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A b str a ct

As progress toward a highly resolved tree of life continues to expose nodes that resist resolution, 

interest in new sources of phylogenetic information that are informative for these most difficult rela

tionships continues to increase. One such potential source of information, the presence and absence 

of microRNA families, has been vigorously promoted as an ideal phylogenetic marker and has been 

recently deployed to resolve several long-standing phylogenetic questions. Understanding the utility 

of such markers for phylogenetic inference hinges on developing a better understanding for how such 

markers behave under suitable evolutionary models, as well as how they perform in real inference 

scenarios. However, as yet, no study has rigorously characterized the statistical behavior or utility 

of these markers. Here we examine the behavior and performance of microRNA presence/absence 

data under a variety of evolutionary models and re-examine datasets from several previous studies. 

We find that highly heterogeneous rates of microRNA gain and loss, pervasive secondary loss, and 

sampling error collectively render microRNA-based inference of phylogeny difficult, and fundamen

tally alter the conclusions for four of the five studies that we re-examine. Our results indicate that 

miRNA data have far less phylogenetic utility in resolving the tree of life than is currently recognized 

and we urge ample caution in their interpretation.
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Sig n ific a n c e  Statem en t

As progress toward a highly resolved Tree of Life continues, evolutionary relationships that defy 

resolution despite ongoing methodological improvements continue to be identified. Recently, the 

presence and absence of microRNA families have emerged as potentially ideal sources of information 

for these difficult phylogenetic problems, and have since been employed to resolve several long

standing problems in the metazoan tree of life. This study performs the first rigorous statistical 

assessment of the use of microRNAs for phylogenetic estimation and finds that a high incidence 

of homoplasy and sampling error render phylogenies based on microRNA data highly biased or 

uncertain. This study casts serious doubt on the central phylogenetic conclusions reached in several 

previous analyses of microRNA datasets.
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As genomic tools and affordable DNA sequencing have become widely available, our ability to 

leverage molecular sequence data to estimate species phylogeny has rapidly increased. The flood of 

molecular data has, in turn, witnessed brisk progress in resolving the tree of life [1, 2]. Neverthe

less, many relationships have resisted resolution despite repeated efforts using increasing amounts 

of sequence data. These challenging cases have motivated the search for new sources of (molecular) 

phylogenetic information, which places precedence on data that evolve by rare and nearly irre

versible genomic changes. Patterns of gene rearrangement, duplication, insertion and deletion, as 

well as positional information for retrotransposons have all been promoted as candidate data with 

“ideal” phylogenetic properties (e.g., [3-6]). Although new types of phylogenetic data may hold 

promise in resolving difficult nodes in the tree of life, they require careful consideration in order to 

appropriately model the underlying evolutionary process by which they arose and to accommodate 

possible sampling biases associated with their collection.

One recently promoted class of putatively ideal phylogenetic data is the presence/absence of 

microRNA (miRNA) families [7, 8]. MicroRNAs are small regulatory RNA molecules that play a 

pervasive role in gene regulation and are understood to influence a variety of biological processes 

both in normal physiological and pathological disease contexts [9, 10]. Because of their widespread 

importance in regulating gene networks and their potential role in the evolution of complexity, 

miRNAs are currently the subject of considerable focus in developmental biology [11-13].

The justification for the phylogenetic utility of miRNA presence/absence data stems from the 

way that novel miRNA families arise. MicroRNAs originate from random hairpin sequences in 

intronic or intergenic regions (typically 60-80bp in length) of the genome that become transcribed 

into RNA [14, 15]. After transcription, the resulting primary miRNAs may fold into hairpins that 

serve as the substrate for a pair of enzymes—called Drosha and Dicer—involved in miRNA synthesis 

[16], culminating in a mature miRNA (typically 22bp in length).

The odds that any individual hairpin structure will acquire the requisite mutations to form a 

novel miRNA are exceedingly slim; however, genomes contain many thousands of these structures, 

such that novel miRNAs are likely to accumulate over deep time [14]. After the introduction of new 

functional miRNAs, strong purifying selection associated with their regulatory role can lead to both 

extraordinarily low rates of substitution within miRNA sequences, as well as long-term preservation 

of miRNAs in the genome [14]. This biological scenario is expected to lead to an evolutionary
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pattern wherein new miRNAs—over long time scales—continually arise in genomes and experience 

a low rate of secondary loss [15]. Moreover, the origin of novel miRNAs involves the accumulation of 

random mutations to a relatively long sequence (60-80bp in animals), rendering it highly improbable 

that identical miRNAs will evolve convergently [17]. These considerations have led to the promotion 

of miRNAs as a new source of data that are ideal for parsimony inference of phylogeny: they should 

exhibit extraordinarily low levels of homoplasy (i.e., they are not expected to arise convergently or 

to be lost secondarily) and thus provide unambiguous synapomorphies (shared-derived character 

states) that elevate miRNAs to “one of the most useful classes of characters in phylogenetics” [18].

The above reasoning has led to a recent proliferation of miRNA-based phylogenetic studies 

seeking to unequivocally resolve several recalcitrant relationships in the tree of life. At the time of 

our analysis, these include five formal* phylogenetic analyses of miRNA data focused on identifying 

the phylogenetic position of turtles within amniotes [24], acoelomorph flatworms within animals 

[25], lampreys within vertebrates [hagfish and jawed vertebrates; 18], myzostomidan worms within 

bilaterians [26], and to establish the monophyly of—and resolve relationships within—annelids [27].

These studies proceed by first identifying the set of miRNAs present in each study lineage 

using one of two general approaches: by searching for known or novel miRNAs either in existing 

genome assemblies and/or in novel data generated by sequencing small-RNA libraries. The identified 

miRNA families are then used to construct a data matrix in which each miRNA family is treated as 

an ordered binary character, where miRNA presence is the derived state. Finally, this data matrix 

is subjected to (Dollo or Wagner) parsimony analysis to estimate phylogenetic relationships.

Here, we critically examine the use of miRNA data for phylogeny estimation, focusing on three 

concerns: 1) the validity of claims related to the evolution of miRNA families (i.e., that secondary 

loss is exceptionally rare); 2) limitations of parsimony methods used to infer phylogeny from miRNA 

presence/absence data; and 3) problems associated with the detection of miRNA families. We 

demonstrate that these concerns collectively render published phylogenetic conclusions based on 

miRNA data uncertain (obscured by their reliance on non-statistical methods) and/or strongly 

biased (owing to problems in miRNA detection and/or inference method). We illustrate these

‘ Several additional studies discuss the phylogenetic implications of miRNA data, bu t do not subject these d a ta  

to  a formal phylogenetic analysis. Typically in these studies, the phylogeny is first estim ated from some other source 

of data, and then  the correspondence of the inferred tree to  select miRNA families is discussed (e.g., [19-23]).
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concerns by reanalyzing five published phylogenetic studies of miRNA data.

I n t e r p r e t i n g  a n d  a n a l y z in g  m i c r o R N A  d a t a :

Is m iR N A  a b s e n c e  e v i d e n c e  o r  a b s e n c e  o f  e v i d e n c e ?

In order to properly analyze and interpret miRNA presence/absence data, we must be explicit on 

the nature and meaning of absence. A microRNA family that is scored as absent in a particular 

lineage can, in principle, have one of three histories: 1) the miRNA family may have never arisen 

in or been inherited by that lineage (‘true absence’); 2) the miRNA family may have previously 

been present in the lineage but subsequently lost from the genome (‘secondary loss’); or 3) the 

miRNA family may actually be present in the genome but escaped detection during data collection 

(‘sampling error’). If all (or nearly all) absences of miRNA families are true absences, then miRNA 

loss strictly does not occur (or occurs exceedingly rarely): this is the implicit assumption of miRNA 

studies. Accordingly, because the evolution of miRNA data involves minimal character change— 

miRNA families have a unique origin (bereft of convergence) with negligible/no secondary loss—the 

use of parsimony as an inference method might be justified.

In fact, nearly all published miRNA studies (including all five re-examined here) have used 

some variant of the parsimony method to estimate phylogeny. The miRNA study by [27] used 

“standard” (Wagner) parsimony—in which gains and losses of miRNA families incur equal cost [28], 

and the remaining four studies [18, 24-26] employed Dollo parsimony [29]. Dollo parsimony allows 

for the unique evolution of a character and its subsequent loss (both with equal cost), but precludes 

re-evolution of the same character (with effectively infinite cost) once it has been lost.

