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ABSTRACT 

 

Landslides are ubiquitous and cause thousands of deaths and injuries each year. Achieving a 

better understanding of landslide stability and governing processes requires good knowledge of 

ground surface displacements but acquiring this information is challenging. Three dimensional 

point-cloud data from terrestrial laser scanning (TLS) show potential for obtaining ground 

displacements accurately. Problems arise, however, when estimating continuous displacement 

fields from TLS data because reflecting points from sequential scans of moving ground are non-

unique, thus repeat TLS surveys typically do not track individual reflectors. In this dissertation, 

the cross-correlation-based Particle Image Velocimetry (PIV) method is implemented to derive 

3D surface deformation fields using TLS point-cloud data. Associated errors are estimated and 

the method’s performance is tested with synthetic displacements applied to a TLS dataset. The 

method is applied to the toe of the episodically active Cleveland Corral landslide in northern 

California using six different TLS scans acquired between June 2005 and April 2012. Estimated 

displacements agree well with independent measurements at better than 9% root mean squared 

(RMS) error and permit further analysis to infer the subsurface deformation characteristics of the 

landslide. The hypothesis that the depth and orientation of the buried slip surface and the 

subsurface slip rate can be estimated using the surface displacement field is tested. To estimate 

slip depth and slip rate of the slide, a 2D balanced cross-section (BC) method commonly applied 

to landslides and an elastic dislocation (ED) model widely applied to study geologic faults are 

performed. The BC method provides slip-surface depth; the ED model determines the slip-

surface depth as well as orientation and slip magnitude. The estimated slip-surface depths using 

both methods agree with direct measurements of depth. This indicates that these two approaches 

may offer more efficient and less costly remote means of inferring landslide geometry and slip 

behavior. The PIV method is also compared with the iterative closest point method and the 

efficacy of using these two methods to estimate 3D displacement fields using TLS data are 

discussed. The estimated surface displacement and the inferred subsurface deformation enable 

assessment of the hazards posed by large, slow-moving landslides. 



TABLE OF CONTENTS 

 

List of Tables  

List of Figures  

Preface  

 

CHAPTER ONE 

 

DISPLACEMENT FIELDS FROM POINT CLOUD DATA: APPLICATION OF PARTICLE 

IMAGING VELOCIMETRY TO LANDSLIDE GEODESY ........................................................ 1 

ABSTRACT .................................................................................................................................... 2 

1.1 Introduction ...................................................................................................................... 3 

1.2 Terrestrial Laser Scanning ............................................................................................... 5 

1.3 Particle Imaging Velocimetry .......................................................................................... 7 

1.4 Synthetic Examples ........................................................................................................ 12 

1.5 Application: Cleveland Corral Landslide ....................................................................... 13 

1.5.1 June 2005 - January 2007 ....................................................................................... 16 

1.5.2 January - May 2010 ................................................................................................ 22 

1.5.3 Validation ................................................................................................................ 24 

1.6 Discussion ...................................................................................................................... 28 

1.7 Conclusion ...................................................................................................................... 32 

References ..................................................................................................................................... 34 

 

 

CHAPTER TWO 

 

LANDSLIDE SUBSURFACE SLIP CHARACTER INFERRED FROM SURFACE 

DISPLACEMENT FIELDS.......................................................................................................... 39 

ABSTRACT .................................................................................................................................. 40 

2.1 Introduction .................................................................................................................... 41 

2.2 Methods for Inferring Subsurface Slip ........................................................................... 44 



2.2.1 Balanced cross-section (BC) ................................................................................... 44 

2.2.2 Dislocation in an Elastic Half-Space ...................................................................... 44 

2.3 The Cleveland Corral landslide ...................................................................................... 46 

2.4 3D Displacement Field ................................................................................................... 47 

2.5 Subsurface Inference Results ......................................................................................... 49 

2.5.1 Balanced Cross-section ........................................................................................... 49 

2.5.2 Elastic Dislocation .................................................................................................. 50 

2.6 Discussion ...................................................................................................................... 51 

References ..................................................................................................................................... 55 

Appendix ....................................................................................................................................... 57 

 

  

CHAPTER THREE 

 

DETERMINING GROUND DISPLACEMENT FIELDS OF SMALL SPATIAL EXTENT 

USING TERRESTRIAL LASER SCANNER DATA: A COMPARISON OF 3D METHODS 

APPLIED TO LANDSLIDE MONITORING.............................................................................. 61 

3.1 Introduction .................................................................................................................... 62 

3.2 Displacement Estimation Methods................................................................................. 64 

3.2.1 Particle Image Velocimetry .................................................................................... 64 

3.2.2 Iterative Closest Point ............................................................................................. 67 

3.2.3 Synthetic Tests ........................................................................................................ 69 

3.3 Results from the Cleveland Corral Landslide ................................................................ 71 

3.3.1 Displacement time series ........................................................................................ 74 

3.3.2 Pattern of surface deformation ................................................................................ 74 

3.4 Discussion ...................................................................................................................... 78 

3.5 Conclusion ...................................................................................................................... 82 

References ..................................................................................................................................... 84 

 

 

  



List of Figures  

 

CHAPTER I 

Figure 1.1. Illustration of velocity estimation based on cross-correlation.  

Figure 1.2. An illustration of the PIV method applied to synthetically produced point cloud data.  

Figure 1.3. a) Location of the Cleveland Corral Landslide. 

Figure 1.4.  TLS point cloud data and area of interest for PIV analysis.   

Figure 1.5. PIV estimation of synthetic displacement applied to the June 2005 point cloud data.  

Figure 1.6. PIV estimated total displacement field of CCL between June 2005 and January 2007.   

Figure 1.7.  PIV estimation of a synthetic signal applied to January 2010 point cloud data.  

Figure 1.8. PIV estimated total displacement field of CCL between January 2010 and May 2010.   

Figure 1.9. Comparison of PIV-computed displacement (magnitude) of CCL with GPS 

measurement. 

Figure 1.10. Displacement profiles.  

 

CHAPTER II 

Figure 2.1. Sketch of the two models used to infer landslide subsurface slip geometry.  

Figure 2.2. Displacement fields for an active part of the Cleveland Corral landslide obtained for 

two time periods using repeat TLS scans and PIV.   

Figure 2.3. Estimated slip-surface depth using the balanced cross-section (BC) method.  

Figure 2.4. Marginal probability distribution for three dislocation slip parameters.  

 

CHAPTER III 

Figure 3.1. Movement rate and spatial extent of the most common geologic features.  

Figure 3.2. TLS point cloud data of a stationary building from two temporally different 

acquisitions. 

Figure 3.3. Location of the study area and data acquisition.  

Figure 3.4. Conceptual sketch showing components of landslide displacement at surface of the 

sliding block.  

Figure 3.5. Sketch showing the point-to-plane distance matching in ICP.  

Figure  3.6. Synthetic signals and residuals using PIV.   

Figure 3.7. RMSE of ICP estimation of the synthetic signal applied to a TLS data using different 

window sizes.  



Figure 3.8. Synthetic signals and residuals using ICP. 

 Figure 3.9. ICP and PIV estimated displacements (Jan-May-Jun 2010).   

Figure 3.10. ICP and PIV estimated displacements (2010-2014).  

Figure 3.11. Comparison of PIV and ICP displacements with observations.  

Figure 3.12. Strain maps.  

 

 

 

 

 

  



List of Tables 

 

Table 3.1 Average misfit of the PIV and ICP estimation with different window sizes for a 

synthetic signal applied to Jan 2010 TLS data and Jan-Jun 2010 TLS data. 

 

 

  



PREFACE 

This dissertation has three chapters, each of which focuses on a separate aspect of estimating 

landslide surface deformation using terrestrial laser scanner (TLS) data and its applications.  

Landslides are ubiquitous and cause thousands of deaths and injuries each year. Understanding 

of landslide stability and governing processes requires good knowledge of ground surface 

displacements but acquiring this is challenging. The first chapter of this dissertation presents a 

method to estimate landslide surface displacement using TLS data from the slow-moving 

Cleveland Corral landslide (CCL) in California. A version of the chapter one has been published 

as Aryal, A., Brooks, B.A., Reid, M.E., Bawden, G.W., and Pawlak, G.R., 2012, Displacement 

fields from point cloud data: Application of particle imaging velocimetry to landslide geodesy: 

Journal of Geophysical Research-Earth Surface, v. 117, p. 15. This paper was also featured in 

the American Geophysical Union research spotlight selected by the editors. Ben Brooks, Mark 

Reid and Gerald Bawden collected TLS data and Geno Pawlak suggested the PIV method to use 

for this paper. Ben Brooks and Mark Reid aslo edited the text significantly before it was 

submitted for the publication. 

Chapter two focuses on application of the displacement fields estimated in chapter one to infer 

the subsurface deformation character of CCL. This chapter demostrates the use of two different 

models to locate the landslide slip surface. Landslide subsurface inference using surface 

displacements is in a nascent stage but this study demostrates a good agreement between the 

estimated slip depth with the observed depths. A version of this chapter is a manuscript prepared 

as  ‘Aryal, A., Brooks, B.A., and Reid, M.E., Landslide subsurface slip character inferred from 

surface displacement fields’and the manuscript has been internally reviewed by USGS scientists 

Ole Kaven and Jonathan Stock.  

Finally, chapter three compares two competing methods to estimate 3D displacement fields using 

TLS data. Currently, there is no accepted best method of using TLS data to estimate 3D 

displacement field automatically. This chapter compares results from the particle image 

velocimetry (PIV) and iterative closest point (ICP) methods and discusses the results. The 

estimated dense displacement fields are also used to analyze the pattern of surface deformation 

of the landslide.  
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DISPLACEMENT FIELDS FROM POINT CLOUD DATA: APPLICATION OF PARTICLE 
IMAGING VELOCIMETRY TO LANDSLIDE GEODESY 
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Journal of Geophysical Research-Earth Surface, v. 117, p. 15. 
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     ABSTRACT 

Acquiring spatially continuous ground-surface displacement fields from Terrestrial Laser 

Scanners (TLS) will allow better understanding of the physical processes governing landslide 

motion at detailed spatial and temporal scales. Problems arise, however, when estimating 

continuous displacement fields from TLS point-clouds because reflecting points from sequential 

scans of moving ground are not defined uniquely, thus repeat TLS surveys typically do not track 

individual reflectors. Here, we implemented the cross-correlation-based Particle Image 

Velocimetry (PIV) method to derive a surface deformation field using TLS point-cloud data. We 

estimated associated errors using the shape of the cross-correlation function and tested the 

method’s performance with synthetic displacements applied to a TLS point cloud. We applied 

the method to the toe of the episodically active Cleveland Corral Landslide in northern California 

using TLS data acquired in June 2005 - January 2007 and January-May 2010. Estimated 

displacements ranged from decimeters to several meters and they agreed well with independent 

measurements at better than 9% root mean squared (RMS) error. For each of the time periods, 

the method provided a smooth, nearly continuous displacement field that coincides with 

independently mapped boundaries of the slide and permits further kinematic and mechanical 

inference. For the 2010 data set, for instance, the PIV-derived displacement field identified a 

diffuse zone of displacement that preceded by over a month the development of a new lateral 

shear zone. Additionally, the upslope and down-slope displacement gradients delineated by the 

dense PIV field elucidated the non-rigid behavior of the slide.  
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1.1 Introduction 

Measuring time-varying surface deformation in active landslides can be challenging due to 

their wide range of displacement rates (~mm/yr to >10 m/s) (Cruden and Varnes, 1996) 

and variable displacement gradients reflecting block-like to fluid rheology (Iverson, 

2005).  Although recent geodetic techniques such as GPS and InSAR have illuminated the 

behavior of some active landslides (Coe et al., 2003; Hilley et al., 2004; Schulz et al., 2009), 

logistical and cost issues combined with the broad variation in displacement rates and 

gradients have prohibited their routine application to landslide monitoring. 

