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A b s t r a c t .  Q uan tum  versions of th e  hydrogen a to m  and th e  harm onic oscillator 
are studied  on non Euclidean spaces of dim ension N . 2 N  — 1 integrals, of a rb itra ry  
order, are constructed  v ia a  m ulti-dim ensional version of th e  factorization  m ethod, 
th u s confirm ing th e  conjecture of D Riglioni 2013 J. Phys. A: M ath. Theor. 46 
265207. T he system s are  extended via coalgebra extension of sl(2) representations, 
a lthough not all integrals are  expressible in these  generators. As an  exam ple, 
dim ensional reduction  is applied to  4D system s to  ob tain  extension and new proofs 
of th e  superin tegrab ility  of known families of H am iltonians.

PACS num bers: 02.30.Ik,03.65.Ge, 03.65.Fd

1. In tro d u c tio n

A Maximally Superintegrable (MS) system in classical mechanics is an integrable N- 
dimensional (ND) Hamiltonian system which is endowed with the maximum possible 
number of 2N-1 functionally independent integrals of motion. The study and 
classification of superintegrable systems is of central importance on mathematical 
physics. On the one hand they are a source of exactly solvable models which over 
the years have found applications in many areas of physics such as in condensed 
matter physics as well as atomic, molecular and nuclear physics see e.g. [1, 2, 3] and 
reference therein. On the other hand the symmetry algebra defined by its constants 
of the motion is of interest in the field of group theory and their representations. 
The most well-known example of superintegrable systems, the hydrogen atom and 
the harmonic oscillator, are in correspondence with so(N +  1). More recently 
the discovery of superintegrable systems with constants of the motion of arbitrary 
order in the momentum have been found to be in correspondence with new type of 
polynomial algebras. Moreover since MS Hamiltonian systems are conjectured to be 
exactly solvable their eigenfunctions can be described in terms of either some class 
of orthogonal polynomials or for scattering states in terms of some special functions. 
MS systems with quadratic constants of the motion have been completely classified 
for 2D Riemannian and pseudo-Riemannian spaces[4]. Example of MS systems with 
constants of the motion of order higher than two are indeed much rarer in literature 
since a systematic classification of these systems go through the solution of nonlinear 
differential equations whose complexity increase with the order of the integrals [5]. 
However some interesting examples of MS systems with constants of the motion of 
arbitrary high order have been found as a deformation of systems admitting quadratic 
integrals of motion. Two remarkable examples are given by the so-called TTW [6] or
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F ig u r e  1. k =  —0.04; g  =  60

PW [7] systems. As was remarked in a recent paper [8], the possibility of obtaining 
higher order MS systems from 2-dim ones can be understood in terms of coalgebra 
symmetry. For a review of superintegrable systems see [5].

To be self contained, let us recall briefly how to extend systems in higher 
dimensions by using the coalgebra operators. We consider the superintegrable 
extension of the hydrogen atom on a space of constant scalar curvature. The 
Hamiltonian for the system in 2D is given by

H  =  2k2 AS 2 as3
V s 1 +  s2

2 2 2  
sl +  s2 +  s3 =  1

Transforming to conformal coordinates via

X1
1
k

cot(0/2) cos(^), X2
1
k

cot(0/2) sin(^)

gives the following radial form of the Hamiltonian

H  =  '"l1 ' ~'2 ' (p1 +  p2) -  M
(1 +  k2(x2 +  x2))2 ( o 2) 1 -  k2(x2 +  x2)

2 ■\Jx\ +  ~2
(1)

x 1 +  x2
The trajectories for bounded motion of (1) at regular points in phase space are closed, 
as an effect of its superintegrability.

As mentioned above,the system (1) is characterized by a coalgebra symmetry, 
namely it is possible to express the system (1) via a sympletic realization of the Lie 
algebra sl(2)

D2(J - )  =  x2 +  x2, D2(J+) =  p2 + p 2, D2(J3) =  x1P1 +  x2P2, (2)
with central element

D2(C) =  (x1P2 -  x2P1 )2 . (3)
and (Poisson) bracket

[/ , g] PB =  ^  di/d Pxi g -  di9dPxi /• 
i

(4)

To keep the notation succinct, we drop the subscript for the remainder of the paper. 
As a reminder, the generators for the Lie algebra sl(2) satisfy

[ J +] =  2J+, [J3,J-] =  - 2 J - , [ J - ,J + ]= 4 J 3
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with Casimir element
C =  J+ J_ -  J32.

The representation (2) can be constructed from a coalgebra of the Poisson realization 
of sl(2); namely, the coproduct is given by

A(1) =  1 ® 1, A( J i) =  Ji ® 1 +  1 ® Ji,

which preserves the algebra relations

[A(Ji), A (Jj )] =  A([Ji ,J j  ])•
Taking repeated coproducts leads to a 2ND phase space realizations for sl(2) given by

N
J_N ] — D n  (J_) =  A(D2 (J_))n _  =  ] T

N
J+N) — D n (J+) =  A(D2(J+))n _  =  ] T  p 2

i=1
N

J3N) — D n (J3) =  A(D2(J3))n _  =  ] T xipi.
i=1

The main point is that it is possible to express (1) as:

(1 +  k2 j_2))2 (2) _u 1 -  k2 J _2)
H — 2 M

(1 +  k2J (2))2 / (J32))2 C (2A  1 -  k2J (2)

J (2) +
J (2)

2xi

2

and hence, using the coproduct, the higher dimensional realization of the Hamiltonian 
system can be generalized in a manner preserving its integrability properties. In 
particular, each of the intermediate Casimir elements will commute with the generators

[j (n ), c (m )] =  0, m < n; k = + ,  - ,  3,

Therefore any 2-dimensional system H (J (2), J32), J+2)) can be generalized to the ND 
system H (J (N ), j3N ), J+N )) which will have by construction N  constants of the motion 
given by the set {H, C (m )}, 1 < m < N. To be precise, the intermediate Casimir 
operators C (m ) are defined on the 2n-dimensional phase space via

C(m ) =  Am (C) ® ( <g>n  _  m id)  • (5)

The algebra generators J i(m ) can be similarly defined. Note that since each successive 
C(m ) includes a new variable, xm  not appearing in the previous Casimirs, the set will 
be functionally independent.