S e c o n d a r y  l o s s  o f  m iR N A  f a m il ie s  is  c o m m o n

Here we explore the claim that secondary loss of miRNA families is exceedingly rare (e.g., [17, 20, 

21]). We derived estimates of the prevalence of miRNA loss from analyses of published miRNA 

datasets. The prediction is quite simple: if loss of miRNA families is exceedingly rare, then the 

most parsimonious tree for a given miRNA dataset should be virtually free of homoplasy (implied 

secondary loss of miRNA families), given that Dollo parsimony does not permit convergent or 

parallel evolution.
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To derive estimates of the implied prevalence of miRNA loss, we reanalyzed the miRNA datasets 

under Dollo parsimony with PAUP* v4b10 [30] by means of exhaustive searches, treating all char

acters as ‘Dollo.up’, which provides the parsimony score (i.e., the total number of implied miRNA 

gains and losses) for the optimal tree. We then tabulated the number of miRNA losses using the 

‘dollop’ function in Phylip v3.5c [31]. Finally, we estimated the prevalence of miRNA secondary loss 

in each of the five formal miRNA phylogenetic studies, which is simply calculated as the number of 

implied losses divided by the parsimony score (total number of implied changes).

[Table 1: miRNA loss rates ]

Our survey of published studies suggests that secondary loss of miRNA families is apparently 

quite common (Table 1). In all but the amniote study ([24], addressed below), secondary miRNA 

losses constitute between 27-54%, with an overall average of 38%, of the implied evolutionary 

changes. These phylogenetic results accord well with those of molecular evolutionary studies, in 

which prevalent secondary loss of miRNA families have been inferred for various taxa [14, 32-35].

Although we suspect that the degree of secondary loss in published studies is somewhat inflated 

by miRNA sampling errors (see: Sampling error in miRNA detection and its phylogenetic impact, 

below), the complex character histories of miRNA evolution nevertheless suggest that the use of 

parsimony—which effectively places all of the probability on the single character history with the 

absolute minimal amount of change—is not a suitable method with which to infer phylogeny from 

miRNAs.

S t a t i s t i c a l  a n a l y s is  o f  m iR N A  e x p o s e s  c o n s i d e r a b l e  p h y l o g e n e t i c  u n c e r t a i n t y

As discussed in the preceding section, the evolution of miRNA often appears to be complex, 

which raises concerns about the choice of parsimony as a method of inference. Stochastic models 

are available that are more appropriate for accommodating complex histories, as the likelihood 

of a given character (in this case, a miRNA family) is calculated by integrating over all possible 

character histories (in this case, patterns of miRNA gain and secondary loss that could give rise to the 

observations), weighting each history by its probability under the model. Furthermore, stochastic 

models are available that may be appropriate for the analysis of miRNA presence/absence data. For 

example, the binary stochastic Dollo model (SD: [36, 37]) appears to be well suited for the analysis
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of miRNA presence/absence data. The SD model describes an immigration-death stochastic process 

for a set of observed binary characters where the origin of a character (miRNA family) is modeled 

as a homogeneous Poisson process with instantaneous rate A, and its subsequent loss is modeled as 

a stochastic branching process (where the probability of loss is proportional to the branch length 

in which it persists toward the present) with an instantaneous rate of secondary loss, ^  [37]. This 

allows the character to evolve a single time-, experience subsequent loss (possibly independently 

in multiple lineages), but prohibits regain of the character once it has been lost within a lineage 

[37]. Inference under stochastic models within a Bayesian statistical framework provides a natural 

means for assessing support/accommodating uncertainty in phylogenetic estimates. Because the 

majority of published miRNA studies to date have either ignored the issue of evidential support 

for estimates, or have relied on ad hoc support measures (such as the Bremer support index; [38]) 

which have no clear statistical interpretation [39], the availability of an inference framework that 

explicitly assesses support is particularly attractive.

Markov chain Monte Carlo (MCMC) simulation is used to approximate the joint posterior 

probability distribution of the phylogenetic parameters. A Markov chain is specified that has state 

space comprising all possible values for the phylogenetic model parameters, which has a stationary 

distribution that is the distribution of interest (i.e., the joint posterior probability distribution of the 

model parameters). Samples drawn from the stationary Markov chain provide valid estimates of the 

joint posterior probability density, which can be queried marginally with respect to any parameter 

of interest. In the case of topology, the marginal posterior probability for a given clade is simply its 

frequency in the sampled trees.

Bayesian inference of phylogeny from miRNA datasets.—These considerations motivated us to re

analyze previously published miRNA datasets within a Bayesian statistical framework using a 

stochastic binary Dollo model [37] to describe the gain and loss of miRNA families. For each 

of the five miRNA datasets, we treated all characters as ‘Dollo type’ and approximated the joint 

posterior probability density via MCMC using BEAST v1.7.5 [40]. We specified a prior for the rate 

of miRNA loss, ^, using an exponential distribution with a small rate parameter (X =  1.0 x 10-4) 

and specified a prior on the tree topology and node heights using a stochastic birth-death branching 

process.

Molecular studies have alternatively characterized the evolution of miRNAs as a gradual process
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of continuous accumulation via mutation [14], or as an episodic process associated with major 

regulatory or developmental innovations [15]. Accordingly, we explored an array of (relaxed) clock 

models to describe the variation in rates of miRNA evolution across the tree or through time that 

range from stochastically constant to episodic. Selection among these alternative clock models yields 

ultrametric phylogenies that give us insight into the pattern of miRNA accumulation and loss as well 

as information about the placement of the root of the phylogeny. Specifically, for each dataset, we 

performed analyses under the strict-clock model, the random-local clock model (RLMK: [41]), and 

the uncorrelated lognormal (UCLN) and exponential (UCED) relaxed-clock models [42]. Inference 

of the joint posterior probability density for each composite phylogenetic model (i.e., the binary 

stochastic Dollo model + one of the [relaxed] clock models) involved at least three independent 

MCMC analyses, running each chain for 100 million cycles and sampling every 10, 000th cycle.

In order to compare fit of the data to these four alternative clock models, we performed ad

ditional analyses targeting the marginal likelihood of the data under each of the four composite 

phylogenetic models. For each dataset, this entailed running the MCMC through a series of 50 

power posteriors spanning from the prior to the posterior, with the powers spaced along a Beta(0.3, 

1.0) distribution. We then estimated the marginal likelihood from this chain using both path and 

stepping stone sampling analyses [43-45]. These analyses were also each repeated at least three 

times to ensure stability of the marginal likelihood estimates. We then compared support for the 

alternative clock models by calculating Bayes factors as the ratio of the marginal likelihoods for each 

pairwise combination of candidate models. We interpret Bayes factors following Kass and Raftery 

[46]: viewing 2 ln BF values >10 as very strong support for the candidate model, between 6 and 10 

as strong support, between 2 and 6 as positive evidence, and < 2 as essentially equivocal regarding 

the alternative models. We performed model comparison only for models where the analyses per

formed very well, judged by the MCMC mixing efficiently across the power posteriors and highly 

stable estimates of the marginal likelihood across replicated analyses with both stepping stone and 

path sampling.

In total, this analysis design entailed 180 MCMC analyses: each of the five miRNA datasets 

were analyzed under each of the four (relaxed) clock models, performing three independent MCMC 

analyses under each model, repeating analyses to target first the joint prior probability, then the joint 

posterior probability, and finally the marginal likelihood densities. We assessed the performance of
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each MCMC analysis for all parameters (including the topology) using Tracer and AWTY [47, 48], 

which suggested that the chains mixed well and had converged prior to ~  50 million cycles in nearly 

all cases. In the few instances where poor mixing or convergence was noted, we ran additional 

independent analyses until an adequate sample from the target density could be obtained, or it 

became clear that the MCMC could not adequately sample from the target distribution. Inferences 

under each model were based on the combined stationary samples from each of the independent 

chains, which provided adequate sampling for all parameters according to the effective sample size 

(ESS) [40].

Finally, we assessed support for the key phylogenetic findings of each published miRNA study 

using Bayes factors. This entailed a second round of analyses targeting the marginal likelihood 

density that were identical to our initial analyses under the best fitting clock model (as judged 

by the Bayes factor model comparisons above), but with the topology constrained to the relevant 

alternative hypothesis in each case (discussed in more detail below). These analyses allowed us 

to quantify the extent to which each miRNA dataset can decisively distinguish among alternative 

phylogenetic hypotheses.