Most landslide monitoring emphasizes either concentrated temporal coverage at selected 

points or widespread spatial coverage over long time intervals. For example, in situ semi-

continuous monitoring of slow-moving slides using extensometers accompanied by 

complimentary instrumentation (rain gauges and buried pressure transducers) has 

allowed the observation of environmental controls on individual displacement events and 

long-term deformational behavior (e.g. Baum and Reid, 1995; Reid et al., 2003; Malet et al., 

2005; Schulz et al., 2009a). Using networks of points, GPS monitoring has enabled 3-D 

characterization of landslide displacement (Brueckl and Parotidis, 2001; Malet et al., 

2005; Squarzoni et al., 2005).  On the other hand, repeat photogrammetric or airborne 

Lidar surveys can provide spatially complete maps of landslide activity, often portraying 

very fine detail (Baum et al., 1998; McKean and Roering, 2004; Demoulin, 2006; Roering 

et al., 2009). Due to logistical and cost issues, however, the excellent temporal resolution 
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of in situ networks comes at the expense of poor spatial coverage whereas the excellent 

spatial resolution of repeat-pass remotely sensed surveys is often temporally limited.  

Space-based interferometric synthetic aperture radar (InSAR) has been used in measuring 

landslide surface displacement (Colesanti et al., 2003; Hilley et al., 2004; Bulmer et al., 

2006; Delacourt et al., 2007). Additionally, use of ground-based InSAR and real-aperture 

radar interferometry has improved observation resolution and accuracy (~ 5 m and ~3 

mm) of landslide surface motion (Tarchi et al., 2003; Antonello, 2004; Noferini et al., 

2007). Notwithstanding the temporal limitations of space-based observations, these 

interferometric techniques are limited by geometric decorrelation that occurs when 

displacements are higher than about half of the radar wavelength (2.8 cm for C-band and 

10 cm for L-band radar). Typical landslide displacement rates measured with these radar 

bands, ~2-10 cm/month, represent only a fraction of the observed displacement rates for 

those features. Because of the geometric limitations and potentially rapid acceleration of 

landslide motion, there is a clear need for a ground-based, cost-effective method that can 

provide both high spatial and temporal resolution measurement of landslide surface 

motion.  

Terrestrial Laser Scanning (TLS) is a portable ground-based laser travel-time technique capable 

of rapidly acquiring millions of sub-centimeter three-dimensional point locations (creating a 

“point cloud”) and near-infrared reflectance intensity (x,y,z,i) measurements directly from any 

object that reflects near-infrared laser light (Lichti and Jamtsho, 2006). Because of these 

characteristics there has been growing interest to use TLS data to study landslide movement 
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(Lichti and Jamtsho, 2006; Teza et al., 2007; Collins and Sitar, 2008; Teza et al., 2008; Baldo et 

al., 2009). Due to small changes in either the instrument or ground surface orientation, or 

changes in the ground’s reflective character, repeat TLS surveys typically do not track individual 

reflecting points visible in sequential scans. Deriving a displacement field, therefore, by relating 

the point clouds acquired from distinct scans can be a computationally challenging exercise and 

there is no currently accepted best practice of automatically doing so.  

In this paper, we present a method to derive a 2-D surface displacement field with high spatial 

resolution using sequential TLS scan data. We adapt a cross-correlation based Particle Image 

Velocimetry (PIV) method that has been well tested in fluid dynamics studies for the past several 

decades (Keane and Adrian, 1992; Westerweel, 1997; Meunier and Leweke, 2003; Raffel et al., 

2007). First, we describe the method and test it with synthetic data. Then we apply the method to 

study the motion of the slow-moving Cleveland Corral landslide, California (Reid et al., 2003) 

using TLS data acquired at 18 and 4month intervals.  

1.2 Terrestrial Laser Scanning 

Terrestrial laser scanning (TLS) rapidly measures two-way travel time of emitted laser pulses 

returning from multiple reflective objects. Typical scans acquire 3-D positions of thousands of 

points per second. For most commercially available instruments, the near-infrared laser (0.75-3 

µm wavelength) permits sub-cm range resolution scanning to ranges of 1-2 km (Gordon and 

Lichti, 2007). Spot-spacing (point-spacing) or sampling interval, determined by each 

instrument’s acquisition scheme, is also typically mm-cm scale, as is spot-size (footprint of the 
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beam), which is a linear function of beam width that spreads angularly with range (Lichti and 

Jamtsho, 2006). 

TLS data collected for deformation studies need to be either independently georeferenced or the 

survey needs to collect sufficient data outside of the area of deformation such that common 

surfaces and features in each dataset can be adequately aligned to one another. In theory, 

alignment with the baseline scan is a simple 6-parameter (or 7-parameter if scale change is 

allowed) Helmert transformation (Strang and Borre, 1997). In practice, however, alignment of 

TLS data is non-trivial because reflective objects are not precisely preserved between 

observational epochs due to very small changes in the scanner’s orientation and/or changes in the 

reflective surface. The iterative closest point (ICP) algorithm (Besl and McKay, 1992; Chen and 

Medioni, 1992; Bergevin et al., 1996), based on minimizing the least-squares distance between 

possible corresponding points in a point cloud, is one of the more common and better performing 

routines for aligning scans taken at different times (Gruen and Akca, 2005). Other approaches 

use identifiable targets or user-deployed survey targets in the survey area (e.g spherical or 

cylindrical objects) as common control points (Collins et al., 2008).   

The above-mentioned non-uniqueness of reflective points between observational epochs further 

complicates deriving displacement fields from TLS scans. A number of methods are currently 

employed but each is limited. Feature-tracking manually estimates displacements of objects 

(either passive or user-installed) identifiable in each scan (Collins et al., 2009). Although this 

technique can be quite precise, particularly if there are adequate identifiable features and solid 

modeling is used to damp measurement scatter from the reflective object, it is not automated and 
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so derivation of a displacement field with spatial density commensurate with the acquisition 

resolution is time-prohibitive and user-dependent. A scalar measure of displacement along a 

single axis can be found by pixel-based differencing of each epoch’s gridded data (Baldo et al., 

2009; McCoy et al., 2010), but this technique is appropriate for the rare case when motion in 

only one direction is expected. Least squares surface and curve matching (Gruen and Akca, 

2005) can detect the displacement of a synthetic target located 100 m from a TLS unit with an 

accuracy of ± 1 cm although it is not clear that this approach would be effective for scans of 

natural, irregular target areas such as landslides. The piecewise alignment method (PAM) (Teza 

et al., 2007) uses the ICP algorithm (Besl and McKay, 1992) to match data parcels between 

observations and to derive a displacement field by assigning the 6-parameter (Helmert) 

transformation to the centroid of each parcel. PAM requires especially dense TLS data with no 

shadows for parcel-matching to work best and the method is well-suited for the less general case 

when only rigid deformation is present (Chui and Rangarajan, 2003). 

1.3 Particle Imaging Velocimetry  

Particle Image Velocimetry (PIV) is a widely-used fluid dynamics technique developed initially 

to derive the velocity of fluid flows seeded with particles from time-series photography (Keane 

and Adrian, 1992; Westerweel, 1997; Meunier and Leweke, 2003; Raffel et al., 2007). The PIV 

method has also been applied to measure deformation in geotechnical studies with close-range 

photography (White et al., 2003). Here, we adapt the PIV method for use with TLS data using 

the freely available DPIVsoft Matlab routines (Meunier and Leweke, 2003; 

https://www.irphe.fr/~meunier/#PIV).  
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Fundamentally, PIV estimates a velocity field in a plane by cross-correlating raster images from 

successive observational epochs. For experimentally controlled fluids, the image plane is usually 

cross-sectional to the principal flow axis. For TLS data, such as from a landslide, the image 

plane is most likely taken to be the horizontal plane (vertical axis ‘up’). Although typical 

landslide motion creates a 3-D displacement field, for many landslides horizontal motion is 

likely to be significantly greater than vertical motion and so a 2-D treatment as developed below 

can provide a velocity field for motion in the dominant direction.  

To adapt PIV for use with TLS data, we first grid 3-D (x,y,z) data with grid size, GR in the xy-

plane but we can perform it in any desired plane.  The resulting image is then similar to a PIV 

image where the gridded 3-D data are analogous to the variable light intensity associated with 

the particle field in traditional PIV. Let Ik(i,j) be the z-value assigned to the i
th

 and j
th

 xy-grid cell 

of a TLS data set from the k
th

 observation. For a given correlation window size WC,  the 

normalized cross-correlation function ( Nr ) for subsequently acquired images is 

(1)
σ.σ

)- μ)j+j,(i+i).(Iμ(i,j)-(I

)=j,(ir

21

2

C C

1

II
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W

0i

W
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where µ and  are mean and standard deviation of z values respectively for corresponding 

images indicated by the subscripts I1 or I2. The correlation window is shifted in both directions 

over the second image within an interrogation window of size WI, and Nr  is calculated for each 

grid shift (is, js) (Figure 1.1). The operation is applied for a range of shifts S (-Sx ≤ is ≤ +Sx, -Sy ≤ 
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js ≤ +Sy) and produces a correlation matrix of size (2Sx+1) x (2Sy+1). The peak location with 

respect to the origin (Sx=Sy=0) in Nr is a direct measurement of the displacement.  

The cross correlation algorithm we adapted here (Meunier and Leweke, 2003) is advantageous 

for several reasons. First it allows direct cross-correlation computation as well as computation in 

the frequency domain via the Fast Fourier Transform (FFT) (Willert and Gharib, 1991; 

Westerweel, 1997). This is particularly efficient when the size of I1 and I2 are equal. Second, 

because the shift ( is, js ) is an integer, there is a potential error of ±0.5GR if the correlation peak 

is fixed to grid nodes, therefore the algorithm uses a Gaussian fit  to find the correlation peak at a 

precision of 1/10
 
to 1/20 image resolution (Raffel et al., 2007). This limits the minimum 

detectable motion to the order of 0.1-0.05GR. Finally, for the most realistic case where 

displacement within a correlation window is non-uniform, the correlation function may be broad 

or even have multiple peaks causing measured displacements to be less accurate or spurious. The 

algorithm we use here overcomes this problem by allowing iterative deformation of the 

correlation window (Huang et al., 1993; Meunier and Leweke, 2003; Raffel et al., 2007).  

In the iterative window deformation algorithm, the computation is a multi-step process (Meunier 

and Leweke, 2003). The initial run estimates a coarse but relatively smooth displacement field 

and deformation tensor, D, which is then applied to deform the interrogation window to more 

precisely estimate the peak of the correlation matrix. A low-pass filter is used to smooth outliers 

(Meunier and Leweke, 2003). In the second run, the displacement field is re-estimated from the 

deformed images. In this run, the displacement gradient is smaller, therefore a unique and 

narrower peak in the cross-correlation matrix is more likely to appear. All incremental 
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displacements in subsequent iterations (usually 2 or 3 are enough) are then summed with the 

initial estimate to yield the final result.  

 

Figure 1.1. Illustration of velocity estimation based on cross-correlation at different shifts. Red and blue 

dots represent a feature that has moved (1 unit in each direction) between two acquisitions (red being the 

first scene and blue being the second). WC and WI are correlation window and interrogation window sizes 

respectively. a) No shift (x=0 & y=0), represented by the 0,0 element in the cross-correlation matrix 

shown in d. b) Shift of (x=1 & y=-1) cross-correlation value represented by the 1,-1 element in the cross-

correlation matrix in d. c) Same as b but with shift of (x=2 & y=-2), cross-correlation value represented in 

2,-2 element in d. d) Cross-correlation matrix with colors in each grid representing cross correlation 
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function, 
Nr  (red is higher). Offset of this peak from origin (0, 0) in the correlation matrix is an estimation 

of displacements in the x and y directions. 

 

Several studies (e.g. Huang et al., 1997; Meunier and Leweke, 2003; Raffel et al., 2007) have 

discussed errors in PIV-estimated displacement fields. For use with TLS data, the most important 

error sources are the size of the grid GR (Figure 1.1), the magnitude of displacement gradients, 

and the relative window sizes WI and WC with respect to maximum displacements in the 

correlation window.  Because of the high precision of modern laser scanners, generally less than 

1 cm even in the case of complex topography (Schürch et al., 2011) and the relatively small 

displacement gradients (with respect to fluid flows) expected for non-catastrophically deforming 

landslides, we expect that the sizes of WI and WC in the first iteration will most strongly influence 

PIV results. To choose these parameters most appropriately, we adhere to the following criteria 

(Hu et al., 1998; Meunier et al., 2004):  

1) WI must be of sufficient size so that there are enough pixels with unique values to 

estimate a cross-correlation function. In PIV, the minimum number of particles has to be 

greater than four but the result will be better if 10-20 particles are visible (Meunier and 

Leweke, 2003).  