Furthermore, there will exist another set of mutually commuting integrals 
obtained by embedding the operators Am (C) in the opposite way, namely defining

C(m ) =  ( 0 n _ m id)  <g> Am (C), (6)
gives an additional set of commuting integrals. As an example, consider the two-fold 
copropduct, the resulting operators are

J  (1) =  x 12, J (2) =  x1 +  x2, J (3) =  x2 +  x2 +  x2,
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J (1) =  p2, J (2) =  p2 +  p2,J + =  p y J + =  p 1 +  p2,
(1) (2)J3 =  x1p1, J3 =  x1p1 +  x2 p2,

C (1) =  0, C (2) =  (x1p2 -  x2p2)2,

J+3) =  p 1 +  p 2 +  p 3 ,
(3)J3 =  x1p1 +  x2p2 +  x3p3,

C(2) =  (x3p2 -  x2p3)2,

and
C (3) =  (x1p2 -  x2p1 )2 +  (x1p3 -  x3p1)2 +  (x3p2 -  x2p3)2

Notice that whereas the (Ji )(m) are linearly dependent on the set J i(m), the Casimirs 
are not. Indeed, we shall now prove that the set of 2n -  3 functions {C(m),C(m)} 
are functionally independent and will still be functionally independent when the 
Hamiltonian is included.

T heorem  1 For N  > 2, the set of Casimir operators defined via (5) and (6) are 
functionally independent and furthermore the set remains functionally independent 
when the Hamiltonian is included.

P ro o f The Casimir functions are constructed from linear combinations of the 
squares of the N (N  -  1)/2 functionally independent generators of rotations in ND. 
Furthermore, the set of 2N -  3 functions are linearly independent and so the set 
is also functionally independent. The inclusion of the Hamiltonian will not change 
the functional dependence since it depends non-trivially on the radial coordinate
r  =  y  J (n), while the other 2N -  3 functions depend only on the angular coordinates.

The crucial point is that the coalgebraic structure of a given Hamiltonian is 
not invariant under a canonical change of variables that intertwines some of the 
coordinates. This implies that we have the possibility of constructing new coalgebraic 
systems by applying a change of variable to a 2D quadratically superintegrable 
system and then extending to ND. For the sake of concreteness let us consider the 
representation 2 in polar coordinates

J(2) =  r 2, J (2) rp3, k (2) =  p2 +  p iJ + pr +  r 2 •

By changing the winding number of the trajectory (1) using a canonical change of 
variable in 0

6 =  £0', pe
13 ’

3 =  y , Ak e N k
(7)

the new system will close its trajectory after k revolutions.
The change of variable doesn’t affect the superintegrability of the system, however 

it induces a new coalgebraic Hamiltonian, where the Casimir operator has been scaled 
by a factor of 3 2 :

Hd
(1 +  k2J (2))2 / (J32))2 C(2)

2 V j (2) +  3 2j (2)
M-

1 -  k2J (2)
J2)

(8)

Conversely, we can directly observe that multiplying the Casmimir function by a 
constant will preserve any integrals of motion. However, it may result in a system 
defined on a new different manifold.
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Indeed these two systems can be connected through a change of variable only in 
dimension N  =  2. This becomes evident if the kinetic energy part of the Hamiltonian 
is considered. In particular, the metric of the original kinetic energy part

1
T  ^  ds2

(1 +  k2J (n))2 
will be transformed to a new metric

7p ^  ds2 =  1

(dr2 +  r 2dn2)

(dr2 +  3 V d ^ 2) ,

(9)

(1 +  k2j ( n))2

and the corresponding change in the scalar curvature is given by

R =  -4 N (N  -  1)k2 ^

1 (1 +  k2 r 2 ) 2
Rp =  (N -  2)(N -  1)(1 -  3 2 ) ( + r 2 ) -  4N (N  -  1)k2,

which coincide only if N  =  2. However both H  and Hp are still characterized by the 
closed orbit trajectory in any N  since they are algebraically equivalent if projected on 
the 2D plane which contains the orbit. This is a very strong clue about the maximal 
superintegrability of these classical systems in any dimension N . Indeed, in [8], higher- 
order integrals for arbitrary 3 were constructed and the MS was explicitly proven in 
[9] for N  =  3.

In this paper, we consider the quantum case. Namely, instead of a symplectic 
representation of sl(2) we use the canonical quantization to obtain a function space 
representation

J_ =  x2 J+ =  — h2dl, J3 - id(xdx +  2). (10)

The resulting radial Hamiltonian will be similar to the one given in (8), except with 
a factor of fr2 in front of the kinetic energy term,

H ' (1 +  k2j (n))2
( j (n)) 1 ( ( J3n) +  ifr)2 +  3! C (n)^ - m ( J (n)) 2 (1 -  k2 J (n)) ..(11)2
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We note that it is possible to interpret inverses and roots as Taylor series in the 
enveloping algebra of the representation for sl(2) which will converge away from
r 2 =  J(n ) =  0.

This quantum system was introduced in [8], where also the superintegrability of 
(11) for some specific values of 3 was shown. However it was not possible to prove the 
superintegrability for any 3 since the method of the paper was via direct computations 
of the commutations relations for each realization of the operators for a fixed 3.

The main purpose of this paper is to prove the superintegrability of (11) by 
providing a coalgebraic analysis at the level of the supersymmetric algebra which 
characterize the radial system. A similar analysis has also been introduced in [10] to 
enlarge the superintegrability properties of some families of superintegrable quantum 
systems involving spin interaction. In this paper we will show how that formalism 
provide a natural and straightforward way to prove the MS also for scalar systems. 
Additionally, we discuss the action of coupling constant metamorphosis for the radial 
systems and finally, as an example, give yet another proof of the MS of the TTW 
system via a restriction of the integrals for the radial system.