Patterns and rates of miRNA evolution.—We used Bayesian model-comparison methods to assess 

the fit of the miRNA datasets to four (relaxed) clock models, which differ in their ability to accom

modate rate variation across lineages. The strict clock makes the most stringent assumption of rate 

homogeneity, the random-local clock is intermediate, and the uncorrelated (exponential and lognor

mal) relaxed-clock models are able to capture the most extreme rate fluctuations across branches— 

rates on adjacent branches are modeled as independent and identically distributed random variables 

drawn from a common (exponential or lognormal) probability distribution (Drummond et al., 2006). 

Interestingly, the two uncorrelated relaxed-clock models had the highest marginal likelihood and 

were therefore the preferred model for every single dataset (Table 2). We were unable to perform 

a few of these comparisons due to poor mixing of MCMC that prohibited stable estimation of a 

marginal likelihood for some of the data + model combinations (the uncorrelated lognormal in par

ticular, see Table 2). However, the uncorrelated exponential model was very strongly preferred (2 

ln BF > 10) to the Strict model for four datasets, and was strongly preferred (2 ln BF > 6) for 

the fifth. These results, combined with the large coefficient of variation for rates among branches 

under the winning model (Table 2), imply substantial heterogeneity in the rate of miRNA evolution
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across branches in these datasets, conditions in which parsimony inferences are more likely to be 

inconsistent (e.g., [49-51]). Finally, as in the case of the Dollo parsimony analyses, Bayesian esti

mates under the stochastic Dollo model indicate substantial rates of miRNA loss in all five miRNA 

datasets (Table 1).

[Table 2: miRNA Clock Models ]

Evaluating support for key phylogenetic conclusions of published miRNA studies.—Bayesian analyses 

of miRNA data offered novel insight into several previously published studies. In three of the five 

cases, the Bayesian analysis recovers a result that disagrees in important respects from the parsimony 

result, but agrees with other published studies based on more-traditional phylogenomic analyses of 

molecular sequence datasets. Parsimony and Bayesian analyses recover congruent conclusions for 

the two remaining studies, although both of these cases remain problematic due to large uncertainty 

or sampling error. We briefly discuss key results for each of these analyses below.

Annelid dataset.—Sperling et al. [27] sought to evaluate the monophyly of and establish phyloge

netic relationships within annelids. Based on the parsimony analysis of the miRNA dataset, they 

concluded that: 1) annelids are monophyletic (Nereis, Lumbricus, and Capitella form a clade); 2) 

the sipunculan species, Phascolosoma, is the sister group of annelids; and finally, 3) polychaete 

annelids are not monophyletic (Nereis and Capitella do not form a clade). Bayesian analysis of 

the miRNA data under the stochastic Dollo model infers the tree: ((Nereis, Phascolosoma), (Lum

bricus, Capitella)) (Figure 1a). Accordingly, these results neither support annelid monophyly nor 

a sister-group relationship between sipunculans and annelids. Our finding that sipunculids (repre

sented by Phascolosoma) are included within annelids—and thus, that annelids are paraphyletic—is 

consistent with most recent molecular phylogenetic/omic studies (e.g., [52-57]).

We assessed the decisiveness of support for these alternative topological models by performing 

analyses in which the topology was constrained alternatively to the parsimony estimate (Model Mi, 

Table 3) and the Bayesian estimate (Model M 0, Table 3) and compared the marginal likelihoods 

under the two models. A 2 ln BF of ~  12 in favor of the Bayesian topology suggests that the data 

very strongly prefer the Bayesian estimate relative to the parsimony estimate.

[Table 3: miRNA Topology Models ]
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Bilaterian dataset.—Helm et al. [26] sought to resolve the phylogenetic affinity of myzostomid 

worms using an expanded version of the miRNA dataset from the Sperling et al. (2009) study, 

testing alternative hypotheses that either placed myzostomids within annelids or platyzoans. Their 

parsimony analysis of the miRNA data “strongly confirms a phylogenetic position of Myzostomida" 

as “deeply nested within the annelid radiation, as sister to Capitella.” By contrast, Bayesian analysis 

of this miRNA dataset under the stochastic Dollo model implies that myzostomids are the sister 

group of annelids (with a clade probability of ~  0.97-0.99), which agrees with estimates based on 

recent analyses of phylogenomic data (e.g., [55]) (Figure 1b).

We assessed the support for these alternative hypotheses by performing analyses in which the 

topology was constrained to the parsimony estimate (model Mi, Table 3), and compared the 

marginal likelihood of this model to that from analyses constrained to the Bayesian estimate (model 

Mo, Table 3). These analyses decisively reject the inclusion of Myzostoma within annelids (2 ln 

BF ~  100). It was not possible to perform a clear test of the alternative ‘platyzoan’ hypothesis, as 

Platyzoa was not inferred to be monophyletic in our unconstrained analyses.

Animal dataset.—Philippe et al. [25] sought to establish the phylogenetic placement of acoels and 

xenoturbellids within animals using three independent datasets: a large number of mitochondrial 

genes, a phylogenomic dataset comprising 38, 330 amino-acid positions, and a microRNA dataset. 

The phylogeny inferred from their Dollo parsimony analysis of the miRNA dataset implied that 

acoels (Symsagittifera and Hofstenia) and xenoturbellids (Xenoturbella) form a paraphyletic grade 

near the base of bilaterians: (Symsagittifera, (Hofstenia, (Xenoturbella, (remaining bilaterians))). 

The Bayesian analysis of this miRNA dataset under the stochastic Dollo model infers a very different 

tree in which acoels are monophyletic and sister to xenoturbellids: (((Symsagittifera, Hofstenia), 

Xenoturbella), remaining bilaterians) (Figure 1c). We assessed support for these hypotheses by 

performing additional analyses in which the topology was alternatively constrained to the parsimony 

estimate (topological model M1, Table 3) and the Bayesian estimate (topological model M0, Table 

3) and compared the marginal likelihoods. In contrast to all the other studies, the Bayes factor 

suggests that the miRNA data favor the parsimony hypothesis in this case (2 ln BF ~  -12). Thus, 

these contrasting results give no clear guidance on which alternative is the more reliable topology. 

However, the extensive phylogenomic analysis that was paired with the original miRNA analysis 

helps to clarify which topology is likely correct.
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Notably, Philippe et al [25] favored a hypothesis that disagreed with the miRNA parsimony re

sult. The central phylogenetic finding in Philippe et al. [25] is the close relationship between Xeno

turbella and (a monophyletic) Acoela (Symsagittifera, Hofstenia). Although this result strongly con

flicts with their parsimony analysis of miRNA data, they prefer it based on their rigorous Bayesian 

analyses of large-scale molecular datasets. In fact, in discussing the conflicting estimates based on 

their Bayesian analyses of the phylogenomic data and their parsimony analysis of the miRNA data, 

Philippe et al. [25] were skeptical of the miRNA phylogeny, attributing this discrepancy to the 

effects of pervasive secondary loss of miRNA families in acoels. Interestingly, our Bayesian analysis 

of the miRNA dataset recovers the same monophyletic Acoela sister to Xenoturbella. However, both 

Bayesian and parsimony analyses of the miRNA data conflict with the preferred tree from Philippe 

et al. [25] in other respects, suggesting that secondary loss has strongly obscured any phylogenetic 

signal in these data.

Vertebrate dataset.—Heimberg et al. [18] sought to resolve the phylogenetic position of lampreys 

within vertebrates using miRNA data, testing alternative hypotheses that either placed lampreys 

as sister to hagfish (the ‘cyclostome’ hypothesis) or to jawed vertebrates (the ‘vertebrate’ hypoth

esis). Analysis of the vertebrate miRNA dataset using Dollo parsimony supported the cyclostome 

hypothesis: the two lampreys, Lampetra and Petromyzon, form a clade that is sister to the hagfish 

species, Myxine: ((Lampetra, Petromyzon), Myxine)). Bayesian analysis of the vertebrate miRNA 

dataset under the stochastic Dollo model also supported the cyclostome hypothesis, albeit weakly 

(i.e., with a clade probability of ~  0.79) (Figure 1d).

We assessed the support for cyclostome monophyly by performing analyses in which the topology 

was constrained to the alternative phylogenetic hypothesis in which lampreys are sister to jawed 

vertebrates (model M1, Table 3), and compared the marginal likelihoods of the constrained and 

unconstrained (model M0, Table 3) analyses. Comparison of the marginal likelihoods under the 

constrained and unconstrained models suggests that the miRNA data are essentially equivocal 

regarding the phylogenetic affinity of lampreys (2 ln BF ~  1).