2) To ensure that more than two thirds of the particles remain in the interrogation window, 

WI must be more than 3 times greater than the maximum displacement, dmax in the 

correlation window (Raffel et al., 2007).  
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3) WI must also be small enough so that it encompasses a close approximation to a 

homogeneous displacement field. To ensure this, the difference in the displacement 

magnitude in the correlation window between a group of pixels must be smaller than GR. 

For higher displacement gradients, a blurring of the image with a Gaussian function is 

recommended (Meunier and Leweke, 2003). 

4) By definition, WC must be smaller than WI (Figure 1.1) and it must be greater than two 

times dmax (Hu et al., 1998). Smaller WC will violate the sampling criteria (Nyquist 

theorem) and cause the measurement to be aliased.  

5) Because the displacement gradients are smaller in second and higher order iterations, 

both WI and WC parameters have less influence on the result. In the higher order 

iterations, WI needs to have enough non-unique data pixels. In these cases, WC can be 

very small; even a couple of pixels may suffice.  

1.4 Synthetic Examples  

To better understand the effect of TLS data acquisition parameters, such as laser spot spacing, on 

PIV-estimated displacement fields, we performed a series of tests using synthetic data analogous 

to TLS point cloud data acquired from a deforming ground surface of random elevations. The 

synthetic point clouds were created with spot spacing ranging from 10 cm to 2 m by 10 cm 

increments (spot-spacing was held constant for each test) and a displacement signal was applied 

(maximum displacement of 1 m) in the y direction to each point cloud (Figure 1.2). Images were 

formed with grid size GR = 0.05, 0.1, and 0.2 m using an algorithm that assigned to each node the 

median Z value in a square grid cell with length, GR. The grid node for cells devoid of points 

(particularly possible when GR < spot spacing) was assigned a null value. We then applied the 
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PIV method to estimate the displacement field with correlation parameters selected using the 

criteria previously described. The results show that for each value of GR, smaller spot spacing is 

coincident with a monotonic decrease in root mean squared (RMS) values (Figure 1.2b) between 

the imposed synthetic signal and the PIV-estimated value (Figure 1.2d,f). This is because denser 

spot-spacing yields a sharper correlation peak and a commensurately more accurate displacement 

estimate. Additionally, smaller GR also leads to smaller RMS. This is a function of positional 

error from the gridding process: for each gridded Z-value, the positional error can be as large as 

0.5 GR and so accuracy increases with decreasing GR. Although by no means an exhaustive suite 

of synthetic experiments (the myriad displacement fields and geometries of landslides preclude 

such an exercise) these synthetic results demonstrate some of the first-order controls on PIV 

performance and demonstrate that the method can estimate a displacement field to better than 5% 

relative error. 

1.5 Application: Cleveland Corral Landslide 

The Cleveland Corral landslide (CCL) in California’s Sierra Nevada Mountains is ~ 450 m long, 

25-70 m wide (Figure 1.3), and usually moves after winter rainfall exceeds the mean annual 

rainfall level; the slide has moved multiple times since the mid-1990s (Reid et al., 2003).  The 

CCL is one of 600 mapped landslides along a 24 km stretch of Highway 50 in California parallel 

to the south fork of the American River (Spittler and Wagner, 1998) and it lies within 3 km of 

two large landslides that failed catastrophically and blocked the highway for weeks in 1997; one 

of these transformed into a debris flow. The CCL has been monitored since 1997 using repeat 

high-precision GPS ground surveys and in situ sensors including extensometers, geophones, rain 

gages, and sub-surface pressure transducers (Reid et al., 2003). Two shallow seismic refraction  
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Figure 1.2. An illustration of the PIV method applied to synthetically produced point cloud data. a) 

Magnitude of the synthetic displacement signal applied in y-direction. b) Mean of RMS error as a 

function of spot spacing using different image resolutions, GR. c) Example of PIV estimated velocity with 

GR = 0.05 m and spot spacing of 0.1 m d) Residuals computed for example in (c). e) PIV estimated 

velocity with GR = 0.1 m and spot spacing of 1 m. f) Residuals computed for example in (e).  
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Figure 1.3. a) Location of the Cleveland Corral Landslide (red box) in the Sierra Nevada Mountains, 

California, USA. b) Google Earth optical image and areas scanned in 2005-2007 (black box) and 2010 
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(red box) with corresponding scan locations (stars) c) Topographic map of the area. Landslide surface 

features are adapted from Reid et al. (2003) d) Shaded relief using 50 cm DEM from TLS data in 2010. 

High relief and no data (black) elucidates shadow forming objects mainly vegetation. Boxes outline areas 

selected for PIV analysis of 2005-2007 (black) and 2010 (red) scans. All TLS data are referenced to the 

UTM WGS84 coordinate system, and the origin is located at (724000, 4295000) to avoid large numbers 

in the axes.   

 

surveys and borehole measurements indicate that the active landslide occurs in colluvium and 

older landslide material that varies in thickness from 5-10 m and that the principal slip surface 

lies just above schist bedrock (Reid et al., 2003). When active, the CCL exhibits a broad 

spectrum of movement style ranging from slow-moving blocks with measured displacements up 

to meters per year to more rapidly moving small debris flows originating from the slide margins. 

1.5.1  June 2005 - January 2007  

We acquired TLS data sets in June 2005 and January 2007 (Figures 4, 5) using an Optech Ilris-

3d TLS. Each TLS survey consisted of scans from two locations close to the landslide toe with 

target distances ranging from 10 to 200 m and spot spacing ranging from 1 to 5 cm. Because the 

scans were conducted from nearby, and at an oblique angle to, the toe, the resulting point clouds 

contain large shadows devoid of measurements (Figure 1.3,1.4). The point-cloud data from each 

acquisition were aligned to one another by masking potentially moving areas and aligning 

following the iterative closest point (ICP) routine in Polyworks 10.1 software. For comparison 

with mapped ground features, the aligned data were then transformed into a UTM projection by 

point-to-point surface matching (RMS error ~ 2 m) with a 0.5 m DEM of the area prepared using 

aerial photographs from 2007.  
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Figure 1.4.  TLS point cloud data and area of interest for PIV analysis.  Grey area represents no data. a,b) 

Data density (number of data points per square meter) and distribution of data acquired in June 2005 
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January 2007 respectively. c) Apparent displacement of features as indicated by arrows in the point cloud 

data from the boxes in a and b. d,e) Data density acquired in January 2010 and May 2010. f) Point cloud 

data for the box in d and e.  Arrow highlights the offset of the centroids of the points from the circled 

feature. 

 

Figure 1.5. PIV estimation of synthetic displacement applied to the June 2005 point cloud data. a) 

Magnitude of the synthetic signal varying smoothly to a maximum of 4 m in negative y direction (black 
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dots are June 2005 point cloud).  b) PIV recovered displacement in y direction (colors) and total estimated 

displacements (vectors). c) Residuals (imposed synthetic signal - computed displacement) in the x 

direction (colored contours) with vectors showing total residuals. d) Same as c), except in y direction.  

 

The data are non-uniformly spaced (Figure 1.4a,b,c) with density ranging from many points per 

square centimeter to regions with no data. Inspection of identifiable features common to both 

scans indicates horizontal displacements as large as 4 meters (Figure 1.4c). To find the best PIV 

parameters for this data set, we introduced a known synthetic displacement pattern into the 2005 

point cloud with a maximum value of 4m. Using the parameter-choice criteria described above in 

section 3 (GR, WI, and WC of 0.2 m, 12.8 m, and 8.8 m, respectively), the residual displacement 

values (between known synthetic and PIV determined)  were less than 5% relative error although 

they display a systematic spatial bias of +/- ~ 0.2 m (Figure 1.5). The bias is most likely related 

to the poor sampling density at y-positions greater than 120 m. Nonetheless, the PIV-derived 

displacement field reproduces much of the character of the synthetic input field and so we 

proceeded further with our analysis using the +/- ~0.2 m value as an interpretation threshold 

scale.  

The resultant displacement field shown in Figure 1.6 is almost entirely confined to the previously 

mapped landslide boundary (Reid et al., 2003). The maximum horizontal displacement 

magnitude is ~ 5 m with most vectors oriented downhill.  There are four distinct displacement 

maxima ranging in areal dimension from 20 to 50 m. The upslope-most maximum is correlated 

with previously mapped tension cracks and the downslope-most maximum is correlated with 

thrust faults previously mapped by Reid et al. (2003) at the landslide toe. Patterns within each 
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maximum display contraction in the lower part and stretching in the upper part, in agreement 

with previous observations that large slow-moving landslides often exhibit multiple areas of 

extension and contraction (Baum et al., 1998; Wang et al., 2010).  

To estimate the uncertainties, although general PIV-related errors are formally described in the 

literature (Huang et al., 1997; Westerweel, 1997), here, we derive empirical, repeatability-based 

error estimates by exploiting the shape of each displacement estimate’s cross-correlation 

function. For each displacement estimation, ij, we first calculate the width, ij, of a two-

dimensional Gaussian function fit to the corresponding cross-correlation matrix. Assuming that 

ij is proportional to ij allows us to write 

(2)Ωkε ijij   

 where k is a proportionality constant common to all measurements and associated with factors 

such as the point distribution, data density, gridding resolution, and the choice of control 

parameters. Because motion is expected to be zero in stable areas, any non-zero PIV estimate 

from the stable sites (stable slope outside the landslide) will be the error, ij. Using a large 

number of stable sites, therefore, allows us to estimate the proportionality constants kx and ky in 

the xy plane. For non-stable areas, we use the kx, ky values from the stable areas and the 

estimated  to find ε and derive error ellipses (Strang and Borre, 1997) (Figure 1.6). The error 

estimated in this way may not include errors associated with potentially high displacement 

gradients, but this is mitigated by the window deformation method described above (Meunier 

and Leweke, 2003).  
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Figure 1.6. PIV estimated total displacement field and vectors (black) with error ellipses (95% 

significance) of CCL between June 2005 and January 2007.  GPS horizontal-displacement vectors (red) 

and displacement vectors of features identifiable in the point cloud data (white) are plotted using the same 
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scale as the PIV vectors. Landslide surface features (scarps, thrusts, and boundaries) are adapted from 

Reid et al., (2003). 

1.5.2  January - May 2010  

During the winter and spring of 2010, part of the toe of the Cleveland Corral landslide was 

active.  We surveyed the slide (Figure 1.3) in January 2010 and again in May 2010 using an 

Optech Ilris-3d TLS. The instrument was located ~1 km across the river valley from the 

landslide and laser spot spacing during the surveys was 10-12 cm (Figure 1.4, 1.7).  In contrast to 

the previous scans, the laser view was oriented at a higher angle to the landslide surface and 

provided good coverage of the entire slide. We aligned the data sets to one another as described 

above. 

As with the previous example, to find the best PIV parameters for these data, we first introduced 

a known synthetic displacement pattern into the January point cloud with a maximum horizontal 

displacement of 0.5 m (Figure 1.7).  This synthetic maximum is similar to the observed 

maximum derived from manual inspection of features displaced between the two data sets. Using 

the parameter-choice criteria described above in section 3 (GR, WI, and WC of 0.04 m, 2.5 m and 

1.25 m, respectively), over the majority of the displacement field, we obtained residual values 

that were randomly distributed with less than 5% relative error (Figure 1.7c,d). At the margin of 

the field where displacement gradients are non-uniform, however, residuals are systematically 

negative (Figure 1.7d). Although the iterative window deformation technique we use here works 

well if the mean displacement gradient within the window is uniform, errors may also propagate 

in space within the interrogation window if the displacement gradient changes over shorter 

spatial scales than the interrogation window and we attribute the small bias to this effect (Figure 
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1.7c,d).  Nonetheless, this is a minor bias (<4%) and our analysis shows that the spatial density 

of the TLS data is sufficient to measure the principal features of the January–May 2010 

displacement field and that the PIV control parameters are well-chosen. 

 

Figure 1.7.  PIV estimation of a synthetic signal applied to January 2010 point cloud data. a) Magnitude 

of the synthetic signal varying smoothly to a maximum of 0.5 m in negative y direction (black dots are 

January 2010 point cloud).  b) PIV recovered displacement magnitudes (colors) in y direction. c) 

Residuals in x direction with vectors showing total residuals. d) Same as c) except in y direction. 
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Using these PIV parameters, we then estimated a 2-D map-view displacement field for the 

January to May 2010 time period (Figure 1.8).  The region of detected displacement is ~ 30 m 

wide and ~60 m long. Total displacement over the time period ranges from 0.01 to 0.54 ± 0.1 m 

and displacement is generally in the down-slope direction. The boundaries of the PIV-derived 

field agree quite well with active shear boundaries and tension cracks mapped in the field for the 

same time period, particularly the upslope scarp and the east lateral shear zone (Figure 1.8). Due 

to shadowing from tall trees in the foreground, the point cloud near the mapped toe is 

particularly sparse and so we do not have much confidence in the PIV solution there (Figure 1.8).   