The paper is organized as follows, in Section 2 we give the extension of the 
system into ND generated by the coalgebra structure along with the additional, non­
radial integrals. The systems are then deformed either by the addition of a winding 
parameter 3 or via coupling constant metamorphosis. The MS of each system is 
demonstrated explicitly. In Section 3, we perform dimensional reduction on the 4D 
system to construct non-radially symmetric systems in 2D which as MS. Section 4 
contains concluding remarks.

2. S pec trum  genera ting  a lgebra  and  superin teg rab ility

As remarked in the introduction, one of the main properties of superintegrable systems 
is their exact solvability. In quantum mechanics we can define the exact solvability as 
the possibility of obtaining, through algebraical methods, the entire spectrum and the 
set of its eigenfunctions. Such a property is generally exhibited by those Hamiltonian 
operators which can be solved by factorization method. This method consists in 
the possibility of factorizing the Hamiltonian H  =  a^a where a  ̂ a act as ladder 
operators, namely they connect different eigenfunctions. The existence of differential 
operators mapping eigenfunctions of H  into other eigenfunctions of H  is indeed typical 
of superintegrable systems. Let us consider an Hamiltonian H  describing an nD 
quantum system, which admits a set of n constants of the motion in involution Ai , 
0 < i < n

[H, Ai] =  [Ai, A j] =  0
The eigenfunctions of H  can be expressed by means of the quantum numbers a i

Ai ^aj,j a i ^aj,j, H ^aj,j E j ^ai,j
If the system is superintegrable then there exists an extra integral of motion B such 
that

[B, H ] =  0, [B,A i ] = 0 .  (12)
The equations (12) implies that any integral B maps an eigenfunction ^ aj in a linear 
combination of isoenergetic eigenfunctions of H

B ^a,,j = X )  Ci ^a>,j .
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Thus, it may be possible to use the ladder operator coming from the spectrum 
generating algebra of a given Hamiltonian to define operators which fix the energy 
eigenspaces of the Hamiltonian and which therefore commute with H. As a concrete 
example let us consider the 3 =  1 version of (11) which we report here as a function 
of the angular momentum operator

(1 +  k2r 2)2
H  (L) = 2

2 ' fr +  ( 1 k2
P  -  i^Pr +  7 2 ) -  M (7  -  k r (13)

where
pr =  - iftdr L =  -  iftd^.

The Hamiltonian (13) exhibits the algebraic structure typical of the shape invariant 
systems. Namely a factorization type formula

(L +  fr )2H  (L) =  At A +  G,

(L +  fr )2H  (L +  ft) =  AAt +  G

(14)

(15)

which results in A and At acting as raising and lowering operators for the angular 
momentum in the Hamiltonian

AH (L )=  H  (L +  ft)A, AfH  (L +  ft) =  H  (L)Af .

The operators A, At, and G are defined as

Af

A

G

L +
^ -(1  +  k2r 2)pr +  i(L +  fr)(1 -  k2r ) )  -  i -^2

2 ^ -(1  +  k2r 2)pr -  iL (---- k2r)^  +  i —=

ft,

(16)

(17)

L +  § 
- 2

2k2L(L +  ft)(L +  )2 -  ^ .
2 2

Note that the operators A and At are mutual adjoints with respect to the metric 
(9). Since the operators At , A act as raising (lowering) operators on the angular 
momentum L, we look for a new couple of operators to balance out this action. The 
necessary operators are given by

L+ =  ei0, L -  =  e -  i0 (18)

which have the required action

L+L =  (L -  ft)L+, L - L =  (L +  ft)L - . (19)

T heorem  2 The operators L+A and AtL - , defined via (17) and (18) commute with 
the Hamiltonian (13).

Proof: Taking into account (14) and (19) it is straightforward to prove that

L+AH =  L+ H  (L +  ft)A =  HL+A.

A similar computation holds for At L and so,

[H, L+A] =  [H, AtL -  ] = 0 .

Thus, the operators commute with the Hamiltonian.
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As a consequence, we obtain the following two Hermitian constants of the motion 
for H(L)

R+ =  - U l +A +  AtL_), R _ =  —^(L + A  -  AtL_), (20)
2 2i

which close to form the following quadratic symmetry algebra 
[R+, R _ ] =  - iftL(2H -  k2(8L2 +  ft2))

[R+, L] =  - iftR _

[R _, L] =  iftR+.

Note that, in the flat case k =  0, the algebra is isomorphic to so (3) as the 2-dimensional 
hydrogen atom.

2.1. Coalgebraic extension of the radial systems

Following the steps outlined in the introduction we can generalize the dimension of the 
superintegrable system (13) to an arbitrary N  by replacing the quantum mechanical 
representation of R + (-iftdxi,xi ), R _ ( - iftdxi, xi ), L (-iftdxi, xi ) ,H ( - iftdxi, xi ), whose 
dimension is fixed, with functions of coalgebra generators J+N), ), ), thereby
constructing a quantum mechanical Hamiltonian in a Darboux space of arbitrary 
dimension N.

Recall that the n-fold coproduct of the representation for sl(2) given by (10) 
J+, J_, J3 by means of which we arrive to the following definition for the Hamiltonian 
H  in ND,

H
(1 +  k2J_ )2 

2
(1 +  k2J_ )2 

2

J (1 -  k2 j_ >
L 2 N

( J3 +  ifr)2 +  — - J =  (1 -  k2J _ ), (21)

where the Casimir element is related to L2 via L2 C  +  ft2 and

C  = 1  (J+ J_ +  J_ J+) -  J32 =  J_ J+ -  (J3 +  ift)2 -  ft2.

As in the previous equations, we drop the superscript (N) except where it is important 
to emphasize the dimension of the underlying space.

We shall now express the operators of the previous section in terms of the 
coalgebra generators with the ultimate aim of extending into higher dimensions. The 
operators L2, H(L), A, and At can be expressed in terms of the coalgebra generators 
as
L2 =  C +  ft2 (22)

At 1
- 2

A
1

- 1

/r  ^ 1 +  k2J_
(L +  2 » - J

(L +  ft) 1 +

( J3 +  ift) +  i (L +  ft)(1 -  k2 J _ ^  -  i —2

(J3 +  ift) -  ^  (1 -  k2 J _ A  +  i —!.

