
DYNAMIC FRACTIONAL RESOURCE SCHEDULING

FOR CLUSTER PLATFORMS

A DISSERTATION SUBMITTED TO THE
GRADUATE DIVISION OF THE

UNIVERSITY OF HAWAI‘I AT MĀNOA
IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

COMPUTER SCIENCE

DECEMBER 2010

By

Mark Lee Stillwell

Dissertation Committee:
Henri Casanova, Chairperson

Edoardo Biagioni
Philip Johnson
Stephen Itoga
Galen Sasaki

Copyright 2010 by

Mark Lee Stillwell

ii

This work is dedicated to my parents, my wife, and my son.

iii

ACKNOWLEDGMENTS

I would first like to thank my advisor, Professor Henri Casanova, for his supervision,

his professionalism, and his patience. His comments and feedback throughout the process

of developing my research project and writing this dissertation were both instrumental

and essential.

I would like to acknowledge the contributions of my my research collaborators:

Thanks go to Dr. Frédéric Vivien for his insights into the theoretical problem and his

suggestions on how to properly develop and test the heuristic algorithms. Thanks go to

David Schanzenbach for his programming work and his help with the Xen hypervisor and

Usher virtual machine management system.

I also owe a debt of gratitude to the remaining members of my dissertation committee,

Professors Philip Johnson, Edo Biagioni, Stephen Itoga, and Galen Sasaki for their time,

encouragement, and efforts, and to the Department of Information & Computer Sciences

at the University of Hawai’i at Mānoa for its academic and financial support.

I would like to separately thank my wife, without whom none of this would be

possible.

Experiments presented in this paper were carried out using the Grid’5000 experi-

mental testbed, being developed under the INRIA ALADDIN development action with

support from CNRS, RENATER and several Universities as well as other funding bodies

(see https://www.grid5000.fr).

The experiments using our prototype system were carried out on machines owned

by the Deparment of Computer Science and Engineering at the University of California,

San Diego with the permission of Geoffrey Voelker. System administration and much

assistance were provided by Gjergji Zyba.

iv

https://www.grid5000.fr

ABSTRACT

This research focuses on the problem of job scheduling on homogeneous compu-

tational clusters. Clusters are widely used today for a variety of purposes, including

high-performance scientific computing and Internet service hosting. While clusters may

have impressive aggregate performance metrics, they are really only collections of fairly

modest machines, which makes scheduling jobs for the best performance a non-trivial

problem. Most clusters also need to be shared among users to amortize their start-up

and maintenance costs, and ensuring that these users are treated fairly further adds to the

difficulty. Existing approaches to scheduling attempt to address both of these issues, but

have several limitations.

We propose a novel approach, called Dynamic Fractional Resource Scheduling

(DFRS), to sharing homogeneous cluster computing platforms among competing jobs.

The key features of DFRS are that it leverages existing virtual machine technology in

order to share resources more efficiently and it defines and optimizes a user-centric metric

that captures notions of both performance and fairness. In this dissertation we explain

the principles behind DFRS and its advantages over the current state of the art, develop

a theoretical model of resource sharing, design heuristics to optimize the proposed

metric within the given framework, implement and run simulations comparing DFRS

to traditional approaches using popular and accepted performance metrics, and finally

develop and test a prototype implementation based on existing technologies. Our results

show that it is possible to develop heuristic algorithms that give results reasonably close

to theoretical bounds for a variety of cases, that resource requirements are well within the

capabilities of modern systems, and that for some scenarios DFRS can provide orders-of-

magnitude levels of improvement in performance over current approaches.

v

CONTENTS

Acknowledgments . iv

Abstract . v

List of Tables . xi

List of Figures . xiii

1 Introduction . 1

1.1 Problem Statement . 3

1.2 Approach . 3

1.3 Organization . 4

2 Current Approaches and Their Limitations 6

2.1 Scientific and HPC Workloads . 6

2.1.1 Batch Scheduling . 6

2.1.2 Gang Scheduling . 8

2.1.3 Co-Scheduling . 10

2.1.4 Discussion . 11

2.2 Service Hosting Workloads . 13

2.3 Conclusion . 16

3 Dynamic Fractional Resource Scheduling . 17

3.1 The DFRS Approach . 17

3.1.1 System Overview . 17

vi

3.1.2 Optimization Objective Function 20

3.1.3 Off-line, On-line, and Adaptation Scenarios 21

3.2 Practical Considerations . 22

3.2.1 Virtual Machine Technology . 23

3.2.2 Discovery of Resource Requirements and Needs 25

3.3 Conclusion . 26

4 The Off-line Problem . 28

4.1 Problem Definition . 28

4.1.1 Theoretical Background, Complexity, and (In-)Approximability . . 30

4.1.2 Mixed-Integer Linear Program Formulation 32

4.2 Algorithms . 34

4.2.1 Exact Solution . 34

4.2.2 Greedy Algorithms . 34

4.2.3 Relaxed LP Solution and its Uses 36

4.2.4 Genetic Algorithm . 38

4.2.5 Vector Packing Algorithms . 39

4.3 Experimental Methodology . 41

4.4 Experimental Results . 43

4.4.1 Greedy Algorithms . 43

4.4.2 LP-based Algorithms . 46

4.4.3 Genetic Algorithm . 48

vii

4.4.4 Vector Packing Algorithms . 49

4.4.5 Impact of Instance Parameters . 53

4.4.6 OPT vs. LPBOUND . 55

4.4.7 Optimizing Average Yield . 56

4.5 Multi-VM jobs . 58

4.5.1 Data-parallel jobs . 59

4.5.2 Multi-Instance jobs . 61

4.6 Conclusion . 62

5 The On-line Problem . 63

5.1 Problem Definition . 63

5.1.1 Related Work . 65

5.1.2 Theoretical Difficulty of Maximum Stretch Minimization 66

5.2 Algorithms . 74

5.2.1 Greedy Task Mapping . 76

5.2.2 Task Mapping as Vector Packing 77

5.2.3 Prioritizing Jobs . 77

5.2.4 When to Compute New Task Mappings 79

5.2.5 Resource Allocation . 81

5.2.6 Optimizing the Stretch Directly . 83

5.3 Experimental Methodology . 84

5.3.1 Discrete Event Simulator . 84

viii

5.3.2 Workloads . 86

5.4 Experimental Results . 89

5.5 Conclusion . 96

6 The Adaptation Problem . 98

6.1 Bandwidth Consumption for Previous Results 98

6.2 Problem Definition . 100

6.2.1 Computational Complexity . 101

6.2.2 MILP Formulation . 101

6.3 Reducing Bandwidth Consumption . 102

6.4 Conclusion . 105

7 Feasibility Study of DFRS in Practice . 106

7.1 Platform Description . 106

7.2 Resource Allocation and Discovery . 107

7.2.1 VM Caps and Weights in Xen . 108

7.2.2 Algorithms . 109

7.3 Experimental Methodology . 111

7.4 Experimental Results . 112

7.5 Conclusion . 114

8 Conclusion . 116

8.1 Contribution of this Dissertation . 118

8.2 Highlights of Scientific Findings . 119

ix

8.3 Future Work . 120

8.3.1 Algorithmic and Theoretical Extensions 120

8.3.2 Development and Evaluation of a Practical System 122

A List of Publications . 123

B Additional Tables . 124

Bibliography . 148

x

LIST OF TABLES

4.1 Average dfb, 90th percentile dfb, and fr for the LP-based algorithms and
GREEDY. 46

4.2 Average execution times for LP-based algorithms. 47

4.3 Average dfb, 90th percentile dfb, and fr, for the GREEDY and GA algorithms. 48

4.4 Average dfb, 90th percentile dfb, and fr, for the VP-based, GREEDY, and
GREEDYLIGHT algorithms. 49

4.5 Some of the S and Y values pertaining to the VP_CPSUM algorithm. . . . 52

4.6 VP_CPSUM’s dfb values and relative dfb values. 54

4.7 Average cluster utilization. 58

5.1 On-line scheduling algorithms . 81

5.2 Average degradation from bound results for selected algorithms. 92

6.1 Bandwidth costs for selected algorithms. 99

7.1 Aggregate performance metrics for balanced workloads 113

7.2 Aggregate performance metrics for unbalanced workloads 114

B.1 Average degradation from bound results for the HPC2N workload. 124

B.2 Average degradation from bound results for the unscaled synthetic traces. . 128

B.3 Average degradation from bound results for the scaled synthetic traces. . . . 132

B.4 Preemption and migration bandwidth consumption. 136

B.5 Preemption and migration frequency in occurrences per hour. 140

B.6 Preemption and migration frequency in occurrences per job. 144

xi

LIST OF FIGURES

4.1 Bi-criteria comparison of GREEDY_Sx_Py algorithms. 44

4.2 Percent relative dfb values for VP_CPSUM vs. the slack. 53

4.3 Percent relative dfb values for VP_CPSUM and OPT, vs. slack. 55

5.1 Average degradation from bound vs. load for selected algorithms. 90

6.1 Effects of varying the rescheduling period. 103

xii

CHAPTER 1
INTRODUCTION

A cluster is a near-homogeneous collection of computers, or nodes, connected to each

other by a high-speed interconnect. Many clusters are commodity clusters built from off-

the-shelf components intended for the personal computer market. Commodity cluster

nodes are generally re-purposed desktop computers. Other clusters use specialty rack-

mounted hardware, custom compute nodes [1], or cluster-specific interconnects such as

InfiniBand or Myrinet [2]. Throughout this work we use the terms cluster and commodity

cluster interchangeably.

Clusters are widely used today. Since their advent in the mid 1990s they have largely

replaced traditional proprietary supercomputers for scientific and high-performance

computing applications, and now represent over 80% of the machines listed on the top

500 index [3]. There is a great deal of demand for cluster computing in the sciences, with

medical imaging [4], climate simulations [5] and protein folding simulation [6] being

only a few of the better-known potential applications. Clusters also have uses beyond

those traditionally reserved for supercomputers, including graphics rendering [7] and

data processing [8–10]. Their distributed nature makes them ideal for providing load-

balancing and redundancy in the event of failure, which is why they are also used for

service hosting [11, 12].

Several factors have driven increased cluster adoption. The first is that they offer a

major improvement in price performance ratio over traditional proprietary solutions [2].

Additionally, the more recent development of cluster-as-a-service and Grid technologies

has given companies like Amazon the means and motivation to make cluster computing

available even to casual users [12]. Compared to single-system approaches they are very

configurable at time of purchase and they are easy to upgrade by purchasing additional

1

nodes. Repairs and maintenance are relatively inexpensive. The use of commodity

hardware means that clusters take advantage of the research and development cycle of

desktop computing systems, and so node and network performance both improve rapidly

over time [2].

While clusters generally provide an improvement in cost over traditional supercom-

puters [2], they still represent significant investments in infrastructure and maintenance.

Though it is possible to put together a usable system from standard PCs and networking

equipment (the so called "LOBOS" or Lots-Of-Boxes-On-Shelves approach), higher-

end systems will use specialty rack-mounted hardware and high-speed interconnects [2].

Sizeable systems can have enormous power requirements and often require dedicated

cooling [13, 14]. Properly maintaining the system hardware and software may require

dedicated staff, as with any large system installation. For these reasons, sharing clusters

among as many users as possible is necessary for both spreading costs and justifying

said costs by maintaining high levels of utilization. Thus, clusters are typically expected

to run multiple instances of user applications, or jobs, in sequence and, when possible,

in parallel. Each of these jobs has its own individual resource requirements and the

assignment of jobs to nodes in space and/or time in such a way that these various

requirements can be met is referred to as job scheduling.

Several factors make scheduling on clusters difficult. While generally compared to

traditional supercomputing systems using aggregate measures of computational power

such as Giga- or Tera-Flops (floating-point operations per second), clusters are really

only collections of fairly modest machines. Large computations and high-throughput

operations must be broken down into smaller pieces, called tasks, which are then

scheduled to be run on individual nodes. High inter-node communication latencies and

the lack of a globally accessible memory address space mean that approaches targeting

shared memory supercomputers are usually inappropriate for use on clusters [2].

2

Current solutions are unsatisfying for a number of reasons. The most-commonly

used schedulers at production high-performance and scientific computing installations

do not seek to maximize an objective metric based on performance or fairness, and it

is well known that a there is a disconnect between the desires of users and schedules

achieved in practice [15, 16]. Furthermore, the most sophisticated algorithms rely on

unreliable end-user generated estimates of program runtime [17, 18]. In the service

hosting arena, much of the existing work shows an engineering-heavy bias, with little

theoretical justification [12, 19–22].

1.1 Problem Statement

We assume the existence of a cluster with a fixed number of homogeneous nodes and a

set of jobs that need to be run on the cluster. Each node supplies a number of resources

(CPU, memory, network bandwidth, etc.), and each task of a job, if allowed to run

unimpeded on a node, will tend to saturate a fraction (possibly 0%, 100%, or somewhere

in between) of each resource. Depending on the scenario, jobs may be submitted all

together at once or individually over time. We study scheduling algorithms that take

as input a number of nodes and a set of jobs, and output a schedule that allocates tasks

to nodes, possibly over time. The problem is to develop scheduling algorithms that

perform well by aggregate metrics of user and/or administrator concerns, like average

job performance or schedule fairness, in both the average and worst case.

1.2 Approach

We address the cluster scheduling problem and extend the theoretical literature by

designing a new model of resource sharing and developing algorithms based on it.

Our goal is to create a well-defined optimization problem and then find heuristics to

3

solve it. This is consistent with a number of lines of existing research [23–27], but our

work possesses several key advantages: For one thing, we seek an approach that can

account for an arbitrary number of resource dimensions instead of only one or two. For

another, we define and optimize a universally applicable metric that captures notions of

performance and fairness across different application domains.

We consider several different scenarios, including an off-line resource allocation

problem for stable workloads of long-running jobs and an on-line resource allocation

problem where temporary jobs are submitted by users at arbitrary times. We also examine

some of the resource costs associated with our approach, particularly the bandwidth

consumed by migrating tasks between nodes. Finally, we develop and evaluate a

prototype system to show that our model of resource sharing is feasible in practice.

1.3 Organization

This dissertation is organized as follows: In Chapter 2 we discuss existing approaches

to the job scheduling problem and their shortcomings. In Chapter 3 we develop a new

model of resource sharing and formulate several versions of the Dynamic Fractional

Resource Scheduling problem. In Chapter 4 we study the off-line problem in detail,

establish a theoretical model and complexity bounds, propose a number of algorithms and

perform simulation experiments to determine their relative performance under a number

of different scenarios. In Chapter 5 we study the on-line problem, establish complexity

results and a method for computing the maximum stretch lower bound for an instance

using a clairvoyant algorithm in an idealized setting, establish a proof of the competitive

ratio for the non-clairvoyant case, propose a number of algorithms and evaluate them in

simulation using a combination of real workloads and synthetic workloads based on a

well established model. In Chapter 6 we study the trade-offs between performance and

4

network bandwidth consumption. In Chapter 7 we describe a prototype implementation

of our system and give some results for simple validation experiments of a technique for

the on-line estimation of dynamic resource needs. Finally, in Chapter 8 we summarize our

results and the research contribution of this dissertation.

5

CHAPTER 2
CURRENT APPROACHES AND THEIR LIMITATIONS

For the reasons outlined in Chapter 1, cluster scheduling has been an active area of

research for as long as there have been clusters. Since most clusters have traditionally

been used for scientific and high performance computing, the existing literature tends

to look at the problem from this perspective. In the past few years there has been more

interest in using clusters for service hosting and data processing applications, however

much of the initial infrastructure was designed by industry with little concern for theory.

More recent papers have begun to address this lack of academic rigor, and service hosting

has become something of a hot topic for research.

In this chapter we discuss the cluster scheduling literature, beginning with a review of

approaches to scheduling for high performance computing (Section 2.1) and continuing

with a look at proposed methods of dynamically allocating resources in service hosting

environments (Section 2.2).

2.1 Scientific and HPC Workloads

Scientific and HPC workloads are composed of jobs created independently by end users

in response to their own individual needs. These jobs usually involve large computations

and may require access to a significant fraction of the available system resources. They

are generally deterministic in nature, requiring minimal interaction and communication

with outside systems, and complete after a finite period of time.

2.1.1 Batch Scheduling

The most commonly used cluster sharing technique for scientific or high-performance

computing workloads is batch scheduling. In this paradigm users create requests to run

6

programs using a number of nodes, and these requests are then put into queues. At some

future time when appropriate resources are available the request can be removed from the

queue and used to create a job which is then given exclusive access to a set of nodes until

it either completes or is canceled by the user or the system [28]. In the discussion that

follows we equate requests to run jobs with the jobs themselves and refer only to jobs.

The most obvious way to select jobs from the queue is on a first-come-first-served

basis; that is, in the order that they are submitted. However, this can lead to unnecessarily

long wait times: If a job at the head of the queue is blocked because there are insufficient

nodes available to run it, then other jobs may also have to wait even when there are

sufficient nodes available to run them. For this reason most batch schedulers use a first-

come-first-served strategy augmented with some sort of backfilling algorithm that selects

runnable tasks out of turn from the waiting queue [29].

Unrestricted backfilling can result in jobs that require a small number of nodes

constantly jumping to the head of the queue, which can cause unbounded wait times

for jobs requiring a larger number of nodes, a phenomenon referred to as starvation.

Conservative backfilling techniques alleviate this problem by requiring the user to specify

an estimated job run time and then scheduling jobs so that no job should be delayed from

when it would run if the scheduler became a pure first-come-first-served scheduler at

the time the job is submitted. Smaller jobs with relatively short run times may thus be

allowed to start early without delaying larger jobs. Aggressive, or EASY, backfilling is

more widely used than conservative backfilling and represents a compromise of sorts, as

a reservation is only made for the first job in the queue [17, 29], which both simplifies the

scheduler and allows for more backfilling.

Unfortunately, it is well known that the user runtime estimates required for backfilling

are highly unreliable [18, 30]. Studies have also shown that this inaccuracy can have a

significant impact on system performance [31]. Additionally, many systems that require

7

runtime estimates will kill jobs that exceed these estimates by a certain threshold. This

can compound the problem by encouraging users to make very conservative runtime

estimates in order to ensure that their jobs are not killed after they start. Thus, it is

generally believed that a system that did not require these types of runtime estimates

would be desirable.

The integral (i.e., whole-node) allocations used by batch scheduling virtually

guarantee poor utilization at both the node and individual resource level. At the node

level, since job sizes in terms of nodes and run times are essentially arbitrary, the job

scheduling problem is equivalent to bin-packing. This suggests that at any given moment

some fraction of the usable nodes will be sitting idle, even when jobs are waiting to run in

the queue. In fact, studies have shown that FCFS only manages to achieve around 40-60%

node utilization, while EASY does somewhat better at around 70% node utilization [32].

The resource level problem comes from the fact that jobs receive exclusive access to

nodes for their duration, and so any unused or underutilized resources will remain at

least partially idle until the current job completes. Since nodes need to be provided

with sufficient resources of each type to run the most demanding job, even on active

nodes it is likely that some of the available resources will not be used. For example, in

a 2006 log of a large Linux cluster [33], more than 95% of the jobs used under 40% of

the available node memory, and more than 27% of the jobs effectively used less than

50% of the available node CPU resources (due to time spent performing I/O or network

communication and synchronization). Similar observations have been made repeatedly in

the literature [34–39].

2.1.2 Gang Scheduling

In light of the observations from Section 2.1.1, it seems likely that some form of time-

sharing is necessary in order to achieve higher utilization levels and responsiveness in

8

parallel computing [40]. Time-sharing is particularly useful for interactive applications

as it allows the system to run more jobs simultaneously, and thus reduces the wait time

between when a job is submitted and when it starts running (also called the response

time). Intelligent scheduling policies can also make use of time-sharing to improve overall

resource utilization, for example by scheduling a CPU intensive job and an I/O intensive

job to the same node [41].

There is, however, a potential problem with using time-sharing on the nodes of

parallel clusters: When a large job is allocated to nodes that use locally scheduled time-

sharing the individual tasks may all start to run during different time-slices, or they

may start out together and become out of sync due to clock-drift or the interference of

other jobs on the system. If this occurs and the job requires fine-grained or interactive

communication between tasks on different nodes then the progress of the job may

grind nearly to a halt as tasks spend most of their allocated time-slices waiting for

messages from other tasks that are sleeping. This is called process thrashing and the most

straightforward way to ensure that it is avoided is to co-schedule the individual tasks of a

parallel job in a coordinated manner so that they run at the same time [42].

Explicit co-scheduling, or Gang scheduling, is a paradigm in which the entire parallel

machine is multiplexed via distributed context switching so that processes within the

same job are run within the same time slices. Gang scheduling has inspired a considerable

amount of academic research for a number of years [43–47]. While there have been

several promising implementations of the concept [48–50], gang scheduling remains very

much a curiosity in HPC circles and is not generally found in production environments

(a notable exception being the CM5 [35], no longer in use). This is largely because the

promised benefits have been difficult to realize [46].

One problem with gang scheduling is that it requires coordinated distributed context

switching. This is high-overhead in terms of complexity and delay, and thus imposes the

9

additional consideration that context switching should be performed as infrequently as

possible. This limitation on the granularity of the time-slicing combined with the nature

of the switch, wherein the entire parallel system is effectively replicated several times

over, means that gang scheduling cannot solve the fundamental problems associated

with batch scheduling. That is, while gang scheduling is likely to improve overall system

utilization, it is still possible to have “holes” in the final schedule, so that some machines

may sit idle for entire time slots even when there are jobs that need to be run [51].

Additionally, gang-scheduling can provide poor levels of resource sharing even given

a perfect schedule that contains no holes: consider that if there are N time slots then

an I/O bound job will receive 1/N th of the CPU, even if its pattern of activity leaves

the CPU idle for much of that time [52]. Thus, while gang scheduling may represent an

improvement over batch scheduling, it still suffers from the problems discussed in the

previous section.

Another problem with gang scheduling is simply that the original models did not

take into account the memory needs of running jobs when packing them into time

slots [36]. Because of this some jobs may be forced to swap to disk, and such delays

are compounded in parallel applications by process swapping as previously described.

Research indicates that most jobs leave enough system memory free to allow some degree

of node sharing between jobs [35, 36, 38, 39, 53], and when memory needs are taken into

account the real performance improvements of gang scheduling over pure space-sharing

approaches can be significant [36, 37, 54].

2.1.3 Co-Scheduling

The problems of overhead and fragmentation have led to interest in more relaxed time-

sharing schemes that still manage to avoid process thrashing. These more flexible

techniques are generally referred to as co-scheduling, though it should be noted that

10

true co-scheduling requires a globally synchronized clock [42], and so most of these

techniques are better thought of as relaxed or approximate co-scheduling. Flexible co-

scheduling monitors network activity in order to classify processes and then only uses

gang-scheduling for those tasks that seem to require it [46, 55]. Implicit co-scheduling is

based on the idea of two-phase waiting: processes which are blocking for communication

events spin in place for a period of time, usually a little over the time required for two

context-switches, before finally blocking and yielding the processor [56, 57]. Dynamic

co-scheduling boosts the priority level of processes receiving communications, on the

theory that this will keep parallel applications loaded across multiple nodes during

periods of intense interactive communication [58]. Buffered co-scheduling buffers non-

blocking communication events and waits to send messages until a globally coordinated

synchronization event [59]. Coordinated co-scheduling is a more advanced technique that

takes into account both sender and receiver side events when making local scheduling

decisions [60]. Some authors even use the term co-scheduling to denote completely

uncoordinated time-sharing on nodes [61].

What these different co-scheduling techniques have in common is that they attempt

to minimize the amount of globally synchronized state that must be maintained and make

decisions locally in order to make better use of local node resources. Experiments using

both simulations and real systems seem to show that while some programs may suffer

slightly from imperfect task synchronization [62], implicit co-scheduling frequently

provides better over-all performance than explicit co-scheduling, possibly because of

lower overheads and better system utilization [46, 63, 64].

2.1.4 Discussion

We contend that some form of approximate co-scheduling is probably the most efficient

mechanism for sharing node resources on scientific workloads. However, the research

11

on this topic has focused largely on mechanisms and low-level implementation details.

Decisions about how to place jobs, and particularly which tasks should share nodes,

have been based on fairly simple criteria, such as memory capacity [63] or arbitrary

restrictions on the multiprogramming level [46, 65]. Many papers even make the

expedient assumption that all parallel jobs run on all the available nodes [56, 57, 65–67].

At least one study has shown that proper task placement is important in a cluster that uses

time sharing nodes under a number of different co-scheduling schemes [68], but this work

focuses on the performance of running jobs and does not suggest algorithms or address

overall schedule quality in an on-line setting. The focus of our research is this neglected,

but important, problem of task placement and sub-node-level resource allocation.

The use of time-sharing and/or virtual machine technology to create “virtual clusters”

has been explored previously in the literature [69–74]. Again, the focus here has been on

lower level details, such as selecting appropriate host nodes in distributed and/or federated

systems [75], properly distributing and instantiating virtual machine images [76], and

allowing for check-pointing parallel jobs [69, 77].

The scheduling algorithms considered have been for the most part refinements or

extensions to existing schemes, such as combining best-effort and reservation based

jobs [78]. Fallenbeck et. al. developed a novel solution that allows two virtual clusters

to coexist on the same physical cluster, with each physical node mapped to two virtual

nodes, but their implementation is meant to solve a problem specific to a particular site

and does not add to the literature in terms of general scheduling algorithms [79]. The

system proposed by Ruth et. al. attempts to dynamically migrate tasks from “overloaded”

hosts, but their definition of overloaded is vague and they do not propose a well-defined

objective function [80].

One interesting use of time-sharing on cluster nodes suggested by Kalé would be to

allow for limited malleability by consolidating multiple tasks from the same job, and only

12

tasks from the same job, onto a single physical node when necessary to achieve global

performance objectives [81]. A similar idea was espoused by Feldmann [82]. The model

that we propose is much more ambitious and gains the purported advantages as a subset.

The VSched component of the Virtuoso system [83] can allow for distributed co-

scheduling of serial and parallel jobs as we propose to do. However, VSched uses a fairly

rough-grained time-sharing scheme and requires users or administrators to explicitly

specify the amount of CPU time a given application should be assigned per period. It then

uses a simple admission control mechanism to determine which applications can run. Our

work focuses on automating such decisions by assigning applications a fair share of the

resources they are capable of using through the optimization of a well defined objective

function.

An additional problem with the scheduling paradigms proposed so far is that they

do not optimize a user-centric objective function; it is known that there is a sharp

disconnect between user concerns (low job turn-around time, fairness) and the schedules

implemented in practice [15, 16]. Batch schedulers provide myriad configuration

parameters by which cluster administrators can influence scheduling behaviors, but these

parameters are not directly related to user-centric measures of performance.