1.5.3 Validation  

We validated our PIV results using two independent methods: 1) repeat static GPS surveys of a 

suite of monuments located on the slide and on nearby stable ground that we processed with 

respect to a nearby base-station (< 1 km baseline) to better than ~ 3 cm horizontal accuracy, and 

2) tracking of manually identified features in the TLS point clouds consisting primarily of 

reflections from tree trunks and shrubs. These features do not lend themselves to solid modeling 

because of their irregular nature, and so to quantify their motion between successive TLS data 

sets, we determined the centroid of the set of reflections originating from the same feature for 

each observational epoch (Figure 1.4c,f). Uncertainty in the centroid measurement is then the 

standard deviation of the mean position divided by the square root of the number of data points 

(Taylor, 1982).  
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Figure 1.8. PIV estimated total displacement field and vectors (black) with error ellipses (95% 

significance) of CCL between January 2010 and May 2010.  GPS horizontal-displacement vectors (red) 

and displacement vectors of features (eg. trees) identifiable in the point cloud data (white) plotted using 

the same scale as the PIV vectors. Landslide features adapted from Reid et al. (2003) are in gray and the 

features mapped in the field in 2010 are in red.  
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For the 2005-2007 data set, the PIV-estimated values, GPS, and feature-tracking estimates agree 

well with one another, accurately tracking the entire range of observed displacements (Figure 

1.9a). The standard deviation of misfit of ~0.43 m (~8.6% relative error) with the feature-

tracking estimates is smaller than with the GPS estimates (~0.61 m) because of the 

aforementioned ~2 m georeferencing RMS error with the 2007 DEM and because of the high 

displacement gradients in the vicinity of the GPS monuments. As above, we use the standard 

deviation of the misfit associated with the feature-tracking values (~0.43 m, 8.6% relative error) 

to set the interpretation threshold scale for these data. 

For the 2010 data set, as with the 2005-2007 data set, displacements derived from the PIV 

analysis and both feature tracking and GPS measurements all agree well with one another, 

accurately portraying the entire range of observed displacements (Figure 1.9b). The misfit 

between PIV and feature tracking is most likely smaller than the misfit with GPS measurements 

because of the aforementioned ~2 m georeferencing RMS error, although the errors associated 

with each GPS measurement are smaller than with each feature-tracking measurement. We 

consider georeferencing error to be the largest source of the misfit: for PIV estimates in the xy 

plane, potential vegetation change (seasonal growth/removal) errors are negligible over this time 

period and probably an order of magnitude smaller than errors associated with georeferencing. 

Finally, there are no georeferencing errors associated with the feature-tracking results, and so the 

0.049 m standard deviation of the misfit estimate (8.9 % relative error) likely sets the 

interpretation scale for this analysis – we do not ascribe any significance to changes smaller than 

this value.  
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 Figure 1.9. Comparison of PIV-computed displacement (magnitude) of CCL with GPS measurement 

located in the PIV grid cell (Figure 1.6 and 1.8) and displacement from manual tracking of identifiable 
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features’ geometric centroid. PIV errors are represented by vertical bars and GPS and feature-tracking 

errors are shown by horizontal error bars. Higher standard deviations (Std) of the misfit with the GPS 

measurement are attributable to the georeferencing error. a) June 2005 to January 2007 and b) January 

2010 to May 2010.  

1.6 Discussion 

Our results show that the PIV technique applied to TLS point cloud data collected from a series 

of repeated scans can provide spatially continuous, smooth, precise and accurate displacement 

fields. Although relatively short radar wavelengths (< a few cms for most ground-based systems) 

may permit a smaller motion detection threshold for radar interferometry compared to TLS 

approaches, interferometry must be performed along the radar’s line-of-sight (Burgmann et al., 

2000), thus limiting the displacement field from each InSAR pair typically to only one 

component of motion. In contrast, our PIV-derived displacement fields (Figure 1.6 and 1.8) show 

two components and future work to extend the estimation to three components should be 

relatively straightforward. Additionally, the PIV method presented here accurately recovered a 

smooth displacement field in the presence of displacement gradients as large as ~5 m over 10’s 

of meters (Figure 1.6) whereas current radar interferometric techniques decorrelate in the 

presence of such large displacements. Nonetheless, because the rates and spatial wavelengths of 

landslide displacement fields vary widely, we view TLS and radar interferometry as potentially 

complimentary techniques. 

Comparisons of repeat GPS surveys and tracking of ground features between TLS scans show 

that the PIV method is able to accurately detect ground-surface displacement over at least two 

orders of magnitude (decimeters to meters) between observational epochs (Figure 1.9).  Even 

with irregular point cloud data (such as the 2005 and 2007 scans), PIV can accurately recover 
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large displacements. Although the PIV method preferably requires having knowledge of 

displacement magnitude to constrain the parameters, the first-hand knowledge of displacement 

can easily be acquired from comparing positions of identifiable features over time. There are 

some limitations to the method, however. For instance, significant disruption of the ground 

surface between successive scans (as might occur during rapid movement or transition to a debris 

flow) would degrade correlation.  Also, ground features that remain stationary (Coe et al., 2009) 

as a slide moves downslope through the feature (such as a spatially fixed area of ground 

cracking) might produce spurious results. Finally, slides with highly variable displacement 

patterns could be difficult to fit with a single choice of PIV parameters.  

The dense coverage provided by the PIV-estimated displacement field yields new insight into the 

kinematics and spatial evolution of the Cleveland Corral landslide. The limits of overall landslide 

displacement were known from previous ground-surface mapping (Reid et al., 2003), and the 

limits of the 2005-2007 deformation in the downslope part of the slide coincide well with the 

mapped boundaries (Figure 1.6).  The PIV-derived displacement vectors from the 2010 

movement episode, however, reveal the birth of a new active kinematic element – essentially a 

new slide within the boundaries of earlier sliding (Figure 1.8).  During this episode, the head of 

the kinematic element formed in an area of previous tensional fractures, whereas the toe and 

eastern margin followed pre-existing features.  The new element had its largest displacement in 

its center, with less displacement in the headscarp region (where material was stretching) and 

less at the toe (where material was shortening).   This pattern, of fastest motion in the middle, 

matches the displacement pattern observed in other large slow-moving slides (e.g. Fleming et al., 

1999; Malet et al., 2002; Coe et al., 2003).  In addition, some displacement vectors near the mid-
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to-lower eastern margin were rotated counter-clockwise (relative to the downslope direction) 

indicating that the slide material spread laterally in the toe region. During 2010, older slide 

material upslope and to the west of the new active kinematic element did not move. 

Typically, strike-slip shear at the lateral edges of slow-moving landslides tends to focus within a 

discrete zone; these zones are established during previous slide motion (e.g. Fleming and 

Johnson, 1989; Fleming et al., 1999). This pattern held true for the eastern margin of the new 

2010 kinematic element, where the eastern lateral shear zone, based on field observations, is 

activated each time the slide moves. In contrast, a completely new lateral shear zone developed 

along the western margin of the new element, about 20 meters inboard of the western toe active 

in previous years (Figure 1.8).  An along-slope profile of PIV-derived displacements shows that 

this developing margin is associated with a pattern of more broadly distributed deformation than 

the well-developed eastern shear zone during the time interval Jan-May 2010 (Figure 10a). This 

new shear zone was not readily apparent in the field when the scans were obtained; subsequent 

field mapping one month after the latter scan confirmed the development of this shear boundary. 

Thus, it appears that the PIV displacement field captured an intermediate stage of diffuse 

deformation that preceded the development of a well-expressed shear zone having a combination 

of en echelon and through-going ground-surface cracking. These observations would be difficult 

without a full displacement field that recorded the transient shear formation event.  In general, 

the limits and internal patterns of active movement may be unknown on landslide-prone 

hillsides, so PIV-derived displacement fields can provide a useful discriminatory tool for 

defining kinematic elements within a landslide, and for potentially recording the formation of 

new elements. 
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PIV-derived displacements can also provide insight into the mechanical behavior of the slide. 

Mechanical analyses of slow-moving landslides often assume some viscous and/or plastic 

constitutive relation (e.g. Iverson, 1986; Savage and Smith, 1986; Vulliet, 2000) or use variations 

in frictional resistance due to fluctuations in pore-water pressure (e.g. Corominas et al., 2005; 

van Asch et al., 2009) and/or soil dilatancy (e.g. Iverson, 2005; Schulz et al., 2009b) to 

reproduce spatial and temporal movement patterns.  Complex PIV displacement fields obtained  

 

Figure 1.10. Displacement profiles a) along-slope (at Y=110 in Figure 1.8) and b) down-slope (at X=145 

in Figure 1.8). WSZ, ESZ in a) indicate the western and eastern lateral shear zones. Grey lines in b) 

indicate conceptual rigid displacement profile. 
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through repeat TLS could better constrain such analyses. For mathematical and conceptual 

simplicity, a slide is often approximated as a rigid sliding block with plastic deformation at its 

base (Lambe and Whitman, 1969). A down-slope profile of the surface displacement field for a 

rigid block comprises three portions: two zero-valued stable boundary segments and a single, 

constant-valued slide-interior segment (Figure 1.10b). For the new 2010 kinematic element, the 

down-slope displacement profile from the PIV displacement fields deviates from this simple 

form. Here, the down-slope displacement profile (Figure 1.10b) delimits positive displacement 

gradients in the upslope part of the element (indicating extension), and negative displacement 

gradients in the downslope part (indicating contraction).  Both of these zones are ~20-30 m in 

width, centered on the maximum surface displacement value of ~0.3 m at y= ~105-120 m. The 

extensional zone contains both high- and lower-displacement gradient segments, likely reflecting 

a series of tension scarps, whereas the contractional zone has a relatively constant displacement. 

Comparison with the simple rigid block model shows significant mismatch at the margins of the 

element as well as over the center of the slide mass (Figure 1.10b). This misfit with the rigid 

model, however, occurs over lengthscales of decimeters to meters. If an analysis of the 

displacement field were performed at lengthscales greater than 5-10 meters, the rigid block 

assumption might be justified. 

1.7 Conclusion 

We have adapted the particle imaging velocity (PIV) technique from fluid mechanics to 

terrestrial laser scanning (TLS) point cloud data with the goal of deriving continuous 

displacement fields from active, slow-moving landslides. We applied the technique to TLS scans 

separated by 4 months and 1.5 years at the active Cleveland Corral landslide (CCL) and 
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measured displacements ranging from decimeters to several meters. The PIV-estimated results 

agree with independent GPS and point cloud measurements at better than 9% RMS error of the 

magnitude of the maximum displacement. The smooth and nearly continuous displacement field 

coincides with independently mapped boundaries of the slide, and permits both the identification 

of a diffuse zone of displacement preceding lateral shear zone development and the 

demonstration of non-rigid slide behavior. 
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     ABSTRACT 

The stability of many large landslides is determined in part by deformation along buried, often 

inaccessible, slip surfaces. Factors such as rainfall cause changes in stress on the slip surface 

leading to changes in stability. Yet, locating this slip surface is challenging without information 

from expensive boreholes. Here we examine the hypothesis that depth and orientation of the 

buried slip surface and the subsurface slip rate can be estimated using ground-surface 

displacements measured by repeat terrestrial laser scanner data. Our approach adapts a technique 

used in earthquake geodesy, along with particle image velocimetry to estimate a 3D ground-

displacement field for a slow moving Cleveland Corral landslide in California. We test the 

efficacy of two models to estimate slip depth and slip rate of a translational slide - a 2D balanced 

cross-section method commonly applied to landslides and an elastic dislocation model widely 

applied to study geologic faults. The balanced cross-section method provides slip-surface depth; 

a dislocation model determines slip-surface depth as well as orientation and slip magnitude. We 

compare model results with in-situ measurements from shear rods installed in the slide. The 

estimated slip-surface depth using both methods matches direct observations indicating that these 

approaches may offer more efficient and less costly means of inferring landslide geometry and 

slip behavior.  Such knowledge enables assessment of the hazards posed by large, slow-moving 

landslides.   
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2.1 Introduction 

Analysis of surface displacement and subsurface slip can lead to a better understanding of 

landslide mechanics (Baum et al., 1998) and their attendant hazards (Keefer and Larsen, 2007). 