Note that when N  =  2, L2 is a perfect square and so the square roots are defined as 
simply the generators of rotation, which is formally self-adjoint with respect to the
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flat metric. However, in higher dimensions, the Casimir operators will not be a perfect 
square and so this will be addressed in detail later.

The final operators necessary for the construction of the generalize Runge-Lenz 
vectors R+ and R_ in ND are the operators L+ and L - . However the generators 
of 51(2) cannot be used to define these non-radial operators. In order to overcome 
this difficulty let us enlarge the coalgebra s1(2) as described in the introduction, 
by including not just the generators for the 2D representation but also the 1D 
representation. Using these, we can inductively recover the Heisenberg algebra
generated by xj and pj i.e. xj =  \J J (j) — J-j ^ and pj =  \J J+j) — J+j ^ . The 
commutation relations are

[ J n), 4 m) ]
[j(n), j+m) ]

2iftJ+*) ; [J3m), J (n)] =  — 2i J

4i ; [ J " 0, F (J±m))] =  ±2iftJ±f)F /(J±m)),

(23)

(24)
where l  =  min(m, n). The commutation relations for the xk and pk are identically 0 
if n < k and, otherwise, as follows

[J+n ),x fc ] =  —2ifipfc 

[J(n ),x fc ] =  0 
[J3n ),x fc ] =  —i^x fc 

[Pk ,x ; ] =  — 2iM fc,;

[J+n ),P fc] =  0
[J(n ),Pk ] =  2i^,x fc 

j 3 n ),P fc] =  i ^-Pfc
K n .

(25)

The operator L± =  X1 ±  yT2 can be expressed as a vector if we redefine 
L± =  ^  e±*^L. In fact, in a three dimensional space x2L can be regarded
as the first component of the vector product (0, y, 0) x (0,0, L) =  (yL, 0,0) or in the 
language of the algebra

x2L =  xi J 2) — J (2)pi +  iftxi.

This leads to the coalgebraic definition of the operators L± in 2D as

(26)

L x i L (xi J 2) — J (2)pi +  i^xi), (27)

L+ =  L x i + ( x i J 2) — J (2)pi).
i (28)

The advantage of this form is that it accommodates an extension to higher dimensions, 
namely the corresponding operators in ND are chosen as

L -
_  xfc T i

( x J " ) — j ( ”:Pk +  ihxk), (29)
J n) J n)

L+
_ x k i 

-  L r y -  +  p—- ( x J " ) — j ( ”:*Pk), (30)
J n)

L - . Note that in 2D, L± =  L± and L+ — iL - , L — — iLi .where (L+ )t

T heorem  3 The operators L± defined via (29) and (30) satisfy

[L±,L] =  t ^LJ.
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When k = 1 , L± is exactly the nD extension of the operators L±. Using the coalgebra 
extension and the commutation relations (25), we see that

[L,L±] =  t ^L± ^  [L,L±] =  t ^L±.

The identity also holds for other m by permutation symmetry. A direct proof of 
Theorem 3 is given in the Appendix.

There does however arise a problem in the definition of L in a number of dimension 
N  > 2. According to the definition given in (22), L is defined as

L V c  (N) +  h2 =
\

^  Lh  +
h2(n — 2)

i < j < n

Li,j — xipj xj pi.

4

Such a problem can be formally solved by defining L as follow

(31)

L =  — 2 (Yi Yj Li,j +  ih(N — 2)),

so that

L2 =
j (" ) j  (n) +  j  (n) J (n) 

2 — J n))2 +  h2,

where the y® are anticommuting objects obeying to the algebra 

Yj ]+ =  2^i,j
J +, -  ,3] =  [Yi,Pi] =  b ^  xi] =  0

(32)

It is with this form of the operators L that the identities for the ladder operators are 
proven in the Appendix.

From these concrete realizations of the ladder operators L ^ it is possible to 
construct the ND extension of the Hermitian operators R+ and R _ as in (20) with 
L± chosen as L±, for example. We therefore have constructed enough functionally 
independent integrals of the motion to assert that H  as defined in (21) is MS.

T heorem  4 The Hamiltonian defined as in (21) has 2N — 1 algebraically independent 
integrals of the motion.

As in Theorem 1, the intermediate Casimir elements generated by angular momentum 
operators Ljk will commute with the Hamiltonian giving 2n — 3 algebraically 
independent second-order integrals. The additional operators R+ and R _ commute 
with the Hamiltonian

[R±({ J (N)}), H ({ J (N)})] =  [R±({ J (2)}), H ({ J (2)})] =  0, (33)
for k =  1 , 2, and are algebraically independent in dimension n =  2 and so will be 
when embedded into ND. Thus, the Hamiltonian has 2N — 1 integrals of motion and 
is maximally superintegrable.

To obtain scalar integrals, it is possible to simply observe that the operator L+A 
is linear in the vector L

L+A =  A ({J },xj,pi) +  LB({ J  },xj,pi) (34)

and commutes with the scalar Hamiltonian

[H, A ({J } ,x j,p j) +  LB({ J  },xj,pj)] [H, A ({J } ,x j,p j)] +  L[H, B({J },xj,pj)] =  0.
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Thus, each of the components of the vector L+A must individually commute with the 
Hamiltonian, i.e.

[H a ({j  },xi ,p i)] =  [H, B({J },xi ,Pi)] =  0, (35)
and analogously for A^L_. Thus, it is possible to build integrals of motion that do not 
depend on the anticommuting y®. In particular, for L+A, the function B ({J} ,x j,p j) 
turns out to be the quantum generalization of the Runge-Lenz vector for a Coulomb 
system on a constant curvature space in agreement with the results previously obtained 
in [8] that were obtained without the ladder operator formalism.