2.2 Service Hosting Workloads

In contrast to the HPC scheduling paradigm, in which jobs exist for a finite period of

time and may require significant inter-node communication over their lifespan, jobs in

the service hosting environment tend to be long-lived and require little inter-node com-

munication. The primary goals in this environment are to ensure performance isolation

and keep the system in compliance with service level agreements (SLAs) [19, 84]. This

latter concern can be construed to encompass both maintaining a particular minimum

13

performance profile on active nodes and providing redundancy in the event of node-

level hardware failure. Some works attempt to address issues of task-interdependencies

and organize services into different levels, or tiers, with the tasks on one level being

dependent on the output of those below [85]. We opt for a more abstract model in order to

focus purely on the resource-allocation problem and so do not consider these issues.

Commercial products such as Amazon’s Elastic Compute Cloud (EC2) [12] or

Linode [86] give users access to statically allocated resources on shared machines (EC2

allows users to dynamically adjust their resource shares through an API, but provides no

global mechanism for finding optimal allocations). Early deployments of these types of

system were largely done “in the field” and the existing academic literature often reflects

this, with many papers having a strong focus on experiments using benchmarks and real

machines, but providing few theoretical models [19–22]. Some recent work, such as [87],

has done much to correct this oversight.

The Océano project allows administrators to specify both statically and dynamically

allocated nodes in order to allow for overbooking of resources while maintaining

“flexible” SLAs [88]. Dynamically allocated nodes are maintained as blanks or templates

and then instantiated as needed; when demand drops again they can be flushed and put

back into the pool of unallocated nodes. This policy is reactive and works on the node-

level, in contrast to more recent approaches which frequently make use of predictive

models and usually allocate sub-node-level resources, such as CPU or memory.

The authors of [89] propose to place applications onto a shared cluster using

intelligent “overbooking,” i.e., sharing servers among application instances. An important

contribution of this work is the validation of a number of application profiling techniques

for obtaining statistical bounds on resource usage and minimum resource needs. Both

this work and ours account for application QoS requirements, but the approach in [89]

attempts to maximize resource provider revenue while we choose to focus on application

14

performance and fairness in terms of resource shares. We also seek to develop intelligent

algorithms inspired by the theoretical literature that go beyond the common-sense but

simple heuristics described in [89].

In [23] the resource allocation problem is formulated as a constrained optimization

problem, where each service is characterized by its desired resource share. One difference

with our work is that we explicitly consider multiple resource dimensions while the

authors of [23] consider a server as a monolithic resource. Also, the approach described

in [23] first optimizes a linear objective function, namely, the average deviation between

a service’s resource share and its desired resource share. This can lead to unfair schedules

and so the authors of [23] propose a second optimization step, this time with a quadratic

objective function, that includes a bias term to improve fairness. By contrast, we propose

to use a linear objective function that naturally captures fairness, as inspired by the

theoretical job scheduling literature [90, 91].

The approach in [84] allocates applications to nodes based on historic data from

a distributed set of “sensors” and then dynamically migrates applications based on

feedback from those same sensors. A primary goal is to generate “robust” allocations

in order to minimize the number of migrations. Toward this goal a number of different

heuristics were proposed and evaluated, including both simple greedy approaches as well

as genetic algorithms and simulated annealing. A key difference between this work and

our own is that we attempt to find algorithms that maximize a linear objective function of

performance, while the approach described in [84] is only concerned with finding valid

resource allocations that satisfy minimum QoS requirements.

Several works propose resource allocation schemes that attempt to maximize user-

specified or empirically derived utility functions [92–96]. In this work we do not consider

utilities, but, instead, consider solely the resource share allocated to a service as the sole

performance metric. This metric is generic, correlated to popular metrics of performance

15

such as service response time, directly allows the specification of minimum resource

shares, and allows us to formalize and provide algorithmic solutions to the resource

allocation problem.

2.3 Conclusion

In this chapter we reviewed the cluster scheduling literature. We first explored the

literature on scheduling for HPC workloads, including well established techniques such

as Batch and Gang scheduling. We also discussed the literature on co-scheduling, and

concluded that efficient algorithms for resource allocation in a co-scheduling environment

are likely to lead to the best performance. We next explored the literature on scheduling

for service hosting environments and discussed the need to formulate the resource

allocation problem as an optimization problem with a well-defined objective function. We

contend that such a formulation could be used to develop resource allocation algorithms

that would lead to good performance for both HPC and service hosting applications.

16

CHAPTER 3
DYNAMIC FRACTIONAL RESOURCE SCHEDULING

In this dissertation we propose to leverage recent technological advances to

reformulate and re-conceive the problem of scheduling user jobs on clusters. We call our

approach Dynamic Fractional Resource Scheduling (DFRS) and contend that, within this

new framework, it is possible to define a performance metric that is universally applicable

to different types of workloads. That is, algorithms that do well at optimizing for this

metric will also do well when when evaluated using metrics used traditionally in diverse

contexts, namely, high-performance computing and service hosting. We explicitly seek

to find polynomial-time algorithms that achieve good average case performance, which

separates our work from approaches that require the solution of NP-complete constraint

satisfaction problems [93, 94, 97–99].

This chapter provides an introduction to the DFRS approach. In Section 3.1 we give

explanations of our basic assumptions and our chosen optimization objective function

and also provide descriptions of three different versions of the problem that we will

investigate further in future chapters. In Section 3.2 we justify our assumptions by

explaining how enabling technologies can be applied in real world applications.

3.1 The DFRS Approach

3.1.1 System Overview

We consider a cluster of homogeneous machines, or nodes, to which users or the

administrator submit requests to run jobs. These jobs consist of one or more tasks,

where a task is a more or less independent instance of a program. From an administrator

standpoint, the only distinction between a set of tasks from the same job and a set of

17

independent tasks from different jobs is that the first set is generated by a single user

request. We propose to run these tasks within independent virtual machines to allow

greater flexibility and control by the administrator without requiring modifications to

the software developed and run by users.

Resources, such as memory or disk space, that cannot be effectively multiplexed by

some sort of time-sharing scheme are referred to as fixed, while those, such as CPU,

network, or disk I/O bandwidth, that can be are referred to as fluid (the corresponding

terminology in [25] is “load-independent” and “load-dependent”, while [89] uses the

terms “spacial” and “temporal”). For each fixed resource a task has a requirement in that

resource equal to a certain fraction of what is available on a node. A task cannot run when

allocated less than this amount of the given resource. For each fluid resource a task has

a need in that resource equal to the fraction of the time the task would keep that resource

busy if it were running alone on the node. That is, a task’s need in a fluid resource is

equal to its maximum rate of consumption of that resource and is thus the amount of the

resource the task would need to be allocated in order to avoid experiencing degraded

performance. For example, a task might have a fixed resource requirement of 50% of the

memory available on the system and a fluid resource need of 40% of the CPU. As tasks

within the same job are all instances of the same program and operate on similar amounts

of data, they should have similar fixed resource requirements and fluid resource needs.

Since the tasks of a job are generally instances of the same program working toward a

common goal on similar amounts of data, we assume that they all have the same resource

requirements.

When multiple tasks are running on the same node their fixed resource requirements

and fluid resource needs will stack by simple addition. That is, if two tasks are running

on one node and the first task uses 25% of the CPU and 37% of the memory, while

the second uses 50% of the CPU and 40% of the memory, then the two tasks together

18

use 75% of the CPU and 77% of the memory, leaving 25% of the CPU and 23% of the

memory free to run additional tasks. While the total fixed resource requirements of the

tasks on a given node can never exceed 100%, the fluid resource needs are not under this

constraint. Instead, when tasks are placed together on a node so that the total of one or

more of their fluid resource needs exceeds 100% the performance of some of those tasks

must be degraded so that the actual utilization levels of the given resources are within the

node’s capacity.

To address this issue, for each job we define a value between 0 and 1 called yield of

the job. Note that different jobs may have different yield values. The fluid resource needs

of the tasks of a job are all scaled by the job yield, and for an allocation of tasks to a node

to be valid, in addition to satisfying the constraint on the fixed resources, the total of the

yield-scaled fluid resource needs in every dimension must also be less than or equal to

100%. Returning to the example from the previous paragraph, if a third task is added

to the node with needs and requirements of 75% of the CPU and 20% of the memory,

then the three tasks together use 97% of the system memory, which is allowed, but would

require 150% of the CPU to run without degraded performance, which is impossible. The

corresponding jobs of the tasks can be assigned yield values of 0.6, resulting in an actual

CPU utilization of 150% × 0.6 = 90%. Restricting access to resources uniformly in this

manner is equivalent to slowing the internal clock of the job by the same factor [100], and

so provides a simple model of job performance degradation. This model is reasonable for

self-contained jobs and single-tier services that do not make explicit use of the system

clock. For example, consider a simple web server application. Some percentage of the

CPU is used to process requests at a given rate. If CPU consumption is throttled down

to, say, half of this percentage, then requests are processed at half the original rate. As a

result, consumption rates for other resources, such as network bandwidth, are also halved.

We leave a discussion of multi-tier services for Chapter 4 and deeper exploration of this

19

topic outside the scope of this dissertation. While it is likely that some tasks could benefit

from nonuniform resource throttling levels (e.g., an application that alternates between

computation and network I/O, but sends the same 10MB file every 5 minutes, regardless

of the rate of progress through its computations), such flexibility would add a great deal

of complexity to the model for uncertain benefit.

Note that for the sake of simplicity we have assumed that fixed resource requirements

and fluid resource needs are independent. This is not always the case for certain

applications. For example, in Doyle et. al. [19] the authors consider the case of a web

server that uses a RAM cache. With a larger fraction of the RAM space of a server, the

RAM cache has a larger hit rate, leading to reduced CPU and I/O activities. It is thus

possible to trade off CPU and I/O bandwidth for RAM space. In this work we do not

model such inter-dependencies between resource needs.

3.1.2 Optimization Objective Function

We have stated that we model job scheduling as an optimization problem with a well

defined objective function. More specifically, for any particular scheduling event,

assuming that all of the jobs under consideration can be supported by the system, we

choose to optimize a metric based on the yield as defined in the Section 3.1.1.

We note that resource management objectives are generally expressed based on

metrics related to user concerns, such as service response time or throughput. This work

relies on the fact that these higher level metrics are directly related to resource fractions

allocated to jobs, and thus to the yield. This observation has been made repeatedly in the

literature and several models that link resource shares to response time and or throughput

have recently been developed [101–108]. For instance, in [103], the authors model

response time as a function of CPU and memory resource fractions allocated to services.

These models are validated for real-world services (Tomcat, MySQL). In [104] a model of

20

response time as a function of allocated CPU fraction is developed for a Web application

benchmark (RUBBoS), using linear interpolation. Similar models for response time

and for throughput are proposed and validated in [105] for two multi-tier application

benchmarks (RUBiS and TPC-W). A response time model for TPC-W is also proposed

in [106], while [102] proposes a response time model for several synthetic applications.

We conclude that metrics based directly on resource shares, in our case the yield, are

reasonable stand-ins for metrics based directly on user performance concerns.

Since we wish to measure overall schedule quality, it is essential to aggregate the

yield metrics of individual jobs into a well-defined objective function. It is well known

that optimizing functions based on average performance (e.g., average stretch) is prone to

unfairness and starvation [91]. Instead, we choose to focus on algorithms for maximizing

the minimum yield. Maximizing the minimum helps to improve the overall average

performance, while still respecting the importance of fairness by making sure that the

“least happy” job is as happy as possible.

3.1.3 Off-line, On-line, and Adaptation Scenarios

In this dissertation we will explore three different versions of the Dynamic Fractional

Resource Scheduling problem.

First, we consider an off-line resource allocation problem for serial jobs. In this

version of the problem we assume that all of the jobs under consideration are static and

eternal, that their requirements and needs are known, and that they are to be scheduled

to run at the same time. Thus, this version of the problem is concerned only with the

allocation of system resources to individual tasks, and does not consider the evolution

of jobs over time. It is broadly applicable to any environment for which the workload is

reasonably stable over a large portion of the scheduling epoch. For example, a service

hosting environment with a mostly constant load. This version of the problem may not

21

provide a realistic model for many real-world systems, but it provides a reasonable basis

upon which to build more complicated, but relevant, scenarios.

Next, we look at an on-line scheduling problem that allows for temporary, parallel

jobs. We primarily study situations where job resource requirements are fixed throughout

a job’s runtime. Note that since we allow for the preemption and migration of jobs this

also covers situations in which job resource needs are allowed to change: whenever a

resource need changes we simply say that the job has completed and a new job with

different resource needs has been submitted. This version of the problem is appropriate

to both HPC batch scheduling environments and service hosting environments where jobs

may be parallel or have fluctuating resource needs.

Finally, in response to the problem of excessive migration/preemption costs we study

an adaptation version of the problem. This version of the problem is similar to the off-

line version, but we assume that a mapping already exists between some of the tasks

and the cluster nodes, and the goal is to find a mapping that optimizes the objective

function without exceeding some bound on the total cost of migration. The adaptation

problem then can serve as the basis of a more refined version of the on-line problem with

a bounded rate of resource consumption for migration and preemption.

3.2 Practical Considerations

In our overview of a system for Dynamic Fractional Resource Scheduling, we have

made several assumptions about the capabilities of that system that are not found in the

traditional job scheduling literature. In particular we have assumed that it is possible

to time-share fluid resources, that it is possible to externally enforce bounds on rates of

resource consumption, that it is possible to preempt jobs and to migrate tasks, and that

job resource requirements and needs are known. In this section we attempt to justify these

22

assumptions based on recent advances in virtual machine technology and a brief survey of

the literature on the discovery of job resource needs.

3.2.1 Virtual Machine Technology

Though it has existed since the 1960s, virtual machine technology had long been thought

of as inefficient and slow, and so was not traditionally considered as an option for

performance sensitive production workloads [109]. Since the mid-1990s huge strides

made in this area, and implementations such as Xen can allow a single server to run

dozens of virtual machines with minimal overhead [110, 111]. In fact, studies even

suggest that thousands of virtual machines can be simultaneously launched across a

cluster with little difficulty [112]. Consequently, there has been a movement toward

server consolidation in the data center to minimize idle resources and their associated

costs [113]. This increased adoption has led to further advances, such as wide-spread

hardware support for virtualization [114, 115].

Unsurprisingly, there has also been a movement in the HPC community, with similar

goals of consolidation, increasing utilization, platform standardization, reductions in

administrative overhead, and reducing energy consumption [53, 116, 117]. Another oft-

cited use for virtual machines is increasing availability and reliability [77, 118]. Concerns

about the potential performance impacts have slowed HPC adoption; However, recent

studies indicate that the overheads and penalties associated with applying this technology

to HPC workloads are manageable [116, 119–125]. Proper handling of the memory cache

hierarchy and I/O and scaling across large numbers of cores are still potential issues [113,

126–129], but there are already groups working to resolve them [121, 130–135].

For our purposes, the most important capability provided by virtualization is the

ability to pool and redistribute multiple discrete time-shared resources. For example,

the Xen Credit CPU scheduler can allow 3 serial jobs to each receive 1/3 the total CPU

23

capacity of a dual-core system [136]. Further, studies have shown that VM monitors

can enforce constraints on resource utilization accurately and reliably in the presence

of competing processes [137].

It is well established within the job scheduling literature that preemption can be used

to improve both the average and worst-case performance of running jobs [40, 138, 139].

Virtual machine technology makes it fairly simple to save the state of a single VM to disk

and stop execution, and then resume at a later date. Temporarily suspending a parallel

job that consists of tasks executing on multiple hosts is considerably more difficult, but

systems capable of doing so have already been developed [69, 77, 98].

Another capability offered by virtual machine technology that we can take advantage

of is the migration of processes between nodes [140]. Migration has been shown to lead

to significant performance improvements under gang scheduling [51, 141, 142], and it

seems reasonable to assume that this would carry over to time-sharing schemes based on

virtualization. Additionally, migration allows for better adaptation to unforeseen events,

which can be important for on-line algorithms. Another potential use for migration is to

free up space on an already loaded machine for high-priority tasks [143]. Modern virtual

machine platforms even allow for “live” migration of processes, meaning that jobs do not

need to be completely stopped, minimizing slowdowns and allowing for the migration of

interactive jobs, though at an additional cost in computation and communication [144].

Several groups in academia and the private sector are currently working on platforms

for centralized control of virtualized resources in a distributed environment [23, 71, 73,

97, 99, 114, 145–150]. These platforms generally allow a central controller to create

VMs, specify resource consumption levels, migrate VMs between nodes, suspend running

instances to disk, and, when necessary, delete unruly instances. We base our model on

such a system and the capabilities it offers. The Entropy system recently developed by

Hermenier et. al. [97–99] in fact implements all of the basic system capabilities that

24

we propose to exploit as well as its own set of resource allocation algorithms, but their

approach is based on searching for solutions to an NP-complete constraint satisfaction

problem, while our approach is to develop polynomial time heuristic algorithms for a

well-defined optimization problem.

3.2.2 Discovery of Resource Requirements and Needs

We have given an overview of our problem framework wherein task resource require-

ments and needs are given as fractions of the resources available on a node. An important

question is how to determine the actual values of these resource fractions. While it is

possible, even likely, that for certain resources such as RAM or disk space these values

could be specified by the user, it is unlikely that many users would be able to provide

precise resource requirements and needs in general, particularly for dynamic resources

such as the CPU. While there are no studies of user accuracy in estimating resource

utilization, we base this assumption on studies that have shown that users are generally

inaccurate when asked to estimate program runtime [18, 30, 151].

Another approach, used in [89], is to rely on benchmarking of the services. This is

most reasonable for a shared hosting platform that hosts a moderate number of well-

known services, each for long periods of time. Going beyond simple static benchmarking,

it is also possible to build analytical models of resource needs and of their temporal

trends [19, 20, 92, 101, 146, 152, 153], and even to augment these models to account

for virtualization overheads [154].

A more direct approach is to monitor services as they run to determine their

needs [22, 25, 95, 96, 102, 155]. Such VM instance resource usage monitoring can be

based on facilities like XenMon [156]. Of course, this approach can also be used as an

enhancement to approaches that use predictive models [22,146,153], and such models can

be built on-line from runtime observations [146].

25

An even more advanced technique would be to perform discovery via a combination

of introspection and configuration variation. With introspection, one can, for instance,

deduce CPU needs by inferring process activity inside of a VM [157], and memory

pressure by inferring memory page eviction activity [158]. With configuration variation

one can vary the amount of resources given to VM instances, track how they respond to

the addition or removal of resources, and infer resource needs [157, 158].

We conclude that the on-line discovery of resource requirements and needs is a

challenging, but tractable, problem. When studying our algorithms in simulation we

therefore assume that these values are known.

3.3 Conclusion

In this chapter we have given our model and objective function, explained the underlying

assumptions and how they are reasonable given current technology, and discussed three

different versions of the DFRS problem:

1. an off-line problem targeting service hosting environments with static workloads

2. an on-line problem targeting dynamic workloads as found in high-performance

computing environments

3. an adaptation problem that bounds migration costs for workloads with evolving

requirements

The following three chapters explore each of these problems in greater depth. In

particular, we give a formalization of the off-line problem along with its proof of NP-

completeness and show that the other two problems can be seen as straightforward

extensions. For each version of the problem we develop and evaluate heuristic algorithms

26

based on detailed simulation experiments. Finally, where appropriate, we compare our

approach to the current state of the art.

27

CHAPTER 4
THE OFF-LINE PROBLEM

In this chapter we frame the off-line resource allocation problem for continually

executing jobs in an idealized service hosting environment as a constrained optimization

problem, for which efficient algorithms can be developed. We make the following

contributions: (i) We define the resource allocation problem for a static workload of

services that are each fully contained in a single VM instance; this definition accounts

for multiple resource dimensions, supports a mix of best-effort and QoS scenarios, and

promotes performance, fairness, and high resource utilization (Section 4.1); (ii) We

establish the complexity of the problem and give a mixed integer linear program

formulation that leads to a bound on the optimum (Section 4.1); (iii) We propose several

algorithms to solve the problem (Section 4.2); (iv) We evaluate these algorithms in

simulation (Sections 4.3 and 4.4); and (v) we discuss how our approach can be extended

to services that comprise multiple VM instances (Section 4.5).

4.1 Problem Definition

We consider a set of nodes N and a set of serial jobs J . Since the jobs are serial, we

equate them with their tasks. There are ns fixed resources and nd fluid resources and

each job j ∈ J can be denoted by a pair of vectors (~sj, ~dj) such that ~sj ∈ [0, 1]ns

and ~dj ∈ [0, 1]nd . ~sj , the fixed resource requirement vector, represents the fractional

amounts of each of the fixed resources that are required by the job to run, while ~dj ,

the fluid resource need vector, represents the peak rates at which the job would use the

each of the fluid resources if run alone on the system as a fraction of the maximum rate

of consumption for each resource. A solution is a number α ∈ [0, 1] and a mapping

28

f : J → N , and a valid solution is a pair that fulfills the following conditions:

∀n ∈ N ‖
J∑

f(j)=n

~sj‖∞ ≤ 1 and ∀n ∈ N α× ‖
N∑

f(j)=n

~dj‖∞ ≤ 1 .

These equations simply state that the total amount of any resource used on any node

cannot exceed 100% of what is available.

In general, the goal of the optimization problem is to find a valid solution that

maximizes α, which corresponds to the minimum yield. The definition of the yield, its

correlation to other metrics of performance, and the reasons for choosing the minimum

as the objective target are given in Section 3.1.2. An additional concern is that some

jobs may have Quality-of-Service requirements that constrain them to function with a

minimum allowed yield value or suffer a failure condition. In this case, for each fluid

resource a job will have a constrained fluid need representing the minimum amount of

the fluid resource that the job could be allocated without suffering a failure condition; this

value is equal to the product of the fluid need and the QoS requirement. For example,

consider a job with a CPU need of 0.6 and a QoS constraint of 0.4: This job has a

constrained fluid need (i.e., minimum allowed allocation) for the CPU resource equal

to 0.6× 0.4 = 0.24.

To compare yields across jobs with various minimum yield requirements, we define

the scaled yield of a job as follows:

scaled yield =
yield−minimum allowed yield

1−minimum allowed yield
.

Note that in the case that a job has no specified QoS constraint (i.e., the minimum allowed

yield is 0) the scaled yield of a job or service reduces to the yield as defined normally.

Consider two jobs with minimum yield requirements of 0.2 and 0.4, respectively.

Then a yield of 0.8 for the first job and of 0.85 for the second achieve an identical scaled

29

yield of 0.75 for both jobs. That is, each job experiences a yield that is 75% of the way

between its minimum and maximum yield values. For a best-effort job the minimum yield

is 0, and the scaled yield is equal to the yield. The above equation is undefined for a job

whose minimum yield is equal to 1; Such a job is always “happy” in a valid resource

allocation, and we defined its scaled yield as 1 in a valid allocation and 0 otherwise. For

the remainder of this chapter, we use the term “yield” to mean “scaled yield,” while we

sometimes explicitly refer to the “unscaled yield.”

4.1.1 Theoretical Background, Complexity, and (In-)Approximability

The connection between bin packing and multiprocessor scheduling was made more than

30 years ago [159]. While in the past it was assumed that jobs would run in sequence on

the machine to which they were assigned, and thus that one bin dimension was purely

temporal, more recently authors have considered scenarios similar to the one that we

propose where gang scheduling and/or virtual machine technology are used to time-

share the CPU between competing jobs [51, 160]. These more recent works provide

reasonable models of CPU scheduling, but fail to take into account situations where

multiple resources are under consideration, in which case vector bin packing is a more

appropriate model [161–169]. There are also many situations in which the number of bins

is fixed and it is acceptable to slightly overload the bins, so long as the degree of overload

is minimized. This altered version of the problem is called extensible bin-packing or

bin-packing with extendible bins [170–172]. Our work incorporates ideas from both

the vector and extensible variants of bin packing, and is thus similar to the problem

explored by Epstein [173], but whereas Epstein allows for a finite number of arbitrarily

configured types of vector bins, we instead focus on maximizing a linear scaling factor

that is applied to a subset of the dimensions under consideration, making our work more

directly applicable to the cluster resource allocation problem. The use of independent

30

vectors to denote time- and space-shared resources makes our work similar to that of

Garofalakis et. al. in [174], but we ensure greater fairness by optimizing minimum instead

of average performance.

Given the general connection between scheduling and bin packing it should come

as no surprise that our problem is NP-hard; nonetheless we provide a brief proof for

the sake of rigor and completeness: The goal of the decision version of our problem

is to determine whether or not a valid allocation exists for particular instance of the

problem and a given α. Since checking a given solution requires a number of vector

multiplications and additions equal to the number of jobs, followed by a number of

comparison operations equal to the number of nodes times the number of dimensions

under consideration, the problem is clearly in NP. Any instance of the one-dimensional

bin packing problem can be trivially reduced to an instance of the off-line problem, and so

the off-line problem is NP-complete in the strong sense [175].

As the problem is NP-complete, no polynomial time algorithm can provide optimal

solutions for every instance of our problem unless P = NP , which is considered

to be unlikely. Instead, we explore the multi-dimensional vector packing literature in

search of practical algorithms that have good average and worst case behavior. Versions

of standard greedy algorithms (First Fit, Best Fit, Worst Fit, Next Fit, etc.) have been

proposed [164, 169], their worst-case behaviors have been studied [162, 164], as well

as their average behavior over practical instances [169, 176]. Results show that these

algorithms can have worst case performance guarantees no better than D + δ, where

D is the number of resource dimensions and δ is some constant ≤ 1. A polynomial-

time algorithm with a guarantee of D + ε, for any ε > 0, can be obtained by reusing

the (1 + ε)-guaranteed bin packing algorithm in [177]. This guarantee was improved

in [178], which proposes an algorithm with a O(lnD) performance guarantee for

fixed D (the guarantee approaches 2 + lnD for large D). More recently, [161] gave a

31

complex algorithm with a performance guarantee that can be brought arbitrarily close to

1 + lnD . Several authors have also studied vector packing specifically for the case where

D = 2 [163, 179, 179–182].

4.1.2 Mixed-Integer Linear Program Formulation

We formulate the problem as a Mixed Integer Linear Program (MILP), i.e., a linear

program with rational and integer variables. We consider J > 0 jobs, indexed by

j = 1, . . . , J . The cluster comprises N > 0 identical physical nodes, indexed by

n = 1, . . . , N . Each node provides D types of resources, indexed by d = 1, . . . , D.

Fractions of these resources can be allocated to jobs. For each job j, rjd denotes its

resource need for resource type d, as a resource fraction between 0 and 1. δjd is a binary

value that is 1 if rjd is a fixed requirement, and 0 if rjd is a fluid need; Note that this

allows the MILP to solve a slightly more general version of the problem, wherein the

same resource can be fluid for one job and fixed for another. While this poses some

interesting possibilities, most of the current literature maintains a fundamental distinction

between these two types of resources [22, 25, 102] and so we leave a study of the more

general problem for future work. We use α̂j to denote the minimum unscaled yield

requirement of job j, a value between 0 and 1.

