+1);

%Set boundary points into initialized matrices

sh(:,1) = shOmat;
ih(:,1) = ihOmat;
rh(:,1) = rhOmat;
vh(:,1) = vhOmat;
State(6,1) = SvO;

State(7,1) = IvO;
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%Matrix used later for Vector equations

bv=[Lambdav;0];

%Run thru time variable
for j=1:N
%Current time

t=deltat*(j-1);

%compute Sh,Th,Rh,Vh etc with trapezoid method

%also compute the denominator and numerator of force of infection
%endpoints

State(l,j)=(deltat/2)*(sh(1,j)+shM+1,3j));
State(2,j)=(deltat/2)*(ih(1, j)+ih(+1,3));
State(3,j)=(deltat/2)*(rh(1, j)+rh(M+1,j));
State(4,j)=(deltat/2)*(vh(1l, j)+vh(+1,3));
J=(deltat/2)*(p(®) *ih(1, j)+p(af) *ih (M+1,3));
K=(deltat/2)*(p(®) *(sh(1,j)+ih(1,j)+rh(1, j)+vh(1,j))...
+paf) *(shM+1, jD+ihMM+1, j)+rh M+1, j)+vhM+1,3)));
%middle points

for i=2:M

State(l,j)=State(1,j)+deltat*sh(i,j);
State(2,j)=State(2,j)+deltat*ih(i,j);
State(3,j)=State(3,j)+deltat*rh(i,j);
State(4,j)=State(4, j)+deltat*vh(i,j);
J=J+p(deltat*(i-1))*ih(i,j);

K=K+p(deltat*(i-1))*(sh(i,j)+ih(i, j)+rh(i,j)+vh(i,j));
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end
State(5,j) = State(l,j)+State(2,j)+State(3,j)+State(4,j);
Th(j)=K;

Iph(j) = J;

%compute explicit lambda for steps

lambdahv=p2beta*]/K;

%matrix for vector

Av = [-(lambdahv+muv) 0;lambdahv -muv];

%Solve Vector for time j+1 Euler

State(6:7,j+1) = (eye(2)-deltat*Av)\(State(6:7,j)+deltat*bv);

%run thorough age variable
for i=1:M-1

%current age

a=deltat*(i);
mu=muh(a,State(5,3));

lambdavh=plbeta*State(7,j)*p(a)/K;

%Construct matrix

A = [-(lambdavh+mu+xih(i+1,j+1)) 0 gammah etah;
lambdavh -(mu+deltah(a)+zetah) 0O 0;

0 zetah -(mu+gammah) 0;

xih(i+1,j+1) 0 0 -(mu+etah)];
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%Compute time j+1 step for human densities¥%need to make all var age
%time dep

i;

newsol=(eye(4)-deltat*A)\[sh(i,j);ih(i,j);rh(i,j);vh(,i)];

sh(i+l,j+1) newsol(1);

ih(i+1,j+1) = newsol(2);
rh(i+1,j+1) = newsol(3);

vh(i+l, j+1) = newsol(4);

end

sh(M+1,j+1) = 0;
ih(M+1, j+1) = 0;
rh(M+1,j+1) = 0;
vh(M+1, j+1) = 0;

%Compute susceptible at age O(newborn density) using trapezoid

sh(1, j+1)=(deltat/2)*bh(M*deltat) *(sh(M+1, j+1)+ih (M+1, j+1)+rh (M+1, j+1)+vh(M+1, j+1));
for i=2:NM

%age at step i

a=deltat*(i-1);

%trapezoid

sh(1,j+1)=sh(1, j+1)+(deltat)*bh(a)*(sh(i, j+1)+ih(i, j+1)+rh(i, j+1)+vh(i, j+1));

end

end

%compute Ih,Nh at last step for time(N+1) using trapezoid



State(1,N+1)=(deltat/2)*(sh(1,N+1)+sh(M+1,N+1));
State(2,N+1)=(deltat/2)*(ih(1,N+1)+ih (M+1,N+1));
State(3,N+1)=(deltat/2)*(rh(1,N+1)+rh(M+1,N+1));

State(4,N+1)=(deltat/2)*(vh(1,N+1)+vh(M+1,N+1));

J=(deltat/2)*(p(®)*ih(1,j)+p(af)*ih(M+1,3j));
K=(deltat/2)*(p(®)*(sh(1,N+1)+ih(1,N+1)+rh(1,N+1)+vh(1,N+1))...