2.2. Canonical transformation and new coalgebraic systems

As we underlined in the introduction, any point canonical transformation has no 
effects on the integrability properties of the 2D system. However, the system in the 
new variables can induce a new coalgebraic system which is intrinsically a different 
system when realized in higher dimensions. To be concrete let us apply the angular 
change of variables (7) to the quantum system (13)

Hp
(1 +  k2 r 2)2 

2 p 2
h L2

+  - ^ 2
1 -  k2r 2

— M-----------r

where — =  m /n  with m, n G N. The same transformation can be applied to the radial 
ladder operators A , Ai (17) to give the more general intertwining relations:

L h
( — +  2 )2H8(L) =  APAP +  GP(L ) ( — +  2 )2H'8(L +  h—) =  APAP +  GP(L), (36)
which imply

Ap Hp (L) =  Hp (L +  h—)Ap, Ap Hp (L +  h—) =  Hp (L)Ap. (37)

p, Ap, Gp

L h

Here Ap, Ap, Gp are now defined as

A p  =  — 2
L  +  1 
P +  2

2 1 — (1 +  k2r 2)pr +  i(L  +  h)(1 — k2r)J — i —=,

— (1 +  k2r 2)pr — i — (---- k2r)^  +  i —̂ ,
2

Ap = — r

Gp (L )= 2 k 2 L L +  h)(L h )2 — M
— — — 2 2

which induce the following coalgebraic objects

Ap — —  ( — (— +  - ) " ' (J3 +  ih) +  i p ■_ ( — +  -
P —2 y (— +  2 ) j  ( 3 +  )T  p j —(— +  2

. 1 (  ,L h , 1 +  k2J_,T .L (L + 1
AP — v l  l —( — + h > - j  (J3 + ih) — i iLT J —-

including the Hamiltonian

w  ,L h N 1 +  k2J_/T J  +  h ,l  h
( -  +  -  )(1 — k2J_ )1 — i —2 ,

(1 — k2J_ ) )  +  i —

Hp
_  (1 +  k2J _ ) 2 f  1

j - ( J3 +  ih) +
L2

-  2J_

. V 2 ’

M (1 — k2J _ ), (38)

L

2
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already referenced in the introduction (11). The intertwining relations in (37) together 
with the assumption that — =  m /n  entail the following “integer shift” if we consider 
the power A” , (At)”  instead of A, At defined to be

(Ap )”  =  Ap (L +  h(n — 1)—) • • • Ap (L +  h—)Ap (L), (39)

(Ap )”  =  Ap (L) • • • Ap (L +  h—(n — 2))Ap (L +  h—(n — 1)). (40)
With this definition, the ladder operators that have the appropriate action on the 
Hamiltonian functions

(Ap  )” Hp  (L) — Hp  (L +  hm)(Ap )” ,

(Ap  )” Hp  (L +  hm) — H p  (L)(Ap )” ,
which hold according to the ladder relations(37). Analogous to what we have seen in 
the previous sections, it is possible to balance the action of A” , (At )”  by using the 
counteraction of Lk , L+ (27, 28). So we can define the new constants of the motion 
for H p (L) as follows:

Rp,i =  — 2 ((L+)m(Ap)” +  (Ap)” ( L _ r )  , (41)

Rp , 2 =  i— 2 ((L+)m (Ap )”  — (Ap )” (L_)m ) . (42)

It should be stressed that unless we are in the case of dimension 2, where L± admit a 
zeroth-order representation as a differential operator, the objects (41) are higher order 
constants of the motion of order m +  2n which can be reduced to the order m +  2n — 1 
as described in (35). These results hold for all values of — G Q and define a infinite 
class of superintegrable systems with higher order constants of the motion in spaces 
of arbitrary dimension N .

2.3. Spectrum generating algebra for superintegrable systems obtained through the 
application coupling constant metamorphosis

The Coupling Constant Metamorphosis (CCM) [11, 12, 13] is a transformation which 
puts in correspondence two classes of superintegrable systems. In particular such a 
transformation can be used as an algorithm to generate the constants of the motion 
of one superintegrable system given the symmetries of its CCM partner. It is known 
that all the superintegrable systems on the 2-dimensional Darboux spaces (which are 
the only ones with a nonconstant scalar curvature admitting second order constants 
of the motion) can be generated through a CCM transformation applied to a system 
defined on a space of constant curvature [14]. The main goal of this section is to show 
how the structure of the spectrum generating algebra given by the ladder operators A 
At is preserved by the application of the CCM transformation. CCM can be briefly 
described as an algebraic transformation whose net effect is to exchange the role of 
the energy and the coupling constant of the system,

H ^  =  (T  — mV )4 

H  4  — m4 =  1 ( T  — H )4

Such a transformation applied to the system (21) returns the following 
Hamiltonian

H y/J -(1  +  k2J _ )2 M
2(1 — k2J_ — 4 ^ P J—) ( J- (J3 +  ih)2 +

L2
—2J_

) + MV^—
2(1 — k2J_ — 4£V/J I )

(43)

(44) 

new

(45)
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where the transformation has been done using as potential V =  1 — k2r  — 4J. It is 
straightforward to see from ( 43 ) which the two Hamiltonians H, H  share the same 
eigenfunctions except for the exchange H  ^  p. This entails that the ladder operators 
defined for the eigenfunctions of H  work also for the eigenfunctions of H  provided 
that p ^  H  is well defined as a differential operator. So we arrive to the following 
definition for A A  which we will provide directly in terms of coalgebraic elements:

A y  =  ~ A  — ( A  +  o )
L h, 1 +  k2J_

V 2 \  A  2 ' J
(J3 +  ih) + ; i ± h  (L + h ) (1 —

J  ( d +  2 )( 7  7 2
hd)

i 1 (  /L  h 1 +  k2J
Ay =  7 2  ( —(d  +  2 ) _ 7 r “ (J3 + ih) — i

L ( L 1 )
(y +  2 ) (1 — k2j - )
v J -

+ i• -fr(L) 
72

fulfilling the intertwining relations

Ay Hy (L) =  Hy (L +  hd)Ay 

AJ Hy (L +  hd) =  iky (L)AJ

which, analogously to (41), determine the following set of vectors for H  for any 
k =  1 . . .N

Ry , +  =  ^  ( ( L+  ) m (Ay ) n  +  (AJ ) n ( L - ) m )  , 

Ry , -  =  ^  ( ( L+ ) m (Ay ) n  — (Ay ) n ( L- ) m ) .