Amniote dataset.—Lyson et al. [24] sought to resolve the phylogenetic placement of turtles within 

amniotes, using a miRNA dataset to test whether turtles were either sister to lizards + tuatara 

(the ‘lepidosaur’ hypothesis), or to birds + crocodilians (the ‘archosaur’ hypothesis). Analysis of
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the miRNA dataset using Dollo parsimony supports the lepidosaur hypothesis, and this finding 

was also strongly supported by Bayesian analysis under the stochastic Dollo model (with a clade 

probability of ~  1.0) (Figure 1e).

We further assessed support for the lepidosaur hypothesis by performing analyses of the amniote 

miRNA dataset in which the topology was constrained to the alternative phylogenetic hypothesis in 

which turtles are sister to archosaurs (model M1, Table 3), and compared the marginal likelihoods 

to those from the lepidosaur hypothesis (model M0, Table 3). In contrast to all other studies, 

comparison of the marginal likelihoods under the two models suggests that the miRNA data provide 

strong support for the originally published result (2 ln BF ~  17). However, we demonstrate below 

that this result is an artifact of sampling error in the detection of amniote miRNAs (see: Sampling 

error in miRNA detection and its phylogenetic impact).

Anomalous results from miRNA analyses.—Bayesian analysis of published miRNA datasets casts 

considerable doubt on the key phylogenetic conclusions of these previously published studies. In 

three of five cases (animals, annelids, and bilaterians), using a model that accounts for the uncer

tainty in character histories changes the key phylogenetic conclusion, often with strong support. In 

a fourth case (vertebrates), considering the uncertainty in character history leads to the conclusion 

that miRNAs are essentially silent on the relationship of interest. In only one case (amniotes) does 

accounting for uncertainty in character history leave the key conclusion unchanged, although this 

case reveals a second issue that we explore below. Moreover, our re-analyses of published miRNA 

datasets also supported some highly unusual phylogenetic results. For example, Bayesian analy

ses of the amniote miRNA dataset failed to support the (virtually incontrovertible) monophyly of 

archosaurs (Figure 1e), whereas analyses of the animal miRNA dataset supported (the very odd 

placement of) chordates as the sister to all other bilaterians (Figure 1c). We argue below that such 

remarkable findings likely have a more prosaic explanation.

Shortly after the present manuscript returned from an initial round of peer review, a paper ap

peared that further discussed the phylogenetic potential of miRNAs and demonstrated phylogenetic 

inference with miRNAs using the binary stochastic Dollo model [8]. This paper assembled a dataset 

of miRNA presence/absence for 29 metazoan taxa from subsets of the data matrices developed in 

previous studies (including those that we re-examine here) and analyzed it using the stochastic 

Dollo. This analysis recovers high posterior probabilities on all nodes except one and is congruent
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with other phylogenies constructed from more traditional phylogenetic and phylogenomic analyses. 

Thus, the Tarver et al. [8] result appears to be in stark contrast with our results. The discrepancy 

appears to stem from the choice of taxa for inclusion in the Tarver et al. [8] data matrix. The 

dataset retains only a subset of the taxa reported in the original studies, while we analyze the origi

nal studies’ data matrices in full. Further, the Tarver et al. [8] matrix is missing all the taxa that we 

identify as leading to problematic results above. For example, we identify low support and pervasive 

uncertainty associated with the relationship between the lamprey (Lampetra and Petromyzon) and 

the hagfish (Myxine)—the central taxa under study in the dataset of Heimberg et al. [18]. Tarver 

et al. [8] retain only one lamprey (and no hagfish) from this dataset and thus do not test the sup

port for this clade. Similarly, the acoels (Symsagittifera, Hofstenia) and Xenoturbella are central 

to the study by Philippe et al. [25]. These taxa disagree strongly with traditionally constructed 

phylogenies but are not included in Tarver et al. [8]. The two birds (Gallus and Taenopygia) and 

lizard from the Lyson et al. [24] dataset are included in Tarver et al. [8], but the critical turtle and 

alligator data are not. Likewise, the key taxon Myzostomida from Helm et al. [26] is not included, 

nor are Nereis and Phascolosoma from Sperling et al. [27]. No details outlining the choice of taxa 

for this matrix are given, so we are unsure why only subsets of previous datasets were included, nor 

why certain taxa were included versus not. That said, the apparent discrepancy among our results 

appears to stem from our varying choices of taxa. Because the utility of miRNAs in phylogenetics 

lies in their purported ability to resolve particularly vexing phylogenetic relationships, our view is 

that including taxa that allow for tests of such vexing relationships is a critical part of studying 

these marker’s phylogenetic utility.

S a m p l i n g  e r r o r  in  m iR N A  d e t e c t i o n  a n d  i t s  p h y l o g e n e t i c  im p a c t

Sampling error can to lead to the (apparent) absence of miRNAs in phylogenetic datasets. This 

is of particular concern because most miRNA phylogenetic studies use a mixture of approaches 

to identify miRNAs in different lineages (namely, using a combination of bioinformatic scans of 

complete genomes and/or de novo sequencing of small-RNA libraries). If these approaches vary in 

their detection probabilities, then miRNAs are more likely to be discovered in some lineages than in 

others. As more and more data are collected under this biased detection scheme, certain lineages are 

likely to accumulate true presences while the remaining lineages will accumulate apparent absences.
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Since the presence and absence of miRNAs are the direct source of phylogenetic information, this 

sampling artifact may lead to biased estimates of topology.

Here we demonstrate sources of sampling error in the detection of miRNA families, first focusing 

on the analysis of turtle relationships within amniotes as a detailed case study, and then assessing 

the generality of this sampling error by means of a more general survey.

Sampling bias in the detection of amniote miRNAs.—Lyson et al. [24] employed a mixture of miRNA 

detection methods in an attempt to resolve the phylogenetic position of turtles within amniotes. 

Specifically, their study searched for miRNAs using: 1) similarity searches against whole-genome 

assemblies for two birds—chicken (Gallus), zebra finch (Taeniopygia)—and four outgroup taxa; 

2) a combination of similarity searches against the genome assembly for the lizard (Anolis) and 

de novo sequencing of an Anolis RNA library; and 3) de novo sequencing of RNA libraries for a 

turtle species—the painted turtle ( Chrysemys)—and the American alligator ( Alligator). At the time 

of their study, full genome assemblies for the painted turtle and alligator were not available. The 

authors identified 19 miRNA families unique to birds, one miRNA family unique to archosaurs (birds 

and crocodilians), but no miRNA families shared between archosaurs and turtles. Furthermore, the 

study identified four miRNA families that are shared between the anole and turtle. Taken at face 

value, these data appear to unequivocally support a turtle + lizard relationship, to the exclusion of 

archosaurs.

Draft genome assemblies for both the painted turtle and American alligator are now available [58, 

59], which provide an independent check of the miRNAs detected—and the phylogenetic conclusions 

reached—in the Lyson et al. [24] study. We sought to confirm that each of the miRNA families 

that were identified by Lyson et al. [24] as unique to birds (N =  19) were in fact absent from the 

turtle and alligator genomes, and that the single archosaur-specific miRNA was absent from the 

turtle genome. We also assessed whether each of the miRNA families that were identified as being 

shared exclusively by turtles and lizards were in fact present in the turtle genome and absent from 

the alligator genome.

We downloaded both the longer stem-loop sequence (60-80 bp) and the shorter mature sequence 

(22 bp) for each relevant miRNA from miRBase [60] for each appropriate reference taxon (Gallus 

for the 19 bird-specific and the single archosaur-specific miRNA families; Anolis for the four miRNA 

families uniquely shared by turtle + lizard). We constructed local BLAST databases from the turtle
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and alligator genome assemblies (v3.0.3 and 0.1d27, respectively) and searched against them with 

each of the relevant miRNA stem-loop sequences using BLASTN (v2.2.25, minimum word size =  11, 

e-value cutoff =  10-2; [61]). We then predicted secondary structure for any putative miRNAs that 

we identified using mFold [62].

We scored a miRNA family as being present in the turtle and/or alligator genome if it met three 

criteria: 1) We observed a highly significant hit (i.e., with a minimum e-value of 10-20) for the 

reference stem-loop sequence against the relevant genome assembly; 2) The matching sequence in 

the genome contained a nearly perfect match to the mature ~22bp miRNA sequence (i.e., containing 

no more than one substitution in the mature miRNA sequence); 3) The matching sequence in the 

turtle or alligator genome folded into the expected hairpin secondary structure and this structure 

was similar to the predicted secondary structure published for the reference sequence.