+p(af)*(shM+1,N+1)+ih (M+1,N+1)+rh(M+1,N+1)+vh(M+1,N+1)));

%middle points

for i=2:M

State(1,N+1)=State(1,N+1)+deltat*sh(i,N+1);
State(2,N+1)=State(2,N+1)+deltat*ih(i,N+1);
State(3,N+1)=State(3,N+1)+deltat*rh(i,N+1);
State(4,N+1)=State(4,N+1)+deltat*vh(i,N+1);
J=J+p(deltat*(i-1))*ih(i,N+1);
K=K+p(deltat*(i-1))*(sh(i,N+1)+ih(i,N+1)+rh(i,N+1)+vh(i,N+1));
end

State(5,N+1) = State(1,N+1)+State(2,N+1)+State(3,N+1)+State(4,N+1);
Th(N+1)=K;

Iph(N+1) = J;

end

function [pas,pai,par,pav,q,tpartition,apartition]=ImplicitAdjoint(...

sh,ih,rh,vh,State,tf,deltat,af,xih,B,C,Th, Iph)

%The Adjoint part, solves backwards
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%Constants
Lambdav=10"(12);
% plbeta=9;

% p2beta=.8;
p1=.0246575;
p2=.00219178;
beta=365;
plbeta=pl*beta;
p2beta=p2*beta;
gammah=2;
etah=1/4;%younger recover faster
zetah=1;

muv=365/21;

%Number intervals for each variable, should be an integer

N=floor(tf/deltat);
M=floor(af/deltat);
tpartition = 0:deltat:tf;

apartition = 0:deltat:af;

%Initialize, initial values for most of these are 0

pas = zeros(M+1,N+1);
pai = zeros(M+1,N+1);
par = zeros(M+1,N+1);

pav = zeros(M+1,N+1);
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g=zeros(2,N+1);%qs and qi

Intgl = zeros(1l,N+1);
Intg2 = zeros(1l,N+1);
Intg3 = zeros(l,N+1);

%Boundary values
%A1l boundary values are 0
%run through time backwards

for j=N:-1:1

%Trapezoid Rule on integral found in qi, as well as P_is

Intgl(j+1) = (deltat/2)*(sh(l,j+1)*p(®)*(pas(l,j+1)-pai(l,j+1))
+shM+1, j+1) *p(af) *(pas(M+1, j+1)-pai (M+1,j+1)));

Intg2(j+1) = (deltat/2)*(muhl(®)*(sh(l,j+1)*pas(l,j+1)+ih(1,j+1)*pai(l,j+1)
+rh(1, j+1D)*par(l, j+1)+vh(l, j+1)*pav(l,j+1)) ...

+muhl(af) *(sh(M+1, j+1) *pas(M+1, j+1)+ih(M+1, j+1) *pai (M+1, j+1)

+rh(M+1, j+1) *par(M+1, j+ 1D +vh(M+1, j+1) *pav(M+1, j+1)));

Intg3(j+1) = (deltat/2)*(p(®)*sh(l,j+1)*(pas(l,j+1)-pai(l,j+1))/Th(j));
for i=2:M
Intgl(j+1) = Intgl(j+1l)+deltat*sh(l, j+1)*p(deltat*(i-1))...

*(pas(di,j+1)-pai(i,j+1));
Intg2(j+1) = Intg2(j+1)+deltat*(muhl(deltat*(i-1))*...
(sh(i,j+1)*pas(i,j+1)+ih(i, j+1)*pai(i,j+1)...

+rh(i, j+1)*par(i, j+1)+vh(i, j+1)*pav(i, j+1)));
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Intg3(j+1) =
Intg3(j+1)+deltat*(p(deltat*(i-1))*sh(i,j+1)*(pas(i,j+1)-pai(i,j+1))/Th(j));

end

%matrix for q
Avimp=[p2beta*Iph(j)/Th(j)+muv -p2beta*Iph(j)/Th(j);0 muv];

bvimp=[0;plbeta*Intg3(j+1)];

%Euler

q(:,jd)=Ceye(2)+deltat*Avimp)\(q(:, j+1)-deltat*bvimp);

%loop for age
for i=1:M
%age value for loop

aimp=(i-1)*deltat;

%Compute the H

lambdavhimp = plbeta*p(aimp)*State(7,3j)/Th(j);

Aimp=[lambdavhimp+muh(aimp,State(5,j))+xih(i,j) -lambdavhimp 0 -xih(i,j);
0 muh(aimp,State(5,j))+deltah(aimp)+zetah -zetah 0;

-gammah O muh(aimp,State(5,j))+gammah 0;

-etah 0 0 muh(aimp,State(5,j))+etah];
bimp=(p2beta*State(6,j)*Iph(j)*p(aimp)/(Th(j)"2))*[-1 1;-1 1;-1 1;-1 1]...

+(p2beta*State(6,j)*p(aimp) /Th(j))*[0 0;1 -1;0 0;0 0];
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cimp =

(Intg2(j+1)-(p(aimp)*lambdavhimp*Intgl(j+1)/Th(j)))*[1;1;1;1]-[C*xih(i,j);B;0;0];

%Compute

sol=(eye(4)+deltat*Aimp)\([pas(i+1l,j+1);pai(i+l, j+1);
par(i+l,j+1);pav(i+l, j+1)]-deltat*(bimp*q(:,j)+cimp));

pas(i,j)=sol(1);

pai(i,j)=so0l(2);

par(i,j)=sol(3);

pav(i,j)=sol(4);

end

end

end
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