Here again, the m-fold product of the ladder operators requires a shift in L after each 
application and is defined as in (40) and (39).

3. D im ensional reduc tion  and  curved superin teg rab le  extensions of th e  
T T W /P W  system s

As an example, we consider the algebraic Hamiltonians (21,45) in 4d. In this case the 
two Hamiltonians depend on the representation of s12 in 4D, i.e. on the operators 

r(4)J+4) =  — h2(d2 +  S2 +  d2 +  d2) 

J-4) =  x2 +  x2 +  x | +  x24
J (4)

(46)

(47)

13 =  —ih(xidi +  x2^2 +  x3$3 +  x4$4) — 2ih. (48)
It is possible to reduce this representation to one in two variables, as in [15, 16], by 
using a bi-polar coordinates system:

(49)xi =  r i cos ^1 ; x2 =  r i sin ^1
x3 =  r 2 cos ^2 ; x4 =  r 2 sin ^2,

so that the operators become

J -4) = r 2 +  r2, J34) =  —ih(rid r i +  r2dr 2 + 2),

j <4) = — h2o ;, +  - dr i +  r2 d0l +  +  —  dr 2 +  r2 d02 ) r 1 r 1 r2 r 2
Since the generators are independent on the new angular variables ^  , ^ 2, it is 

possible to get rid of the two degrees of freedom coming from ^ 1, ^ 2 and to obtain a
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new two dimensional system which inherits the properties of the original 4-dimensional 
one. Let us show in a few algebraic steps how to perform the reduction for the quantum 
case.

< ^(xi,x2,x3,x4)|H4d|^(xi,x2,x3,x4) > =  / / r i ^ ^ H ^ d r i d ^ d ^ i d 7 (50)

Separating the wave function as 7 r7 r2 ^ (ri , r 2, ^ i , ^ 2) 
transforms the form of the Hamiltonian (50) to

V>(ri, r 2)ei(l^1 eHi 0i ei 2̂ 02

J  /d(ri,r2)*H2dV>(ri,r2)dridr2, (51)

where the reduced (self-adjoint) operator is defined by:

H 2d =  7 ^ 2  ( e-i1l0i e-i1^ 2iL4dei1l0i  * e4'2*2 d ^ d ^ )  7 = != . (52)

The new Hamiltonian can be now written in terms of the reduced form of the 
generators

j <‘ > ^  j p  =  v/=i =2f(4) _ 1
e-i1l0i e-il202 „i(4)eil101 eil202 d^i d^2)

1
7 i r 2

which become

J-4) =  r 2 +  r 2 =  J -2),
(4) (2)

j (4)

— ih(ridrl +  r2dr2 +  1) =  J3
^2,„2 1 — 4/2 „2 1 — 4/2,

— h (drl +  —4T2----+ dr2 + —T " )4r2

J+2) +  h2 +  h2^62h2 6i 62 1
r 2 r2 ’ r 2

6i =  /j2 — 7,62 =  /2 — 74 4

(53)

(54)

(55)

After the reduction, the 4-dimensional representation coincides with the 2­
dimensional ones except for the generator J+ wich has an additional centrifugal term 
depending on the quantum numbers /i , /2 coming from the degrees of freedom we had 
cut off previously. The representation (53 - 55) can also be regarded as a non-radial 
generalization of (2). In particular the representation (53 - 55), together with the 
change of variables

0
ri =  r  cos —,

d
0

r2 =  r  sin —,
d

turns the system (38) into

(1 +  k2r 2)2
H y

2 AR2 +
6?

r 2 cos2 |
+ 62

r 2 sin2 |
1 — k2r 2

p -----------. (56)

This system can be interpreted as a generalization (identical for k =  0) of the PW 
system [7] on a space of constant curvature, which has been obtained as a reduction 
of a system on a space of non-constant curvature d =  1.

Along the same direction it is straightforward to obtain a generalization of the 
TTW system to a non-flat Riemannian space of Darboux type. Let us consider the 
system (45) and the following change of variables (see [7] for CCM in polar coordinates)

2 20ri =  r  cos — ,
d

2 20 
r2 =  r 2 sin — .

d

i



Quantum Integrals from Coalgebra Structure 15

The resulting Hamiltonian is an extension of the TTW system (identical at k =  0) 
given by the following Hamiltonian

H  s
(1 +  k2r 4)2 

8(1 — k2r 4 — 4£r2)
—h2 AR2 +

r 2 cos2
+ b2

r 2 sin2 ^
+

p,r2
2(1 — k2r 4 — 4£r2)

.(57)

It is now well established that both of these systems are superintegrable when k =  0 
for rational values of ,0. Clearly, both of these systems are integrable, associated with 
separation of variables in polar coordinates. In the following section, we shall see how 
the integrals for the system in 4D can be reduced to give an addition integral for the 
2D system, thus proving that both systems (56) and (57) are MS. Thus we obtain 
an additional proof of the superintegrability of the TTW system via dimensional 
reduction.

3.1. Integrals of the motion for the reduced systems

As the Hamiltonian itself is reduced, so too can its integrals of the motion can be 
obtained by a proper reduction of the integrals belonging to the 4-dimensional versions 
(21 - 45). As we showed in (53 - 55) the elements J_, J 3 , J +  can be easily reduced 
to 2-dimensional differential operators, however in order to obtain also the integrals 
of the motion we need to reduce also the ladder operators L+  , L_ and L. The 
differential operators L+  L_ are linear in Xj , p j  therefore their square turns out to be 
linear in the coalgebraic elements j x2 ,p 2 , [xj ,p k ]} and hence the linear combination 
(L±)2 +  (L±)2 , (L±)2 +  (L±)2 are respectively functions of

{ J ( 4 ) , J ( 2 ) , (x i y i  +  X2Y2), (pi Yi  +  P2Y2)} (58)
{ J (4) , J ( 2 ) , (X3 Y3 +  X4Y4), (P3 Y3 +  P4 Y4 ).} (59)