Knowledge of slip depth and slip rate not only helps quantify the role landslides play in the 

dynamic equilibrium of hillslope processes (Roering, 2012) but also is valuable for geotechnical 

sampling operations, properly placing instrumentation, and designing landslide mitigation 

systems. Constraining subsurface slip, however, can be exceedingly difficult. Contact methods 

for locating landslide slip surfaces, such as trial pits, boreholes, inclinometers, and geophysical 

exploration surveys are expensive, time consuming and may require extensive fieldwork in 

hazardous areas, as well as repeated maintenance when slide deformation destroys 

instrumentation or access to the subsurface. Therefore, a non-contact method for inferring the 

depth of slip, and its orientation and magnitude, is desirable (Booth et al., 2013).  

Previous work pursued graphic or geometric approaches to infer landslide slip surfaces using 

ground-surface displacements. Varnes (1978) introduced a graphical method for estimating slip 

along a circular failure, and a more versatile graphical method (Carter and Bentley, 1985) 

assumed rigid body motion along a single slip surface. Using this latter method, Baum et al. 

(1998) demonstrated that this approach can yield a good approximation of the slip surface depth 

but this requires prior knowledge of the boundary of the active part of the landslide on the 

ground surface. The slip depth of a translational landslide has also been estimated by 

geometrically balancing the area along a cross-section (Bishop, 1999); this approach is similar to 

that routinely used in structural geology (Woodward et al., 1989). Recently, Booth et al. (2013) 

presented a method to constrain landslide deformation and thickness by inverting 3D surface 
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change data from repeat stereo imagery, although their approach must be calibrated using 

thickness measurements.   

An alternative, potentially valuable, approach involves inverting surface displacements using 

elastic dislocation (ED) models (e.g. Hudnut et al., 1996; Brooks and Frazer, 2005) to infer 

subsurface earthquake slip and fault orientation, as is commonly performed in earthquake 

geodesy (e.g. Hudnut et al, 1996). Although these models make simplifying assumptions, such as 

that deformation occurs in an elastic half-space, ED methods are computationally efficient and 

well-tested; they have been particularly helpful in forming well-posed inverse problems and in 

constraining first-order characteristics of seismotectonic faulting processes (Brooks and Frazer, 

2005).  Importatnly, this approach does not require calibration. 

Landslides are often modeled with plastic flow rheology (e.g., Savage and Chleborad, 1982; 

Iverson, 1986); however, the geometry of faults in slow-moving landslides and earth’s shallow 

crust can also appear similar (Hobbs et al., 1976). Field observations suggest that, under certain 

conditions, deformation involved in slip-surfaces underlying slow-moving landslides may be 

similar to those associated with tectonic faults (Fleming and Johnson, 1989; Gomberg et al., 

1995), albeit at different scales as well as temperature and pressure conditions. Some studies 

(e.g., Fukao, 1995) argue that landslides are often described as dislocations due to gravitational 

potential energy represented by a single-force in contrast to tectonic earthquakes described as 

dislocations due to the release of strain energy represented as double-couple forces. The single-

force model is bounded by the sliding surface and therefore the landslide is in the advance stage 

compared to the dislocation model. Therefore, numerous studies have treated slow-moving 
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landslides as shear dislocations, the equivalent-force system of which is the double-couple. For 

example, Fleming and Johnson (1989) consider the landslide as a fracture in their conceptual 

model and Martel (2004) discusses the mechanics of the ED model applied to landslides.  

Regardless of the preferred mechanics, the utility of methods to infer subsurface slip character 

from surface displacements has been limited, in large part, because of the challenges of 

collecting the necessary data: accurate and spatially complete estimates of surface displacements.  

Now, the widespread acquisition of Terrestrial Laser Scanning (TLS) data from active landslides 

(McCoy et al., 2010; e.g., Aryal et al., 2012) provides opportunities to develop quantitative 

methods to infer subsurface deformation character from surface displacements. In this paper we 

test the hypothesis that 3D displacements derived from the particle image velocimetry method 

applied to the TLS data can be used to quantify the subsurface slip character (orientation and slip 

magnitude) of slow-moving landslides. To develop the methodology and to illustrate the range of 

possible solutions, we employ both the purely geometric balanced cross-section (BC) method 

(Bishop, 1999) and an  ED model in an homogeneous elastic half-space (Okada, 1985). We 

apply the method and ground-truth it with in situ subsurface measurements at the slow-moving 

Cleveland Corral landslide (CCL) in California's Sierra Nevada range (Reid et al., 2003; Aryal et 

al., 2012).  
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2.2 Methods for Inferring Subsurface Slip 

2.2.1 Balanced cross-section (BC) 

The BC method (Bishop, 1999) assumes conservation of area and plane strain deformation 

(displacement is only in the downslope direction). Accordingly, this method assumes that the 

loss of area in the head-scarp (‘depletion zone’) of a landslide is caused by the downslope 

movement of the slide. Then, slip depth, D for a profile line can be written (Figure 2. 1a): 

)1(
R

A
D 

 

where R is the mean of the displacement along a profile line, and A is the area of depletion at the 

landslide headscarp (Figure 2. 1a). We estimate R applying the PIV method to TLS data, and A 

by integrating changes in elevations along the profile line. Both A and R  have associated errors 

δA and δR respectively. Assuming a normal Gaussian error distribution and using the general 

equation of error propagation, uncertainty in the estimated depth is: 

)2(22 RAD   . 

2.2.2 Dislocation in an Elastic Half-Space 

Geodetically measured coseismic surface displacements are commonly used to infer fault 

parameters at depth assuming that deformation is due to a displacement dislocation embedded in 

an elastic half-space. Okada (1985) presents a complete set of compact closed analytical 

expressions for surface deformation due to inclined shear and tensile faults in an elastic half-

space and the detailed derivation and description of dislocation modeling is also presented in 
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Segall (2010). Briefly, Okada’s formalism estimates a surface displacement vector field due to a 

dislocation discontinuity at depth in an elastic half-space characterized by Poisson’s ratio. A set 

of parameters further defines the dislocation’s geometry and slip vector (Figure 2. 1b). Although 

the elastic dislocation (ED) model is inherently valid for small and elastically recoverable 

displacement, it has been successfully applied to model co-seismic deformation and faults with 

larger strains (e.g., Healy et al., 2004). We acknowledge that landslide deformation is non-

recoverable but we justify the use of the ED model here for the following reasons. First, as 

described below, we apply the model only when surface displacements (< ~ 30 cm) and strains 

(~0.12) are relatively small.  In cases such as these, the first order linear term in the strain tensor 

is much larger than the higher order non-linear terms and the small strain assumption can be a 

fair approximation. Second, in the interest of developing and exploring the application of a new 

general methodology for landslides rather than delivering the best characterization of a particular 

site, we are willing to trade the imperfect ED mechanical assumptions for its computational 

efficiency and ease of implementation in an inverse approach.  

We implement a multidimensional grid search in parameter space to obtain marginal probability 

distributions for eight nonlinear parameters (X and Y location, depth, length, width, strike, dip 

and slip magnitude) that characterize slip on a rectangular displacement discontinuity. In order to 

render the elastic dislocation problem computable via a grid search, we place prior constraints 

(e.g. length of the slip patch is approximately equal to the length of the landslide) on all 

parameters. We calculate an approximation-minimum norm solution in the least square sense for 

each parameter combination and estimate the marginal probability distribution (mpd) of the 

model parameter space (P) following Menke (1989): 
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Figure 2. 1. Sketch of the two models used to infer landslide subsurface slip geometry. Gray arrows on 

right side of each sketch show displacement-depth profile inferred by the model. a) Longitudinal slice for 

the balanced cross-section (BC) method. b) Slide geometry relative to the ground surface for the elastic 

dislocation (ED) model. Red line is the projection of a rectangular slip surface.  

 

(3)      ] Gm)-(d*Cov*Gm)-(d
2

1
exp[-  d)|P(m 1-

d

T  

where data (d) and model parameters (m) are related by function (G).  

 

2.3 The Cleveland Corral landslide  

CCL is a large (~ 450 m long and 20-70 m wide) earth-slide located along U.S. Highway 50 in 

the Sierra Nevada Mountains of California (Figure 2. 2). Shallow seismic exploration indicates 

that typically 5-10 m of sliding material overlies the schist bedrock (Reid et al., 2003), although 
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the active sliding mass is thinner in some locations.  Since monitoring began in the late 1990s, 

the landslide has moved only in years when precipitation exceeds the mean annual precipitation; 

a neighboring slide with similar characteristics failed catastrophically in 1997 (Reid et al., 2003). 

Measured surface displacements at the CCL vary in time and space ranging from millimeters to 

several meters per year (Reid et al., 2003; Aryal et al., 2012).  

We surveyed the CCL with an Optech Ilris-3D scanner in January, May and June, 2010 while the 

toe portion of the slide was active.  TLS surveys were conducted from a high elevation vantage 

point across the valley from the slide (ranging 500 – 700 m). In each scan, point-cloud spot-

spacing varied from 6-12 cm. The first scan was georeferenced to a 0.5 m DEM in a UTM 

coordinate system (NAD83) derived from aerial photographs acquired in 2007. We aligned 

subsequent scans to the georeferenced scan, masking out the data points from the potentially 

moving toe area (Aryal et al., 2012). In addition to the TLS scans, we installed vertical copper 

shear rods at two locations in the toe of the CCL during May 2010 when this part of the slide was 

active (Figure 2. 2). When sub-surface slip occured, the rods were severed by the slip surface, 

and subsequent measurement of the rod sections remaining in the slide provided highly accurate 

slip depths.  

2.4 3D Displacement Field  

We use the Particle Image Velocimetry (PIV) method adapted to point cloud data (Aryal et al., 

2012) to estimate horizontal displacement fields. To obtain vertical displacement, we translate 

the ground surface according to the PIV-estimated 2D horizontal displacement and then 

difference the elevations (see appendix).   
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Figure 2. 2. Displacement fields for an active part of the Cleveland Corral landslide (red box in the inset), 

obtained for two time periods using repeat TLS scans and PIV.  Black vectors represent horizontal 

displacements and background color represents the estimated vertical displacement.  White vectors are 

from tracking identifiable features in the TLS data.  Landslide surface features were mapped in 2010; 

slide boundaries in the inset are from Reid et al. (2003). Origin of the UTM coordinates shifted to 

(724000, 4295000) in order to avoid large numbers in the axes. (a) January-May 2010 time period.  (b) 

May-June time period.  The cumulative displacement from these two displacement fields (max. 1±0.14 

m) is consistent with the independently estimated January-June displacement field (see Figure A2 in the 

appendix).  

 

We estimate the 3D displacement field for three time period pairs: January-May (Figure 2. 2a), 

May- June (Figure 2. 2b.), and January-June (Figure A2). The plan view displacement field for 

the active toe of the slide is elongated in a ~20 m wide and ~55 m long pattern. The horizontal 
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displacement vectors agree well with the GPS measurements and displacements from tracking of 

identifiable features in the TLS data (Aryal et al., 2012; Figure 2. 2). Overall, both the January-

May and May-June displacement fields record about the same displacement magnitude 

(maximum of ~0.5 m horizontal and ~0.3 m vertical). However, the May-June displacement 

vectors trend slightly SW compared to the January-May vectors. The maximum estimated 

displacement over the five-month time period (January-June) is 1.±0.1 m (Figure A2); this is 

consistent with the sum of the January-May and May-June displacements. The relatively larger 

noise in the May-June displacement field compared to the January-May field (Figure 2. 2) is 

likely due to early summer vegetation growth.  