We can now define the variables of our linear program. We define a binary variable

ejn that is 1 if job j runs on node n and 0 otherwise. We denote by αjn the unscaled yield

of job j on node n, which must be equal to 0 if the job does not run on the node. With

these definitions the constraints of our linear program are as follows, with Y denoting the

32

minimum yield:

Y ∈ Q+ (4.1)

∀j, n ejn ∈ {0, 1} αjn ∈ Q (4.2)

∀j
∑
n

ejn = 1 (4.3)

∀j, n 0 ≤ αjn ≤ ejn (4.4)

∀n, d
∑
j

rjd(αjn(1− δjd) + ejnδjd) ≤ 1 (4.5)

∀j
∑
n

αjn ≥ α̂j + Y (1− α̂j) (4.6)

Constraints (4.1) and (4.2) define the domains of our variables. Constraint (4.3) states

that a job runs on exactly one node. Note that only one of the terms in the summation is

non-zero. Constraint (4.4) states that a job can achieve an unscaled yield greater than 0

only on the node on which it runs. Constraint (4.5) states that the fraction of resource d on

node n that is allocated to jobs is at most 1. The expression in the summation is explained

as follows: If job j has a fluid need in resource d, then δjd = 0 and the fraction of

resource d used by job j on node n is rjd × αjn (the maximum usable fraction multiplied

by the yield). If instead job j has a fixed requirement in resource d, then δjd = 1 and

the fraction of resource d used by job j on node n is simply rjd. Finally, Constraint (4.6)

states that the minimum yield, Y , is no greater than the yield of any job. This constraint is

written so that it also subsumes the requirement that the unscaled yield assigned to a job

be larger than the job’s specified minimum. The objective is to maximize Y .

33

4.2 Algorithms

4.2.1 Exact Solution

An exact solution to the problem can be computed by solving the MILP provided in

Section 4.1.2. However, the time required to compute such a solution cannot be bounded

by any polynomial in the size of the input (i.e., solving an MILP is not in P-time) and

in fact for moderately sized problem instances real solvers may require an impractical

amount of time (hours or days) to compute a solution. We use a publicly available MILP

solver, the Gnu Linear Programming Kit (GLPK), to compute exact solutions for small

problem instances (few nodes, few jobs) in under an hour. When available, we denote this

exact solution by OPT.

4.2.2 Greedy Algorithms

In this section we propose greedy algorithms. These algorithms are not identical to greedy

algorithms for vector packing [164, 169], due to the presence of fluid resource needs and

differing objective function, but are inspired by similar ideas. The standard approach is

to sort the jobs in some order, and then to pick a node for each job in order. We consider

the following seven options to sort jobs: (S1) randomly; (S2) by decreasing maximum

fluid need; (S3) by decreasing sum of fluid needs; (S4) by decreasing maximum fixed

requirement or constrained fluid need; (S5) by decreasing sum of fixed requirements

and constrained fluid needs; (S6) by decreasing maximum fixed requirement or fluid

need; (S7) by decreasing sum of fixed requirements and fluid needs. We do not consider

increasing orders since they are known to be inferior to decreasing orders for the vast

majority of bin packing problem instances.

34

We also consider seven options to pick a node for a given job, j, provided that the

node can accommodate the job’s resource requirements. Let df be the index of the

resource corresponding to the maximum fluid resource need of job j, i.e., rjdf
. Let dr be

the index of the resource corresponding to the maximum fixed requirement or constrained

fluid need of job j, i.e., rjdr . Let Jn be the set of the jobs already placed on node n. Two

options are: (P1) pick node n with the smallest maxj′∈Jn rj′df
; and (P2) pick node n with

the smallest
∑
j′∈Jn

rj′df
. In other words, P1 (resp. P2) places job j on the node that has

the smallest maximum (resp. sum) of the fluid needs of jobs already placed on that node

for resource df . These two options are oblivious to fixed requirements and constrained

fluid needs. The other approach is to be oblivious to fluid resource needs. This can be

done using standard best fit or worst fit placement, evaluating the load of each node n

based on maxj′∈Jn rj′dr or
∑
j′∈Jn

rj′dr . We term P3 and P4 the two corresponding best

fit approaches, and P5 and P6 the two corresponding worst fit approaches. Finally, one

can simply use first fit placement, placing a job on the first node that can accommodate its

fixed requirements and constrained fluid needs, which we call P7.

Combining all job sorting and node picking options above, we obtain 7 × 7 = 49

different greedy algorithms, which we name GREEDY_SX_PY, where X ∈ {1, 2, 3, 4, 5,

6, 7} and Y ∈ {1, 2, 3, 4, 5, 6, 7}. All these algorithms are straightforward to implement

with complexity at most O(J log J + JN) for a fixed number of resource dimensions.

These algorithms subsume the greedy algorithms proposed in the applied literature [25,

89, 183].

All these algorithms could be augmented with a backtracking feature (with some

bound to avoid exponential complexity) to enhance the search for a feasible solution. This

technique was evaluated in previous work and shown to be unsuccessful for moderately

large program instances, even with only two resource dimensions [184, 185]. Thus, we do

not attempt backtracking for any of the above algorithms.

35

4.2.3 Relaxed LP Solution and its Uses

As we have stated, for large problem instances the MILP formulation cannot be solved in

reasonable time. However, for these instances we can efficiently solve a relaxed version

of the problem in which all variables are assumed to be rational. The obtained solution

may be infeasible as jobs could be split across nodes, but it does provide an upper bound

on the maximum minimum yield obtained when solving the MILP. It also forms a good

basis for comparing various heuristics to the optimal: if a heuristic achieves a minimum

yield close to the upper bound on the optimal, then it is even closer to the optimal. We

call this upper bound LPBOUND. If the rational LP can be solved (i.e., the aggregate

resource capacities can meet all fixed requirements and constrained fluid needs), then it

has an immediate solution:

Y = min

(
1, min

d∈NZ

N −∑i rjd(α̂j(1− δjd) + δjd)∑
j(1− α̂j)rjd(1− δjd)

)
,

where NZ is the set of indices d ∈ {1, . . . , D} such that
∑
j(1 − α̂j)rjd(1 − δjd) is non-

zero (i.e., it is the set of resource dimensions for which at least one job with a minimum

allowed yield less than one has a fluid need greater than zero). This maximum minimum

yield is achieved by the trivial allocation ejn = 1/N and αjn = 1
N

(α̂j + Y (1− α̂j)), for

all j and n.

Another use for the solution to the rational LP is that it may point the way toward

good solutions of the MILP. A well-known idea is to round off to integer values the

rational values assigned to integer variables, in our case the ejn variables. For instance,

if the relaxed solution produces some ejn equal to 0.98, it seems likely that this value

is equal to 1 in the solution of the MILP. Given a solution to the rational LP, we use the

rounding approach in [186]: for each job j, taken in an arbitrary order, allocate job j

to node n with probability ejn. For each node n that cannot accommodate job j due to

36

resource constraints, then ejn is set to 0 and other probabilities are scaled accordingly. We

call this algorithm RRND (Randomized Rounding). Similar techniques have been applied

to other job scheduling problems in the past [187].

The trivial solution given above for the rational LP is a very poor starting point for

rounding off ejn values. Since all these values are identical, a job j is equally likely

to be allocated to any node, which amounts to a random greedy allocation. A good

starting point would be a solution of the rational LP in which ejn values are diverse and

distributed over the interval [0, 1]. We use GLPK, which uses the simplex algorithm to

compute a solution in polynomial time. It turns out that, in practice, this solution leads to

ejn values that are well distributed in the interval [0, 1].

One problem with RRND is that job j may not fit on any node n for which ejn > 0

due to resource constraints. In this case the algorithm fails. To address this problem we

can first set each zero ejn to a small value ε (we use ε = 0.01). We call this algorithm

RRNDNZ (Randomized Rounding Non-Zero). For those problem instances for which

RRND provides solutions RRNDNZ should provide nearly identical solutions. But

RRNDNZ should also provide solutions for some instances for which RRND fails.

Another approach, termed “diving” in [179], consists in solving the rational LP

iteratively, each time fixing the ejn variable closest to 0 or 1 to that value. This requires

at most J × N rational LP resolutions, each time solving a LP with one fewer variable.

Another approach, requiring at most J rational LP resolutions, consists in fixing at

each iteration all N ejn variables for a given j, picking the j with the largest maxh ejn

at each iteration. We term the first approach SLOWDIVING and the second approach

FASTDIVING.

37

4.2.4 Genetic Algorithm

We implement a genetic algorithm similar to that used in [24] based on the GAlib

library [188]. Each chromosome is a 1-D integer array of length J , in which the

j-th value is equal to n if job j is allocated to node n. An initial chromosome is

obtained by assigning each job to a random node. The mutation operator randomly

swaps two jobs between two different nodes. Simply moving a job to a random node,

instead of swapping, proved less effective in practice. We use a one-point crossover

operator, by which two parent chromosomes are each cut into two segments and two

new chromosomes are obtained by concatenating these segments. A new generated

chromosome (initial, after mutation, or after crossover) may not correspond to a feasible

resource allocation. We allow for infeasible chromosomes in our population. However,

after an infeasible chromosome is generated, we use a greedy algorithm that attempts to

make the chromosome feasible. This algorithm goes through the nodes in an arbitrary

order, and for each overloaded node attempts to move jobs to other less loaded nodes.

This approach, which reduces the diversity of the chromosome population and biases

it toward feasible allocations, proved dramatically beneficial in practice. The fitness

of an infeasible genome is defined as the number of nodes that are not overloaded in

the mapping corresponding to the genome, and is thus between 0 and N . The fitness of

a feasible genome is defined as N(1 + Y), where Y is the achieved minimum yield.

This fitness is thus between N and 2N . We use a population size of 100, running for

2,000 generations, with a mutation probability of 0.1 and a crossover probability of 0.25.

These parameters were estimated empirically based on calibration experiments with 792

instances (one instance for each experimental scenario, as described in Section 4.3).

38

4.2.5 Vector Packing Algorithms

As stated at the beginning of this section, our scheduling problem is closely related to

vector packing. However, there are important differences. The most significant of these is

that in the scheduling problem jobs may have fluid resource needs. This difference can be

addressed as follows: Consider an instance of the problem and a fixed value of the yield,

Y , that must be achieved for each job. Fixing Y amounts to making all fluid needs behave

like fixed requirements. The problem then becomes exactly vector packing with the goal

being to fit all of the items into at most a number of bins equal to the number of available

nodes. A binary search on Y can be used to find the highest value for which the problem

can be solved. Given a vector packing algorithm ALG, we term this general approach

VP_ALG. We consider the following vector packing algorithms:

Best Fit and First Fit Algorithms [162, 164] – Standard Best Fit (BF) and First Fit

(FF) algorithms are among the first algorithms used for solving vector packing problems

and both rely on pre-sorting of the input vectors. We use three approaches to sort the

vectors, as outlined in [164]: by decreasing sum of the coordinates (SUM), by decreasing

maximum of the coordinates (MAX), and by decreasing lexicographical order (LEX). For

fixed number of dimensions D, these algorithms can be implemented straightforwardly

with complexity O(J log J + JN). We obtain 6 new algorithms: VP_BFSUM,

VP_BFMAX, VP_BFLEX, VP_FFSUM, VP_FFMAX, and VP_FFLEX. An intriguing

heuristic is presented in [169] as an add-on to any algorithm A that first sorts all vectors

according to some criteria. Given the assignment of vectors to bins produced by A,

one computes a metric called the “degree of dominance,” which quantifies, for each

dimension, the probability that this dimension causes bin capacities to be exceeded. One

then re-sorts all vectors based on a sum of their coordinates weighted by their degrees of

dominance, and apply algorithm A with this order. We have implemented this heuristic

39

for all 6 algorithms but did not observe a single case in which it led to an improvement in

our experiments over 72,900 problem instances.

Permutation Pack (PP) and Choose Pack (CP) Algorithms [166] – These algorithms

attempt to balance the load of the dimensions of each bin. The PP algorithm places each

of the J vectors in one of D!/(D − w)! lists, where w is an integer between 1 and D.

Each list contains the vectors with a common permutation of their largest w dimensions.

For instance, for w = 2 and D = 3, there would be 6 lists, for all combinations (i,j),

with i, j ∈ {1, . . . , D}. List (i,j) contains the vectors whose i-th coordinate is larger

that their j-th coordinate, which is larger than all their other coordinates. Vectors in

each list are then sorted according to some criterion. We use four standard options: by

decreasing sum of the coordinates (SUM), by decreasing maximum of the coordinates

(MAX), by decreasing difference of the largest and smallest coordinate (DIFF), and by

decreasing ratio between the largest and smallest coordinate (RATIO). In [184, 185], the

four corresponding increasing orders were evaluated and, unsurprisingly, found to be

consistently outperformed by the decreasing orders. The algorithm then starts filling bins

with vectors, each time attempting to reduce the resource load imbalance in a bin. This is

done by considering the current bin, and determining which w resource dimensions are

least loaded for that bin, say, in the case w = 2, dimension i and then dimension j. The

algorithm then first looks in list (i,j) for the first vector that can fit in the bin, hoping to

reduce the resource imbalance. If no such vector can be found, then the algorithm relaxes

the ordering of the components and searches in other lists (i.e., trying list (i,k), where

k is the third least loaded resource of the bin, etc.). If no vector can fit in the current

bin, then a new bin is added and the process is repeated until all vectors are placed in

bins. The CP algorithm is a relaxation of the PP algorithm in that it does not enforce any

ordering between the w coordinates of vectors, and thus needs “only” D!/w!(D − w)!

40

lists. The empirical results in [166] show that w = 2 leads to good results and we use this

value in this chapter. For fixed D and w, both algorithms have complexity O(J log J).

With the CP and PP algorithms, and the four options to sort vector lists, we obtain 8 new

algorithms: VP_CPSUM, VP_CPMAX, VP_CPDIFF, VP_CPRATIO, VP_PPSUM,

VP_PPMAX, VP_PPDIFF, and VP_PPRATIO.

The O(lnD) Guaranteed Algorithm [178] – This polynomial-time algorithm solves

a rational linear program formulation of the vector packing problem, which leads to

a bounded number of non-integral assignments of vectors to bins. Additional bins

are then created in a greedy fashion to accommodate all vectors with non-integral

assignments. We do not implement the algorithm in [161], in spite of its impressive

(1 + lnD) guarantee. This algorithm formulates the vector packing problem as a set cover

problem. Unfortunately, the instance of the set cover problem can be (and in our case,

is) exponential in the size of the instance of the vector packing problem. Although the

authors state that an approximation of the set cover problem instance could be formulated,

no guidance is provided in [161]. Furthermore, the algorithm has high complexity

regardless. We opt for the simpler guaranteed algorithm in [178] instead, which we call

VP_CHEKURI.

4.3 Experimental Methodology

We evaluate our algorithms using a collection of randomly generated synthetic problem

instances for J jobs and N nodes. We generate instances with D resource dimensions,

where D is even. For each job, the first D/2 resource dimensions correspond to fixed

requirements and the last D/2 resource dimensions to fluid needs.

41

All resource needs are sampled from a normal probability distribution with mean µ

and standard deviation σ. Each job has a probability ρ to have a QoS requirement. We

arbitrarily assume all QoS requirements to be 0.5 (i.e., half the job’s fluid needs must

be met). Experiments with other values, or with random values for all jobs, have led to

similar conclusions regarding the relative performance of our algorithms. Depending

on N and J , the aggregate resource needs of the jobs may overcome aggregate node

capacities in one or more resource dimensions. We parameterize the overall resource

load as follows. For each of the resource dimensions with fixed requirements, we scale

the requirements in that dimension by a single factor, so that the aggregate node capacities

can accommodate the aggregate job requirements in that dimension while a given fraction

of the aggregate node capacities remains free. We call this free fraction slack. A lower

value denotes an instance that is more difficult to solve. Some of our generated instances

may not have solutions, especially for low slack values and/or large numbers of jobs with

QoS requirements.

Unless specified otherwise, we use N = 64, J = 100, 200, 500, D = 2, 4, 6, µ = 0.5,

σ = 0.25, 0.5, 1.0, ρ = 0.0, 0.25, 0.5, and slack = 0.1, 0.2, . . . , 0.9. This corresponds

to 1 × 3 × 3 × 1 × 3 × 3 × 9 = 729 scenarios. For each scenario we generate 100

random samples, for a total of 72,900 individual instances. Algorithm execution times

are measured on a dedicated 3.2GHz Intel Xeon processor and averaged over 100 sample

problem instances with N and J values as indicated in the text, and with µ = 0.5, σ =

0.5, ρ = 0.25, and slack = 0.5. Over our entire set of 72,900 instances, there are 5,320

instances for which no algorithm was able to compute a valid allocation (7.45% of the

instances).

Algorithm evaluation must account for two criteria: (i) how often an algorithm

successfully computes a solution; and (ii) how good that solution is compared to those

from other algorithms. For each algorithm we compute two metrics. The first is the

42

failure rate (fr), i.e., the percentage of instances for which it fails to find a solution. The

second metric is the distance from bound (dfb), i.e., the difference between the achieved

minimum yield and LPBOUND. The dfb is computed for all instances for which the

algorithm successfully produces a solution. We report average values over these instances

as well as 90th percentile values (i.e., the value below which 90% of the dfb values fall).

dfb values are absolute, and we also present results for relative percent dfb values (relative

to LPBOUND). Low values for both metrics are desirable.

4.4 Experimental Results

4.4.1 Greedy Algorithms

In this section we evaluate the 49 greedy algorithms described in Section 4.2.2.

Figure 4.1 shows one data point for each algorithm, with the x-coordinate being the

algorithm’s fr and the y-coordinate being the algorithm’s average relative dfb. Algorithms

located toward the left and the bottom of the figure are preferable. For better readability,

Figure 4.1(a) differentiates algorithms by their node selection strategy (P1 to P7), while

Figure 4.1(b) differentiates algorithms by their job sorting strategy (S1 to S7).

Algorithms fall in two clusters depending on whether they use the P1, P2, P5, or P6

(Cluster #1), or the P3, P4, or P7 (Cluster #2) node selection strategy. Algorithms in

Cluster #1 lead to lower dfb (by about 30 points or more), but to higher fr (by as much

as about 10 points). However, some of the algorithms in Cluster #1 lead to fr as low

as 12%. The algorithms in Cluster #1 sacrifice fr in two ways. Those that use P1 or P2

ignore non-fluid resource needs and thus solely attempt to optimize the yield without also

considering the fixed requirements or constrained fluid needs. Those that use P5 or P6

pay more attention to fixed requirements and constrained fluid needs but use a Worst Fit

43

5 10 15 20 25
30

40

50

60

70

80

90

% fr

Av
er

ag
e

re
la

tiv
e

%
 d

fb

P1
P2
P3
P4
P5
P6
P7

(a)

5 10 15 20 25
30

40

50

60

70

80

90

% fr

Av
er

ag
e

re
la

tiv
e

%
 d

fb

S1
S2
S3
S4
S5
S6
S7

(b)

Figure 4.1. Bi-criteria graphical comparison of all GREEDY_Sx_Py algorithms, averaged
over all 72,900 instances.

44

strategy by which they leave resources as free as possible while mapping jobs to nodes.

This leads to better opportunities for optimizing the yield, but also to more failures.

In terms of job sorting strategies, S5 and, to a lesser extent, S4 are best. These are the

two sorting strategies that consider both fixed requirements and constrained fluid needs.

Overall, using the maximum of resource needs both for job sorting and for node selection

is marginally more effective than using their sum, but no strong empirical claim can be

made.

Expectedly, we find that each algorithm, even GREEDY_S1_P7 (random job sorting,

random node selection), is best for at least some fraction of our instances. Furthermore,

it is difficult to identify clear trends with respect to our instance parameters. We note

that the time to execute one of the GREEDY_Sx_Py algorithm is relatively low even for

moderately large instances, e.g., below 0.1 seconds for instances with N = 64 nodes and

J = 4, 096 jobs. A brute-force approach is then to combine all algorithms: run all 49

GREEDY_Sx_Py algorithms and pick the best successfully produced resource allocation,

if any. We call this approach GREEDY.

The GREEDY approach may prove too expensive for some problem instances.

For example, for N = 1, 024 nodes and J = 16, 384 jobs, some of the greedy

algorithms require up to 3 seconds. Based on our experimental results, we can identify

and rank 9 GREEDY_Sx_Py algorithms that beat or equal their competitors for more

than 15% of the instances (x∈{2, 3, 5, 6, 7} and y=1, and x∈{2, 3, 6} and y=2). We

also find that algorithm GREEDY_S5_P4 leads to the highest success rate (it fails for

only 0.04% of the instances for which some other GREEDY_Sx_Py is successful), even

though it almost never outperforms the previous 9 algorithms in terms of minimum

yield when these algorithms succeed. Therefore, a reasonable approach, which we call

GREEDYLIGHT, consists in using only these 10 algorithms. Furthermore, GREEDYLIGHT

tries the 10 algorithms in sequence, stopping as soon as an algorithm produces a resource

45

Table 4.1. Average dfb, 90th percentile dfb, and fr, for the LP-based algorithms and
GREEDY, over 48,600 problem instances. Relative dfb values are shown in parentheses.

dfb
Algorithm Average 90th perc. fr (%)
RRND 0.58 (78.33%) 0.86 (98.52%) 66.56
RRNDNZ 0.58 (77.95%) 0.89 (98.28%) 22.02
FASTDIVING 0.60 (75.03%) 0.84 (94.39%) 78.02
SLOWDIVING 0.57 (72.75%) 0.81 (93.60%) 77.92
GREEDY 0.21 (29.17%) 0.38 (51.49%) 7.50

allocation. The sequence order is that of increasing empirical average dfb as observed

in our experiments. Out of out the 72,900-5,320 = 67,580 instances for which GREEDY

succeeds, GREEDYLIGHT fails for only 203 instances (or 0.44%). When both algorithms

succeed, GREEDY outperforms GREEDYLIGHT in 20.78% of the cases, in which case if

leads to a minimum yield that is relatively better by 20.26% on average. The GREEDY

and GREEDYLIGHT algorithms provide good baselines against which to evaluate more

sophisticated algorithms.

4.4.2 LP-based Algorithms

In this section we evaluate the algorithms described in Section 4.2.3: RRND, RRNDNZ,

FASTDIVING, and SLOWDIVING. Due to the large execution times of these algorithms

we do not present results for N = 500, reducing the number of tested instances from

72,900 to 48,600. We compare these algorithms with the GREEDY algorithm.

46

Table 4.2. Average execution times for LP-based algorithms with 64 nodes and and 64,
256 and 512 jobs.

Average Execution Time (sec)
Algorithm J = 128 J = 256 J = 512
RRND 16.30 61.70 255.44
RRNDNZ 16.74 61.15 250.83
FASTDIVING 32.42 113.89 416.32
SLOWDIVING 382.58 1771.35 6704.79
GREEDY 0.05 0.10 0.24

Table 4.1 shows aggregate results for all five algorithms over all our problem

instances. The striking observation is that GREEDY largely outperforms all algorithms

that rely on solving a rational relaxation of the MILP problem formulation. GREEDY

fails to compute a solution in only 3,646 of the 48,600 instances, or 7.50%. There is

no instance for which GREEDY fails and one of its competitors succeeds. By contrast,

RRND, FASTDIVING, and SLOWDIVING exhibit high failure rates above 65%. RRNDNZ

has a much lower failure rate at 22.02%. This is expected since RRNDNZ was designed

as an improvement to RRND precisely to reduce the likelihood of failure (in fact,

RRNDNZ always succeeds when RRND succeeds). SLOWDIVING exhibits a slightly

lower failure rate than FASTDIVING, which again is expected as SLOWDIVING is “more

careful” when rounding off rationals to integers.

In terms of dfb, we see that GREEDY also leads to a drastic improvement relative to

the other algorithms, both for the average and the 90th percentile. In spite of their use of

more sophisticated methods for rounding rationals to integers, SLOWDIVING and FAST-

DIVING are not significantly closer to LPBOUND than RRND and RRNDNZ. RRND

and RRNDNZ lead to similar dfb. SLOWDIVING provides a marginal improvement over

FASTDIVING.

GREEDY runs orders of magnitude faster than the other four algorithms. Table 4.2

shows average algorithm execution times. Faster execution times could be achieved for

47

Table 4.3. Average dfb, 90th percentile dfb, and fr, for the GREEDY and GA algorithms,
over 72,900 problem instances. Relative dfb values are shown in parentheses.

dfb
Algorithm Average 90th perc. fr (%)
GREEDY 0.16 (30.06%) 0.34 (56.25%) 7.82
GA 0.24 (42.46%) 0.41 (68.18%) 9.57

all the LP-based algorithm by using a faster (commercial) linear program solver such as

CPLEX [189]. Regardless, the execution times would likely still prohibit the use of the

algorithms in practice.

The conclusion is that although algorithms that solve a rational relaxation of similar

scheduling problems have been used successfully in the literature, in our context they

perform poorly. One intuitive reason for this result is that binary ejn variables are difficult

to compute by rounding off rational values. There may simply not be a good way to round

off a value of, say, 0.51 or 0.49 to either 0 or 1 without leading to a schedule that is far

from the optimal schedule. GREEDY successfully solves more instances, leads to better

minimum yields, and runs orders of magnitude faster. In the rest of this paper we exclude

results for RRND, RRNDNZ, FASTDIVING, and SLOWDIVING.

4.4.3 Genetic Algorithm

In this section we evaluate the genetic algorithm, GA, described in Section 4.2.4.

Table 4.3 shows results for the GREEDY and GA algorithms, computed over all problem

instances. We see that GA is outperformed by GREEDY in terms of average dfb, 90th

percentile dfb, and fr. Over all feasible instances, GA outperforms GREEDY in 9.96% of

the cases, and in these cases it leads to a minimum yield on average 26.64% higher than

GREEDY. By contrast, GREEDY outperforms GA in 79.08% of the feasible instances,

in which case it leads to a minimum yield that is on average 32.65% higher than GA.