The first two sets of elements can be reduced by means of the change of 
variable (49) whose application makes the elements (58), (59) independent on the 
variables ^ 2 , however the elements depending in the matrices y cannot be so easily
reduced. However we can finalize the reduction by introducing a proper similarity 
transformation. To be concrete let us introduce the following basis for the Y matrices

Yi =  &i ® 1, Y3 =  &3 ® &i
Y2 =  & 2 <8> 1, Y4 =  &3 <8> & 2

and let us also define the following the following gauge matrix

/  e_-2 (0i+02) 0 0 0

R = 0 e_ 1 (01_02) 0 0
0 0 e 2 (01_02) 0

V 0 0 0 e 2(01_02)

\

/
The above gauge turns the reduction (52) into

I  ^  I  ^ / r r r 2 (
1

4n2
e_ i l i 0 i  e_ i l 2 02 r i/R e il101 eil202 d ^ # 2)

1
Vr ir 2 ,

(60)

by means of which we obtain the following reduced operators. The terms that are 
linear in the gamma matrices reduce to

x i Yi  +  X2Y2 ^  r i Yi , X3Y3 +  X4Y4 ^  r2Y3
hli

Yi P i +Y2P2 ^  Yi p r i  +----- Y2,r i

m2
Y3P3 + Y4P4 ^  Y3pr2 +--------Y4 ,
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and the coalgebraic generators become 
J_ ^  r 2 +  r^
J3 ^  rip ri +  r2pr2 — ih

h2l2 h2B h21i ,h2l2
J+ ^  p rx + p r2 +---2—I---- 22 +  i ^ T YiY2 + i —2^Y3Y4

r2 r2

L ^ —iYiY3(ripr2 —r2pri)— ih ( liYiY2 +  I2Y3Y4 —l i 2̂Y2Y3 +  YiY4 ) .r1 r2
Let us emphasize that the action of this reduction has turned the scalar operator J+ 
into the following diagonal operator

(  J+(li — 1, I2 — 1) 0 0
0 J+(li — 1, I2) 0
0 0 J + (l1, l2 — 1)
0 0 0

\

V
where J+ (li , l2) is defined as follows

J+(li,l2) /

J+(li,l2) =  pr 1 + p r2 +
h2li(li +  1) h2l2 (l2 +  1)

I r2r2
As a consequence the Hamiltonian operators (21) (45) turn into the following 

diagonal ones

H i, h2F  (r) —Ar2 +
li (li +  ^ i , j ^  l2 (l2 +  ^i,jej ^

02r 2 sin2 00 I 0 2r 2 cos2 00 +  V (r)

where

and

(1)
(—1 , —1 , 1 , 1 ) ;  ej 2)

F(r) =

for the system (21) and 

F (r) =

r i =  r  cos 00

(1 +  k2r 2)2

( —1,1, —1,1) 
; r2 =  r sin 00

2
V (r) =

—̂ (1 — k2 r 2)

r(1 +  k2r 2)2
V(r) =

-y«r
2(1 — k2r 2 — 4Jr) ’ (1 — k2r 2 — 4Jr)

for the system (21).
From the above analysis we conclude that it is possible to reduce all the elements 

of the spectrum generating algebra, but we have to pay as a price that the reduced 
ladder operators acting on L can shift L by steps of 2h instead of h since their reduced 
version is given by quadratic combination of the original operators, defined as

L±i =  (L±)2 +  (L±)2, L±2 =  (L±)2 +  (L±)2.

The integrals of the motion for the reduced version of (21) (45), under the 
representation (60), are constructed via

1
7 2

ns , + ^  ( ( L+j ) m  (As ) ” '  +  (AS ) n  ( L_j ) m

1
R s , _  =  i T l  l(L+ j )m  (As )n  — (AS )n  (L- j )

i i

2r i

j

2
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where 0 =  m and m' =  m, n ' =  n for even m and m' =  2m, n' =  2n for odd m. 
The constant of the motion for the extension of the TTW system, can be constructed 
analogously with Am and A^. Recall, that repeated application of the ladder operators 
A and A  ̂ are defined via (40) and (39).

4. Conclusions

In this paper, we have shown that the coalgebra formalism is an effective method 
for extending Hamiltonians into higher dimensions while preserving integrals of the 
motion, even those integrals that are not expressible entirely in terms of the co­
algebraic generators. In particular, we discuss the quantum extension of the Coulomb 
and oscillator type systems on the N-dimensional extension of the so called ”Bertrand 
spaces” , in their conformally flat form as introduced in [17]. We prove that such 
extensions are maximally superintegrable by constructing directly 2N — 3 intermediate 
Casimir operators from the coalgebra generators as well as two additional higher-order 
integrals of motion from ladder operators. Thus, we have proven the superintgrability 
of the systems proposed in [8].

As an example, we have also considered the system in 4D and its dimensional 
reduction. In order to construct integrals of motion that reduce appropriately, we 
have introduced a non-trivial gauge leading to a vector of partner Hamiltonians 
with vector integrals of the motion. As a consequence, we have given on the one 
hand an alternative proof of the superintegrability of the TTW, on the other hand a 
generalization of TTW on Darboux spaces. For earlier proofs, see also [18, 19, 20, 21].

We conclude by highlighting a few of the more unique methods employed to 
construct the integrals. As remarked above, the co-algebra structure was used to 
extend the system, as well as many of the integrals, to higher-dimensions. However, 
even the non-radial operators such as L± were able to be extended by casting them in 
appropriate form as in (29). Additionally, we have used (formally) a vector form of the 
angular momentum operator L in order to express the Hamiltonian in factorized form. 
Usually, the factorization method is applied only for 1D Hamiltonians and extended 
to higher-dimensions by separation of variables, see e.g. [22, 23, 24]. In this paper, the 
factorization method is applied to the entire 2D and, by extension, ND Hamiltonian.
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A ppendix

In this appendix, we prove the asserted forms of the ladder operators for total angular 
momentum in dimension n.

We define the total angular momentum operator, formally, as a vector via

T h(n — 2) i T (61)
L = ---- 2--------2 ^ ^  Yj Yk Ljk . (61)

2 j=ik=i
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T heorem  5 The square of the angular momentum vector is the scalar total angular 
momentum.