 

2.5 Subsurface Inference Results   

2.5.1 Balanced Cross-section 

From these 3D displacement fields, we estimate the slip depth of the CCL for all three 

acquisition time pairs along 22 transects at 1m spacing using the BC method. The resultant cross-

sectional slip surface profile is asymmetric (Figure 2. 3): it drops quickly to a maximum depth of 

-6±0.7 m near the western lateral margin of the active area and then decreases with fluctuations 

towards the eastern lateral margin. Errors in the estimated depth could be due to violation of the 

model assumptions or errors in the TLS data (e.g., vegetation and alignment errors).  Mostly 

south facing displacement vectors indicate that the out-of-plane component of the displacement 

is very small for the Jan-May displacement (generally <10% of mean displacement) although it 

is slightly larger for the May-Jun displacement (Figure 2. 2). Because we use TLS-derived 
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DEMs to estimate the loss of the area in the zone of depletion, trees and bushes may add errors in 

the DEMs, which then can propagate to the depth estimates. Therefore, in our analysis, we 

discard any DEM nodes with greater than 2- mean standard deviation of the TLS elevations as 

returns from trees and bushes are characterized by scattered heights. Figure 2. 3 demonstrates 

that the BC method depth estimates agree quite well with the shear rod measurements.  The 

estimated slip depth at both shear rod locations agrees with the observed depths (2.37 m and 3.18 

m) within the margin of errors (±0.45m misfit, <16% relative error; Figure 2. 3). 

 

Figure 2. 3. Estimated slip-surface depth using the balanced cross-section (BC) method computed for 22 

longitudinal sections through the landslide over three time intervals; 2 errors are shown in gray. Depth 

of shearing measured by shear rods is indicated by yellow triangles.  

 

2.5.2 Elastic Dislocation 

We perform a multidimensional grid search of ~13 million parameter combinations to obtain 

marginal probability distributions (mpd) for the dislocation parameters during the three different 
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time periods. For all calculations, we assume a Poisson’s ratio of 0.25; our sensitivity tests show 

that variations in Poisson’s ratio do not significantly modify the results given the relatively 

shallow slip surface. Figure 2. 4 shows mpds for the parameters, depth, dip, and slip that are 

most pertinent to the analysis here; the entire suite of eight parameters for each of the analyzed 

displacement fields is shown in Figure A3. The peak marginal probabilities for the dislocation 

parameters range from ~2.5 to ~3 m depth and for dip from 0-1° (Figure 2. 4 a, b). Peak marginal 

probabilities for slip (Figure 2. 4c) is ~0.45 m for the two shorter time periods (Jan-May and 

May-June) and ~0.9 m for the longer period (Jan-June). For all three cases, the estimated sub-

surface slip is about 20 - 35% larger than the mean surface displacements (dashed lines in Figure 

2. 4c). As with the BC method, the peak marginal probabilities for the dislocation parameters 

(Figure 2. 4) at ~3 m depth are very similar to the shear rod depths of 2.37 m and 3.18 m 

2.6 Discussion  

Using surface displacements to infer sub-surface slip character is in its nascent stages (Booth et 

al., 2013) and we anticipate that the general approach will be increasingly utilized as the ability 

to measure spatially dense surface displacement fields with techniques such as TLS also 

increases. Landslide geometry and rheology can be quite variable, however. Although inverse 

approaches such as those presented here allow quantitative comparisons, we do not expect that 

one forward model can be satisfactorily chosen for any given landslide until more studies with 

varying model approaches are undertaken. Nonetheless our study is, to the best of our 

knowledge, the first that demonstrates agreement between inferred and measured slip depths. 

Interestingly, this agreement occurs for both, rheologically distinct, forward models that we 

employ.  This highlights the non-uniqueness of different model predictions.  Moreover, it is not 
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possible to unequivocally determine landslide rheology using only surface displacements, as 

internal stress distributions must be known as well. 

 

Figure 2. 4. Marginal probability distribution (scaled empirically or manually) for three dislocation slip 

parameters (depth, dip direction, and slip magnitude) over three time intervals. (a) Slip depth.  Two 

dashed lines are measured slip depths using shear rods located within the landslide (see Figs. 2 and 3). (b) 

Dip direction relative to overall ground-surface gradient.   Dashed line shows an apparent dip calculated 

using slip depths from the shear rods.  (c) Magnitude of slip along the slip surface.  Dashed lines indicate 

average ground surface displacements with colors corresponding to the marginal probabilities for each 

time interval (see Figure A3 in the appendix for mpd showing all eight parameters for all three time 

periods).  

 

One reason for the agreement in depth estimates may be that deformation within the CCL, as in 

many other landslides, is likely neither purely incompressible nor purely elastic.  If the landslide 

materials were purely one rheology, then using the other model to infer depth would likely lead 

to incorrect estimates.   This can be illustrated by comparing some of the model assumptions.  

Purely incompressible material deformation, as assumed in the BC method, does not produce any 

far-field displacement. Field exposure of shear margins and tension cracks at the CCL suggests 

that far-field (outside the landslide) displacement may not be significant.  However, if a landslide 

were purely incompressible, then applying an elastic dislocation model might underestimate the 
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slip depth because the elastic model requires far-field deformation. On the other hand, if a 

landslide were purely elastic, then there would be smaller volume loss at the zone of depletion as 

compared to the loss with an incompressible material, and applying the BC method would 

underestimate the slip depth.  However, if landslide materials are a hybrid of the two rheologies, 

then both approaches might provide reasonable inferences of slip depth for dominantly 

translational slides. 

Although the models predict similar slip depths, they differ significantly in terms of predicted 

sub-surface slip magnitude.  Given an incompressible material, as in the BC model, the amount 

of slip at depth directly corresponds to average ground-surface displacement.  For an elastic 

dislocation model, more slip occurs at depth than at the ground surface.  Our results show that 

the magnitude of slip at depth estimated by the dislocation model is 25-35 % larger than the slip 

inferred by the BC method (Figure 2. 1 and 4c). Additionally, some studies (e.g., Fukao, 1995) 

show that landslides are better modeled using single-couple dislocation and therefore the double-

couple ED we use here might overestimate slip.  

The two models also imply different displacement-depth profiles and failure propagation modes. 

Field evidence to support one style of deformation over another is equivocal.  Numerous studies 

suggest that internal deformation in a slow-moving landslide is rather small, with most 

deformation occurring in the slip zone (e.g., Baum et al., 1998).  Some inclinometer observations 

in active landslides (e.g., Yufei et al., 2012) corroborate the idea that the slip at depth can exceed 

ground surface displacement.  It must be noted, however, that some models of translational 
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landslide creep suggest that, counter to both of the approaches presented here, displacement 

decreases with depth (e.g., Savage and Chleborad, 1982). 

Despite their differences and general simplifications, the approach of using both rheologically 

distinct models allows us to place varying degrees of constraint on some fundamental metrics of 

a landslide. For the CCL, the disagreement in predicted slip magnitude suggests that more model 

refining is necessary, whereas the agreement for slip depth, suggests that this is a well-

constrained parameter. Moreover, although it is out of the scope of this paper, there may be 

other, rheologically distinct models that also satisfy the observed surface and sub-surface 

displacements. In the absence of prior information about a particular landslide or type of 

landslides’ material properties, we suggest an approach of comparing multiple viable forward 

models that relate surface and sub-surface displacement.  This approach should become easier to 

implement as computational power increases and it will allow both the range of estimated 

parameters (e.g. slip depth and magnitude) and the appropriateness of distinct models to be better 

evaluated.  
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Appendix  

 

SUPPLEMENTARY INFORMATION ON 3D DISPLACEMENT FIELD ESTIMATION  

We use the Particle Image Velocimetry (PIV) method adapted to point cloud data (Aryal et al., 2012) to 

estimate horizontal displacement fields and extend the 2D method to estimate a complete 3D 

displacement field. All the data processing steps and parameters to estimate 2D horizontal displacements 

are described in Aryal et al. (2012). To obtain vertical displacement, we translate the ground surface 

according to the PIV-estimated 2D horizontal displacement and then differenced the elevations (Figure 

A1).  

 

 

 

 

 

 

 

Figure A1. Conceptual sketch showing components of landslide displacement at surface of a sliding block. Ground 

surface displacement of G to G' consists of horizontal components uX and uY and a vertical component uZ. The 

vertical component uZ is the difference in elevation from G to G'. Elevation is available everywhere from TLS 

DEMs. Displaced location G' of grid G is located using PIV-TLS estimated uX and uY. 

Many TLS data-derived vertical displacement in the literature (e.g., Baldo et al., 2009; McCoy et al., 

2010) are pixel-based differencing of gridded data. This scalar measure along the vertical axis is 

appropriate when the expected motion is primarily in one direction; a rare case in terms of most geologic 

phenomena. Any horizontal components of displacement or error in georeferencing can introduce large 

errors in the vertical component. In addition, artifacts such as trees or poles can cause high frequency 

noises in the estimated displacement. To minimize such noise, our approach finds the corresponding 

horizontal point location from one scan to another using the TSL-PIV-derived horizontal displacement 

and therefore estimates vertical displacement more accurately.  
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SUPPLEMENTARY FIGURES  

 

Figure A2. January to June displacement field 
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Figure A3. Marginal probability distributions for eight slip parameters. 
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CHAPTER THREE 

 

 

 

DETERMINING GROUND DISPLACEMENT FIELDS OF SMALL SPATIAL EXTENT 

USING TERRESTRIAL LASER SCANNER DATA: A COMPARISON OF 3D METHODS 

APPLIED TO LANDSLIDE MONITORING 
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3.1 Introduction 

As discussed in the first two chapters of this dissertation, terrestrial laser scanning (TLS) is an 

emerging technique for detecting surface displacements of small spatial extent (meters to sub-

kilometers) more accurately (sub-cms to cms) at higher spatial and temporal resolutions (e.g., 

Oldow and Singleton, 2008; Stewart et al., 2009; McCoy et al., 2010; Aryal et al., 2012). 

Geologic examples of these types of small spatial extent surface displacements include land 

subsidence, active faults and volcanoes, glacier movement, and landslides (Figure 3.1). 

However, significant difficulties may arise when deriving 3D displacement fields using TLS data 

primarily because the data are not necessarily from the exact same location of the reflector 

between the observational epochs due to changes in the scanner’s orientation and/or changes in 

the reflective surface (Figure 3.2). Furthermore, returns from vegetation that change over space 

and time complicate the use of TLS data for displacement analysis. Therefore, matching of a 

pattern or surface is needed to analyze the TLS data.    

There are various approaches to derive surface displacement fields using TLS data but each is 

limited, and there is no accepted best practice for automated analysis. DEM differencing is one 

of the most common approaches in the literature, but it is a scalar measurement of displacement 

along a single, vertical axis (Baldo et al., 2009; Prokop and Panholzer, 2009; McCoy et al., 

2010). Therefore, this technique is appropriate for the rare case when expected motion is only in 

one direction (vertical in most cases but it can be any direction). In general, landslide surface 

displacement fields cannot be determined using vertical DEM differencing.  Another approach 

uses manual feature tracking to estimate displacements of identifiable features including tree-

trunks or user-installed reflectors such as large spheres in each scan (Collins et al., 2009; 

Wilkinson et al., 2010). This approach can be quite precise, particularly if there are adequate 

identifiable features and measurement scatter from the reflective object is damped using 

geometric modeling of the feature. This technique is not automated and therefore it is time 

consuming with results that are user dependent. Least squares 3D surface matching (Gruen and 

Akca, 2005) has been applied to TLS data (Monserrat and Crosetto, 2008), but this technique 

seems to work well only for tracking features with regular shapes. Two of the most promising 
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approaches to estimate 3D displacement using point cloud data are particle image velocimetry 

(PIV) (Aryal et al., 2012; Aryal et al., 2013) and iterative closest point (ICP) (Teza et al., 2007; 

Nissen et al., 2012), but the strengths and limitations of applying these methods to TLS data 

analysis have yet to be explored.  

In this chapter, we test the efficacy of using PIV and ICP methods to estimate 3D surface 

displacement from TLS data. In particular, we compare the PIV and ICP methods applying 

synthetic signals to TLS data from the slow moving Cleveland Corral landslide (CCL) in 

California to compare the performance of PIV and ICP. Then we apply both methods to TLS 

data from the CCL and compare the results with independently measured GPS and feature 

tracking displacements. We also use the TLS-derived displacement fields to compute strain 

fields and characterize the surface deformation pattern of the toe part of the landslide in space 

and time.  

    

Figure 3.1. Movement rate and spatial extent of the most common geologic features. Spatial extent of 

most landslides is too small to use space-based InSAR to detect variations in surface displacement.  
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Figure 3.2. TLS point cloud data of a stationary building from two temporally different acquisitions (red 

and blue dots). The building is identifiable in both scans, but there is neither one to one relationship 

between data points nor is there an equal number of data points in the two scans. 