48

Table 4.4. Average dfb, 90th percentile dfb, and fr, for the VP-based, GREEDY, and
GREEDYLIGHT algorithms, for 72,900 problem instances. Relative dfb values are shown
in parentheses.

dfb
Algorithm Average 90th perc. fr (%)
GREEDYLIGHT 0.16 (31.49%) 0.35 (56.25%) 8.16
GREEDY 0.16 (30.07%) 0.34 (61.01%) 7.73
VP_PPRATIO 0.08 (14.54%) 0.17 (28.32%) 15.81
VP_PPDIFF 0.08 (13.67%) 0.16 (21.10%) 15.35
VP_FFLEX 0.07 (12.85%) 0.15 (27.86%) 15.45
VP_PPMAX 0.07 (13.08%) 0.15 (26.67%) 14.99
VP_PPSUM 0.07 (12.84%) 0.15 (26.39%) 14.93
VP_CPRATIO 0.07 (11.09%) 0.14 (21.21%) 11.45
VP_BFLEX 0.06 (12.15%) 0.14 (27.10%) 13.75
VP_CPDIFF 0.06 (10.19%) 0.12 (21.10%) 8.70
VP_CPMAX 0.05 (10.10%) 0.11 (20.60%) 8.43
VP_CPSUM 0.05 (9.92%) 0.11 (20.40%) 8.20
VP_BFMAX 0.04 (11.39%) 0.11 (29.40%) 8.48
VP_FFMAX 0.04 (11.26%) 0.11 (29.33%) 8.33
VP_BFSUM 0.04 (10.95%) 0.10 (28.72%) 7.91
VP_FFSUM 0.04 (10.95%) 0.10 (28.40%) 7.91

We conclude that the genetic algorithm approach is less effective than the greedy

approach for our problem. Although we use a population of 100 genomes in GA, we

have experimented with population sizes up to 2,000 and did not observe significant

improvements. We have seen marginal improvements when increasing the number

of generations from 100 to 2,000, suggesting that further increasing the number of

generations could be beneficial. However, the execution time of GA is at least one

order of magnitude larger than that of GREEDY (for example, GA requires over thirteen

seconds to compute a solution when N = 512 while GREEDY requires less than a quarter

of a second), and increasing the number of generations further is not practical.

4.4.4 Vector Packing Algorithms

In this section we evaluate the algorithms in Section 4.2.5, which use a vector packing

(VP) approach. We also include GREEDY and GREEDYLIGHT in this comparison.

49

We do not present results for VP_CHEKURI. Due to its computational cost, we ran

this algorithm only on instances with N = 100. VP_CHEKURI leads to much higher

failure rates than all its competitors and lower yields in all instances. It is also orders of

magnitude more computationally expensive in practice, due to solving a large LP at each

iteration of the binary search.

Table 4.4 summarizes the results averaged over all 72,900 instances. Rows of the table

are sorted by decreasing average dfb and, for equal dfb, by decreasing fr. In terms of dfb,

GREEDY and GREEDYLIGHT are outperformed by all VP-based algorithms. Furthermore,

both have failure rates that are not significantly better than those of the least failure-prone

VP-based algorithms. All VP-based algorithms exhibit comparable behavior, with no

clear clustering of the algorithms when looking at averages.

We seek more insight into our results using one-to-one algorithm comparisons via

a domination relationship. For two algorithms A and B, we define the following two

measures: (i) SA,B: the percentage of instances for which A succeeds and B fails; and

(ii) YA,B: the average percent minimum yield difference between A and B, relative to

the minimum yield achieved by B, computed on instances for which both algorithms

succeed. For both measures, a positive value means an advantage of A over B. We say

that “algorithm A dominates algorithm B” if SA,B ≥ 0.5% and YB,A ≤ 3%, or, SB,A ≤

0.5% and YA,B ≥ 3%. That is, algorithm A dominates algorithm B if it is significantly

more successful and not significantly less effective at maximizing minimum yield, or

if it is significantly more effective at maximizing minimum yield and not significantly

less successful. We say that two algorithms are equivalent if neither algorithm dominates

the other. We picked 0.5% to mean “not significant” and 3% to mean “significant.” We

experimented with values higher that 3% for significance and found that for these values

very few dominance relationships could be established, as many algorithms are close to

each other in terms of dfb and fr.

50

We established domination relationships based on our experimental results consider-

ing all our experiments (D ∈ {2, 4, 6}), the two subsets for D ∈ {2, 4} and D ∈ {4, 6},

and the three subsets for D = 2, D = 4, and D = 6, for a total of 1 + 2 + 3 = 6

result subsets. The goal of considering these subsets is to determine whether the number

of resource dimensions has an impact on the relative performance and the algorithms.

We found that each Permutation Pack (PP) algorithm is dominated by its Choose

Pack (CP) counterpart, for all result subsets. We found that VP_CPRATIO is dominated

by VP_CPDIFF across all result subsets. Among the remaining three CP algorithms,

VP_CPSUM is the only one that is not dominated for any result subset. VP_CPDIFF is

not dominated for subsets D = 2, 4, 6, D = 2, 4, and D = 2, while VP_CPMAX is not

dominated for subsets D = 4, 6, D = 4, and D = 6. This indicates that VP_CPMAX

is preferable to VP_CPDIFF for problems with more resource dimensions, while the

situation is reversed for problems with lower resource dimensions. Regardless, we

conclude that VP_CPSUM is the algorithm of choice among all PP and CP algorithms.

Among the algorithms that use a Best Fit or First Fit approach, we found that algo-

rithms using lexicographical ordering (VP_FFLEX and VP_BFLEX) are each dominated

by both of their counterparts on all result subsets. VP_FFSUM and VP_FFMAX are

equivalent for high resource dimensions (result subsets D = 4, 6 and D = 4),

but VP_FFSUM dominates VP_FFMAX for all other result subsets. Conclusions

are identical for VP_BFSUM and VP_BFMAX. The VP_FFSUM and VP_BFSUM

algorithms are equivalent on all result subsets.

We are left with the VP_CPSUM, VP_BFSUM, and VP_FFSUM algorithms.

These three algorithms are equivalent on all our result datasets, by our definition

of equivalence. The left-hand side of Table 4.5 shows the S and Y measures for

VP_CPSUM vs. VP_FFSUM and VP_BFSUM. We see that the S values 0.56% and

0.67% are only slightly above our 0.5% insignificance threshold. When considering all

51

Table 4.5. Some of the S and Y values pertaining to the VP_CPSUM algorithm,
computed over all our problem instances.

Measure Value (%) Measure Value (%)
SVP_CPSUM,VP_FFSUM 0.02 SVP_CPSUM,GREEDY 0.01
YVP_CPSUM,VP_FFSUM 6.93 YVP_CPSUM,GREEDY 42.23
SVP_FFSUM,VP_CPSUM 0.56 SGREEDY,VP_CPSUM 0.99
YVP_FFSUM,VP_CPSUM -1.11 YGREEDY,VP_CPSUM -22.34
SVP_CPSUM,VP_BFSUM 0.04 SVP_CPSUM,GREEDYLIGHT 0.00
YVP_CPSUM,VP_BFSUM 7.28 YVP_CPSUM,GREEDYLIGHT 68.61
SVP_BFSUM,VP_CPSUM 0.67 SGREEDYLIGHT,VP_CPSUM 0.66
YVP_BFSUM,VP_CPSUM -1.29 YGREEDYLIGHT,VP_CPSUM -24.05

our problem instances, it turns out that VP_CPSUM is outperformed by VP_FFSUM

(resp. VP_BFSUM) for 68.97% (resp. 76.26%) of instances for which both algorithms

succeed. However, in these cases, its minimum yield is only outperformed by 4.01%

(resp. 3.93%) on average. However, when VP_CPSUM outperforms VP_FFSUM (resp.

VP_BFSUM) it does so by 27.00% (resp. 18.70%) on average. We conclude that the

best algorithm among the VP-based ones is VP_CPSUM. In terms of computational

demands, the execution times of the three algorithms are comparable. For instances with

J × N = 8, 388, 608 (e.g., J = 8, 192 jobs running on a cluster with N = 1024 nodes),

the average execution time of VP_CPSUM, VP_FFSUM, and VP_BFSUM are 1.38,

1.50, and 1.62 seconds, respectively.

VP_CPSUM is also preferable to the GREEDY and GREEDYLIGHT approaches,

as can be seen in the right-hand side of Table 4.5. While SGREEDY,VP_CPSUM and

SGREEDYLIGHT,VP_CPSUM are low (above the 0.5% threshold but below 1%), Y values show

that VP_CPSUM largely outperforms GREEDY and GREEDYLIGHT in terms of minimum

yield. Furthermore, VP_CPSUM is also less computationally demanding than GREEDY

and GREEDYLIGHT. For the aforementioned instances with J × N = 8, 388, 608, the

execution time of VP_CPSUM is 1.38 seconds while that of GREEDY is 54.56 seconds

and that of GREEDYLIGHT is 1.75 seconds.

52

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

70

80

90

100

Slack

%
 re

la
tiv

e
df

b

Average
Maximum
75th Percentile
90th Percentile
99th Percentile

Figure 4.2. Percent relative dfb values for VP_CPSUM vs. the slack.

We conclude that among all the algorithms considered in this chapter, the VP_CPSUM

algorithm is the algorithm that should be used in practice for computing resource

allocations. This conclusion holds when taking further subsets of our results with respect

to the σ, ρ, and slack parameters.

4.4.5 Impact of Instance Parameters

In this section we study the effects of our instance parameters on the behavior of

VP_CPSUM. Figure 4.2 plots average, maximum, 75th percentile, 90th percentile, and

99th percentile of percent relative dfb values for VP_CPSUM versus the slack. We see

that dfb average values roughly decrease as the slack increases. This is expected since

higher slack means an easier resource allocation problem. In our most difficult instances,

slack = 0.1, VP_CPSUM’s relative dfb is on average 19.23%, which is reasonably close

to LPBOUND. The 75th percentile curve is close to the average curve, denoting that for

the bulk of our experiments VP_CPSUM is still close to LPBOUND. The 90th and 99th

percentile curves are expectedly higher, and the maximum curve remains close to 1.0.

53

Table 4.6. VP_CPSUM’s dfb values and relative dfb values (in parentheses), when fixing
the memory slack and one of the parameters defining the instances.

Fixed Param. slack = 0.1 slack = 0.4
param. Value average 90th perc. average 90th perc.

2 0.05 (16.51%) 0.13 (74.82%) 0.00 (0.19%) 0.24 (10.7%)
D 4 0.09 (16.20%) 0.22 (41.61%) 0.03 (4.00%) 0.08 (15.61%)

6 0.18 (31.83%) 0.57 (94.93%) 0.09 (13.15%) 0.17 (22.19%)
0.00 0.10 (16.90%) 0.49 (79.83%) 0.03 (5.14%) 0.10 (13.6%)

ρ 0.25 0.08 (25.45%) 0.17 (79.13%) 0.04 (7.00%) 0.11 (18.92%)
0.50 0.09 (14.91%) 0.22 (54.87%) 0.06 (1.13%) 0.16 (24.25%)
100 0.10 (10.29%) 0.21 (21.29%) 0.06 (6.00%) 0.17 (17.2%)

J 200 0.15 (26.60%) 0.51 (84.90%) 0.05 (9.78%) 0.10 (20.12%)
500 0.02 (15.02%) 0.11 (77.77%) 0.00 (0.01%) 0.02 (20.54%)
0.25 0.10 (20.83%) 0.33 (80.62%) 0.03 (4.38%) 0.11 (17.30%)

σ 0.50 0.09 (20.09%) 0.20 (76.19%) 0.04 (6.36%) 0.13 (18.79%)
1.00 0.08 (16.51%) 0.21 (70.71%) 0.04 (6.03%) 0.14 (19.69%)

This means that regardless of the slack value, i.e., of the difficulty of the problem, there

are still some instances that are hard to solve for our algorithm.

Table 4.6 shows VP_CPSUM’s absolute and relative dfb values for subsets of the

instances when fixing one of the parameters that define our instances. The table shows

average and 90th percentile values, for slack = 0.1 and slack = 0.4. We see that higher

D increases the dfb. In the difficult case slack = 0.1, the relative dfb is at most 31.83%

when D = 6. Higher values of ρ do not have much of an effect on the already difficult

slack = 0.1 case, but do make the easier slack = 0.4 case more difficult. This is because

with more jobs having QoS requirements, the resource allocation problem becomes more

difficult. The σ parameter does not have a significant impact on the results. High values

of the J parameter lead to low dfb values. This is because with more jobs, and keeping

the slack constant, the resource allocation problem becomes easier (many smaller jobs

are easier to pack into nodes than fewer bigger jobs). Overall, this table demonstrates

that, even when considering several subsets of our results, VP_CPSUM is not far from

LPBOUND on average (at most 31.83%).

54

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

70

Slack

%
 r

e
la

ti
v
e
 d

if
fe

r
e
n

c
e

VP_CPSum vs. OPT (average)

VP_CPSum vs. OPT (90th percentile)

OPT vs. LPBound (average)

OPT vs. LPBound (90th percentile)

Figure 4.3. Percent relative dfb values for VP_CPSUM and OPT, vs. slack.

An important observation here is that VP_CPSUM is no further from OPT than from

LPBOUND since LPBOUND is an upper bound on OPT. We conclude that VP_CPSUM

produce resource allocations that are, on average, within roughly 30% of the optimal.

4.4.6 OPT vs. LPBOUND

So far we have used dfb as our measure of goodness for resource allocations, that is the

distance to the LPBOUND upper bound on the optimal minimum yield. While a low

dfb is certainly desirable, there remains the question of how tight the upper bound is.

In this section we compare VP_CPSUM and LPBOUND to the optimal solution OPT

computed by solving the MILP formulation of the resource allocation problem given

in Section 4.1.2. Since solving a MILP takes exponential time, we use a set of “small”

instances with N = 4, J = 8, 10, 12, and setting the other parameter values as previously.

We found that out of these 72,900 instances, the MILP solver in GLPK failed to find a

solution for 4,325 instances, or 5.93%. We assume that these instances have no feasible

solution; more than 80% of them have slack = 0.1.

55

Figure 4.3 plots relative percent differences between VP_CPSUM and OPT, and

between OPT and LPBOUND, both for the average and the 90th percentile. We see that,

expectedly, all values decrease as slack increases. Let us first examine the difference

between OPT and LPBOUND (dashed lines on the figure). For the most difficult

scenarios, i.e., slack = 0.1, OPT is on average 14.63% away from LPBOUND. The

90th percentile for slack = 0.1 is reasonable at 45.91%, showing that for the bulk of

the instances LPBOUND is a relatively tight upper bound. We conclude that, at least for

small instances, LPBOUND is a tight upper bound on optimal. Turning our attention to

the distance between VP_CPSUM and OPT (solid lines), we see that roughly the same

observations can be made even though the 90th percentile values for low slack are a bit

higher (up to 66.35% for slack = 0.1). We conclude that VP_CPSUM is roughly as

far from OPT as OPT is from LPBOUND. In other terms, the relative difference between

VP_CPSUM and OPT is about half of that between VP_CPSUM and LPBOUND. While

impossible to verify, if this observation also holds true for large problem instance, then

halving the values in Figure 4.2 and Table 4.6 would provide reasonable estimates of how

far VP_CPSUM is from optimal.

4.4.7 Optimizing Average Yield

Once an allocation with a given maximum minimum yield, say Y , has been produced,

there may be excess resources available. To further improve resource utilization one can

then maximize the average yield while preserving Y as the maximum minimum yield.

This optimization can be framed as a MILP, simply replacing the objective function by

the average yield, and adding the constraint Y ≥ Y . Unfortunately, the MILP cannot

be solved in polynomial time and solving it would require developing and evaluating

a number of heuristics. Instead, we opt for a simple solution: we enforce that the ejn

values computed by the minimum yield maximization procedure be kept constant. In

56

other words, we do not allow average yield maximization to change the mapping of jobs

to nodes. We only allow it to change allocated resource fractions. In this case, the MILP

becomes a rational LP since all integer variables have become constants. It turns out that

a simple greedy algorithm solves this LP. First, set the yield of each job to the minimum

yield and update their resource fractions accordingly. Then, for each node, evaluate which

job could get the highest yield increase given the remaining available resource fractions.

Increase the yield of that job as much as possible. If free resources remain, repeat that

procedure until no job can see its yield further increased. The optimality of this process is

easily proved via a typical exchange argument.

Note that if the system is truly under subscribed, then some nodes can be turned

off. Our algorithm can be used to determine resource allocation with different possible

numbers of nodes and thus provide guidance on whether and how many nodes could be

turned off without impacting the minimum yield in an unacceptable manner.

For each resource allocation we compute an overall cluster utilization metric. This

metric accounts for the aggregate percentage of resources used in the cluster, excluding

resources that correspond exclusively to fixed requirements. Indeed, the utilization of

fixed resources is dictated by the requirements of the jobs, since in a successful allocation

all such requirements must be met. This utilization is then a fixed quantity for a given

problem instance, regardless of the resource allocation algorithm used, and we simply do

not account for it.

Table 4.7 shows average utilization values computed over several subsets of

our 72,900 instances, before and after average yield maximization, when using the

VP_CPSUM algorithm. We see that as the number of resource dimensions increases,

cluster utilization decreases. This is expected as with more resource dimensions vector

packing is more difficult. We also see that, with the exception of the D = 2 results

for J = 200 and J = 500, a larger number of jobs increases utilization. Again, this

57

Table 4.7. Average cluster utilization.

Util. (%) Opt. Util. (%)
J = 100 77.75 78.32

D = 2 J = 200 98.03 99.98
J = 500 95.70 99.97
J = 100 72.87 77.06

D = 4 J = 200 88.60 94.51
J = 500 94.76 96.74
J = 100 70.07 75.77

D = 6 J = 200 83.15 90.92
J = 500 93.36 95.82

is expected given that it is easier to pack many small vectors than fewer larger vectors.

Results regarding how utilization varies with slack (not shown in the table) show that

utilization improves marginally as the slack increases. We found that instance parameters

ρ and σ had negligible impact on cluster utilization. Finally, we see that our average yield

optimization step does improve cluster utilization noticeably. Larger improvements could

be achieved by removing the constraint that the mapping of jobs to nodes be unchanged,

but this would require the development of efficient average yield optimization heuristics.

4.5 Multi-VM jobs

So far we have assumed that each job consists of a single VM instance. There are,

however, at least two compelling reasons why multi-VM jobs may be useful. First,

a job could be implemented as a data-parallel application that consists of identical

communicating tasks, with each task running inside a VM instance. This may be

necessary in case the job requires an aggregate amount of memory beyond what a single

node can provide, which is often the case for data-parallel applications in scientific

domains. Second, a job may naturally consist of two or more components that must live

within different VM instances and that have related resource needs (e.g., in steady-state

58

a component uses half as much resources as another component). We discuss both these

cases hereafter, explaining how our approach can be applied to each.

4.5.1 Data-parallel jobs

Our algorithms, and thus the VP_CPSUM algorithm, can be used almost directly to

handle the data-parallel job scenario. In such a scenario, the job computes as fast as its

slowest task. As a result, all tasks, which have identical resource needs, should be given

identical resource fractions to avoid wasting resources. All tasks within a job should then

experience the same yield. All tasks in the job can then be considered as individual jobs.

This approach amounts to equating the yield of a data-parallel job with that of each of

its individual tasks. Therefore, there is no incentive to implement a job in a data-parallel

fashion simply for the purpose of achieving higher yield. Furthermore, our algorithms

for single-task jobs can be employed directly (see for instance the experimental results

in [185]).

There is a single difference between our approach for single-task jobs and that for

data-parallel jobs. Recall that after computing a resource allocation that maximizes the

minimum yield, our approach proceeds with an average yield maximization step. In Sec-

tion 4.4.7, we have seen that, in the case of single-task jobs, average yield optimization

can be formulated as a MILP. When not allowing average yield maximization to change

the mapping of jobs to nodes (but only the resource fractions), this MILP becomes a

rational LP. In the case of single-VM jobs, it turns out that the rational LP can be solved

directly via a simple greedy algorithm. Unfortunately, the same algorithm cannot be

applied to data-parallel jobs. One must then solve the rational LP, which can be done

in polynomial time. For the sake of completeness we now give the formulation of this LP.

Let Tj be the number of tasks of job j. Let us consider a given mapping of tasks

to nodes with an achieved minimum yield Y . The mapping of a task to a node is fully

59

defined via a binary value ejtn that is 1 if task t, 0 ≤ t < Tj , of job j is allocated to node

n, and 0 otherwise. Defining αjtn as the unscaled yield of task t of job j on node n, we

can now write the following constraints, which are similar to the ones in Section 4.1.2.

The main difference is that the ejtn values and the Y value are constants rather than

variables:

X ∈ Q+ (4.7)

∀j, t, n ejtn ∈ {0, 1} αjtn ∈ Q (4.8)

∀j, t, n 0 ≤ αjtn ≤ ejtn (4.9)

∀j, t
∑
n

αjtn ≥ α̂j (4.10)

∀j, t > 0
∑
n

αjtn =
∑
n

αj0n (4.11)

∀n, d
∑
j,t

rjd(αjtn(1− δjd) + ejtnδjd) ≤ 1 (4.12)

∀j, t
∑
n

αjtn ≥ α̂j + Y (1− α̂j) (4.13)

X =
∑

j s.t. α̂j<1,t

(
∑
n αjtn)− α̂j
Tj(1− α̂j)

(4.14)

Constraint (4.11) ensures that all tasks within a job have the same unscaled yield, which

implies identical resource allocations. Constraint (4.13) ensures that the minimum yield

is not reduced by average yield optimization. Constraint (4.14) defines X as the sum of

the yields of all jobs with a minimum yield strictly lower than 1 (all other jobs have by

definition a scaled yield equal to 1). Therefore X is linearly and positively correlated

with the average yield computed over all jobs. The optimization objective is to maximize

X . All variables, the yjtn values and X , are rational making this program solvable in

polynomial time.

60

4.5.2 Multi-Instance jobs

In the case of a job that is implemented with multiple components each running inside its

own VM instance, our approach can be easily used if a linear relationship exists between

the fluid resource needs of job components. For instance, consider a simple scenario in

which nodes provide two resources, r1 and r2. Consider two components of the same

job, A and B, each of them in its own VM instance. Say that component A’s fluid need

in resource r1 is 40% and component A’s fluid need in resource r2 is 20%. If, for each

resource, component B requires half the amount required by component A then one can

just set its fluid needs to 20% and 10% for resources r1 and r2, respectively, and treat

both components as independent jobs. Before the average yield optimization step, all jobs

have the same yield. Similarly to the data-parallel job case, the only modification to our

approach is the resolution of a rational LP for average yield optimization. The fact that

one component requires half as many resources as that required by another component

could be specified by an operator. Alternately, the operator could simply specify that the

two components are related, and the relationship could be discovered using the techniques

described in Section 3.2.2.

As recognized in [153], multi-tier jobs raise a number of challenges. First, the

relationship between the resource consumption of tiers are not necessarily linear or

even uniform across resource dimensions (e.g., component A requires half the CPU of

component B but twice the bandwidth), in which case our approach would need to be

modified. Second, in a multi-tier scenario the number of instances for each tier may not

be specified a-priori. Automatically deciding the number of instances is outside the scope

of this paper, and raises the difficult “shifting bottleneck” issue identified in [153].

61

4.6 Conclusion

In this chapter we studied the resource allocation problem in shared hosting platforms

for static workloads with nodes that provide multiple types of resources. We gave a

formulation of the problem that supports a mix of QoS and best-effort scenarios, and

that attempts to maximize a generic objective function, the minimum yield. We explained

how an (in practice reasonably tight) upper bound on the optimal yield can be computed,

and how the average yield can be maximized as a way to increase cluster utilization. We

proposed and evaluated several classes of algorithms over a wide range of simulation

scenarios. From our experimental results we conclude that performing a binary search

over the yield and solving the resource allocation problem for a fixed yield using a vector

packing algorithm is the best approach, and that vector packing algorithms that reason on

the sum of the resource needs of the jobs are the most effective. Among those algorithms

under consideration, the one that makes use of the Choose Pack vector packing algorithm

from [166] runs in only a few seconds and was the most effective. Most notably, for our

experimental scenarios it outperformed a greedy approach that combines many greedy

algorithms, as well as linear program relaxations and a genetic algorithm approach.

We conclude that we have found an algorithm that runs quickly and computes resource

allocations that are close to the optimum.

Preliminary results upon which the work in this chapter is based were previously

published in the Proceedings of the 9th IEEE International Symposium on Cluster

Computing and the Grid [185] and the contents of this chapter have been published in

the Journal of Parallel and Distributed Computing [190].

62

CHAPTER 5
THE ON-LINE PROBLEM

In this chapter we consider the on-line scheduling of temporary tasks. An example

of an environment this problem would apply to would be a high-performance computing

cluster intended to run scientific workloads. We make the following contributions: (i) We

define the clairvoyant and non-clairvoyant versions of the on-line DFRS scheduling

problem (Section 5.1); (ii) We establish the complexity of these problems and obtain

absolute bounds on the performance of any DFRS scheduling algorithm for either

scenario (Section 5.1); (iii) We propose several heuristic algorithms for solving the

DFRS scheduling problem (Section 5.2) and (iv) We evaluate our proposed algorithms

in simulation using a combination of synthetic and real workloads (Sections 5.3 and 5.4).

5.1 Problem Definition

Consider a set of nodes, N , that must service a stream of user jobs J . Each job j has a

release time, rj , before which the scheduler cannot start the job and has no information

about the it, a number of tasks, Tj , fixed resource requirement and fluid resource need

vectors ~sj and ~dj as described in the formulation of the off-line problem in Section 4.1,

and a processing time, pj , that is not known until the task completes. The value of pj is

the number of seconds in which the job would complete if running alone in the system

(i.e., the run time). The scheduler can assign job tasks to nodes, migrate tasks between

nodes, or set job yield values subject to constraints described in Section 4.1. Preempting

jobs and migrating some (or all) of the tasks of a job to a different set of nodes both have

costs, both in terms of network and I/O bandwidth consumed and in terms of penalizing

the performance of the selected job.

63

As the problem is now on-line, the yield of a job can vary over the time it spends

in the system, and the yield values it is assigned throughout its execution will affect its

completion time. For each job the value αj(t) represents the yield of the job at time t.

When a job is not running αj(t) is taken to be zero. The virtual time of a job at time t is

the total subjective time experienced by the job between its submission and time t, and is

equal to
∫ t
rj
αj(τ)dτ . For example, a job that starts and runs for 10 seconds with a yield

of 1.0, that is then paused for 2 minutes, and then restarts and runs for 30 seconds with a

yield 0.5 has experienced 25 total seconds of virtual time (10×1.0+120×0.0+30×0.5). A

job completes when its virtual time equals or (in the case of discrete time units) exceeds

pj .

An important consideration for any formalized study of a scheduling problem is the

metric by which the schedules generated by competing algorithms should be evaluated. In

Chapter 4, which examined on the off-line problem, we chose to focus on the maximizing

the minimum yield. However, this metric is instantaneous and is thus not be appropriate

for an on-line setting with a significant temporal component. One reasonable and well

established metric of individual job performance in HPC environments with on-line job

submissions is the stretch (also referred to as the slowdown), which is defined as the ratio

of the time that a given job spends in the system divided by the time the job would spend

if alone in the system. Comparing the stretches of different jobs in a workload can give

information about the quality of a schedule, and comparing metrics based on aggregates

of stretch values over a range of different workloads can give information about the

relative performance and fairness of different scheduling algorithms.