P roo f: The square of the proposed vector is

L2
h2(n — 2)

4
ih(n — 2) 

2

n n

Z ) Z ) Y j  Yk L
j=ik=i

1
jk — 4 ^   ̂ Yj Yk Ŷ YmLjkLm,n . 

j,k, ,̂m
(62)

The third term of the right-hand side of (62) can be decomposed into three cases, all 
4 indices are distinct, exactly two coincide, or two pairs coincide. Recall that j  =  k 
and m =  n terms are 0, i.e. Lj j  =  0 by definition. In the first case, we have

^   ̂ Yj Yk Ŷ Ym Lj k Lm , n  — ^   ̂ Ya Y&YcYd (4La b Lcd 4La c Lbd +  4La d Lb c) .
j = k = ^ = m  a < b < c < d

However, as can be directly verified from the definition of the Lj k , the sum is zero for 
all a < b < c < d, i.e.

La bL cd Lac  Lbd +  La d L6c = 0 , a =  b =  c =  d. (63)
For the second case, namely when j  =  m or i  and k =  m or i, the sum restricts to

1
2 Yk Ym L kj Ljm +  Yj Y mLjk Lkm

j,k,m
i^^y   ̂YkYm Lkm

k,m
1.

j=k=m

For the second identity, the commutator of Ljk and Lkm is used

[Ljk, Lkm] i '̂Ljm.

These terms will exactly cancel the linear terms in (62). The last non-zero cases are 
those where j  =  i, k =  m or j  =  m, k =  i  which give

— 1 V  Yj Yk Yj Yk L2k +  Yj Yk Yk Yj Ljk Lkj =  V  L2j .
j,k j<k

Thus, the square of L as in (62) reduces to

L2 = d2(n — 2)
+  V L2j .

j<k4
(64)

Next, we construct the ladder operators for L, L+ and L . Along the way, we 
collect some facts.

(2) (2)Lem m a 6 The multidimensional analog of X2L =  x i J  ) — J_ pi +  2xi holds. 
Namely,

_ 7- ___ r(n) T(n)_ , i -̂nxm   D
2_^Xj Lmj — xmJ3 d_ pm + 2  — (65)
j=i

Proof: A direct calculation shows that the left hand-side of (65) is

m 3J3n ) — J (n )Pm  +  X-
ihn
2 —ihxr. V  xj dj +  n

<j=0 y
+  m  V x2a „  + .

j=i

After simplifying this expression, we see that the right-hand-side is simply n=o Xj Lmj 
and so the lemma is proved.
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Lem m a 7 The following identity holds

^ m ^  L] 2 L] ihRm i V \ xj [Lmj, L] -
j=m

Proof: First, we compute

- h
[xm, L] =  -2h (YmYj — YjYm)xj -

(66)

(67)
j=i

Thus, left-hand side of (66) becomes

[xmL, L] =  —h  V (YmYj — YjYm)xj ( — 2 V  V  YkŶ Lk£ J
j= i V 2 k=i£=i /

h(n -  2) ih
=  ---- 2---- [xm , L] +  — Ym  2_^ Yj  Yk Ŷ x j  L k £ .

j=m,k,^
As above, we separate the sum into cases. The first case is j  =  k =  i  =  m. Ordering 
the indices sequentially a < b < c gives

^   ̂ Yj Yk Ŷ xj Lk£ ^   ̂ Ya Y6Yc (2xa Lbc 2xbLac  +  2xc La b ) -
j = k = ^  a < b < c

Again, by direct computation, we see that the sums inside the parenthesize are 
identically 0,

xa Lbc x bLac  +  x c Lab 0, (68)
and so the terms of the original sum with all distinct indices are 0. Of course, the 
cases where k =  i  are identically 0 from the definition of L k£ and so the sum reduces 
to the terms with k =  j  or i  =  j  and with k =  m or i  =  m, which give

^  Ym Yj Yk Y^xj Lk£
j=m,k,^

n
2 ( YmYkxj Lkj +  Yj Ykxj Lkm) -

j=m k=i

The terms of this sum with k =  m are exactly the right hand side of (65) and so can 
be expressed in terms of the radial operators and xm, i.e. as the component Rm. The 
remaining terms can be recognized as follows

$ 3  xj [Lmj, L] =  h $ 3  Yk Ymxj Ljk +  h ^   ̂ Yj Ykxj Lmk -
j=m k=m,j=m j=m,k=j

So, finally the commutator is computed as

[xmL, L] =
—h2(n — 2)

L] ihRm i ^   ̂ xj [Lmj , L] -
j=m4

Lem m a 8 The following identity holds

L] ihxmL
ih2(n — 

2”” xm2) +  xj [Lmj, L].
j=i

(69)



Quantum Integrals from Coalgebra Structure 

P roof: The computation is

20

 ̂xj Lmj, L] ^   ̂([xj , L]Lmj +  xj [Lmj, L]) -
j= i j=i

Beginning with the first terms, gives 
n —h5 [̂xj ,L] Lmj =  E E  2 Yj Yk xk Lmj

j =i j k=j

h I E /  2 x m L m j  Ym  Yj  +  ^  ' Ya Yb (x a L m b  x b L  m a ) J -
\  j  a < b  /

The terms in the final parenthesize can be simplified via (68) leading to

^   ̂[x j , L] Lmj
j=i

ih
 ̂ xm

ihxm L

E  Ljk Yj Yk 
j,k
ih2(n —

2” ”
2) xm.

Leaving the final expression (69) We are now in a position to prove asserted ladder 
operations as given in Theorem 3.

P ro o f of T hm  3 : By Lemmas 7 and 8, the commutators are

[Lm ,L] 2) [x , L] — ihRm i E l  x j [Lmj, L]
j=m

+ i ihxmL —
ih2(n — 

2””
2) xm +  E l  xj [Lmj , L]

j=i

2)
[ x m , L]

=  — hLm-

The above relations can be straightforwardly extended also to Lk ) by considering its 
adjoint property.
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