Our search confirmed that the single archosaur-specific miRNA (miRNA 1791) was present in 

the alligator genome, as expected. However, we discovered that this miRNA is also present in the 

turtle genome (for sequences and predicted secondary structure, see Figure S1). Furthermore, we 

discovered three additional miRNA families present in both the alligator and turtle genomes that 

were reported by Lyson et al. [24] as being unique to birds (miRNA families 1641, 1743, and 2964). 

All four families exhibited very high sequence similarity with the known miRNA from the reference 

taxon, highly conserved stem-loop structures with similar free energies to that predicted from the 

reference taxon, and mature sequences that were identical (two families) or nearly identical (two 

families) to the reference (see Figure S1 for sequence alignments and predicted structures). This 

sampling error may be inherent to miRNA-detection approaches that rely on RNA sequencing. For 

example, Sperling et al. [27] observed a similar pattern in the polychaete worm, Capitella. They 

discovered five additional miRNAs from the genome of this organism that were not detected in the 

sequences derived from an RNA library. MicroRNAs are frequently expressed only in certain tissues, 

at certain stages of development, or expressed at low levels [27, 63-66]. In these cases, it is likely 

that miRNAs actually present in the genome will be missed because they are not being transcribed 

(or only being transcribed at low levels) in the tissue that was used to make the RNA library.

Finally, we sought to confirm that the four miRNA families identified by Lyson et al. [24] as 

uniting a lizard + turtle clade were, in fact, present in the turtle genome and absent in the alligator 

genome (miRNA families 5390, 5391, 5392, and 5393). Our search confirmed that all four miRNA
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families were absent from the alligator genome, as expected. However, we were only able to find one 

of the four reported miRNA families (miRNA 5391) in the turtle genome. We found no significant 

BLAST hits to any of the other three expected miRNAs, even under relaxed search settings (word 

size =  4, e-value cutoff =  10). We then assessed whether we could identify these miRNAs in the 

Anolis genome and found all four families, as expected. At present, the cause of this discrepancy is 

unclear. Our failure to detect these sequences could be a false negative, indicating that the turtle 

genome assembly is incomplete and missing these three sequences. Alternatively, their previous 

detection could be a false positive in the Lyson et al. [24] study, stemming from contamination 

between the Anolis and Chrysemys sequencing libraries or from another source of error. The turtle 

genome assembly has 18x coverage and is estimated to be 93% complete, which suggests that the 

former explanation is unlikely [59]. Nevertheless, we can not formally distinguish between these 

possibilities at present.

We then revised the Lyson et al. [24] data matrix to correct this sampling error and subjected 

the revised matrix to Bayesian phylogenetic analysis under the stochastic Dollo model (analyses 

performed as detailed above). Rather than supporting a strong relationship between lizards and 

turtles, the corrected miRNA dataset supports a relationship between turtles and archosaurs, albeit 

weakly (i.e., with a clade probability of ~  0.54) (Figure 2). This result is consistent with several 

recently published studies that examine the phylogenetic placement of turtles using large DNA 

sequence datasets [59, 67-69].

We assessed support for the ‘archosaur’ hypothesis by performing analyses of the corrected 

amniote miRNA dataset in which the topology was constrained to the alternative ‘archosaur’ and 

‘lepidosaur’ hypotheses (models M0 and Mi in Table 3, respectively). Comparison of the marginal 

likelihoods under the alternative models indicate that the miRNA data provide positive evidence 

in favor of the archosaur hypothesis (2 ln BF ~  5). This analysis illustrates that miRNA detection 

is prone to strong sampling error, to a degree that can fundamentally alter the conclusions of 

phylogenetic inferences based on these data.

General survey of sampling bias in miRNA detection.—Our ability to provide a detailed description 

of the miRNA detection bias in the amniote study largely rests on the serendipitous availability of 

two new genome assemblies. Accordingly, it is not possible to perform a comparably detailed analysis 

of the potential sampling errors in the other four published miRNA phylogenetic studies. However,
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we can make a more general comparison of alternative miRNA detection strategies. To do so, we 

compiled information from the literature of cases in which the total miRNA complement of various 

organisms had been estimated both by means of de novo sequencing of small-RNA libraries and also 

by means of bioinformatic searches of DNA sequence resources. If no sampling error exists, identical 

sets of miRNA families should be identified using alternative strategies. In stark contrast to this 

expectation, however, we see a high degree of variation in the miRNA complement identified under 

the two strategies (Table 4). Although this comparison does not directly replicate the alternative 

methods employed in published phylogenetic studies, it clearly indicates the prevalence of variation 

in total miRNA complement detection and, as we have shown, this type of sampling error has the 

potential to impact estimates of phylogeny.

[Table 4: miRNA Comparison ]

C o n c l u s io n s

The current wealth of molecular data will continue to resolve relationships in the tree of life, but 

not all nodes will acquiesce with equal effort. Predictably, the variously recalcitrant, enigmatic, 

inscrutable and impenetrable relationships will continue to be identified. Ultimately, resolution of 

these problematic cases may require the discovery of new and improved phylogenetic data (and/or 

the elaboration and careful application of more realistic models that better describe important as

pects of the processes that give rise to conventional genomic data). Accordingly, it is predictable 

that the addition of a putative silver bullet—such as miRNA presence/absence data—to our phy

logenetic arsenal will be greeted with enthusiasm. We would argue, however, that this enthusiasm 

should be tempered with careful consideration of how to appropriately accommodate the corre

spondingly novel processes by which these new data evolved and/or new procedures by which they 

are collected.

We have demonstrated that the evolution of miRNA families is complex. Contrary to repeated 

claims, secondary loss of miRNA appears to be quite prevalent, and miRNA evolution typically 

exhibits substantial variation in rate across branches through time. Consequently, the complex 

character histories associated with miRNA evolution suggest that parsimony—which effectively 

places all of the probability on the character history with the minimal change—is not a defensible
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method with which to infer phylogeny from these new data. We have demonstrated that, in prin

ciple, it is both possible and preferable to estimate phylogeny from miRNA data within a Bayesian 

statistical framework using stochastic evolutionary models. Adopting a statistical approach for es

timating phylogeny from miRNA (or other) data confers many benefits: this approach allows us 

to choose objectively among models, to perform formal tests of competing hypotheses, promotes 

a richer study of the evolutionary process, and enables us to gauge and accommodate uncertainty 

in our estimates. We have established the importance of adopting a more appropriate statistical 

approach: Bayesian analyses of published miRNA datasets qualitatively altered key phylogenetic 

conclusions and/or revealed considerable phylogenetic uncertainty in these estimates in four of the 

five cases that we examined.

Finally, we have demonstrated that the detection of miRNA families is prone to error—especially 

when using a mixture of detection methods—and this sampling error can substantially bias esti

mates of phylogeny. Accordingly, it is critical that we either extend existing stochastic models to 

accommodate this ascertainment bias, or take precautionary measures to minimize it. For example, 

models used to analyze both SNP data in population genetics [70] and discrete-morphological data 

in phylogenetics [71] explicitly model the associated ascertainment strategies in order to reduce the 

associated biases. The stochastic Dollo model might be similarly extended to accommodate the 

documented miRNA ascertainment bias. While the complexity of the mixed genomic/RNA-library 

detection strategy would make such an extension challenging, the intense focus on miRNA detection 

methods (e.g., [72]) gives reason for optimism that these extensions may be possible. Alternatively, 

studies seeking to estimate phylogeny from miRNA presence/absence data should strictly employ 

identical, genome-based detection methods in all lineages. This may not always eliminate sampling 

error, but it should reduce bias arising from differential detection probabilities of the various miRNA 

discovery methods.

Although our appraisal of miRNA as a novel source of phylogenetic information is admittedly 

critical, we clearly recognize the potential of these data to inform phylogeny: inferences based on 

miRNA data often correspond broadly to those based on more conventional gene/omic data. We 

take issue, however, with the recent promotion of miRNA data as a phylogenetic panacea. New data 

are attended by new issues that need to be carefully resolved in order to realize their full potential.

19



A c k n o w led g m en ts

We thank Artyom Kopp and the members of a phylogenetic reading group at UC Davis for helpful 

discussion and advice during the development of this project. We also thank the Turtle Genome 

Sequencing Consortium and the International Crocodilian Genomes Working Group for providing 

pre-publication access to the genome assemblies used in this study. Support for this work was 

provided by University of Hawaii research funds to RCT and by National Science Foundation grants 

DEB-0842181 and DEB-0919529 to BRM.