Approaches that seek to improve average stretch (such as found in [191] and [192])

are likely to be more fair than those that seek to minimize makespan (as in [193]).

However, some jobs may still have to wait an inordinate, or even unbounded, amount

of time [91]. Instead, we choose to minimize the maximum stretch as this is known to

64

provide a reasonable compromise between performance and fairness while still avoiding

starvation [90].

5.1.1 Related Work

Our research is related to several previous works that have explored algorithmic

issues pertaining to bin packing and/or multiprocessor scheduling. There are obvious

connections to fully dynamic bin packing, a formulation where items may arrive or

depart at discrete time intervals and the goal is to maintain the maximum number of

bins required while limiting re-packing, as studied by Ivkovic and Lloyd [194]. Coffman

studies bin stretching, a version of bin packing in which a bin may be stretched beyond its

normal capacity [170]. Epstein studies the on-line bin stretching problem as a scheduling

problem with the goal of minimizing makespan [172].

Yossi Azar has studied on-line load balancing of temporary tasks on identical

machines with assignment restrictions [195, 196]. The problem therein is that of assigning

incoming tasks to nodes permanently. Each task has a weight and a duration. The weight

is known when the task arrives, but the duration is not known until the job completes. The

goal is to minimize the maximum load on any machine over time.

Other works have explored the problem of scheduling jobs without knowledge of

their processing time. The famous “scheduling in the dark” approach [197] shows that in

the absence of knowledge giving equal resource shares to job is theoretically sound. Our

problem is also related to thread scheduling done in operating system kernels, given that

thread processing times are unknown.

65

5.1.2 Theoretical Difficulty of Maximum Stretch Minimization

In this section we assess the theoretical complexity of minimizing the maximum stretch.

Our purpose of this section is two-fold. First, we study the clairvoyant scenario (i.e., we

assume that the scheduler has full knowledge of all jobs at the outset, making the problem

effectively an off-line search for a solution) so that we can derive a lower-bound on the

optimal maximum stretch. Second, we quantify the difficulty of the non-clairvoyant

case, as this better corresponds to the situation facing real-world algorithms. We do not

consider static resource requirements or even multiple resource dimensions. Our results

from Chapter 4 show that the inclusion of even a single static resource requirement is

enough to make the problem NP-hard, while, as we will show in the following section,

the problem poses significant theoretical challenges even with only a single fluid resource

dimension. The results in Section 5.4 show that the algorithms we propose in Section 5.2

achieve performance reasonably close to the aforementioned bound.

Computation of the Theoretical Bound for the Clairvoyant Case

We refer the reader to the terminology defined in Sections 4.1 and 5.1. In this section we

assume ns (the number of fixed resource dimensions) is equal to 0 while nd (the number

of fluid resource dimensions) is equal to 1. By an abuse of notation, in the following

proofs we ignore ~sj and refer to ~dj as dj , a scalar quantity.

The tasks of a job are, like any program, sequences of discrete events. This means

that each task will saturate the fluid resource for small amounts of time, and the fluid

resource need thus represents the maximum average utilization over some interval of

bounded size. Furthermore, while the tasks of a parallel job must progress together,

inter-task communication events are limited in their frequency. Based on these ideas,

we posit the existence a time quantum Q. If the execution of a job j can be broken down

66

into a sequence of non-overlapping intervals no larger than Q where the average fluid

resource utilization does exceed the need and all tasks proceed equally on each interval,

then on any particular sub-interval the fluid resource utilization of j is not constrained and

the tasks of j can progress independently. We make the reasonable assumption that the

time-scale for resource scheduling is much smaller than that of job scheduling, and so for

any two distinct job scheduling events (particularly, job submission and completion) the

distance in time between these events, if nonzero, will be larger than Q.

Theorem 1. A target value S for the maximum stretch defines a deadline Dj = rj+S×pj

for the execution of each job j. The set of job release dates and deadlines, {rj}j∈J ∪

{Dj}j∈J , defines a set of nt non-overlapping time intervals, I1, ..., Int . We restrict our

selection of S to values for which none of these intervals is smaller than Q. Then there

exists a valid schedule whose maximum stretch is no greater than S if and only if the

following linear system has a solution, where βtj is the fraction of job j executed during

the time interval It:

∀j
∑
t

βtj = 1 (5.1)

∀j, t rj ≥ sup It ⇒ βtj = 0 (5.2)

∀j, t Dj ≤ inf It ⇒ βtj = 0 (5.3)

∀j, t βtjpj ≤ sup It − inf It (5.4)

∀t
∑
j

βtjdjTjpj ≤ N (sup It − inf It) (5.5)

Proof. The constraints in the given linear system state that:

• Each job must be fully processed (Constraint (5.1));

• No work can be done on a job before its release date (Constraint (5.2));

67

• No work can be done on a job after its deadline (Constraint (5.3));

• A task cannot run longer, during a time interval, than the length of the time interval

(Constraint (5.4));

• The cumulative resources used by the different tasks during a time interval cannot

exceed what is available during that interval (Constraint (5.5)).

These conditions are necessary. We now show that they suffice to insure the existence

of a schedule that achieves the desired maximum stretch (i.e., there exists a schedule in

which each job completes before its deadline).

From any solution of the linear system we can build a valid schedule. We show

how to build the schedule for a single interval It, the whole schedule being obtained

by concatenating all interval schedules. For each job j, any of its Tj tasks receives a

cumulative resource allocation equal to βtjpjdj during interval It. Let atj and btj be two

integers such that
at

j

btj
= βtjpjdj . Without loss of generality, we can assume that all integers

btj are equal to a constant b, that is ∀j ∈ J,∀t ∈ [1, nt], b
t
j = b. LetR be any value smaller

than Q such that there exists an integer λ such that (sup It − inf It) = λ × R. Then,

during each of the λ sub-intervals of It of sizeR < Q, we greedily schedule the tasks

on the node in any order: starting at time 0, we first run the first task on the first node at

100% resource utilization for a time
at

j1

bR , where j1 is the job this task belongs to. Then we

run the second task on the first node at 100% resource utilization for a time
at

j2

bR , where j2

is the job this task belongs to. If there is not enough remaining time on the first node to

accommodate the second task, we schedule the second task on the first node for all the

remaining time, and we schedule the remaining of the task on the second node starting

at the beginning of the sub-interval (thanks to our assumption on task migration). We

proceed in this manner until every task have been scheduled.

We now show that this schedule is valid. Note that our construction ensures that no

task is run simultaneously on two different nodes. Indeed, this could only happen if, for a

68

task of some job j, we had:

atj
λb

> R ⇔ βtjpjdj =
atj
b
> sup It − inf It

which is forbidden by Constraint (5.4). Then, by construction, the resource utilization

of the platform does not exceed what is available. Also, for any interval It there is a set

of sub-intervals of size no larger than Q, such that on on every sub-interval no task uses

more than its resource need on the average and all the tasks of each job are processed

equally.

Since all variables of the linear system are rational, one can check in polynomial time

whether it has a solution. Using a binary search, one can use the above theorem to find an

approximation of the optimal maximum stretch. (In practice, the time quantum Q is small

enough that the restriction on values for S can be safely ignored.) In fact, one can find the

optimal value in polynomial time using a binary search and a version of the linear system

tailored to check the existence of a solution for a range of stretch values (see [91, Section

6] for details). While the underlying assumptions in Theorem 1 are not met in practice

(e.g., there are static resource constraints, migration causes overhead, job submission and

run-times are not known in advance), the optimal maximum stretch computed via this

theorem provides a lower bound on the optimal maximum stretch.

Competitive Ratio of The Non-Clairvoyant Case

On-line maximum stretch minimization is known to be theoretically difficult. Even in a

clairvoyant scenario there does not exist any constant-ratio competitive algorithm [91].

Recall that an algorithm for an on-line problem has a competitive ratio of γ if it leads to

results worse than an optimal algorithm for the off-line problem by at most a factor γ.

In this work we study an on-line, non-clairvoyant scenario. However, unlike the work

69

in [91], we consider that time-sharing of compute nodes is allowed. The question then is

whether this added time-sharing capability can counter-balance the fact that the scheduler

does not know the processing time of jobs when they arrive in the system, thus changing

the results in [91]. In general, bounds on the competitive ratios of on-line algorithms can

be expressed as a function of the number of jobs submitted to the system, or as a function

of ∆, the ratio between the processing time of the largest and shortest jobs.

In this section we assume that we have one single-core node at our disposal or, equiv-

alently, that all jobs are perfectly parallel. We show that, in spite of this simplification,

the problem is very difficult (i.e., competitive ratios are large). As a result, the addition of

time-sharing does not change the overall message of the work in [91].

Our first result is that the bound derived for on-line algorithms in a clairvoyant

settings without time-sharing holds in our non-clairvoyant, time-sharing context.

Theorem 2. There is no 1
2
∆
√

2−1-competitive preemptive time-sharing on-line algorithm

for minimizing the maximum stretch if there are at least three jobs in the instance that

have distinct processing times.

This result is valid for both clairvoyant and non-clairvoyant scenarios and is

established by the proof of Theorem 14 in [91], which holds when time-sharing is

allowed. Surprisingly, we were not able to increase this bound by taking advantage of

non-clairvoyance. However, as seen in the next theorem, non-clairvoyance makes it

possible to establish a very large bound with respect to the number of jobs.

Theorem 3. There is no (preemptive) on-line algorithm for the non-clairvoyant

minimization of max-stretch whose competitive ratio is strictly smaller than n, where n

is the number of jobs submitted to the system.

Proof. By contradiction, let us hypothesize that there exists an algorithm with a

competitive ratio strictly smaller than n− ε for some ε > 0.

70

We consider an instance with n jobs that are all released at time 0, with processing

times large enough such that all jobs are kept running until time n regardless of what

the algorithm does. The job that has received the smallest cumulative virtual time up to

time n has received at most 1 unit of virtual time (one nth of the n time units). We sort

the jobs in increasing order of the cumulative virtual time each has received up to time

n. We construct our instance so that the i-th job in this order has processing time λi−1.

Note that our assumption of what happened prior to time n is valid for any value of λ no

smaller than n. The completion time of job 0, i.e., the job that has received the smallest

cumulative virtual time up to time n, is at least n. Consequently, its stretch is no smaller

than n because its processing time is λ0 = 1.

A possible schedule would have been to execute jobs in order of increasing processing

time. The stretch of the job of processing time λi−1 would then be:

∑i
j=1 λ

j−1

λi−1
=

λi − 1

λi−1(λ− 1)
−−−−→
λ→+∞

1.

Therefore, if λ is large enough (and greater than n) no job has a stretch greater than 1 + ε
n

in this schedule. Consequently, the competitive ratio of our hypothetical algorithm is no

smaller than:
n

1 + ε
n

≥ n(1− ε

n
) = n− ε ,

which is a contradiction.

The EQUIPARTITION algorithm, which gives each job an equal share of the platform,

is known to deliver good performance in some non-clairvoyant settings [197]. We

therefore assess its performance for maximum stretch minimization.

71

Theorem 4. Let n denote the number of jobs submitted to the system and ∆ the ratio

between the processing times of the largest and the smallest jobs. Then, in a non-

clairvoyant scenario,

1. EQUIPARTITION is exactly an n-competitive on-line algorithm for maximum stretch

minimization;

2. There exists an instance for which the maximum stretch realized by EQUIPARTI-

TION is at least ∆+1
2+ln(∆)

times the optimal.

To put the performance of EQUIPARTITION into perspective, FCFS is exactly ∆-

competitive [91].

Proof.

Competitive ratio as a function of n – At time t, EQUIPARTITION gives each of the

m(t) not-yet-completed jobs a share of the node resource equal to 1
m(t)
≥ 1

n
. Hence, no

job has a stretch greater than n and the competitive ratio of EQUIPARTITION is no greater

than n. We conclude using Theorem 3.

Competitive ratio as a function of ∆ – Let us consider n jobs as follows. Jobs j1 and

j2 are released at time 0 and have the same processing time. For the remaining jobs

j3, . . . , jn, each job ji is released at time rji = rji−1
+ pji−1

. Job processing times are

defined so that, using EQUIPARTITION, all jobs complete at time rjn + n. Therefore, job

ji is executed during the time interval [rji , rjn + n]. There are two active jobs during the

time interval [rj1 = rj2 = 0, rj3], each receiving one half of the node’s processing time.

For any i ∈ [3, n], there are i active jobs in the time interval [rji , rji+1
], each receiving

a fraction 1/i of the processing time. Finally, there are n jobs active in the time interval

[rjn , rjn + n], each receiving a fraction 1/n of the resource available over the interval.

72

The goal of this construction is to have the nth job experience a stretch of n. However,

by contrast with the previous theorem, the value of ∆ is “small,” leading to a large

competitive ratio as a function of ∆, but smaller than n. Formally, to define the job

processing times, we write that the processing time of a job is equal to the cumulative

virtual time it is given between its release date and its deadline using EQUIPARTITION:

∀i ∈ [1, 2] pji =
1

2
(rj3 − rj1) +

n−1∑
k=3

1

k
(rjk+1

− rjk) +
1

n
((rjn + n)− rjn)

=
1

2
pj1 +

n−1∑
k=3

1

k
pjk + 1

∀i ∈ [3, n] pji =
n−1∑
k=i

1

k
(rjk+1

− rji) +
1

n
((rjn + n)− rjn) =

n−1∑
k=j

1

k
pjk + 1

We first infer from the above system of equations that pjn = 1 (and the nth job has a

stretch of n). Then, considering the equation for pji for i ∈ [3, n − 1], we note that

pji − pji+1
= 1

i
pji . Therefore, pji = i

i−1
pji+1

and, by induction, pji = n−1
i−1

. We also have

pj2 − pj3 = 1
2
pj1 = 1

2
pj2 . Therefore, pj2 = 2pj3 = n− 1.

Now let us consider the schedule that, for i ∈ [2, n], executes job ji in the time interval

[rji , rji+1
= rji + pji], and that executes the first job during the time interval [rjn + pjn =

rjn + 1, rjn +n]. With this schedule all jobs have a stretch of 1 except for the first job. The

maximum stretch for this schedule is thus the stretch of the first job. The makespan of this

job, i.e., the time between its release data and its completion, is:

n∑
i=1

pji = 2pj1 +
n∑
i=3

pji = 2(n− 1) +
n∑
i=3

n− 1

i− 1
= (n− 1)

(
1 +

n∑
i=2

1

i− 1

)

= (n− 1)

(
1 +

n−1∑
i=1

1

i

)
.

The first job being of size n − 1, its stretch is thus: 1 +
∑n−1
i=1

1
i

= 2 +
∑n−1
i=2

1
i
. Using a

73

classical bounding technique:

n−1∑
i=2

1

i
≤

n−1∑
i=2

∫ i

i−1

1

x
dx =

∫ n−1

1

1

x
dx = ln(n− 1).

The competitive ratio of EQUIPARTITION on that instance is no smaller than the ratio

of the maximum stretch it achieves (n) and that of the maximum stretch of any other

schedule on that instance. Therefore, the competitive ratio of EQUIPARTITION is no

smaller than:
n

2 +
∑n−1
i=2

1
i

≥ n

2 + ln(n− 1)
=

∆ + 1

2 + ln(∆)

as the smallest job —the nth one— is of size 1, and the largest ones —the first two jobs—

are of size n− 1.

5.2 Algorithms

We seek to develop algorithms that perform well in terms of maximum stretch, but

without any knowledge of job processing times. The theoretical results from the previous

section indicate that the problem is “hopeless” in the sense that no algorithm can be

designed to have a low worst-case competitive ratio because of the large number of jobs

and huge differences in job run-times found in HPC workloads. Instead, we focus on

developing non-guaranteed algorithms (i.e., heuristics) that perform well in practice (i.e.,

usually close to the off-line bound developed in Section 5.1.2). Additionally, because of

the on-line nature of the problem these algorithms should compute schedules quickly. In

the design and evaluation of our algorithms we restrict ourselves to a single fluid and a

single fixed resource dimension that we assume, without loss of generality, to represent

the CPU and memory requirements of running jobs.

74

Since we assume no knowledge of job processing times, it is difficult to predict how

resource allocation decisions made at one moment in time will affect the final stretch

values for running jobs. Existing approaches often use user-supplied run-time estimates

in making resource allocation decisions, but as discussed in Section 2.1.1 these estimates

are generally unreliable and their use can severely impact performance. Instead of relying

on estimates or trying to build complicated predictive statistical models, we opt to focus

on maximizing the minimum yield at a number of points in time. We contend that this

strategy will result in low maximum stretch values, as both the yield and the stretch

capture notions of job “happiness”, and are thus related. In fact, the yield can be seen

as the inverse of an instantaneous stretch.

Our basic approach is to consider a number of “scheduling events” over the course

of time and to try to maximize the minimum yield of the running jobs at each scheduling

event using a subset of the algorithms discussed in Chapter 4. Since it is possible that at

times the total resource demand of waiting jobs may overwhelm what is available, we also

define a notion of job priority in order to allow some jobs to be temporarily preempted

and removed from consideration.

We present first two approaches for mapping tasks to compute nodes in a way

that optimizes the minimum yield: a local optimization heuristic (Section 5.2.1) and a

global optimization heuristic (Section 5.2.2). The efficient use of both these approaches

mandates the introduction of a priority function (Section 5.2.3). We then specify when

task mapping algorithms should be invoked (Section 5.2.4) and how to derive resource

allocations from task mappings (Section 5.2.5). All the above algorithms optimize

minimum yield in the hope of achieving good job stretches. For comparison purposes,

in Section 5.2.6 we propose an algorithm that attempts to optimize the maximum stretch

directly.

75

5.2.1 Greedy Task Mapping

The basic Greedy algorithm allocates nodes to an incoming job j without interfering with

tasks of other jobs that may currently be running. It first identifies the nodes that have

sufficient available memory to run at least one task of job j. For each of these nodes it

computes its CPU load as the sum of the CPU needs of all the tasks currently allocated to

it. It then assigns one task of job j to the node with the lowest CPU load, thereby picking

the node that can lead to the optimal yield for the task. If after this allocation that node

no longer has sufficient remaining memory to accommodate another task of job j, it is

removed from consideration. If necessary memory resources are available, all tasks of

the job j are allocated to nodes in this manner. This is roughly analogous to the process

used by the GREEDY_S1_P1 and GREEDY_S1_P2 algorithms in the previous chapter.

That is, tasks are assigned to nodes in essentially random order (since the algorithm has

no control over the order in which jobs are submitted) and it always places tasks on nodes

that have the lowest load in the single fluid resource dimension under consideration.

A clear weakness of the basic Greedy algorithm is its admission policy. If a short-

running job is submitted to the cluster but cannot be executed immediately due to

memory constraints, then it is postponed. However, since we assume no knowledge

of job processing time, there is no way to correlate how long a job is postponed with

its processing time. In fact, a job could be postponed for an arbitrarily long period of

time, leading to unbounded maximum stretch. The only way to circumvent this problem

is to force the admission of all newly submitted jobs. This can be accomplished by

pausing (via preemption) and/or moving (via migration) tasks of one or more jobs that

are currently running. A method for selecting which jobs should be paused or moved,

which relies on a notion of job priority, is described in Section 5.2.3.

76

5.2.2 Task Mapping as Vector Packing

The Greedy approach described in the previous section is incremental. It builds a solution

through a succession of locally optimal decisions for each task, but the final solution

may be far from being globally optimal. Another approach is to compute a global

solution from scratch, and then preempt and/or migrate tasks in order to implement the

resulting task mapping. We apply one of the vector-packing based algorithms described

in Chapter 4 for this purpose. The VP_CPSUM algorithm was previously identified as

the best of these algorithms in general. However, the difference in performance between

VP_CPSUM and VP_CPMAX is small, and our previous research [184, 185] had led us

to believe that VP_CPMAX had a slight edge in performance for a single fixed and single

fluid resource dimension. Thus, the vector packing task placement algorithm chosen for

this research study was VP_CPMAX, but in principle any vector packing algorithm could

be used. We refer to the vector packing task mapping approach simply as MCB (short for

"Multi-Capacity Bin-Packing", another name for vector packing).

In the event that the MCB algorithm cannot find a valid allocation for all of the jobs

currently in the system at any yield value, it should remove some jobs from consideration

and try again. The selection of which jobs to remove is based on the same job priority

notion as that used by the greedy approach to select jobs to pause or move, and is

described in the next section.

5.2.3 Prioritizing Jobs

When the system is oversubscribed, we use a priority function to decide which jobs to

pause/move, when using Greedy, and which jobs to remove from consideration, when

using MCB. This priority function is also used to decide which of the jobs that are

currently paused should be restarted when more resources become subsequently available.

77

An intuitive choice for the priority function would be to simply take the inverse of the

virtual time (as described in Section 5.1): then the shorter the virtual time, the higher the

priority. A job that has not yet been allocated any CPU time has a zero virtual time, i.e.,

an infinite priority. This ensures that no job is left waiting at its release date, especially

short jobs whose stretch would otherwise degrade the overall performance. This rationale

for using the inverse of the subjective time experienced by the job as a priority function is

similar to that found in [198].

Experimental results, not presented here, show that using the inverse of the virtual

time as a priority function leads to good performance. Unfortunately, there is a problem

with using a priority based solely on the virtual time: The virtual time of a paused job

remains constant, which can lead to starvation. Thus, the priority function should also

consider the current flow time of a job, i.e., the time elapsed since its submission. The

goal is to prevent starvation by ensuring that the priority of any paused job increases with

time and tends to infinity.

Based on these ideas, we considered using the ratio of flow time to virtual time as

a priority function, but preliminary experiments showed that this leads to significantly

poorer performance in practice than not using the flow time at all. As a consequence,

we define the priority function as: priority = flow time
(virtual time)2

. The power of two in the

denominator increases the importance of the virtual time with respect to the flow time,

thereby giving an advantage to short-running jobs, while still escalating the priority of

jobs that are paused for long periods of time. When necessary, we break ties between

equal-priority jobs by considering their order of submission.

We always consider jobs for pausing or moving, and we always remove jobs from

consideration for scheduling, by increasing order of priority. Conversely, we always

consider jobs for resuming by decreasing order of priority. The use of the priority

function is mandatory to ensure that MCB always finds a valid allocation. In the event

78

that the MCB algorithm cannot find a valid allocation for all of the considered jobs

at any yield value, the lowest priority job (among those considered) is removed from

consideration and MCB is called on the new set of jobs. The use of the priority function

is not mandatory for Greedy but enables us to define two enhanced variants. The GreedyP

algorithm is like Greedy except that if an incoming job cannot be started then some of

the running jobs are paused. To do so, this algorithm goes through the list of currently

running jobs in order of increasing priority and marks them as candidates for pausing

until the incoming job could be started if all these candidates were indeed paused. It then

goes through the list of these marked jobs in decreasing order of priority and determines

for each whether it could instead be left running due to sufficient available memory. After

this step, running jobs that are still marked as candidates for pausing are paused, and the

new job is started. The GreedyPM algorithm further extends the GreedyP algorithm with

the capability of moving rather than pausing running jobs. This is done by going through

the list of jobs to be paused in decreasing order of priority and trying to reschedule them

using the Greedy algorithm.

5.2.4 When to Compute New Task Mappings

So far, we have not stated when our task mapping algorithms should be invoked. The

most obvious choice is to apply them each time a new job is submitted to the system and

each time some resources are freed due to a job completion. The MCB algorithm attempts

a global optimization and, thus, can (theoretically) “reshuffle” the whole mapping each

time it is invoked1. One may thus fear that applying MCB on each submission could

lead to a prohibitive number of preemptions and migrations. By contrast, Greedy has

low overhead and the addition of a new job should not be overly disruptive to currently

1In practice this does not happen because the algorithm is deterministic and always considers the tasks
and the nodes in the same order.

79

running jobs, particularly if they do not share any nodes, but exclusive use of Greedy can

generate allocations that use cluster resources inefficiently. For both these reasons we

experiment with a periodic use of MCB. More specifically, we consider algorithms that:

• upon job submission, either do nothing or apply Greedy, GreedyP, GreedyPM or

MCB;

• upon job completion, either do nothing or apply Greedy or MCB;

• apply or do not apply MCB periodically.

We use a multi-part scheme for naming our algorithms, using ’/’ to separate the parts.

The first part corresponds to the policy used for scheduling jobs upon job submission,

followed by a “*” if the jobs are also scheduled opportunistically upon job completion

(using MCB if MCB was used on job submission, and using Greedy if Greedy, GreedyP,

or GreedyPM was used upon job submission). If the algorithm applies MCB periodically,

the keyword “per” is added as a second part to the name of the algorithms. For example,

the GreedyP*/per algorithm performs a Greedy allocation with preemption upon job

submission, opportunistically tries to start currently paused jobs using the Greedy

algorithm whenever a job completes, and periodically applies the MCB algorithm to

balance the overall workload. We consider all combinations listed in Table 5.1 (the last

algorithm in the table is described in Section 5.2.6).

The MCB algorithm has the opportunity to re-map any running job. This is a strength,

as it enables to attempt a global optimization. This is also a weakness as it can pause

and/or move a job that has just started, which can induce a large stretch on a short job. To

mitigate this behavior, we introduce two parameters that attempt to minimize unfavorable

migrations initiated by MCB. If set, the MFT parameter (respectively, the MVT parameter),

stipulates that jobs whose flow-times (resp., virtual times) are smaller than a given bound

may be paused in order to run higher priority jobs, but, if they continue running, their

current node mapping must be maintained. Jobs whose flow-times (resp., virtual times)

80

Table 5.1. On-line scheduling algorithms
Name Action on submission Action on completion Periodic action
Greedy* Greedy Greedy none
GreedyP* GreedyP Greedy none
GreedyPM* GreedyPM Greedy none
Greedy/per Greedy none MCB
GreedyP/per GreedyP none MCB
GreedyPM/per GreedyPM none MCB
Greedy*/per Greedy Greedy MCB
GreedyP*/per GreedyP Greedy MCB
GreedyPM*/per GreedyPM Greedy MCB
MCB* MCB MCB none
MCB/per MCB none MCB
MCB*/per MCB MCB MCB
/per none none MCB
/stretch-per none none MCB-stretch

are greater than the specified bound may be moved as previously. Migrations initiated

by the GreedyPM algorithm are not affected by these parameters. This algorithm uses

migrations to allow the execution of higher priority jobs. The result of applying these

bounds would be that those jobs which would be migrated would instead be paused in

favor of running lower priority jobs that had previously been paused. The use of the

MFT or MVT parameter is indicated by an additional part in the algorithm name (e.g.,

MCB*/per/MFT=300).

5.2.5 Resource Allocation

Once tasks have been mapped to nodes it is necessary to decide on appropriate CPU

allocations for each job (recall that all tasks in a job are given identical CPU allocations).

All previously described algorithms use the following procedure: First all jobs are

assigned yield values of 1/max(1,Λ), where Λ is the maximum CPU load over all nodes.