3.2 Displacement Estimation Methods 

Two of the most promising approaches in the literature to estimate 3D displacement using point 

cloud data are PIV (Aryal et al., 2012; Aryal et al., 2013) and ICP (Teza et al., 2007; Nissen et 

al., 2012). Here, we compare these two methods by applying a synthetic signal to a TLS scan and 

also by using the series of TLS scans from the slow moving CCL in California.   

3.2.1 Particle Image Velocimetry 

The PIV method has been used for decades to derive the velocity of fluid flows seeded with 

particles from time series photography (Keane and Adrian, 1992; Westerweel, 1997; Meunier 

and Leweke, 2003; Raffel et al., 2007). Fundamentally, PIV estimates a velocity field in a plane 

by cross-correlating a subset of raster images from a series of observational epochs.  The PIV 

method has also been applied to geologic studies with close-range photography (White et al., 

2003). Recently, Aryal et al. (2012) adapted the PIV method for 2D TLS data displacement 

estimates and Aryal et al. (2013) extended the method to 3D. To apply PIV to TLS data and 

estimate 3D displacement field, we perform the following steps: 
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1. Grid the aligned or referenced 3D (x,y,z) point-cloud data with grid size, GR, in the 

horizontal plane to acquire images I1(i,j) and I2(i,j) where each grid-value contains 

average z-values from the corresponding TLS data set.  Generally, smaller GR is better, as 

the correlation can potentially introduce estimation error of +/- 0.5 GR, but coarse GR 

allows faster cross-correlation and gridding. Gridding should be done without data 

extrapolation as it can introduce significant errors. In this study, we use a GR of 0.04 m.  

2. Cross-correlate a window size of WC from the image I1 with an interrogation window 

of size WI from the image I2 for each grid shift (is, js) to acquire the normalized cross-

correlation function ( Nr ) given by  
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where µ and  are mean and standard deviation of z values of respective images indicated 

by the subscripts I1 or I2.  The horizontal components of displacements are then a distance 

to the peak in the cross-correlation matrix from its origin (no shift position).  To acquire 

the displacement at sub-pixel accuracy, a Gaussian function is fitted to the cross-

correlation matrix and the peak of the Gaussian function is located.  

Any non-uniform displacement or displacement gradient within a correlation window can 

influence the classical PIV results causing the peak in the correlation matrix to be broad 

or even have multiple peaks. This can cause the estimated displacements to be inaccurate. 

The iterative deformations of the correlation window (Huang et al., 1993; Meunier and 

Leweke, 2003) overcome this problem by applying the cross-correlation in larger 

windows at the first step followed by the correlation in smaller windows in the second 

step. Selecting the correct size of WC and I1 can be specific to a data set, the expected 

displacement, and the displacement gradient. As a rule of thumb: WC > 2*dmax and I1 > 
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3*dmax in the first run where dmax is the expected maximum displacement in the window. 

In the second run, the estimation is less sensitive to the window sizes and both WC from I1 

needs to be smaller than in the first run. We refer reader to Aryal et al. 2012 for detailed 

parameter selection criteria.  

3. Obtain the vertical component of the displacement by translating the elevation map 

according to the 2D horizontal displacements from step 2 and then differencing the 

elevation maps (Figure 3.3). This provides an approximate 3D displacement field. 

 

To perform the second step above, we adapt the freely available DPIVsoft tool (Meunier and 

Leweke, 2003; Meunier et al., 2004) that has also been applied for TLS data (Aryal et al., 2012).  

 

Figure 3.3. Conceptual sketch showing components of landslide displacement at surface of the sliding 

block. Ground surface displacement of G to G' consists of horizontal components ux and uy and a vertical 

component uz. The vertical component uz is the difference in elevation from G to G'. Elevation is available 

almost everywhere from TLS DEMs. Displaced location G' of vertical grid G is located using PIV-TLS 

estimated ux and uy. 

3.2.2 Iterative Closest Point 

The ICP algorithm is one of the more commonly used methods for matching 3D point cloud data 

(Besl and McKay, 1992; Chen and Medioni, 1992; Zhang, 1994). Several commercial and 
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research tools use ICP (e.g. Polyworks software by Innovmetric Inc.) to align TLS data. 

Although there are different variants of ICP, its main goal is to refine the matching between two 

point cloud datasets (often referred to in the literature as model and data or destination and 

source) by estimating the best transformation (rotation and translation) parameters based on 

iteratively minimizing the distance between data points from two scans (Figure 3.4).   

Let Mi=(m1, m2, … mn) and Di=(d1, d2, … dn) be two TLS scans where mi and di are composed of 

x,y, and z locations on the ground surface. In order to find the displacement, the goal is to find a 

rigid body transformation composed of a rotation matrix R and translation vector T so that M 

(model) and D (data) have the best alignment. The best alignment results when the sum of 

squared distance from points in one cloud to their nearest neighbors in the other point-cloud is 

minimized, often referred as the error metric E such that:  

 

The error metric in equation (2) is the sum of the squared distances between corresponding 

points in M and D, often referred to as point-to-point minimization (Besl and McKay, 1992). 

Finding corresponding points, however, is not trivial and can be computationally challenging. 

Therefore, very often point-to-plane minimization (Chen and Medioni, 1992) is performed which 

sums the perpendicular distances of the data points to tangent planes containing the matched 

model points (Figure 3.4) and minimizes the error metric iteratively. Mathematically, the error 

metric E is:  

 

where ni is the normal plane at the i
th

 point in the reference point cloud. In equation (3), R is a 

function of nonlinear trigonometric functions but when the direction cosines in the x, y and z 

directions ( ,, and   are small, equation (3) can be solved using a linear least-square 

approximation (Low, 2004).  
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Figure 3.4. Sketch showing the point-to-plane distance matching in ICP between model and data that 

minimizes the sum of the Euclidian distance (dotted black lines) iteratively. Points represented by mi and 

di are from two data sets. 

 

In this study, we perform ICP point-to-plane distance minimization using the commercially 

available Polyworks 10.1 software. First we align all the scans masking the potentially moving 

area and then import the initial scan as a model (reference data) image that results in a surface to 

which we fit data points from the second scan. We then divide the second scan into different 

subsets using square grids (e.g., 5x5 m). We use a sequence of operations in the Polyworks 

program, as described in Teza et al. (2007) to estimate the transformation matrix for each subset 

grid. Teza et al. (2007) contains a detailed description of the estimation scheme.  

3.2.3 Synthetic Tests  

To compare the performance of ICP versus PIV and to understand the effect of TLS data 

acquisition parameters, such as data density, we performed a test applying a synthetic 

displacement signal to TLS point cloud data from the toe portion of the CCL. ICP was originally 

developed for point cloud data and therefore its performance for purely synthetic data is well 

documented (e.g., Besl and McKay, 1992; Chetverikov et al., 2005; Minguez et al., 2006). 

Similarly, use of PIV for purely synthetic data and its performance has been discussed in Aryal 

et al. (2012). Therefore for comparative purposes we applied a synthetic signal to actual TLS 
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data instead of a purely synthetic example. We introduced a synthetic displacement pattern into 

the January 2010 point cloud (Aryal et al., 2012) with a maximum value of -1 m in y and -0.4 m 

in z-directions and recovered the signal using both PIV and ICP methods.  

 We use the rule of thumb described above in section 3.1.1 to select PIV correlation parameters 

(WI, and WC of 3 m, and 2 m, respectively) to estimate the 3D displacement field with 1 m 

spatial resolution. The residual displacements of the PIV-estimated values (synthetic signal - PIV 

estimated) are less than 6 % relative error (Figure 3.5) in all three directions. The PIV-derived 

displacement field reproduces much of the character of the synthetic input field within the 

determination threshold of +/- ~ 0.06 m. There is no applied signal in the x-direction and 

therefore the estimated values in the x-direction are errors propagated from signals applied in the 

y and z-directions. ICP requires a larger number of data points in the matching window (Teza et 

al., 2007; Nissen et al., 2012) and therefore to find the best ICP window size for the data, we 

performed ICP estimation using different window sizes (2 to 9 meters). The root mean square 

error (RMSE) for different ICP window sizes (Figure 3.6) indicates that the use of a 4 m ICP 

window size recovers the signal best for this case. The RMSE is very large for a 2 m window 

size indicating that ~ 450 data points (average data points density = 110 per meter square) in an 

ICP window is not adequate to match the data in each window. The smallest RMSE for a 4 m 

ICP window size indicates that about 1800 or more data points are needed on average to match 

the data. The residual displacements of the ICP estimated displacements (synthetic signal - ICP 

estimated) for ICP window size of a 4 m are generally less than 5 % relative error (Figure 3.7) in 

all three directions. Again, the ICP-derived displacement field reproduces much of the character 

of the synthetic input field within the determination threshold of +/- ~ 0.05 m. Unlike the PIV 

residuals (Figure 3.5), the ICP residuals in the x and z-directions are smaller than 0.03 m (~3 % 

relative error) but again, the spatial resolution of the ICP estimation is coarser (4 m) compared to 

the spatial resolution of PIV (1 m). 
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Figure 3.5. (a-c) Synthetic signals in the x, y and z-directions respectively. (d-f) PIV estimated 

displacements in the x, y and z-directions respectively. White speckles in (f) indicate areas where data 

points are not adequate to estimate vertical displacement. (g-i) residuals (signal-estimated) in the x, y and 

z-directions respectively.   
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Figure 3.6. Root mean square error (RMSE) of ICP estimation of the synthetic signal applied to a TLS 

data using different window sizes. RMSE is minimum at the 4 m window size.  

 

3.3 Results from the Cleveland Corral Landslide 

The Cleveland Corral Landslide  (CCL) is a slow-moving landslide complex along Highway 50 

in California (Spittler and Wagner, 1998) (Figure 3.8). The CCL has been monitored since 1997 

using repeat high-precision GPS ground surveys and in situ sensors including extensometers, 

geophones, rain gauges, sub-surface pressure transducers as well as repeat TLS scanning (Reid et 

al., 2003; Aryal et al., 2012). The landslide moves only when rainfall exceeds the mean annual 

precipitation and is otherwise dormant. It has moved episodically since the mid-1990’s, and a 

neighboring slide with similar characteristics failed catastrophically (Reid and LaHusen, 1998). 

Therefore, the landslide may provide an opportunity to understand the transition from slow-

moving slide to a catastrophic flow. Measured surface displacements at the CCL vary in space 

and time from millimeters to several meters per year (Reid et al., 2003; Aryal et al., 2012).  
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Figure 3.7. (a-c) Synthetic signals in the x, y and z-directions respectively. (d-f) ICP estimated (4 m 

window size when the RMSE is minimum as shown in the Figure (3.6) displacements in the x, y and z-

directions respectively. (g-i) residuals (signal-estimated) in the x, y and z-directions respectively.   

We scanned the CCL using an Optech Ilris-3D scanner (Figure 3.8a) and acquired six TLS 

datasets on 15 Jan 2010, 03 May 2010, 21 Jun 2010, 09 Feb 2011, 09 May 2011 and 24 Apr 

2012. During this time, there were episodic movements at the toe portion and a portion near the 

head of the slide.  TLS surveys were conducted from an elevated vantage point across the valley 

from the slide (ranging 500 – 700 m) in order to have a synoptic view of the entire slide. In each 

scan, point-cloud spot-spacing ranged from 6 to 15 cm. The initial scan was georeferenced to a 

0.5 m DEM in a UTM coordinate system (NAD83) derived from aerial photographs acquired in 
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2007. Subsequent scans were aligned to the georeferenced scan masking out the data points from 

the active part of the landslide.    

 

Figure 3.8. (a) Photograph showing the field scanning of the Cleveland Corral landslide in the Sierra 

Nevada Mountains, California with the location of the landslide (inset). Black lines mark an approximate 

(hand-drawn) landslide boundary (b) Shaded relief map using 50 cm DEM from TLS data. No data 

(black) are shadows mainly from vegetation. Landslide surface boundary in blue is adapted from Reid et 

al. (2003) and the surface features (scarps, thrusts, and cracks) in red were mapped in 2010. Gray boxes in 

(a) and (b) outline the area selected for analysis.  

3.3.1 Displacement time series 

We obtained displacement fields of the CCL using both ICP and PIV methods for four time 

periods when the slide was moving: Jan-May 2010, May-June 2010, Jan-Jun 2010 and Jun 2010 

– Apr 2012 (Figures 3.9 and 3.10). PIV estimates for the first three time period use 1 m spatial 

resolution and ICP estimates all use 5 m ICP window size (average > 2500 data point in a 
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window). Estimated maximum displacements using both methods from Jan-May 2010, May-Jun 

2010 and Jan-Jun 2010 are ~0.5 m, ~0.5 m and ~1 m respectively (Figures 3.9 and 3.10). 