R e f e r e n c e s

[1] Sanderson, M. J. (2008) Science 321, 121-3.

[2] Thomson, R. C & Shaffer, H. B. (2010) BMC Biology 8, 19.

[3] Hillis, D. (1999) Proceedings of the National Academy of Science, USA 96, 9979-9981.

[4] Rokas, A & Holland, P. W. H. (2000) Trends in Ecology & Evolution 15, 454-459.

[5] Boore, J. L. (2006) Trends in Ecology & Evolution 21, 439-446.

[6] Boore, J. L & Fuerstenberg, S. I. (2008) Philosophical Transactions of the Royal Society of 

London. Series B, Biological Sciences 363, 1445-1451.

[7] Dolgin, E. (2012) Nature 486, 460-462.

[8] Tarver, J. E, Sperling, E. A, Nailor, A, Heimberg, A. M, Robinson, J. M, King, B. L, Pisani, 

D, Donoghue, P. C. J, & Peterson, K. J. (2013) Molecular Biology and Evolution 30, 2369-82.

[9] Lu, J, Getz, G, Miska, E. A, Alvarez-Saavedra, E, Lamb, J, Peck, D, Sweet-Cordero, A, Ebert, 

B. L, Mak, R. H, Ferrando, A. A, Downing, J. R, Jacks, T, Horvitz, H. R, & Golub, T. R. 

(2005) Nature 435, 834-8.

[10] Alvarez-Garcia, I & Miska, E. A. (2005) Development (Cambridge, England) 132, 4653-62.

[11] Berezikov, E. (2011) Nature Reviews Genetics 12, 846-60.

20



[12] Peterson, K. J, Dietrich, M. R, & McPeek, M. A. (2009) BioEssays 31 , 736-47.

[13] Heimberg, A. M, Sempere, L. F, Moy, V. N, Donoghue, P. C. J, & Peterson, K. J. (2008) 

Proceedings of the National Academy of Sciences of the United States of America 105, 2946

50.

[14] Nozawaet, M, Miura, S, & Nei, M. (2010) Genome Biology and Evolution 2, 180-189.

[15] Campo-Paysaa, F, Semon, M, Cameron, R. A, Peterson, K. J, & Schubert, M. (2011) Evolution 

& Development 13, 15-27.

[16] Krol, J, Loedige, I, & Filipowicz, W. (2010) Nature Reviews Genetics 11, 597-610.

[17] Sperling, E. A & Peterson, K. J. (2009) Exchangeability and related topics. (Oxford Univ 

Press), pp. 157-170.

[18] Heimberg, A. M, Cowper-Sal-lari, R, Semon, M, Donoghue, P. C. J, & Peterson, K. J. (2010) 

Proceedings of the National Academy of Science, USA 107, 19379-19383.

[19] Rota-Stabelli, O, Campbell, L, Brinkmann, H, Edgecombe, G. D, Longhorn, S. J, Peterson, 

K. J, Pisani, D, Philippe, H, & Telford, M. J. (2011) Proceedings of the Royal Society: Biological 

Sciences 278, 298-306.

[20] Sempere, L. F, Martinez, P, Cole, C, Baguna, J, & Peterson, K. J. (2007) Evolution & Devel

opment 9, 409-415.

[21] Wheeler, B. M, Heimberg, A. M, Moy, V. N, Sperling, E. A, Holstein, T. W, Heber, S, & 

Peterson, K. J. (2009) Evolution & Development 11, 50-68.

[22] Campbell, L. I, Rota-Stabelli, O, Edgecombe, G. D, Marchioro, T, Longhorn, S. J, Telford, 

M. J, Philippe, H, Rebecchi, L, Peterson, K. J, & Pisani, D. (2011) Proceedings of the National 

Academy of Science, USA.

[23] Sperling, E. A, Pisani, D, & Peterson, K. J. (2011) Evolution and Development 13, 290-303.

[24] Lyson, T. R, Sperling, E. A, Heimberg, A. M, Gauthier, J. A, King, B. L, & Peterson, K. J. 

(2012) Biology Letters.

21



[25] Philippe, H, Brinkmann, H, Copley, R. R, Moroz, L. L, Nakano, H, Poustka, A. J, Wallberg, 

A, Peterson, K. J, & Telford, M. J. (2011) Nature 470, 255-258.

[26] Helm, C, Bernhart, S. H, zu Siederdissen, C. H, Nickel, B, & Bleidorn, C. (2012) Molecular 

Phylogenetics and Evolution 64, 198-203.

[27] Sperling, E. A, Vinther, J, Wheeler, B. M, Semon, M, Briggs, D. E. G, & Peterson, K. J. (2009) 

Proceedings of the Royal Society: Biological Sciences 276, 4315-4322.

[28] Kluge, A. G & Farris, J. S. (1969) Systematic Zoology 18, 1-32.

[29] LeQuesne, W. J. (1974) Systematic Zoology 23, 513-517.

[30] Swofford, D. L. (1998) PAUP*: Phylogenetic analysis using parsimony and other methods. 

(Sinauer Associates, Inc., Sunderland, Massachusetts).

[31] Felsenstein, J. (1993) PHYLIP: (Phylogeny Inference Package) (Distributed by author).

[32] Guerra-Assungao, J. A & Enright, A. J. (2012) BMC genomics 13, 218.

[33] Meunier, J, Lemoine, F, Soumillon, M, Liechti, A, Weier, M, Guschanski, K, Hu, H, Khaitovich, 

P, & Kaessmann, H. (2013) Genome research 23, 34-45.

[34] Lyu, Y, Shen, Y, Li, H, Chen, Y, Guo, L, Zhao, Y, Hungate, E, Shi, S, Wu, C.-I, & Tang, T. 

(2014) PLoS genetics 10, e1004096.

[35] Fromm, B, Worren, M. M, Hahn, C, Hovig, E, & Bachmann, L. (2013) Molecular biology and 

evolution 30, 2619-28.

[36] Nicholls, G & Gray, R. (2008) Journal of the Royal Statistical Society, B 70, 545-566.

[37] Alekseyenko, A. V, Lee, C. J, & Suchard, M. A. (2008) Systematic Biology 57, 772-784.

[38] Bremer, K. (1988) Evolution 42, 795-803.

[39] DeBry, R. (2001) Systematic Biology 50, 742-752.

[40] Drummond, A. J, Suchard, M. A, Xie, D, & Rambaut, A. (2012) Molecular Biology and 

Evolution 29, 1969-1973.

22



[41] Drummond, A. J & Suchard, M. A. (2010) BMC Biology 8, 114.

[42] Drummond, A. J, Ho, S. Y, Phillips, M. J, & Rambaut, A. (2006) PLoS Biology 4, e88.

[43] Gelman, A & Meng, X. (1998) Statistical Science 13, 163-185.

[44] Xie, W, Lewis, P. O, Fan, Y, Kuo, L, & Chen, M.-H. (2011) Systematic Biology 60, 150-60.

[45] Baele, G, Lemey, P, Bedford, T, Rambaut, A, Suchard, M, & Alekseyenko, A. V. (2012) 

Molecular Biology and Evolution 29, 2157-67.

[46] Kass, R. E & Raftery, A. E. (1995) Journal of the American Statistical Association 90, 773-795.

[47] Rambaut, A & Drummond, A. J. (2007) Tracer v1.4 (http://beast.bio.ed.ac.uk/Tracer).

[48] Nylander, J, Wilgenbusch, J. C, Warren, D. L, & Swofford, D. L. (2008) Bioinformatics 24, 

581.

[49] Felsenstein, J. (1978) Systematic Zoology 27, 401-410.

[50] Huelsenbeck, J. P & Hillis, D. M. (1993) Systematic Biology 42, 247-264.

[51] Huelsenbeck, J. P. (1995) Systematic Biology 44, 17-48.

[52] Colgan, D. J, Hutchings, P. A, & Braune, M. (2006) Organismal Diversity & Evolution 6, 

220-235.

[53] Hausdorf, B, Helmkampf, M, Meyer, A, Witek, A, Herlyn, H, Bruchhaus, I, Hankeln, T, & 

andB. Lieb, T. S. (2007) Molecular Biology and Evolution 24, 2723-2729.

[54] Rousset, V, Pleijel, F, Rouse, G. W, Erseus, C, & Siddall, M. E. (2007) Cladistics 23, 41-63.