This maximizes the minimum yield given the current mapping of tasks to nodes. After

81

this step there may be remaining CPU resources on at least some of the nodes that can be

used for further improvement without changing the mapping of tasks to nodes. We use

two different approaches to exploit remaining resource fractions.

Average Yield Optimization

Once the task mapping is fixed and the maximized minimum yield computed, we can

write a rational linear program to find the resource allocation that maximizes the average

yield under the constraint that no job is given a yield lower than the maximized minimum.

This approach was previously discussed in Section 4.4.7. Algorithms that use this second-

phase optimization procedure have “OPT=AVG” as an additional part of their names.

Max-min Yield Optimization

As an alternative to maximizing the average yield under the given constraints, we also

consider an approach that iteratively maximizes the minimum yield. At each step the

minimum yield is maximized using the procedure described at the beginning of this

section. Those jobs whose yield cannot be further improved because of memory resource

constraints are removed from consideration, and the minimum is further improved

for the remaining jobs. This process continues until there are no more jobs that can

be improved. While this algorithm may not do as good a job of maximizing resource

utilization as average yield optimization, it can be argued that it is more fair. This type

of max-min optimization is commonly used to allocate bandwidth to competing network

flows [199, Chapter 6]. Algorithms that use this second-phase optimization procedure

have “OPT=MIN” as an additional part of their names.

82

5.2.6 Optimizing the Stretch Directly

All algorithms described thus far optimize the minimum yield as a way to optimize the

maximum stretch. We validate this approach by developing and comparing with an

algorithm that attempts to minimize the maximum stretch directly. In lieu of providing

the algorithm with knowledge of job processing times we instead restrict it to the periodic

case so that it can have knowledge of the time between scheduling events. Thus, this al-

gorithm, which we call /stretch-per, should be directly comparable with /per. /stretch-per

uses a multi-capacity or vector bin packing approach called MCB-stretch that is similar

to MCB, but with the following differences: At scheduling event i, since we assume no

knowledge of job processing times, the best estimate of the stretch of job j is the ratio of

its flow time (time since submission) to its virtual time: Ŝj(i) = flowtimej(i)/vtj(i).

Assuming that the job continues running until scheduling event i + 1, then Ŝj(i + 1) =

flowtimej(i + 1)/vtj(i + 1) = (flowtimej(i) + T)/(vtj(i) + αj(i) × T), where T

is the scheduling period and αj(i) is the yield that MCB-stretch assigns to job j between

scheduling events i and i + 1. Similar to the binary search on the yield, here we do a

binary search to minimize Ŝ(i + 1) = maxj Ŝj(i + 1). At each iteration of the binary

search, a target value Ŝ(i + 1) is tested. From this value the algorithm computes the yield

for each job j by solving the above equation for αj(i) (if, for any job, αj(i) > 1, then the

target value Ŝ(i + 1) is infeasible and the iteration fails). At that point, CPU requirements

are defined and the vector-packing algorithm can be applied to try to produce a task-

mapping for the attempted Ŝ(i + 1) value. This is repeated until the lowest feasible such

value is found. Note that since the stretch is an unbounded positive value, the algorithm

actually performs a binary search over the inverse of the stretch, which is between 0 and

1. If the MCB-stretch algorithm cannot find a valid allocation for any value of estimated

stretch, then the job of lowest priority is removed from consideration and the search is

re-initiated for the new set of jobs.

83

Once a mapping of jobs to nodes has been computed each task is initially assigned

a CPU allocation exactly equal to the amount of resources it needs to reach the desired

stretch. For the resource allocation improvement phase we use algorithms similar to

those in Section 5.2.5, except that the first (OPT=AVG) seeks to minimize the average

stretch and the second (OPT=MAX) iteratively minimizes the maximum stretch. They are

analogous to their yield-based counterparts.

5.3 Experimental Methodology

5.3.1 Discrete Event Simulator

We have developed a discrete event simulator that implements our scheduling algorithms

and takes as input a number of nodes and a list of jobs. Each job is described by a

submit time, a required number of tasks, one CPU need and one memory requirement

specification (since all tasks within a job have the same needs and requirements), and a

processing time. Jobs are allocated shares of memory and CPU resources on simulated

compute nodes. As stated previously in Section 3.2.1, the use of VM technology allows

the CPU resources of a (likely multi-core) node to be shared precisely and fluidly as

a single resource [136]. Thus, for each simulated node, the total amount of allocated

CPU resource is simply constrained to be less than or equal to 100%. However, when

simulating a multi-core node, then 100% CPU resource utilization can be reached by a

single task only if that task is CPU-bound and is implemented using multiple threads (or

processes). A CPU-bound sequential task can use at most 100/n% of the node’s CPU

resource, where n is the number of processor cores.

The question of properly accounting for preemption and migration overheads is a

complicated one. For this reason we provide two versions of each simulation experiment:

84

one where the overhead is zero and one where this overhead is 5 minutes of wall clock

time, whatever the job’s characteristics and the number of its tasks being migrated,

which is justifiably high 2. We call this overhead the rescheduling penalty. In the real

world there are facilities available that can allow for the live migration of a running task

between nodes [144], but in order to avoid introducing additional complexity we make

the pessimistic assumption that all migrations are carried out through a pause/resume

mechanism. Experiments on real systems have shown that the use of live migration can

cut the rescheduling penalty to approximately 20 seconds [80].

Note that none of the scheduling algorithms are aware of the rescheduling penalty or

try to schedule around it. Based on preliminary results, we opt for a default period equal

to twice the rescheduling penalty for all periodic algorithm, i.e., 10 minutes. The MFT

and MVT parameters for MCB and MCB-stretch are evaluated using time bounds equal to

one-half penalty and one penalty (i.e., 300s and 600s).

We consider two batch scheduling algorithms: FCFS and EASY. FCFS (First Come

First Serve), often used as a baseline comparator in the literature, holds incoming jobs

in a queue and assigns them to nodes in order as nodes become available. EASY [17],

which is representative of production batch schedulers, is similar to FCFS but enables

backfilling to reduce resource fragmentation. EASY gives the first job in the queue a

reservation for the earliest possible time it would be able to run with FCFS, but other

jobs in the queue are scheduled opportunistically as nodes become available, as long

as they do not interfere with the reservation for the first job. EASY thus improves on

FCFS by allowing small jobs to run while large jobs are waiting for a sufficiently large

number of nodes. A drawback of EASY is that it requires estimations of job processing

2Consider a 128-task job with 1 TB total memory, or 8 GB per task (our simulations are for a 128-node
cluster). Current technology affords aggregate bandwidth to storage area networks up to tens of GB/sec for
reading and writing [200]. Conservatively assuming 10 GB/sec, moving this job between node memory and
secondary storage can be done in under two minutes.

85

times. In all simulations we conservatively assume that EASY has perfect knowledge

of job processing times. While this seems a best-case scenario for EASY, studies have

shown that for some workloads some batch scheduling algorithms can, surprisingly,

produce better schedules when using non-perfectly accurate processing times (e.g.,

using inaccurate user-provided estimates, multiplying the perfectly accurate estimate

by a certain factor). We refer the reader to the discussion in [151] for more details. At any

rate, in those studies the potential advantage of using inaccurate estimates is shown to be

relatively small, while our results show that our approach outperforms EASY by orders

of magnitude. Our conclusions thus still hold when EASY uses non-accurate processing

time estimates.

5.3.2 Workloads

Real-World Workload

We perform experiments using a real-world workload from a well-established on-line

repository [33]. Most publicly available logs provide standard information such as job

arrival times, start time, completion time, requested duration, size in number of nodes,

etc. For our purpose, we need to quantify the fraction of the resource allocated to jobs that

are effectively used. We selected the “cleaned” version of the HPC2N workload [201]

from [33], which is a 182-week trace from a 120-node dual-core cluster running Linux

that has been scrubbed to remove workload flurries and other anomalous data that could

skew the performance comparisons on different scheduling algorithms [202]. A primary

reason for choosing this workload was that it contains almost complete information

regarding memory requirements, while other publicly available workloads contain no

or little such information.

86

The HPC2N workload required some amount of processing for use in our simulation

experiments. First, job per-processor memory requirements were set as the maximum

of either requested or used memory as a fraction of the system memory of 2GB, to a

minimum of 10%. Of the 202,876 jobs in the trace, only 2,142 (∼ 1%) did not give values

for either used or requested memory and so were assigned the lower bound. Second, the

swf file format [33] contains information about the required number of “processors,” but

not the number of tasks, and so this value had to be inferred. For jobs that required an

even number of processors and had a per-processor memory requirement less than 50%

of the available node memory, we assumed that the job used a number of multi-threaded

tasks equal to half the number of processors. In this case, we assume that each task has

a CPU need of 100% (saturating the two cores of a dual-core node) and the memory

requirement was doubled from its initial per-processor value. For jobs requiring an odd

number of processors or more than 50% of the available node memory per processor, we

assumed that the number of tasks was equal to the number of processors and that each

of these tasks had a CPU need of 50% (saturating one core of a dual-core mode). Since

we assume CPU-bound tasks, performance degradation due to CPU resource sharing

will be maximal. Consequently, our assumptions are detrimental to our approach and

should benefit batch scheduling algorithms. We split the HPC2N workload into week-

long segments, resulting in 182 different experimental scenarios

Synthetic Workloads

We also use synthetic workloads based on the model by Lublin et. al. [203], augmented

with additional information as described hereafter. There are a number of reasons for

preferring synthetic workloads to real workloads for this type of relative performance

evaluation: Real workloads are often of poor quality, and often do not contain all of

the information that we require. Further, real traces may be misleading, or lacking in

87

critical information, such as system down times that might affect jobs running on the

system [203]. Also, a real workload trace only provides a single data point, and may

not be generally representative [204]. That is, the idiosyncrasies of a trace from one

site may make it inappropriate for evaluating or predicting performance at another

site [205]. Further, a real workload trace is the product of an existing system that uses

a particular scheduling policy, and so may be biased or affected by that policy, while

synthetic traces can provide a more neutral environment [205]. Finally, real workloads

may contain spurious or anomalous events like user flurries that can confound evaluations

of the performance of scheduling algorithms [202, 206]. In fact, long workload traces

often contain such events, and including them can seriously impact relative performance

evaluation [207].

For the synthetic workloads we arbitrarily assume quad-core nodes, meaning that

a sequential task would use at most 25% of a node’s CPU resource. Due to the lack of

real-world data and models regarding the CPU needs of HPC jobs, we make pessimistic

assumptions similar to those described in the previous section. We assume that the task in

a one-task job is sequential, but that all other tasks are multi-threaded. We assume that all

tasks are CPU-bound: CPU needs of sequential tasks are 25% and those of other tasks are

100%.

The general consensus is that there is ample memory available for allocating multiple

HPC job tasks on the same node [35, 37–39], but no explicit model is available in the

literature. We opt for a simple model suggested by data in Setia et. al. [36]: 55% of the

jobs have tasks with a memory requirement of 10%. The remaining 45% of the jobs

have tasks with memory requirements 10 × x%, where x is an integer value uniformly

distributed over {2,. . . ,10}.

We generated 100 distinct traces of 1,000 jobs using the Lublin model [203] and

annotated them with CPU needs and memory requirements as described. The generated

88

traces assume a 128-node cluster and thus contain jobs with between 1 and 128 tasks.

Generally the time between the submission of the first job and the submission of the

last job is on the order of 4-6 days. Next, in order to provide a way to systematically

study how different algorithms perform on problems with different levels of difficulty, we

multiplied the inter-arrival times of jobs in each generated trace by 9 computed constants

in order to create 9 new traces with identical job mixes but offered load [37], or load,

levels of 0.1 to 0.9 in increments of .1. Thus, from the 100 initial traces we created 900

scaled traces.

5.4 Experimental Results

For a given problem instance, and for each algorithm, we define the degradation from

bound as the ratio between the maximum stretch achieved by the algorithm on the

instance and the theoretical lower bound on the optimal maximum stretch obtained in

Section 5.1.2. A value of x means that the algorithm achieves a maximum stretch equal to

x times the theoretical lower bound, so lower values denote better performance.

Recall that Table 5.1 lists 14 general combinations of mechanisms for mapping tasks

to processors. All these combinations can use either OPT=AVG or OPT=MIN to compute

resource allocations once a mapping has been determined. Furthermore, the last 11

combinations in Table 5.1 use the MCB algorithm and thus can use MFT=300, MFT=600,

MVT=300, MVT=600, or no mechanism to limit task remapping. Therefore, the total

number of potential algorithms is 3 × 2 + 11 × 2 × 5 = 116. However, the full results

(available in the Appendix B in Tables B.1, B.2, and B.3) show that on average OPT=MIN

is never worse and often slightly better than OPT=AVG. Consequently, we present here

results only for algorithms that use OPT=MIN. Furthermore, we found that among the

mechanisms for limiting task remapping, MVT is always better than MFT, and slightly

89

 1

 10

 100

 1000

 10000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
ax

 S
tr

et
ch

 D
eg

.

Load

(a) average degradation from bound, no rescheduling penalty

 1

 10

 100

 1000

 10000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
ax

 S
tr

et
ch

 D
eg

.

Load

(b) average degradation from bound, 5-minute rescheduling penalty

FCFS
EASY

Greedy*
GreedyPM*
Greedy*/per

GreedyPM*/per
GreedyPM*/per/minvt

MCB*/per/minvt
/per/minvt

/stretch-per/minvt

Figure 5.1. Average degradation from bound vs. load for selected algorithms on the
scaled synthetic dataset. Each data point shows average values over 100 instances.

90

better with the larger 600s bound. Accordingly we also exclude algorithms that use MFT,

and algorithms that use MVT with a 300s bound. These exclusions reduce the number of

algorithms under consideration to 3 + 11× 2 = 25.

Figure 5.1 shows plots of average degradation factors vs. load for selected algorithms

when applied to scaled synthetic workloads, using a logarithmic scale on the y-axis, for

both the no migration penalty and 5-minute migration penalty cases. As plotting the data

for all of the 25 remaining algorithms would be impractical, we instead choose to plot

results for a subset of representative algorithms to show how the addition of each of our

policies and mechanisms affects performance in both the no-migration-penalty and 5-

minute migration penalty case. Figure 5.1(a) shows the results for the ideal case in which

there is no rescheduling penalty, and Figure 5.1(b) shows results for the case where there

is a pessimistic 5-minute rescheduling penalty. Algorithm names have been shortened

because of space constraints and the plotted algorithms all use the OPT=MIN second phase

optimization strategy and assume MVT=600 if MVT is specified.

The first observation from these figures is that one can design algorithms that achieve

maximum stretch values several orders of magnitude lower than EASY, even under

pessimistically high rescheduling penalties. Furthermore, the achieved values are, on

average, surprisingly low. Indeed, whatever the system load, our best algorithms are

always within a factor of seven on the average from a theoretical lower bound that

ignores both memory constraints and rescheduling penalties. Furthermore, while the

algorithms are executed in an on-line, non-clairvoyant context, the computation of the

bounds relies on knowledge of both the release dates and processing times of all jobs.

Expectedly, the addition of the 5-minute rescheduling penalty has a large negative impact

on the performance of the algorithm that uses MCB upon job submission and completion

submission (MCB*/per), though it is still about half an order of magnitude better than

the batch scheduling algorithms. This is due to job thrashing induced by the constant re-

91

Table 5.2. Average degradation from bound results for the real-world trace, unscaled
synthetic traces, and scaled synthetic traces for selected algorithms and assuming a 5-
minute rescheduling penalty.

Algorithms Real-world Unscaled syn. Scaled syn.
FCFS 3,578.5 5,457.2 5,869.3
EASY 3,041.9 4,955.4 5,262.0
Greedy*/OPT=MIN 949.8 2,435.0 3,204.3
GreedyP*/OPT=MIN 13.5 37.5 115.7
GreedyPM*/OPT=MIN 13.8 33.8 124.0
Greedy/per/OPT=MIN 28.3 30.1 29.3
GreedyP/per/OPT=MIN 18.5 20.1 17.8
GreedyPM/per/OPT=MIN 18.4 20.2 17.9
Greedy*/per/OPT=MIN 24.3 30.4 29.1
GreedyP*/per/OPT=MIN 17.9 20.3 17.9
GreedyPM*/per/OPT=MIN 17.9 20.3 17.9
GreedyP/per/OPT=MIN/MVT=600 8.9 5.9 7.3
GreedyPM/per/OPT=MIN/MVT=600 8.8 5.9 7.3
GreedyP*/per/OPT=MIN/MVT=600 6.9 4.9 6.1
GreedyPM*/per/OPT=MIN/MVT=600 6.9 4.8 6.1
MCB*/OPT=MIN/MVT=600 12.0 6.9 13.2
MCB/per/OPT=MIN/MVT=600 10.8 8.1 11.0
MCB*/per/OPT=MIN/MVT=600 13.6 7.8 12.2
/per/OPT=MIN/MVT=600 105.0 43.0 40.4
/stretch-per/OPT=MAX/MVT=600 105.0 43.0 40.2

mapping of tasks for running jobs. The overall conclusion from these results is that, to

achieve good performance, all our techniques should be combined: an aggressive greedy

job admission policy, a periodic use of the MCB vector-packing task mapping algorithm,

an opportunistic use of resources freed upon job completion, and a grace period that

prevents migration of jobs that have just begun executing. Hereafter only results including

the 5-minute rescheduling penalty are presented.

To cross-validate this conclusion we now study the performance results for all

experiments using the real-world HPC2N trace, the original unscaled synthetic traces

directly from the Lublin model, and the scaled synthetic traces (i.e., the results presented

92

in Figure 5.1(b)). Table 5.2 presents average degradation from bound values for all

9 greedy combinations with no mechanism for limiting remapping, and results for 4

selected greedy combinations with MVT=600, as explained hereafter. It also presents

results for the 3 MCB combinations, for the /per algorithm, and for the /stretch-per

algorithm. All these are with MVT=600. We leave results without MVT=600 for the

3 MCB combinations out of the table because these algorithms perform very poorly.

Because they apply MCB upon each job arrival, they lead to inordinate amounts of

remapping and thus are more than one order of magnitude further away from the bound

than when MVT=600 is used. For /per and /stretch-per, the addition of MVT=600 has

little effect since the scheduling period is no shorter than 600s. We are left with the 18

algorithms in the table, which we discuss hereafter. Data for all algorithms, including

additional statistical information, such as standard deviations and maximum values are

available in Appendix B in Tables B.1, B.2, and B.3.

The results in Table 5.2 are mostly consistent across our three sets of traces, with a

few exceptions. As in Figure 5.1(b), we see that EASY outperforms FCFS, while our

proposed algorithms outperform EASY by several orders of magnitude, thereby showing

that DFRS is an attractive alternative to batch scheduling.

The table shows results for 4 groups of greedy algorithms. In the first group of 3

are algorithms that do not apply MCB periodically (i.e., those without “per " in their

names). On average, these algorithms lead to results poorer than the 6 algorithms in the

next 2 groups, which do apply MCB periodically, for our synthetic traces. For real-world

traces, we see that they instead lead to results better than that of the other 6 algorithms.

However, examining the comprehensive tables from the appendix shows that they lead

to standard deviation and maximum values that are orders of magnitude larger. Finally,

we see that these algorithms are outperformed by the algorithms in the last set of greedy

algorithms, even for the real-world traces. We conclude that applying MCB periodically

93

is beneficial for greedy algorithms. The results also show that GreedyP is better than

Greedy, demonstrating that the use of preemption is indeed beneficial. However, the

use of GreedyPM does not lead to significant further improvement and can lead to a

slight decrease in performance. It turns out that the jobs migrated in the GreedyPM

approach are often low priority and thus have a high probability of being preempted at

an upcoming scheduling event. Finally, for the first 3 groups of greedy algorithms, we see

that scheduling jobs opportunistically (i.e., as done by algorithms with * in their names)

also seems to have limited impact on the performance.

The last group of 4 greedy algorithms shows results for the GreedyP and GreedyPM

approaches, with or without opportunistic scheduling, but with the MVT=600 feature

to limit task remapping. We see that these algorithms outperform all previously

discussed algorithms. For these algorithms the use of opportunistic scheduling leads

to improvements for all 3 sets of traces. In this case, GreedyP and GreedyPM leads to

similar results and are the best greedy algorithms overall, including in terms of standard

deviation.

The 3 algorithms in the next group all use MCB to assign tasks to nodes rather than

a greedy approach. They all use MVT=600 because without limiting task remapping

they all lead to performance poorer by orders of magnitude due to job thrashing. Overall,

while these algorithms perform very well, they are outperformed by the best greedy

algorithms.

The next algorithm, /per/OPT=MIN/MVT=600, simply applies MCB periodically

without taking action upon job arrival or job completion, and is outperformed by the best

greedy algorithm more than 5-fold. This result confirms the notion that a scheduling

algorithm must react to job submissions. The algorithm in the last row of the table

optimizes the stretch directly. It performs more than one order of magnitude worse

than our best yield-based algorithm. This demonstrates that yield optimization is a

94

good approach and that a better algorithm for minimizing the stretch directly may not

be achievable.

Our overall conclusion from the results in Table 5.2 is again that, to achieve good

performance, all our techniques should be combined: an aggressive greedy job admission

policy, a periodic use of the MCB vector-packing algorithm, an opportunistic use of

resources freed upon job completion, and a grace period that prevents remapping of tasks

that have just begun executing. While our DFRS algorithms are executed in an on-line,

non-clairvoyant context, the computation of the bound on the optimal performance relies

on knowledge of both the release dates and processing times of all jobs. Furthermore, the

bound ignores memory constraints. Nevertheless, in our experiments, our best algorithms

are on average at most a factor of 7 away from this loose bound. We conclude that our

algorithms lead to good performance in an absolute sense.

Our simulations show that the use of preemption and/or migration, at least when used

in conjunction with adequate algorithms, provides benefit in terms of stretch even with

a high rescheduling penalty. One may wonder, however, whether the running time of

these algorithms would not be prohibitive in practice. To investigate this question we

instrumented MCB to record the time required for each scheduling event. We ran the

simulator using the MCB* algorithm on a system with a 3.2GHz Intel Xeon CPU and

4GB RAM for the 100 unscaled traces generated by the Lublin model, which resulted

in a total of 197,808 observations. For 67.25% of these observations MCB computed

allocations for 10 or fewer jobs in less than 0.001 seconds. The remaining observations

were for 11 to 102 jobs. The average compute time was about 0.25 seconds with the

maximum under 4.5 seconds. Since typical job inter-arrival times are orders of magnitude

larger [203], we conclude that our best algorithms can be used in practice.

95

5.5 Conclusion

In this chapter we studied the on-line scenario for Dynamic Fractional Resource Schedul-

ing. We examined its theoretical difficulty in both the clairvoyant and non-clairvoyant

scenarios, devised an algorithm for computing a lower bound on the maximum stretch

in an idealized scenario, proposed several DFRS algorithms and compared them to

standard batch scheduling approaches through simulations using both real-world and

synthetic workloads. Our algorithms were given no knowledge of job run-times, while

batch scheduling algorithms were provided with perfect estimates. We found that several

DFRS algorithms lead to dramatic improvement over batch scheduling in terms of an

established metric of schedule quality, the maximum (bounded) stretch. We found that to

achieve the best performance it is necessary to combine a number of different approaches:

periodic re-allocation of resources by an intelligent vector-packing algorithm, greedy

scheduling with preemption for newly submitted jobs, opportunistic greedy scheduling of

paused jobs when resources become available, and a restriction on initiating migrations

for jobs that have not yet progressed beyond a threshold amount of virtual time. While

our algorithms were executed in an on-line, non-clairvoyant context, we found that,

even when a heavy performance penalty was assumed for initiating job preemption and

migration, the best of them were less than a factor of seven away on the average from a

theoretical bound that assumed knowledge of job run-times times, penalty-free migration,

and infinite system memory.

One issue is that the consumption of network bandwidth (while it should be within the

capacity of modern systems as explained in Section 5.3.1) could potentially be of concern

to some administrators. In the Chapter 6 we explore some of the trade-offs between

bandwidth consumption and performance and evaluate techniques to help reduce that

consumption when necessary.

96

Preliminary results upon which the work in this chapter was based were previously

published in the Proceedings of the 24th IEEE International Parallel and Distributed

Processing Symposium [208]. A new paper has been written based on the results of the

experiments presented in this chapter and will be submitted for publication in the IEEE

Transactions on Parallel and Distributed Systems [209].

97

CHAPTER 6
THE ADAPTATION PROBLEM

In Chapter 5 we approached the on-line resource allocation problem as a sequence

of instances of the off-line problem, which allowed us to apply some of the off-line

algorithms we developed in Chapter 4. Our results indicated that this approach generally

leads to good maximum stretch values–within a factor of about 7 from a loose theoretical

bound on the average, and several orders of magnitude better than FCFS and EASY

batch scheduling. While we showed in Section 5.3.1 that the bandwidth requirements

of our approach should be within the capacity of a modern cluster system, network usage

may still be a concern for some administrators. In this chapter we attempt to address

the problem of bandwidth utilization more directly. More specifically, we make the

following contributions: (i) We evaluate the average bandwidth utilized by our approach

in Chapter 5 when applied to heavy loads (Section 6.1); (ii) We define the problem

for the general case of explicitly bounding the bandwidth used for migration at each

resource allocation event (Section 6.2); (iii) We establish the complexity of the problem

(Section 6.2.1); (iv) We provide a mixed-integer linear program formulation that can be

used to find an optimal solution for any instance of the general problem (Section 6.2.2);

and (v) We study the effect of varying the rescheduling period on both the performance

and bandwidth consumption for our best-performing algorithm from Chapter 5 on real

and synthetic workloads (Section 6.3).

6.1 Bandwidth Consumption for Previous Results

Table 6.1 shows the bandwidth consumption for the algorithms discussed in Table 5.2 in

Section 5.4 (results for all algorithms can be found in Appendix B in Table B.4) using our

synthetic scaled trace data, and only for traces with load levels 7 or higher (i.e., high-

98

Table 6.1. Preemption and migration bandwidth costs for selected algorithms. Average
and maximum values over scaled synthetic traces with load ≥ 0.7.