Although we found the lowest RMSE using a 4 m ICP window size in our synthetic case, 

because of scattered data due to vegetation and relative change of shadows over time, we needed 

to use a larger number of data points to better fit the ICP estimate with the GPS and feature 

tracking (Figure 3.11). The PIV estimated Jan-May displacement field agree with GPS and 

feature tracking at better than 90% of the maximum displacement (Aryal et al., 2012).  

Comparison of the displacements using both methods with the GPS and feature tracking (Figure 

3.11) indicate that PIV estimated displacements of the CCL match with the observations better 

than the ICP estimates.  For example, for May-Jun 2010, standard misfit of GPS and feature 

tracking with PIV is 0.039 and 0.073 m respectively but for the same period of time, standard 

misfit of GPS and feature tracking with ICP is 0.071 and 0.09 m respectively. Comparison of the 

estimated ICP displacement with the ground truth suggests that the mean standard errors for Jan-

May, May-Jun and Jan-Jun 2010 are 0.063 m, 0.09 m and 0.18 m respectively (Figure 3.1). The 

relatively larger misfit for ICP estimation is likely to be due to vegetation and change in shape 

and size of shadows as the ICP method is sensitive to the data scattering and shadows.  For the 

time period from Jun 2010 to Apr 2012 (Figure 3.10b-d), the estimated displacement using both 

methods are smaller than 3 meters compared to the GPS measurements that show displacements 

as large as ~5 m. In this time period, the displacements are too big to estimate accurately using 

both methods.  Nevertheless, both PIV and ICP-estimated vectors show a similar displacement 

magnitude and orientation and delineate the active part of the landslide. This Jun 2010 – Apr 

2012 displacement field show that the entire toe portion of the slide was active at this time period 

compared to only a portion of the toe active in 2010 (Figure 3.10c-d). 

To summarize, although the ICP method appears to work best for our synthetic case, it has 

potential weaknesses that may limit the accuracy for real field data. At the CCL, PIV estimates 

agree better with the ground truth data. Similarly, the PIV estimates have smaller spatial 

resolution (PIV in 1 m compared to ICP in 5 m) and allow better characterization of a 

displacement field where displacement gradients are higher such as along the landslide 
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boundaries. Therefore, we prefer using the PIV-estimated displacement field to analyze the 

pattern of deformation at CCL.  

3.3.2 Pattern of surface deformation  

The estimated displacement fields can be used to acquire a dense deformation pattern which 

provides useful information for landslide hazard assessment and mitigation (Baum and Fleming, 

1991). To characterize the surface deformation pattern, we performed a strain analysis of the 

estimated surface displacement fields.  The strain is independent with respect to rigid body 

motions reflecting relative change in surface displacements only, and therefore any effects of 

systematic errors (e.g., due to TLS data aligning) are automatically removed. Typically, the 

strain field is computed via a least square interpolation of strain rates using discrete geodetic 

measurements. To obtain strain fields, we performed a modified least square inversion (Shen et 

al., 1996) on the displacements and their covariances to solve for strain rates and rotations using 

the Matlab tools of Teza et al. (2008).  

We obtain strain maps using the PIV-estimated January-May, May-June and January-June 2010 

displacement fields. All three strain maps indicate stretching (extension) in the upslope part and 

shortening (compression) in the downslope part of the toe portion of the landslide (Figure 3.12). 

At the central part of this toe portion of the January-May 2010 strain map (Figure 3.12a) shows 

compression or shortening but the May-June 2010 strain map (Figure 3.12b) indicates extension 

or stretching. This suggests that there are at least two major kinematic elements in this portion 

that are moving at different rates over the time: the upper kinematic element moving relatively 

faster from January-May 2010, but the lower kinematic element moving relatively faster from 

May-June 2010. Overall, the January-June 2010 strain map (Figure 3.12c) shows only one major 

block with a relatively neutral zone in between the contrasting styles of deformation at the 

upslope and the downslope. This change in the strain pattern in space and time at the toe portion 

of the CCL also suggests non-uniform slip rates of the slide in space suggesting to us that models 

assuming uniform slip at a single slip plane (e.g., Aryal et al. 2013) are overly simplified.  
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Figure 3.9. ICP and PIV estimated displacements (horizontal and vertical) of CCL. (a-b) January – May 

2010 (PIV estimation is reproduced from Aryal et al., 2012). (b-d) May – June 2010. Landslide features 

(black) were mapped in the field in 2010.  
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Figure 3.10. ICP and PIV estimated displacements (horizontal and vertical) of the landslide. Landslide 

features (black) were mapped in the field in 2010. (a-b) January – June 2010, and (b-d) June 2010 April 

2012. Landslide features in green Reid et al. (2003) indicate that the entire toe portion of the slide was 

active in this period of time.   
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Figure 3.11. Comparison of PIV and ICP computed displacements (magnitude) of CCL with GPS 

measurement and displacement from manual tracking of identifiable features’ geometric centroid. STD is 
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standard deviations of the misfit with the observation (a-b) January 2010 to May 2010 (comparison with 

PIV is reproduced from Aryal et al., 2012). (c-d) May 2010 to June 2010, and (e-f) January 2010 to June 

2010.  

3.4 Discussion 

Both ICP and PIV methods have been applied for more than two decades. The ICP method has 

been developed for point cloud data similar to TLS data. Therefore, once aligned, no other 

processing of the TLS data is needed to apply the ICP method. The PIV method we use is 

adapted from fluid dynamics and therefore the TLS data need to be pre-processed (Aryal et al., 

2012) to make images similar to PIV images. Another main advantage of ICP is that it is 

inherently a 3D method compared to PIV. In general PIV, 3D velocities are obtained using 

stereo-images (Raffel et al., 2007), but here we use PIV to estimate 2D horizontal displacement 

and the vertical displacement is estimated by differencing heights of corresponding points in the 

DEMs from different TLS scans.  When finding the corresponding points in DEMs using the 2D 

PIV displacements, errors in the horizontal displacements can propagate to the estimated vertical 

displacement. This is seen in our synthetic case where the residuals in vertical displacement 

using PIV (Figure 3.6i) are larger compared to the ICP vertical residuals (Figure 3.8i). 

The residual plots for the synthetic example (Figure 3.6 and 3.8) show that the ICP method 

recovers the synthetic signal better than the PIV method but the estimation resolution of ICP is 

coarser than the PIV resolution (Table 3.1). In contrast, PIV estimates of CCL agree better with 

the independent measurements (GPS and feature tracking) than the ICP estimates (Figure 3.11). 

In the pixel-based PIV cross-correlation we apply here, errors in the horizontal direction 

propagate faster to the vertical direction. Therefore, although we do not have any synthetic 

displacement in the x-direction (Figure 3.6a), there are estimates as large as 0.05 m (Figure 3.6d) 

in the x-direction. Similarly, errors in the horizontal displacements can introduce errors in the 

estimated vertical displacements when finding the corresponding points, as stated above (Figure 

3.6f). 
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Figure 3.12. Strain maps calculated using Jan-May, May-Jun and Jan-Jun 2010 displacement field (PIV 

estimated). Blue vectors represent extension and red vectors represent compression. Gray dots are 

location of the PIV displacement used for the strain calculations. The downslope direction is nearly 

parallel to South. Landslide features (black) were mapped in the field in 2010 and these periods of time, 

only a portion of the toe of the slide was active (see Figure 3.10c-d to compare with the entire boundary 

of the toe portion of the slide. The map indicates change in deformation pattern at the central part of the 

landslide from compression in Jan-May (a) to extension in May-Jun (b) (common boundary of two blocks 

highlighted in green). Overall from January - June (c), there is no deformation (neutral zone) at the central 

part of the landslide. 

 

PIV and ICP techniques applied to time series TLS point cloud data from the CCL show that 

both methods can provide spatially continuous 3D displacement fields. Both methods perform 

well for the CCL data from the January-May, May-June and January-Jun 2010 time periods 

(Figure 9 and 10a). One advantage of PIV is that it estimates the displacements at higher 

resolution and the effects of displacement gradients in the estimation window can be minimized. 

For June 2010 to April 2012, the displacement is as large as ~3 m and mismatch between the 

orientations of ICP and PIV vectors are more prominent (Figure 3.10c). In this case, the PIV 

displacement field may have larger noise due to the need to use a larger correlation window (6 

m) as described in section 1.1 and the larger displacement gradient in the correlation window. 

Yet, PIV performs better than ICP; as ICP suffers significantly from problems related to large 

movements and different data point densities in the two scans. Nevertheless, both ICP and PIV 

displacement fields reveal the displacement pattern in the active part of the slide from June 2010 

to April 2012 (Figure 3.10c).  

Differences in performance of ICP vs PIV for the synthetic signal vs the CCL data can be related 

to the effect of vegetation and shadows. In contrast to the synthetic data, the data from CCL 

contains backscattering from vegetation particularly in May and June compared to January 2010. 

Returns from trees and bushes can be significantly different over time. In PIV, changes in returns 

from vegetation over time may cause decorrelation and therefore PIV estimates are less sensitive 
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to the vertical growth of trees and bushes over time. In contrast, ICP finds the corresponding 

match for every single data point and therefore returns from trees and bushes and their shadows 

increase the estimation errors. Another reason for the poorer match of the ICP estimate with the 

ground truth measurements can be due to the coarser estimation resolution (larger windows). The 

ICP estimation is at 5 m grid resolution and therefore the ICP estimation and the ground truth 

measurements can be as far as 2.5 m in space. This can introduce errors particularly when the 

displacement gradient in the ICP window is larger.   

Table 3.1 Average misfit of the PIV and ICP estimation with different window sizes for a synthetic signal 

applied to Jan 2010 TLS data and Jan-Jun 2010 TLS data.  

 Synthetic Signal 
CCL Data 

Jan – May 2010 

Estimation Method PIV ICP PIV ICP 

Spatial Resolution (m) 

 (window sizes) 
1 2 4 5 1 2 4 5 

Average misfit (m) 0.009 0.041 0.006 0.008 0.08 0.39 0.21 0.16 

The point-to-point ICP matching of large data sets can be very slow, but the point-to-plane ICP 

we use in our analysis has much faster convergence particularly when the initial position of the 

data is close to the model and when the input has relatively small noise. When the corresponding 

shapes start far away from each other, or for noisy point clouds due to trees or shadows, point-to-

plane ICP tends to oscillate and can fail to converge (Gelfand et al., 2003). Similarly, ICP 

assumes that one point cloud is a subset of the other. When this assumption is not valid (as might 

be the case in a deforming landslide), false matches can cause ICP to converge to an incorrect 

solution or to a local minima (Fusiello et al., 2002). In TLS data, this situation can occur when 

there are many, similarly shaped features (e.g., trees or surface of uniform slope) or significantly 

higher displacement gradients than expected. Therefore, some of the vectors in Figure 3.10c are 

unrealistic (e.g., pointing upwards). 
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Overall, our results demonstrate that the PIV and ICP methods applied to the TLS data can 

estimate displacement fields of small spatial extent and can capture the wide spectrum of the 

displacement field in space (Figure 3.1) and time that can be challenging to measure using other 

methods such as GPS and InSAR..  

3.5 Conclusion  

We have applied the particle image velocimetry (PIV) and iterative closest point (ICP) method   

to terrestrial laser scanning (TLS) data from the toe of the Cleveland Corral landslide (CCL) and 

derived 3D displacement fields. ICP performed better to recover the synthetic signal applied to 

one of the TLS data sets. Estimated displacement fields from the CCL, however, agree relatively 

better with the PIV estimates. This discrepancy can be attributed to the change in returns from 

vegetation that can affect the ICP estimates more than the PIV estimates. PIV can create 

displacement fields at higher resolution but the expected maximum displacement is needed a 

priori for the method to perform well. When the area scanned contains no vegetation and 

shadows, ICP is preferred. Therefore, instead of these two methods replacing each other, they 

can complement each other and provide a means to validate the result of one or the other. The 

methods we demonstrate here should be useful for estimating surface displacements of smaller 

spatial extent associated with a variety of geologic processes including land subsidence, volcanic 

activities, ice sheet and glacier movement, in addition to landslides. 
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