[55] Struck, T. H, Schult, N, Kusen, T, Hickman, E, Bleidorn, C, McHugh, D, & Halanych, K. M. 

(2007) BMC Evolution Biology 7, 57.

[56] Dunn, C. W, Hejnol, A, Matus, D. Q, Pang, K, Browne, W. E, Smith, S. A, Seaver, E, Rouse, 

G. W, Obst, M, Edgecombe, G. D, Sorensen, M. V, Haddock, S. H. D, Schmidt-Rhaesa, A, 

Okusu, A, Kristensen, R. M, Wheeler, W. C, Martindale, M. Q, & Giribet, G. (2008) Nature 

452, 745-749.

23

http://beast.bio.ed.ac.uk/Tracer


[57] Xin, S, X. Ma, J. R, & Zhao, F. (2009) BMC Genommics 10 , 36.

[58] St John, J, Braun, E, Isberg, S, Miles, L, Chong, A, Gongora, J, Dalzell, P, Moran, C, Bed’Hom, 

B, Abzhanov, A, Burgess, S, Cooksey, A, Castoe, T, Crawford, N, Densmore, L, Drew, J, 

Edwards, S, Faircloth, B, Fujita, M, Greenwold, M, Hoffmann, F, Howard, J, Iguchi, T, Janes, 

D, Khan, S, Kohno, S, de Koning, A. J, Lance, S, McCarthy, F, & McCormack, J. (2012) 

Genome Biology 13, 415.

[59] Shaffer, H. B, Minx, P, Warren, D. E, Shedlock, A. M, Thomson, R. C, Valenzuela, N, 

Abramyan, J, Amemiya, C. T, Badenhorst, D, Biggar, K. K, Borchert, G. M, Botka, C. W, 

Bowden, R. M, Braun, E. L, Bronikowski, A. M, Bruneau, B. G, Buck, L. T, Capel, B, Castoe, 

T. A, Czerwinski, M, Delehaunty, K. D, Edwards, S. V, Fronick, C. C, Fujita, M. K, Fulton, L, 

Graves, T. A, Green, R. E, Haerty, W, Hariharan, R, Hernandez, O, Hillier, L. W, Holloway, 

A. K, Janes, D, Janzen, F. J, Kandoth, C, Kong, L, de Koning, A. J, Li, Y, Literman, R, 

McGaugh, S. E, Mork, L, O’Laughlin, M, Paitz, R. T, Pollock, D. D, Ponting, C. P, Radhakr- 

ishnan, S, Raney, B. J, Richman, J. M, St John, J, Schwartz, T, Sethuraman, A, Spinks, P. Q, 

Storey, K. B, Thane, N, Vinar, T, Zimmerman, L. M, Warren, W. C, Mardis, E. R, & Wilson, 

R. K. (2013) Genome biology 14, R28.

[60] Kozomara, A & Griffiths-Jones, S. (2011) Nucleic acids research 39, D152-7.

[61] Zhang, Z, Schwartz, S, Wagner, L, & Miller, W. (2000) Journal of Computational Biology 7, 

203-214.

[62] Zuker, M. (2003) Nucleic Acids Research 31, 3406-3415.

[63] Landgraf, P, Rusu, M, Sheridan, R, Sewer, A, Iovino, N, Aravin, A, Pfeffer, S, Rice, A, Kam- 

phorst, A. O, Landthaler, M, Lin, C, Socci, N. D, Hermida, L, Fulci, V, Chiaretti, S, FoAa, R, 

Schliwka, J, Fuchs, U, Novosel, A, MAijller, R.-U, Schermer, B, Bissels, U, Inman, J, Phan, 

Q, Chien, M, Weir, D. B, Choksi, R, Vita, G. D, Frezzetti, D, Trompeter, H.-I, Hornung, V, 

Teng, G, Hartmann, G, Palkovits, M, Lauro, R. D, Wernet, P, Macino, G, Rogler, C. E, Nagle, 

J. W, Ju, J, Papavasiliou, F. N, Benzing, T, Lichter, P, Tam, W, Brownstein, M. J, Bosio, A, 

Borkhardt, A, Russo, J. J, Sander, C, Zavolan, M, & Tuschl, T. (2007) Cell 129, 1401-1414.

24



[64] Powder, K. E, Ku, Y.-C, Brugmann, S. A, Veile, R. A, Renaud, N. A, Helms, J. A, & Lovett, 

M. (2012) PLoS ONE 7, e35111.

[65] Darnell, D. K, Kaur, S, Stanislaw, S, Konieczka, J. K, Yatskievych, T. A, & Antin, P. B. (2006) 

Developmental Dynamics 235, 3156-3165.

[66] Wienholds, E, Kloosterman, W. P, Miska, E, Alvarez-Saavedra, E, Berezikov, E, de Bruijn, 

E, Horvitz, H. R, Kauppinen, S, & Plasterk, R. H. A. (2005) Science (New York, N.Y.) 309, 

310-1.

[67] Crawford, N. G, Faircloth, B. C, McCormack, J. E, Brumfield, R. T, Winker, K, & Glenn, 

T. C. (2012) Biology Letters.

[68] Shen, X.-X, Liang, D, Wen, J.-Z, & Zhang, P. (2011) Molecular Biology and Evolution 28, 

3237-3252.

[69] Chiari, Y, Cahais, V, Galtier, N, & Delsuc, F. (2012) BMC Biology 10, 65.

[70] Clark, A, Hubisz, M. J, Bustamante, C. D, Williamson, S. H, & Nielsen, R. (2005) Genome 

Research 15, 1496-1502.

[71] Ronquist, F, Teslenko, M, van der Mark, P, Ayres, D. L, Darling, A, Hohna, S, Larget, B, Liu, 

L, Suchard, M. A, & Huelsenbeck, J. P. (2012) Systematic Biology 61, 539-542.

[72] Pritchard, C. C, Cheng, H. H, & Tewari, M. (2012) Nature Reviews Genetics 13, 358-369.

[73] Gerlach, D, Kriventseva, E. V, Rahman, N, Vejnar, C. E, & Zdobnov, E. M. (2009) Nucleic 

acids research 37, D111-7.

[74] Chen, X, Yu, X, Cai, Y, Zheng, H, Yu, D, Liu, G, Zhou, Q, Hu, S, & Hu, F. (2010) Insect 

molecular biology 19, 799-805.

[75] Marco, A, Hui, J. H. L, Ronshaugen, M, & Griffiths-Jones, S. (2010) Genome biology and 

evolution 2, 686-96.

[76] Ruby, J. G, Stark, A, Johnston, W. K, Kellis, M, Bartel, D. P, & Lai, E. C. (2007) Genome 

research 17, 1850-64.

25



[77] de Wit, E, Linsen, S. E. V, Cuppen, E, & Berezikov, E. (2009) Genome research 19, 2064-74.

[78] Friedlander, M. R, Adamidi, C, Han, T, Lebedeva, S, Isenbarger, T. A, Hirst, M, Marra, M, 

Nusbaum, C, Lee, W. L, Jenkin, J. C, Sanchez Alvarado, A, Kim, J. K, & Rajewsky, N. 

(2009) Proceedings of the National Academy of Sciences of the United States of America 106, 

11546-51.

[79] Lu, Y.-C, Smielewska, M, Palakodeti, D, Lovci, M. T, Aigner, S, Yeo, G. W, & Graveley, B. R. 

(2009) RNA (New York, N .Y.) 15, 1483-91.

[80] Xue, X, Sun, J, Zhang, Q, Wang, Z, Huang, Y, & Pan, W. (2008) PloS one 3, e4034.

[81] Simoes, M. C, Lee, J, Djikeng, A, Cerqueira, G. C, Zerlotini, A, da Silva-Pereira, R. A, Dalby, 

A. R, LoVerde, P, El-Sayed, N. M, & Oliveira, G. (2011) BMC genomics 12, 47.

[82] Dai, Z, Chen, Z, Ye, H, Zhou, L, Cao, L, Wang, Y, Peng, S, & Chen, L. (2009) Evolution & 

development 11, 41-49.

[83] Soares, A. R, Pereira, P. M, Santos, B, Egas, C. a, Gomes, A. C, Arrais, J, Oliveira, J. L, 

Moura, G. R, & Santos, M. A. S. (2009) BMC genomics 10, 195.

[84] Li, S.-C, Chan, W.-C, Ho, M.-R, Tsai, K.-W, Hu, L.-Y, Lai, C.-H, Hsu, C.-N, Hwang, P.-P, & 

Lin, W.-c. (2010) BMC genomics 11 Suppl 4, S8.