Algorithm Bandwidth consumption
(GB / sec)

pmtn mig
avg. max avg. max

Greedy*/OPT=MIN 0.00 0.00 0.00 0.00
GreedyP*/OPT=MIN 0.06 0.17 0.00 0.00
GreedyPM*/OPT=MIN 0.03 0.07 0.02 0.05
Greedy/per/OPT=MIN 0.48 1.08 0.21 0.60
GreedyP/per/OPT=MIN 0.50 1.11 0.20 0.60
GreedyPM/per/OPT=MIN 0.49 1.10 0.21 0.60
Greedy*/per/OPT=MIN 0.50 1.29 0.27 0.66
GreedyP*/per/OPT=MIN 0.58 1.37 0.28 0.65
GreedyPM*/per/OPT=MIN 0.56 1.37 0.29 0.66
GreedyP/per/OPT=MIN/MVT=600 0.49 1.11 0.18 0.57
GreedyPM/per/OPT=MIN/MVT=600 0.49 1.10 0.18 0.57
GreedyP*/per/OPT=MIN/MVT=600 0.56 1.36 0.24 0.63
GreedyPM*/per/OPT=MIN/MVT=600 0.54 1.34 0.26 0.62
MCB*/OPT=MIN/MVT=600 0.13 0.37 0.53 1.51
MCB/per/OPT=MIN/MVT=600 0.53 1.12 0.43 1.12
MCB*/per/OPT=MIN/MVT=600 0.54 1.11 0.56 1.53
/per/OPT=MIN/MVT=600 0.49 1.08 0.19 0.58
/stretch-per/OPT=MAX/MVT=600 0.28 0.64 0.37 0.78

load traces). This data was obtained from the same set of simulation experiments as

discussed in Sections 5.3 and 5.4. The table shows average and maximum values due

to preemptions and migrations computed over all traces in GB/sec, assuming that nodes

have 8GB of RAM. Information about the number of preemptions and migrations per

hour and per job can be found in Appendix B in Tables B.5 and B.6 respectively.

The main observation from the results in Table 6.1 is that the total bandwidth

consumption is, as expected, within the capabilities of modern high-end clus-

ter systems for all algorithms, even under high load conditions. For instance, the

GreedyPM*/per/OPT=MIN/MVT=600 algorithm, identified as best in Section 5.4,

99

has a total average bandwidth requirement of 0.80 GB/sec. Even accounting for

maximum bandwidth requirements, i.e., for the trace that causes the most traffic due to

preemptions and migrations, this algorithm still uses under 2 GB/sec. Such numbers

represent only a fraction of the bandwidth capacity of current interconnect technology

for cluster platforms [200], though the value is still high enough to be a concern for some

administrators.

6.2 Problem Definition

For the sake of completeness, we provide a definition of the adaptation version of

the DFRS scheduling problem. This version extends the off-line version described in

Section 4.1, and models the need to move from an existing resource allocation to a new

allocation that will provide a better value for the minimum yield. Since we assume that

job resource needs have changed, the existing allocation may be poor, or even invalid.

We again assume serial jobs and thus equate jobs with their tasks. An instance of this

problem thus consists of a set of nodes, N , a set of jobs J and a mapping f from J to

N representing the current job placements. Each job j also has an associated value cj

that represents the cost of migrating the job to a new node (new jobs can be represented

with an arbitrary mapping and zero migration cost). These values might represent bytes

transferred, elapsed milliseconds, or any other cost associated with migration. The goal of

the adaptation problem is to find a value α ∈ [0, 1] and a mapping f ′ from J to H that is

valid as defined previously, and with the additional constraint that the total cost to migrate

jobs does not exceed a static bound C. That is:

f ′(j)6=f(j)∑
j∈J

cj ≤ C

100

6.2.1 Computational Complexity

As before, the decision problem is to determine whether or not a solution exists for a

particular α. Given a solution it can be checked in polynomial time, and so the problem

is in NP. The off-line problem trivially reduces to the adaptation problem, and so the

adaptation problem is also NP-complete in the strong sense.

6.2.2 MILP Formulation

We provide a MILP formulation of the adaptation problem. It is essentially the same

as that of the off-line problem given in Section 4.1.2, with a few additions. The values

{ējn}j∈J,n∈N are constants representing the current allocation of jobs to nodes. A given

ējn is 1 if and only of job j is located on node n, and is 0 otherwise. For any job j there

is at most one value n for which ējn is allowed to be nonzero. The other constants and

variables are the same as given in the formulation of the off-line problem:

Y ∈ Q+ (6.1)

∀j, n ejn ∈ {0, 1} αjn ∈ Q (6.2)

∀j
∑
n

ejn = 1 (6.3)

∀j, n 0 ≤ αjn ≤ ejn (6.4)

∀n, d
∑
j

rjd(αjn(1− δjd) + ejnδjd) ≤ 1 (6.5)

∀j
∑
n

αjn ≥ α̂j + Y (1− α̂j) (6.6)

J∑
j=1

N∑
n=1

(1− ējn)ejncj ≤ C (6.7)

101

The only change from the linear program given in Section 4.1.2 is the addition

of Constraint 6.7 to bound migration. The objective is, again, to maximize Y , which

represents the minimum (scaled) yield.

6.3 Reducing Bandwidth Consumption

As the formal version of the adaptation problem is NP-complete, we focus on pragmatic

solutions to the problem. In particular, we hope to show that we can reduce the average

bandwidth consumption of the on-line algorithms developed in Chapter 5 without making

huge sacrifices in performance. Returning to the results summarized in Table 6.1, we

can see that the more aggressive algorithms that use MCB to remap tasks upon job

submission and completion (when a * is present) have bandwidth requirements that are

higher than their counterparts that use Greedy. The purely greedy algorithms that do not

use MCB at all have very low bandwidth requirements, while the purely periodic use

of MCB has bandwidth requirements of around 0.68 GB/sec on average. This suggests

that most of the bandwidth consumption for our algorithms is caused by the use of

MCB. Thus, an obvious way to try to reduce bandwidth consumption is to reduce the

use of MCB. However, as we discovered in Chapter 5, some use of MCB is necessary

in order to achieve good performance. We propose to vary the rescheduling period of

our best algorithm from Chapter 5 (which uses GreedyPM upon job submission and

completion) and study how this affects both the maximum stretch achieved and the

bandwidth consumed.

Figure 6.1 shows the results of varying the rescheduling period from 600 to 12,000

seconds, in increments of 300 seconds, for the GreedyPM*/per/OPT=MIN/MVT=600

algorithm. This means that the period varies from 2x to 20x the rescheduling penalty.

We do not use a period equal to the penalty cost as for some traces it can result in a

102

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 2000 4000 6000 8000 10000

M
ax

 S
tr

et
ch

 D
eg

.

Period (seconds)

Real-world trace
Unscaled synthetic traces

Scaled synthetic traces
Scaled synthetic traces with load >= 0.7

(a) Average maximum stretch degradation from bound vs. period

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 2000 4000 6000 8000 10000

A
v

er
ag

e
B

an
d

w
id

th
 (

G
B

/s
)

Period (seconds)

Real-world trace
Unscaled synthetic traces

Scaled synthetic traces
Scaled synthetic traces with load >= 0.7

(b) Average bandwidth consumption vs. period

Figure 6.1. Effects of varying the rescheduling period on maximum stretch degradation
from bound and bandwidth consumption, for our three sets of traces and the set of scaled
synthetic traces with loads ≥ 7.

103

situation where no job ever makes any progress because of thrashing. The graphs contain

lines representing average values over all three sets of traces, as well as the subset of the

scaled synthetic traces with “heavy” load values greater-than-or-equal-to 7. Figure 6.1(a)

shows the effect of varying the period on the maximum stretch degradation from bound,

while Figure 6.1(b) shows the effect of varying the period on the amount of bandwidth

consumed by job preemptions and migrations initiated by the algorithm.

The main observation from Figure 6.1(a) is that for all of the sets of traces under

consideration the average maximum stretch degradation increases slowly as the period

increases. The largest increase in degradation from bound is seen for the scaled synthetic

traces, for which an increase of the period by a factor 20 leads to an increase of the

maximum stretch degradation by less than a factor 3. Results for the unscaled synthetic

traces and the real-world trace show much smaller increases (by less than a factor 1.5 and

a factor 2, respectively). Recall from Section 5.4 that EASY leads to maximum stretch

degradation orders of magnitude larger than our algorithms. We conclude that increasing

the period significantly, i.e., up to 20x the rescheduling penalty, still allows our algorithms

to widely outperform EASY.

By contrast, we see by looking at Figure 6.1(b) that as the period increases the

bandwidth consumed by preemptions and migrations rapidly declines. For all of the

sets of traces under consideration the largest improvements can be seen by increasing

the period from 600 to 2,000 seconds, with additional significant improvement gained by

moving from 2,000 to 4,000 seconds. After this the rate of improvement starts to level off.

This is good news for our approach as it suggests that by increasing the rescheduling

period from 600 seconds to something slightly over an hour, we can keep our average

maximum degradation from best values close to the theoretical bound, while reducing

bandwidth costs significantly.

104

6.4 Conclusion

In this chapter we studied the problem of adapting an existing allocation of jobs to

nodes to a new one with greater performance, while limiting the costs associated with

job migration. We gave a theoretical formulation of the problem assuming a constant

bound on migration, proved its theoretical complexity, and provided a mixed-integer

linear program that can be used to find an optimal solution of any instance of the problem.

We also studied the costs of migration associated with our previously established results

from Chapter 5, showed that they are within the capabilities of modern systems, and

demonstrated that they can be reduced further without significantly impacting the

performance of our algorithms by the simple expedient of increasing the size of the

rescheduling period.

Preliminary results upon which the work in this chapter was based were previously

published in the Proceedings of the 24th IEEE International Parallel and Distributed

Processing Symposium [208]. A new paper has been written based on the results of the

experiments presented in this chapter and will be submitted for publication in the IEEE

Transactions on Parallel and Distributed Systems [209].

105

CHAPTER 7
FEASIBILITY STUDY OF DFRS IN PRACTICE

In this chapter we detail the first steps we have taken in applying our knowledge of

the abstract DFRS scheduling problem toward creating a workable and useful real-world

system. There are two critical points that we propose to address: The first is to identify

a suitable platform for development. The second is to determine how to quickly and

accurately assess task resource requirements and needs. Our specific contributions in

this chapter are: (i) We identify our chosen development platform and detail how we

implement our DFRS based scheduling algorithms (Section 7.1); (ii) We propose a basic

approach for CPU resource needs discovery and allocation (Section 7.2); and (iii) We

evaluate our proposed approach through experiments conducted on a real testbed system

using synthetic traces and simulated applications (Sections 7.3 and 7.4).

7.1 Platform Description

We have chosen to base our implementation on the Usher system [147] from the

Computer Science and Engineering department at the University of California, San

Diego (UCSD). Usher can interface with individual instances of the Xen virtual machine

hypervisor to configure and deploy virtual machines or collections of virtual machines

across a cluster with low overhead, and has been successfully used for this purpose at

UCSD for some time. Additionally, it is highly scriptable, giving plugin modules written

in the Python programming language the ability to place, schedule, and migrate virtual

machines between hosts at will.

Usher consists of two parts: the local node manager (LNM), that runs on each

compute node, and a central controller that sends commands to the LNMs. The LNM

software runs inside a special administrative domain, effectively a separate virtual

106

machine with its own allocated resources, called dom0 in the Xen documentation, and

communicates directly with Xen using the provided API. The LNM software is designed

to perform local management tasks such as monitoring VM resource usage (e.g., CPU,

network usage) and executing the commands sent by central controller (e.g., initializing,

migrating, and powering off VM instances). The central controller can be accessed

directly by client programs such as Ush or Plusher [210], and also provides an interface

for plugins written in Python [211].

Plugins are exposed to a set of events, the most important of which for our purposes

are:

start – A VM instance has been started.

power off – A VM instance has been turned off.

periodic – A timer that fires at a user defined interval.

migrate – A VM instance has been migrated.

These events and many more may be used to trigger the execution of specialized

code [212]. Plugins have access to information about the VM instances and LNMs via

the central controller. Plugins also have the ability to issue commands through the central

controller to affect individual VM instances. The Usher plugin interface thus provides an

ideal development platform for implementing our DFRS algorithms.

7.2 Resource Allocation and Discovery

For this portion of our research we choose to focus on discovering only the CPU needs

of running VM instances. While the moment to moment CPU usage of a VM instance

can be quite erratic, it is nonetheless true that some jobs can require more use of the CPU

107

than others over a given period of time. The actual allocation of the CPU to running VM

instances is carried out by Xen.

7.2.1 VM Caps and Weights in Xen

The Xen hypervisor provides two different methods for managing the proportion of

available CPU cycles allocated to competing VM instances on the same node: caps and

weights. A cap represents an absolute bound on the percentage of available CPU cycles

used by a VM instance: the total of all the caps of the VM instances running on a node

can add up to at most 100%, and if a VM instance uses less than its cap the excess will

not be available to its competitors. For this reason, when caps are used Xen is said to

be in non-work-conserving mode. As an alternative to caps, Xen also provides a way to

specify weights for VM instances. In the event that all of the VM instances on a node

are CPU-bound, each VM instance will receive a proportion of the available CPU cycles

equal to its weight divided by the total of the weights of all the VM instances on the node.

If a VM instance requires less than its proportional share, then the remaining CPU cycles

will be apportioned to the other VM instances in proportion to their relative weights, and

so on until there are no extra cycles remaining. When Xen is using weights and not caps it

is said to be in work-conserving mode [136].

We use weights rather than caps in order to keep Xen in work-conserving mode, and

thus avoid forcing the CPU to sit idle while there is work to be done. Though there is no

explicit requirement to do so, we keep the impact of different weights easy to understand

by requiring that the weights of running VM instances on a node sum up to 100. As an

example, if one VM instance is given a weight of 70 while another is given a weight of

30, then the first should be assigned 70% of the available CPU cycles while the second

gets 30% of the available cycles. If the first VM instance requires less than 70% of the

available cycles then the remainder could potentially be used by the second VM instance.

108

Using weights instead of absolute caps on CPU utilization thus helps the system to be

more responsive to actual needs when they are out of sync with estimates. A version of

the system that used caps instead of weights was also implemented, but was found to

perform poorly because of these types of inefficiencies.

7.2.2 Algorithms

Our basic approach is to periodically assign a majority of the available CPU cycles to

one of the VM instances running on a node and then use the average utilization over

this time as an estimate of the CPU need for that VM instance. These estimates can then

be used to make resource allocation decisions. We study two different versions of the

same basic algorithm: DYNAMIC, short for “dynamic CPU need discovery”, and DY-

NAMIC+MIGRATION. These algorithms are identical except that DYNAMIC+MIGRATION

can initiate live migrations [144] to improve the load balance.

We have implemented our algorithms in Python as a plugin to Usher. The algorithms

proceed periodically in three phases: a discovery phase, an allocation phase, and an

execution phase. The purpose of the discovery phase is to accurately discover the needs of

one of the running VM instances on each node. The purpose of the allocation phase is to

allocate resources and (in the case of DYNAMIC+MIGRATION) allow time for migration.

The purpose of the execution phase is to allow the VM instances to run as efficiently as

possible without being disturbed by discovery or migration (though it should be noted

that all of the VM instances will be executed for some portion of the time during each of

the previous two phases). In our experiments we arbitrarily set all three phases to last 60

seconds, for an overall period of 3 minutes.

At the beginning of the discovery phase the system first identifies the least-recently-

discovered VM instance on each node by comparing the recorded times of their most-

recent discovery events. In the unlikely event of a tie (which is possible if migration is

109

enabled) then the VM instance with the lower current need estimate is selected. Further

ties are broken arbitrarily. The selected VM instance is assigned a weight of 100 minus

the number of other VM instances present on the node, while the remaining VM instances

are assigned weights of 1. At the end of this phase the CPU need estimate for the selected

VM instance is set to the average CPU utilization over the phase and the time of the

discovery event is recorded.

At the beginning of the allocation phase new resource allocations are computed by

first maximizing the minimum yield for VM instances at their current locations. Any

remaining weight (out of the 100 points under consideration) is allocated in such a way as

to maximize the average yield (given the lower bound on the minimum) as discussed

in Section 4.4.7. For DYNAMIC+MIGRATION only, all of the current need estimates

are also given to the MCB algorithm (discussed in Chapter 5), which then generates

a new task mapping, and then resource allocations are also computed for this new

mapping. Migrations are initiated only if they are expected to result in an improvement

of the minimum yield greater than a percentage threshold (10% in our experiments)

over not migrating. All migrations should be completed by the end of this phase. If no

migrations are initiated, either because they are disabled in the case of DYNAMIC or

because improvement from migration does not meet the threshold requirement in the

case of DYNAMIC+MIGRATION, the remainder of this phase operates as an additional

execution phase, as detailed below.

During the execution phase all VM instances are run with their assigned weights, but

these weights may be adjusted due to activity. If a task uses less CPU than the current

estimate then the estimate is adjusted downward and the “slack”, or leftover CPU, is

distributed to the remaining VM instances equally, and this slack, if used, can result in

raising the need estimates of the VM instances to which it is assigned. If a VM instance’s

need estimate is adjusted downward, then a discovery event is recorded for it, meaning

110

that it is not likely to be selected during the next discovery phase. A discovery event is

not recorded for a VM instance if its estimate is adjusted upward, as the actual need might

still be even higher.

7.3 Experimental Methodology

Our testbed cluster consists of 4 compute nodes and 1 controller node all with 2.8GHz

Intel Xeon CPUs and 1GB of ram located at UCSD, but dedicated to our exclusive use.

The compute nodes run instances of Xen and the LNM software, and are used to execute

the VM instances. The controller node runs an instance of the Usher central controller, as

well as other required network services (most notably, NFS and Bind).

We generate a synthetic trace for each running VM instance. Each trace consists of

a sequence of time and CPU need values. To simulate a Poisson process the time value

is initialized to 0 and incremented at each step by a number of seconds chosen from

an exponential random distribution, with λ, the mean value, equal to 20 minutes in our

experiments. CPU needs are selected from a uniform random distribution scaled to return

values between 0 and 1. The total amount of time covered by each trace is 12 hours.

These traces are run through a simulated application that performs a tight computational

loop, with CPU utilization set to the specified values through the use of cpulimit [213].

While these traces are not necessarily representative of production workloads, they allow

us to examine the system under a range of conditions and thus ensure that resource need

discovery and resource allocation are functioning properly.

It should be noted that while our algorithms only attempt to discover CPU need

values, active VM instances still have memory requirements. Each VM instance is

allocated 96MB of memory, while 192MB of memory is allocated to dom0 on each node.

Also, during live migration a VM instance will need to be allocated memory on both

111

the source and destination system, and so we conservatively wish to ensure that half of

the system memory remains free at all times. For this reason we assign all running VM

instances a memory requirement of 0.25, meaning that at most 4 can be assigned to any

node.

We consider two different scenarios. In the first, “balanced”, scenario three normal

VM instances with randomly generated workloads are assigned to each node. In the

second, “unbalanced”, scenario we add two “hogs”, VM instances configured to run at

100% CPU utilization, each to a different initial node.

7.4 Experimental Results

We evaluate our algorithms against standard Xen with each VM instance assigned the

same weight. It should be noted that since the standard Xen algorithm will never discover

that the total needs of VM instances running on a node exceed 100%, it will also never

attempt to migrate VM instances between nodes.

We compare two different metrics of performance: average minimum yield and the

minimum average yield. The average minimum yield is the average second-by-second

minimum yield value achieved over all VM instances. That is, we take the minimum

yield over all VM instances at each second, and then average the values over seconds. It

represents the average worst-case performance and is most relevant in situations such as

service hosting where all of the VM instances need to maintain a certain minimum level

of responsiveness. The minimum average yield is the minimum of the average second-

by-second yields of all the VM instances. That is, for each VM instance we compute the

average yield achieved over the seconds of the experiment, and then select the minimum

of these values. It represents the worst average-case performance, is analogous to the

maximum stretch, and is most relevant in situations such as high-performance computing

112

Table 7.1. Aggregate performance metrics for balanced workloads
Approach Average Minimum Yield Minimum Average Yield
Xen 0.346 / 0.352 0.536 / 0.601
DYNAMIC 0.270 / 0.246 0.619 / 0.609
DYNAMIC+MIGRATION 0.216 / 0.209 0.609 / 0.567

where all of the VM instances need to perform a certain amount of work over the trace

runtime.

Table 7.1 shows our two aggregate metrics for the native Xen CPU scheduler and each

of our algorithms when applied to the balanced workload over two separate runs of the

experiment, with the input trace values for each run generated by the same methodology

but using a different initial random seed value. The values before the slash are for the first

experimental run, while those after the slash are for the second experimental run.

Expectedly, the method of CPU need discovery employed by the DYNAMIC and

DYNAMIC+MIGRATION, which sets the weights of at least some of the VM instances to

very low values 1/3 of the time, has a significant negative impact on the average minimum

yield metric. We see that adding migration, which can increase the load on resources as

VM instances may temporarily exist on multiple nodes, has additional, but lesser, negative

impact on this metric.

When we instead consider the minimum average yield, we see that our algorithms

seem to have some positive impact by this metric. In particular, the DYNAMIC algorithm

performs the best over both runs of the experiment. For the balanced case, migration

seems to have a negative impact by this metric as well, as DYNAMIC+MIGRATION does

worse than DYNAMIC (though still better than Xen) for the first experiment, and performs

worst out of the three algorithms for the second.

Table 7.2 shows the same two aggregate metrics for Xen, DYNAMIC, and DY-

NAMIC+MIGRATION, this time for unbalanced workloads that include two hogs, each

113

Table 7.2. Aggregate performance metrics for unbalanced workloads
Approach Average Minimum Yield Minimum Average Yield
Xen 0.238 / 0.237 0.257 / 0.259
DYNAMIC 0.124 / 0.123 0.362 / 0.348
DYNAMIC+MIGRATION 0.133 / 0.113 0.425 / 0.401

on a different node. We again consider two separate runs of the experiment with traces

generated by distinct random seed values.

The first observation is that the addition of the two hogs has an adverse impact on

the performance all algorithms by both metrics. We can see that Xen again performs best

by the average minimum yield metric, and that DYNAMIC+MIGRATION is worse than

DYNAMIC. The minimum average yield, however, tells a different story. For both runs of

the experiment, by this metric DYNAMIC+MIGRATION performs significantly better than

DYNAMIC, which in turn outperforms Xen by a large margin. This suggests that in some

situations, particularly those with severe and/or unbalanced resource overloads, it may

be worthwhile to make temporary sacrifices in performance to more accurately estimate

needs and make better resource allocation decisions. It also suggests that the costs of

migration can be overcome by the benefit from intelligent load balancing.

7.5 Conclusion

In this chapter we described the steps taken so far toward implementing a system that

can make use of our DFRS algorithms. We identified a platform for development,

proposed algorithms for allocating resources based on the on-line discovery of fluid

resource needs, and evaluated them through experiments conducted using real machines

and simulated applications. We considered two different algorithms that make use of

the proposed technique for resource need estimation: the first simply uses estimates to

allocate resources in a way that should maximize the minimum yield, while the second

114

can also migrate tasks to achieve better load balancing. For the experiments, we generated

synthetic traces based on a simple model and used these traces to control the CPU

utilization levels of a tight computational loop that ran in each VM instance. We found

the proposed approaches have a negative impact on the average moment-by-moment

worst-case performance, but that they can also result in better overall performance for

the worst performing job, particularly when workloads are unbalanced. The algorithm

that makes use of migration has a greater cost in terms of moment-by-moment worst-case

performance than the one that does not, but it can also provide a greater benefit to the

overall performance of the worst performing job.

115

CHAPTER 8
CONCLUSION

In this dissertation we proposed a novel approach, called Dynamic Fractional

Resource Scheduling (DFRS), to sharing homogeneous cluster computing platforms

among competing jobs. The key features of DFRS are that it leverages existing virtual

machine technology in order to share resources more efficiently and it defines and

optimizes a user-centric metric that captures notions of both performance and fairness.

In Chapter 2 we described existing strategies for allocating cluster resources to

competing jobs. We first explored the literature on scheduling for HPC workloads,

including well established techniques such as Batch and Gang scheduling. We also

discussed the literature on co-scheduling, and concluded that efficient algorithms

for resource allocation in a co-scheduling environment are likely to lead to the best

performance. Finally, we explored the literature on scheduling for service hosting

environments and discussed the need to formulate the resource allocation problem as

an optimization problem with a well-defined objective function.

In Chapter 3 we explained the basic concepts essential to understanding DFRS. First,

we gave a new model of resource sharing based on modern virtual machine technology.

Next, we developed an objective measure of instantaneous schedule quality, the minimum

yield, that accounts for both performance and fairness. Finally, we developed three

different versions of the DFRS scheduling problem: an off-line problem targeting service

hosting environments with static workloads, an on-line problem targeting dynamic

workloads as found in high-performance computing environments, and an adaptation

problem that bounds migration costs for workloads with evolving requirements.

In Chapter 4 we studied the off-line problem, which focuses on resource allocation

in shared hosting platforms for static workloads with nodes that provide multiple types

116

of resources. We gave a formulation of the problem that supports a mix of QoS and best-

effort scenarios, and that attempts to maximize a generic objective function, the minimum

yield. We explained how an (in practice reasonably tight) upper bound on the optimal

minimum yield can be computed, and how the average yield can be maximized as a

way to increase cluster utilization. Finally, we proposed and evaluated several classes

of algorithms over a wide range of simulation scenarios.

In Chapter 5 we studied the on-line problem, which focuses on job-scheduling

strategies for high-performance and scientific computing environments. We examined

its theoretical difficulty in both the clairvoyant and non-clairvoyant scenarios, devised

an algorithm for computing a theoretical maximum stretch lower bound assuming an

idealized scenario, proposed several DFRS algorithms and compared them to standard

batch scheduling approaches using both real-world and synthetic workloads. In our

simulations, our algorithms were given no knowledge of job processing times, while

batch scheduling algorithms were provided with perfect estimates.

In Chapter 6 we studied the problem of adapting an existing allocation of jobs to

nodes to a new one with greater performance, while limiting the costs associated with

job migration. We gave a theoretical formulation of the problem assuming a constant

bound on migration, proved its theoretical complexity, and provided a mixed-integer

linear program that can be used to find an optimal solution of any instance of the problem.

We also studied the costs of migration associated with our previously established results

from Chapter 5 and explored one simple way to further reduce those costs.

In Chapter 7 we looked at a prototype implementation of a system based on our ideas.

We described the development platform and how the system was implemented, proposed

algorithms for resource allocation based on the on-line estimation of CPU needs, and

performed a simple validation study to see how well these algorithms are likely to work in

practice.

117

8.1 Contribution of this Dissertation

Cluster scheduling is an important and active area of research for a number of reasons.

Today, clusters represent a majority of the machines on the Top500 list of supercomput-

ers [3], and they are a ubiquitous presence in the research departments of industry and

academia. They are also widely deployed in service hosting environments. However,

since clusters are in fact only collections of fairly modest machines, scheduling jobs

properly to meet the needs of large numbers of competing users is a non-trivial issue,

and current approaches and techniques are not satisfactory for a variety of reasons (see

Chapter 2).

In this work we make two major theoretical and algorithmic contributions to the

cluster scheduling literature:

1. We propose a new metric, the minimum yield, that is correlated to established

metrics of fairness and performance and formulate the scheduling problem as the

constrained optimization of this metric.