[85] Grimson, A, Srivastava, M, Fahey, B, Woodcroft, B. J, Chiang, H. R, King, N, Degnan, B. M, 

Rokhsar, D. S, & Bartel, D. P. (2008) Nature 455, 1193-7.

26



F ig u r e  Legen ds

Figure 1. Comparison of phylogenetic hypotheses for each dataset: A) Annelids, B) Bilaterians, C) 

Animals, D) Vertebrates, and E) Amniotes. The left column is the originally published parsimony 

result and the right column is the maximum clade credibility tree from the stochastic Dollo re

analysis under the winning clock model. Red branches highlight topological differences between the 

trees, and dots on nodes signify nodal posterior probabilities for the Bayesian trees.

Figure 2. The maximum clade credibility tree for the Amniote dataset before (left) and after (right) 

correcting for sampling error. Red branches highlight topological differences between the trees. 

Figure S1. Sequence alignment and predicted secondary structure for four microRNA families 

that were detected in the Alligator and Chrysemys genomes via BLAST similarity searches. The 

mature miRNA sequence from miRBase is underlined in the sequence and secondary structure of 

the reference species (Gallus). Substitutions relative to the reference sequence are highlighted in 

red. miRNA 1743 sits at the end of a contig in the Chrysemys genome assembly and is truncated 

by 10 bases on the 5’ end as a result. We represent these as ambiguous bases and make no attempt 

to predict secondary structure in this region.
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Table 1: Prevalence of miRNA loss inferred under Dollo parsimony and the stochastic Dollo model.

m iR N A
s tu d y

R e fe re n c e #
P a r s im o n y
in fo rm a tiv e

O p t im a l
p a r s im o n y

sco re

#  im p lie d  
m iR N A  

lo sses

P r o p o r t i o n  
o f  s e c o n d a ry  

loss

E s t im a te d  r a t e  o f  m iR N A  loss 
(m e a n , [H P D ])

A m n io te s a [24] 34 36 1 0 .03 1 .9 9 x  10 , [ 3 .4 8 x 1 0 - ® ,4 .7 5 x 1 0 - 4 ]
A n im a ls [25] 115 158 43 0 .2 7 2 .01  x  1 0 - 4 , [4.05 x  1 0 - ®, 4 .79  x  1 0 - 4 ]

A n n e l id s b [27] 71 113 42 0 .3 7 1 .99  x  1 0 - 4 , [9.15 x  1 0 - ®, 4 .75  x  1 0 - 4 ]
B i la te r ia n s [26] 71 147 79 0 .54 2 .01  x  1 0 - 4 , [2.73 x  1 0 - ®, 4 .8 2  x  1 0 - 4 ]
V e r te b ra te s [18] 172 249 84 0 .34 2 .0 4 x  1 0 - 4 , [1 .0 8 x  1 0 - 5 , 4 .8 7 x  1 0 - 4 ]

“The num ber of implied miRNA losses calculated here (and reported in the original study) is an underesti
mate. The original study indicates th a t additional miRNAs were detected th a t entailed secondary losses (see 
supplem entary Table 1, Lyson et al. [24]), but these d a ta  were excluded from the dataset.

bThe original study for this dataset used ‘standard ’ (Wagner) parsimony, which implies a greater degree of 
secondary miRNA loss.

Table 2: Marginal likelihoods of miRNA datasets under four different clock models ranging from 
strictly clock-like to highly variable evolutionary rates.

m iRN A
Study

M arginal Likelihood®
C V bStrict R andom

local
U ncorrelated
exponential

U ncorrelated
lognorm al

A m niotes -128.44 -127.93 -124.00* -125.22 0.996
(0.06) (0.14) (0.02) (0.53)

A nim als -649.83 -639.60 -605.37* - 1.117
(0.15) (0.36) (0.08)

A nnelids -454.75 - -433.34* - 1.105
(0.16) (0.21)

B ila terians -622.88 -602.47 -583.58* - 1.107
(0.25) (0.89) (0.31)

V ertebrates -1107.98
(0.17)

-1054.95
(0.06)

-1034.07*
(0.17)

-1037.44
(0.38)

1.043

“The m arginal log probability of miRNA datasets under the stochastic Dollo and (relaxed) clock models 
estim ated using path  sampling. Values are means and standard  error of three independant runs. The winning 
models are denoted w ith an asterisk. Em pty cells denote the m odel-dataset combinations for which poor MCMC 
mixing prevented a stable estim ate of the marginal likelihood.

^Coefficient of Variation in evolutionary rate  among branches of the phylogeny for the winning model.
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Table 3: Selection of topology models (tests of phylogenetic hypotheses) for miRNA datasets based 
on Bayes factor comparisons of estimated marginal likelihoods.

miRNA
study

Topology
model“

ln P  (X | M i)b2ln  B F ijc Description Resulting
fromd

Amniotes M0 -114.98 17.52 Lepidosaur hypothesis: turtles +  lizards B & P
(0.03)

M l -123.74 Archosaur hypothesis: turtles +  archosaurs
(0.14)

Amniotes- M0 -126.21 5.17 Archosaur hypothesis: turtles +  archosaurs B & P
corrected6 (0.22)

M l -128.80 Lepidosaur hypothesis: turtles +  lizards
(0.08)

Animals M0 -574.67 -11.69 (((Acoel 1, Acoel 2), Xenoturbella), (remaining B
(0.44) Bilateria))

M l -568.83 (Acoel 1 (Acoel 2 (Xenoturbella (remaining P
(0.17) Bilateria)))

Annelids M0 -414.65 11.97 ((Phascolosoma, Nereis), (Lumbricus, Capitella)) B
(0.11)

M l -420.64 (Phascolosoma (Nereis (Lumbricus, Capitella))) P
(0.23)

Bilaterians M0 -552.63 100.92 myzostomids sister to annelids B
(0.02)

M l -603.09 myzostomids nested within annelids P
(0.26)

Vertebrates M0 -994.81 0.91 cyclostome hypothesis: lampreys sister to hagfish B & P
(0.14)

M l -995.26 jawed vertebrate hypothesis: lampreys sister to
(0.13) jawed vertebrates

“Topology models refer to  various phylogenetic hypotheses corresponding to  the description column; see text 
for details.

bThe m arginal log probability of miRNA datasets (and standard  error) under the stochastic Dollo model and 
the preferred relaxed-clock model estim ated using path  sampling as described in the text.

cTwo times the natu ra l log of the Bayes factor is twice the difference between the natural log marginal likeli
hoods estim ated under the alternative topological models. Our in terpretation  follows [46].

dAn indicator for which unconstrained analysis type recovered each topological model. B =  Bayesian Stochastic 
Dollo, P  =  Parsimony

eThis is a version of the am niote miRNA dataset from the study of Lyson et al. [24] th a t has been corrected 
for sampling error; see tex t for details.
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Table 4: Comparison of empirical and computationally derived estimates of miRNA complements 
for selected taxa.

Number of miRNA orthologs accessioned in:
Species Number of 

miRNA orthologs 
obtained 

empiricallya

miROrthob miRBasec

A p is  m e llife ra 267 [74] 52 222
T rib o liu m  c a s ta n e u m 203 [75] 35 430
D ro so p h ila  m e la n o g a s te r 148 [76] 147 426
C a en o rh a b d itis  elegans 112 [77] 130 368
S c h m id te a  m e d ite rra n e a 122 [78]; 66 [79] 38 257
S c h is to so m a  ja p o n ic u m 227 [80] - 78
S c h is to so m a  m a n s o n i 211 [81] - 29
P e tr o m y z o n  m a r in u s 267 [15] 40 302
B ra n c h io s to m a  flo r id a e 152 [15]; 32 [82] - 187
Saccog lossus ko w a le vsk ii 90[15] - 115
S tro n g ly lo c en tro tu s  p u rp u ra tu s 58 [15] 12 70
D a n io  rerio 198 [83] 113 255
O ryz ia s  la tipes 599 [84] - 146
N e m a to s te J la  v e c ten s is 40 [85] - 78

“miRNA counts in this column are derived from studies th a t used small RNA isolation followed by deep 
sequencing to  estim ate miRNA complements per species; see citations.

bmiRNA counts in this column were predicted by combining orthology w ith a vector support machine for each 
sequenced genome as described in Gerlach et al. [73].

cmiRNA counts in this column are derived from the public repository for all published miRNA sequences and 
includes d a ta  from small RNA sequencing and com putational predictions [60].
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