2. We give algorithms that achieve results reasonably close to theoretical bounds for

both the off-line and on-line cases, even under conservative assumptions. For the

latter case our algorithms widely outperform state-of-the-art approaches while

incurring reasonable extra network bandwidth consumption due to task migrations.

Though the majority of our results are obtained through the use of simulation

experiments, we have ample reason to believe that our conclusions will carry through to

real world systems. For the on-line case, we use a combination of representative synthetic

traces based on an accepted model and real-world traces harvested from a production

system. This is consistent with standard procedure in HPC scheduling research. We also

implement a proof-of-concept prototype system that demonstrates some of our ideas and

118

perform a simple evaluation study to show that it works reasonably well in practice for

small problem instances.

8.2 Highlights of Scientific Findings

In this section we provide greater detail on some of our more significant scientific

findings:

• Performing a binary search over the yield and solving the resource allocation

problem for a fixed yield using a vector packing algorithm is the best approach

for solving the off-line version of our problem, and vector packing algorithms that

reason on the sum of the resource needs of the jobs are the most effective;

• Among those vector packing algorithms we considered the one that makes use of

the Choose Pack vector packing algorithm from [166] runs in only a few seconds

and is the most effective;

• Algorithms for the off-line case that achieve high minimum yield values can be

adapted for use in the on-line case, where they achieve low maximum stretch

values;

• To achieve the best performance in the on-line case it is necessary to combine

a number of different approaches, more specifically: periodic re-allocation of

resources by an intelligent vector-packing algorithm, greedy scheduling with

preemption for newly submitted jobs, opportunistic greedy scheduling of paused

jobs when resources become available, and a restriction on initiating migrations for

jobs that have not yet progressed beyond a threshold amount of virtual time;

• For the on-line problem, the already low bandwidth consumption due to task

migrations can be effectively reduced without significantly impacting performance

119

by selecting an appropriate rescheduling period from a wide range of periods that

work well in practice.

8.3 Future Work

There are a number of different ways in which this research can be extended. Some of

these important research directions are detailed here.

8.3.1 Algorithmic and Theoretical Extensions

Our current models and algorithms only consider homogeneous clusters, but in the

real world it may be necessary to work with heterogeneous platforms for a variety

of reasons. For example, when funding is secured to upgrade a cluster, advances in

technology and market forces may have made higher-performance nodes with a different

CPU architecture more cost-effective than nodes identical to those already present. A

number of popular technological approaches, such as Grid or Cloud computing, allow for

federating resources, from individual computers up to full clusters, that belong to different

administrative domains. Thus, there is an obvious need for models and algorithms that

consider scenarios with varying levels of heterogeneity.

Perhaps the most ambitious and widely applicable improvement would be to allow

for arbitrary multi-objective optimization targets. While it is true that maximizing

the minimum yield tends to improve both fairness and job performance, users and

administrators may have other concerns that require consideration, or may want to

balance performance against fairness in a way different from what can be achieved by

focusing strictly on the yield. Allowing for arbitrary multi-objective functions would

enable the system to take into account concerns such as user or job priority, energy

consumption [214–216] (or other costs), or even a more formalized notion of job fairness

120

as defined in [217]. These concerns could be balanced against each other non-linearly

as well (e.g., the ratio of the cube of average response-time against the square of energy

consumption). The system could even allow for arbitrary per-job user-specified measures

of utility as described in [15].

Considering only the on-line scenario, there are several refinements we could make

to our basic strategy of maximizing the objective function at different points in time. For

example, our scheduling algorithms could be improved with a strategy for reducing the

yield of long running jobs as a way to improve fairness and further decrease maximum

stretch. This strategy, inspired by thread scheduling in operating systems kernels, would

be particularly useful for mitigating the negative impact of long running jobs on shorter

ones. Another possibility would be to compute deadlines for rescheduling based on when

jobs achieve certain stretch values, rather than performing purely periodic rescheduling.

Another potential way to improve our approach to the on-line problem would be

through the use of predictive models. While it is true that in the on-line scenario the

system does not generally have any knowledge of future jobs–their eventual submission

time, resource requirements, or runtime requirements–it is nonetheless also true that

many, if not most, systems experience regular and predictable patterns of usage. If a

statistical model can be made of these usage patterns then that model can be used to make

more intelligent decisions about resource allocation strategies. For example, if a large

job submitted during the daytime uses more than a threshold amount of run-time, then it

may make sense to classify that job as “long-running” and then suspend it or run it with

reduced resources until evening, when the overall machine usage is lower and users are

less likely to submit short-running high-priority jobs. This is somewhat similar to the

approach described by Barsanti and Sodan in [218].

121

8.3.2 Development and Evaluation of a Practical System

The system described in Chapter 7 was developed primarily to test intelligent strategies

for research probing, and will require much additional work in order to make it fully

practical for use by administrators and end-users. In particular, it requires a front-end

interface for job submission and additional sensors allow for the extension of probing to

additional resource dimensions.

We believe that the proposed approach for CPU needs discovery is a reasonable

candidate for future, more complicated, studies targeting the use of DFRS on more

realistic workloads. Examples of established synthetic service-hosting workloads that

also provide simulated applications include RUBBoS [219], RUBiS [220], and TPC-

W [221]. For high-performance computing applications the most well-established model

for generating synthetic workloads is the one by Lublin et. al. [203] that we used in

Chapter 5, however there is no well-established model for simulating resource usage

by applications. One possible approach would be to run simulated applications based on

portions of the NAS Parallel Benchmark suite [222].

We know that the proposed algorithm achieves better knowledge of resource needs

than the naïve approach (which is, indeed, incapable of discovering true needs when a

resource is overloaded), but has a high cost in terms of mis-allocated resources. There

may be better general-case algorithms, and it is very likely that in the real-world some

programs and/or resources may supply “hints” that can indicate likely future resource

needs. By coupling such hints with predictive statistical models it may be possible, for

some resources and some workloads, to achieve highly accurate predictions at little or no

cost.

122

APPENDIX A
LIST OF PUBLICATIONS

– M. Stillwell, D. Schanzenbach, F. Vivien, and H. Casanova, “Resource allocation

using virtual clusters,” in Proceedings of the 9th IEEE International Symposium

on Cluster Computing and the Grid (CCGrid’09), May 2009, pp. 260–267, 21%

acceptance rate.

– M. Stillwell, “Dynamic fractional resource scheduling for cluster platforms,” in

Proceedings of the 24th IEEE International Parallel and Distributed Processing

Symposium PhD Forum (IPDPS’10 Workshops), Apr. 2010, research poster

presentation.

– M. Stillwell, F. Vivien, and H. Casanova, “Dynamic fractional resource scheduling

for HPC workloads,” in Proceedings of the 24th IEEE International Parallel and

Distributed Processing Symposium (IPDPS’10), Apr. 2010, 24% acceptance rate.

– M. Stillwell, D. Schanzenbach, F. Vivien, and H. Casanova, “Resource allocation

algorithms for virtualized service hosting platforms,” Journal of Parallel and

Distributed Computing (JPDC), vol. 70, no. 9, pp. 962–974, 2010.

– M. Stillwell, F. Vivien, and H. Casanova, “Fine-grain dynamic resource allocation vs.

batch scheduling,” IEEE Transactions on Parallel and Distributed Systems, submitted

for publication.

123

APPENDIX B
ADDITIONAL TABLES

Table B.1. Average degradation from bound results for the real-world HPC2N workload.
All results are for a 5-minute rescheduling penalty.

Algorithm Degradation from bound
avg. std. max

FCFS 3,578.5 3,727.8 21,718.4
EASY 3,041.9 3,438.0 21,317.4
Greedy*/OPT=AVG 1,012.2 2,229.5 19,799.1
Greedy*/OPT=MIN 949.8 1,828.5 11,778.4
Greedy/per/OPT=AVG 28.9 27.0 212.9
Greedy/per/OPT=AVG/MFT=300 23.3 26.9 182.3
Greedy/per/OPT=AVG/MFT=600 23.5 27.6 212.2
Greedy/per/OPT=AVG/MVT=300 23.9 26.9 182.3
Greedy/per/OPT=AVG/MVT=600 23.8 27.8 182.3
Greedy/per/OPT=MIN 28.3 24.9 163.7
Greedy/per/OPT=MIN/MFT=300 23.4 26.0 152.0
Greedy/per/OPT=MIN/MFT=600 23.1 24.8 152.5
Greedy/per/OPT=MIN/MVT=300 23.5 26.9 182.8
Greedy/per/OPT=MIN/MVT=600 23.0 25.9 152.0
Greedy*/per/OPT=AVG 24.5 15.9 81.6
Greedy*/per/OPT=AVG/MFT=300 19.8 17.8 85.6
Greedy*/per/OPT=AVG/MFT=600 19.3 17.6 85.6
Greedy*/per/OPT=AVG/MVT=300 19.2 17.5 85.6
Greedy*/per/OPT=AVG/MVT=600 18.9 17.3 74.9
Greedy*/per/OPT=MIN 24.3 15.9 81.6
Greedy*/per/OPT=MIN/MFT=300 19.5 17.7 85.6
Greedy*/per/OPT=MIN/MFT=600 19.1 17.5 85.6
Greedy*/per/OPT=MIN/MVT=300 18.9 17.2 85.6
Greedy*/per/OPT=MIN/MVT=600 19.0 17.4 66.1
GreedyP*/OPT=AVG 20.4 116.7 1,254.2
GreedyP*/OPT=MIN 13.5 68.0 819.2
GreedyP/per/OPT=AVG 18.4 18.6 152.4
GreedyP/per/OPT=AVG/MFT=300 9.1 18.8 152.4
GreedyP/per/OPT=AVG/MFT=600 9.0 18.7 152.4
GreedyP/per/OPT=AVG/MVT=300 9.0 18.8 152.4
GreedyP/per/OPT=AVG/MVT=600 8.9 18.9 152.4
GreedyP/per/OPT=MIN 18.5 18.6 152.4

124

Table B.1. (Continued) Average degradation from bound results for the real-world
HPC2N workload. All results are for a 5-minute rescheduling penalty.

Algorithm Degradation from bound
avg. std. max

GreedyP/per/OPT=MIN/MFT=300 9.1 18.8 152.4
GreedyP/per/OPT=MIN/MFT=600 9.0 18.9 152.4
GreedyP/per/OPT=MIN/MVT=300 9.0 18.9 152.4
GreedyP/per/OPT=MIN/MVT=600 8.9 18.9 152.4
GreedyP*/per/OPT=AVG 17.9 19.7 213.5
GreedyP*/per/OPT=AVG/MFT=300 8.2 19.4 213.5
GreedyP*/per/OPT=AVG/MFT=600 7.7 18.5 198.8
GreedyP*/per/OPT=AVG/MVT=300 7.0 14.0 149.3
GreedyP*/per/OPT=AVG/MVT=600 6.9 14.0 149.3
GreedyP*/per/OPT=MIN 17.9 19.6 213.5
GreedyP*/per/OPT=MIN/MFT=300 7.9 19.0 213.5
GreedyP*/per/OPT=MIN/MFT=600 7.5 18.0 198.8
GreedyP*/per/OPT=MIN/MVT=300 6.9 14.0 149.3
GreedyP*/per/OPT=MIN/MVT=600 6.9 14.2 149.3
GreedyPM*/OPT=AVG 14.1 72.7 880.1
GreedyPM*/OPT=MIN 13.8 68.2 819.2
GreedyPM/per/OPT=AVG 18.5 19.2 158.7
GreedyPM/per/OPT=AVG/MFT=300 9.1 19.4 158.7
GreedyPM/per/OPT=AVG/MFT=600 9.0 19.3 158.7
GreedyPM/per/OPT=AVG/MVT=300 9.1 19.4 158.7
GreedyPM/per/OPT=AVG/MVT=600 8.9 19.5 158.7
GreedyPM/per/OPT=MIN 18.4 18.8 158.7
GreedyPM/per/OPT=MIN/MFT=300 9.2 19.2 158.7
GreedyPM/per/OPT=MIN/MFT=600 9.1 19.3 158.7
GreedyPM/per/OPT=MIN/MVT=300 8.9 18.8 158.7
GreedyPM/per/OPT=MIN/MVT=600 8.8 18.9 158.7
GreedyPM*/per/OPT=AVG 17.8 19.3 198.6
GreedyPM*/per/OPT=AVG/MFT=300 8.2 19.1 198.6
GreedyPM*/per/OPT=AVG/MFT=600 7.8 19.0 198.8
GreedyPM*/per/OPT=AVG/MVT=300 7.0 14.1 149.6
GreedyPM*/per/OPT=AVG/MVT=600 6.9 14.2 149.6
GreedyPM*/per/OPT=MIN 17.9 19.3 198.6
GreedyPM*/per/OPT=MIN/MFT=300 8.1 19.2 198.6
GreedyPM*/per/OPT=MIN/MFT=600 7.9 19.1 198.8
GreedyPM*/per/OPT=MIN/MVT=300 6.9 14.3 149.6
GreedyPM*/per/OPT=MIN/MVT=600 6.9 14.4 149.6
MCB*/OPT=AVG 346.3 1,223.1 13,399.7
MCB*/OPT=AVG/MFT=300 44.7 144.2 1,082.8

125

Table B.1. (Continued) Average degradation from bound results for the real-world
HPC2N workload. All results are for a 5-minute rescheduling penalty.

Algorithm Degradation from bound
avg. std. max

MCB*/OPT=AVG/MFT=600 20.6 63.9 672.0
MCB*/OPT=AVG/MVT=300 14.1 33.2 370.0
MCB*/OPT=AVG/MVT=600 12.1 32.8 370.0
MCB*/OPT=MIN 345.6 1,241.5 13,668.8
MCB*/OPT=MIN/MFT=300 44.7 138.4 1,126.3
MCB*/OPT=MIN/MFT=600 19.1 59.2 672.0
MCB*/OPT=MIN/MVT=300 14.0 33.2 370.0
MCB*/OPT=MIN/MVT=600 12.0 32.8 370.0
MCB/per/OPT=AVG 171.4 702.4 8,383.0
MCB/per/OPT=AVG/MFT=300 15.0 33.5 279.3
MCB/per/OPT=AVG/MFT=600 12.1 26.9 292.4
MCB/per/OPT=AVG/MVT=300 11.5 25.3 287.6
MCB/per/OPT=AVG/MVT=600 10.7 25.2 287.6
MCB/per/OPT=MIN 169.1 691.4 8,362.3
MCB/per/OPT=MIN/MFT=300 15.1 34.5 309.3
MCB/per/OPT=MIN/MFT=600 12.1 26.9 292.4
MCB/per/OPT=MIN/MVT=300 11.5 25.3 287.6
MCB/per/OPT=MIN/MVT=600 10.8 25.3 287.6
MCB*/per/OPT=AVG 394.5 1,562.9 17,862.0
MCB*/per/OPT=AVG/MFT=300 56.1 197.4 1,849.6
MCB*/per/OPT=AVG/MFT=600 23.6 71.3 799.3
MCB*/per/OPT=AVG/MVT=300 15.5 30.6 318.9
MCB*/per/OPT=AVG/MVT=600 13.7 30.3 318.9
MCB*/per/OPT=MIN 389.1 1,522.1 17,313.6
MCB*/per/OPT=MIN/MFT=300 56.8 198.7 1,738.4
MCB*/per/OPT=MIN/MFT=600 25.1 81.4 799.3
MCB*/per/OPT=MIN/MVT=300 15.4 30.6 318.9
MCB*/per/OPT=MIN/MVT=600 13.6 30.2 318.9
/per/OPT=AVG 105.0 445.6 5,011.9
/per/OPT=AVG/MFT=300 105.0 445.6 5,011.9
/per/OPT=AVG/MFT=600 105.0 445.6 5,011.9
/per/OPT=AVG/MVT=300 105.0 445.6 5,011.9
/per/OPT=AVG/MVT=600 105.0 445.6 5,011.9
/per/OPT=MIN 105.0 445.6 5,011.9
/per/OPT=MIN/MFT=300 105.0 445.6 5,011.9
/per/OPT=MIN/MFT=600 105.0 445.6 5,011.9
/per/OPT=MIN/MVT=300 105.0 445.6 5,011.9
/per/OPT=MIN/MVT=600 105.0 445.6 5,011.9

126

Table B.1. (Continued) Average degradation from bound results for the real-world
HPC2N workload. All results are for a 5-minute rescheduling penalty.

Algorithm Degradation from bound
avg. std. max

/stretch-per/OPT=AVG 105.0 445.6 5,011.9
/stretch-per/OPT=AVG/MFT=300 105.0 445.6 5,011.9
/stretch-per/OPT=AVG/MFT=600 105.0 445.6 5,011.9
/stretch-per/OPT=AVG/MVT=300 105.0 445.6 5,011.9
/stretch-per/OPT=AVG/MVT=600 105.0 445.6 5,011.9
/stretch-per/OPT=MAX 105.0 445.6 5,011.9
/stretch-per/OPT=MAX/MFT=300 105.0 445.6 5,011.9
/stretch-per/OPT=MAX/MFT=600 105.0 445.6 5,011.9
/stretch-per/OPT=MAX/MVT=300 105.0 445.6 5,011.9
/stretch-per/OPT=MAX/MVT=600 105.0 445.6 5,011.9

127

Table B.2. Average degradation from bound results for the unscaled synthetic traces. All
results are for a 5-minute rescheduling penalty.

Algorithm Degradation from bound
avg. std. max

FCFS 5,457.2 2,958.5 15,102.7
EASY 4,955.4 2,730.6 14,036.8
Greedy*/OPT=AVG 2,527.1 2,472.3 12,487.5
Greedy*/OPT=MIN 2,435.0 2,285.6 11,229.9
Greedy/per/OPT=AVG 30.0 10.2 58.1
Greedy/per/OPT=AVG/MFT=300 26.5 14.4 58.1
Greedy/per/OPT=AVG/MFT=600 25.6 14.2 57.8
Greedy/per/OPT=AVG/MVT=300 25.7 14.5 57.8
Greedy/per/OPT=AVG/MVT=600 25.5 14.2 57.8
Greedy/per/OPT=MIN 30.1 10.2 58.1
Greedy/per/OPT=MIN/MFT=300 26.0 14.3 58.1
Greedy/per/OPT=MIN/MFT=600 25.9 14.5 58.0
Greedy/per/OPT=MIN/MVT=300 25.9 14.5 57.9
Greedy/per/OPT=MIN/MVT=600 25.9 14.2 58.0
Greedy*/per/OPT=AVG 30.5 9.8 65.7
Greedy*/per/OPT=AVG/MFT=300 25.6 14.4 58.7
Greedy*/per/OPT=AVG/MFT=600 25.0 14.3 57.5
Greedy*/per/OPT=AVG/MVT=300 25.3 14.4 57.5
Greedy*/per/OPT=AVG/MVT=600 24.7 14.1 54.1
Greedy*/per/OPT=MIN 30.4 9.7 65.7
Greedy*/per/OPT=MIN/MFT=300 25.1 14.3 57.5
Greedy*/per/OPT=MIN/MFT=600 24.9 14.3 57.5
Greedy*/per/OPT=MIN/MVT=300 24.9 14.2 54.1
Greedy*/per/OPT=MIN/MVT=600 24.6 14.3 54.1
GreedyP*/OPT=AVG 32.7 146.9 1,230.9
GreedyP*/OPT=MIN 37.5 156.0 1,204.9
GreedyP/per/OPT=AVG 20.2 7.2 38.1
GreedyP/per/OPT=AVG/MFT=300 6.3 4.3 38.1
GreedyP/per/OPT=AVG/MFT=600 6.1 4.4 38.1
GreedyP/per/OPT=AVG/MVT=300 6.0 3.9 27.5
GreedyP/per/OPT=AVG/MVT=600 6.0 4.5 38.1
GreedyP/per/OPT=MIN 20.1 7.3 38.1
GreedyP/per/OPT=MIN/MFT=300 6.1 3.8 27.5
GreedyP/per/OPT=MIN/MFT=600 6.1 4.5 38.1
GreedyP/per/OPT=MIN/MVT=300 5.9 3.8 27.5
GreedyP/per/OPT=MIN/MVT=600 5.9 4.5 38.1
GreedyP*/per/OPT=AVG 20.4 6.8 32.0
GreedyP*/per/OPT=AVG/MFT=300 5.5 2.8 18.0

128

Table B.2. (Continued) Average degradation from bound results for the unscaled synthetic
traces. All results are for a 5-minute rescheduling penalty.

Algorithm Degradation from bound
avg. std. max

GreedyP*/per/OPT=AVG/MFT=600 5.1 2.8 18.0
GreedyP*/per/OPT=AVG/MVT=300 4.9 2.4 13.6
GreedyP*/per/OPT=AVG/MVT=600 4.8 2.4 13.6
GreedyP*/per/OPT=MIN 20.3 6.8 32.0
GreedyP*/per/OPT=MIN/MFT=300 5.2 2.4 13.7
GreedyP*/per/OPT=MIN/MFT=600 5.0 2.7 18.0
GreedyP*/per/OPT=MIN/MVT=300 4.9 2.7 18.0
GreedyP*/per/OPT=MIN/MVT=600 4.9 2.9 19.2
GreedyPM*/OPT=AVG 28.2 104.4 676.2
GreedyPM*/OPT=MIN 33.8 154.0 1,321.7
GreedyPM/per/OPT=AVG 20.2 7.2 38.1
GreedyPM/per/OPT=AVG/MFT=300 6.3 3.7 27.5
GreedyPM/per/OPT=AVG/MFT=600 6.1 4.4 38.1
GreedyPM/per/OPT=AVG/MVT=300 6.2 4.5 38.1
GreedyPM/per/OPT=AVG/MVT=600 5.9 4.4 38.1
GreedyPM/per/OPT=MIN 20.2 7.3 38.1
GreedyPM/per/OPT=MIN/MFT=300 6.1 3.6 27.5
GreedyPM/per/OPT=MIN/MFT=600 6.0 4.4 38.1
GreedyPM/per/OPT=MIN/MVT=300 6.0 3.9 27.5
GreedyPM/per/OPT=MIN/MVT=600 5.9 4.5 38.1
GreedyPM*/per/OPT=AVG 20.4 6.8 32.0
GreedyPM*/per/OPT=AVG/MFT=300 5.5 2.6 13.7
GreedyPM*/per/OPT=AVG/MFT=600 5.0 2.5 13.7
GreedyPM*/per/OPT=AVG/MVT=300 4.9 2.5 13.8
GreedyPM*/per/OPT=AVG/MVT=600 4.8 2.4 13.6
GreedyPM*/per/OPT=MIN 20.3 6.9 32.0
GreedyPM*/per/OPT=MIN/MFT=300 5.3 2.7 18.0
GreedyPM*/per/OPT=MIN/MFT=600 4.9 2.5 13.7
GreedyPM*/per/OPT=MIN/MVT=300 4.9 2.7 18.0
GreedyPM*/per/OPT=MIN/MVT=600 4.8 2.4 13.6
MCB*/OPT=AVG 245.1 130.3 634.2
MCB*/OPT=AVG/MFT=300 18.0 23.2 206.3
MCB*/OPT=AVG/MFT=600 9.8 6.4 43.6
MCB*/OPT=AVG/MVT=300 8.6 5.6 43.9
MCB*/OPT=AVG/MVT=600 7.7 6.9 44.8
MCB*/OPT=MIN 233.2 117.1 634.2
MCB*/OPT=MIN/MFT=300 16.6 22.8 206.3
MCB*/OPT=MIN/MFT=600 9.9 8.1 51.3

129

Table B.2. (Continued) Average degradation from bound results for the unscaled synthetic
traces. All results are for a 5-minute rescheduling penalty.

Algorithm Degradation from bound
avg. std. max

MCB*/OPT=MIN/MVT=300 9.2 8.0 65.3
MCB*/OPT=MIN/MVT=600 6.9 5.4 44.4
MCB/per/OPT=AVG 134.7 57.1 324.1
MCB/per/OPT=AVG/MFT=300 15.2 18.7 173.0
MCB/per/OPT=AVG/MFT=600 10.2 8.1 65.7
MCB/per/OPT=AVG/MVT=300 9.2 6.8 51.3
MCB/per/OPT=AVG/MVT=600 8.2 7.0 53.3
MCB/per/OPT=MIN 133.7 57.5 323.7
MCB/per/OPT=MIN/MFT=300 14.5 18.6 173.0
MCB/per/OPT=MIN/MFT=600 10.0 8.1 65.7
MCB/per/OPT=MIN/MVT=300 9.0 6.7 51.3
MCB/per/OPT=MIN/MVT=600 8.1 6.6 53.3
MCB*/per/OPT=AVG 252.1 126.3 634.2
MCB*/per/OPT=AVG/MFT=300 19.5 35.4 349.2
MCB*/per/OPT=AVG/MFT=600 10.7 5.6 37.1
MCB*/per/OPT=AVG/MVT=300 8.8 3.5 19.0
MCB*/per/OPT=AVG/MVT=600 7.8 3.8 21.4
MCB*/per/OPT=MIN 250.6 125.0 634.2
MCB*/per/OPT=MIN/MFT=300 19.0 35.3 349.2
MCB*/per/OPT=MIN/MFT=600 10.6 5.7 37.1
MCB*/per/OPT=MIN/MVT=300 8.9 3.5 19.0
MCB*/per/OPT=MIN/MVT=600 7.8 3.9 21.9
/per/OPT=AVG 43.1 19.7 134.7
/per/OPT=AVG/MFT=300 43.0 19.7 134.7
/per/OPT=AVG/MFT=600 43.0 19.7 134.7
/per/OPT=AVG/MVT=300 43.0 19.8 134.7
/per/OPT=AVG/MVT=600 43.1 19.7 134.7
/per/OPT=MIN 43.0 19.8 134.7
/per/OPT=MIN/MFT=300 43.0 19.8 134.7
/per/OPT=MIN/MFT=600 43.0 19.8 134.7
/per/OPT=MIN/MVT=300 43.0 19.8 134.7
/per/OPT=MIN/MVT=600 43.0 19.7 134.7
/stretch-per/OPT=AVG 43.1 19.5 134.7
/stretch-per/OPT=AVG/MFT=300 43.1 19.5 134.7
/stretch-per/OPT=AVG/MFT=600 43.1 19.5 134.7
/stretch-per/OPT=AVG/MVT=300 43.1 19.5 134.7
/stretch-per/OPT=AVG/MVT=600 43.0 19.6 134.7
/stretch-per/OPT=MAX 43.0 19.6 134.7

130

Table B.2. (Continued) Average degradation from bound results for the unscaled synthetic
traces. All results are for a 5-minute rescheduling penalty.

Algorithm Degradation from bound
avg. std. max

/stretch-per/OPT=MAX/MFT=300 43.0 19.6 134.7
/stretch-per/OPT=MAX/MFT=600 43.0 19.6 134.7
/stretch-per/OPT=MAX/MVT=300 43.0 19.6 134.7
/stretch-per/OPT=MAX/MVT=600 43.0 19.6 134.7

131

Table B.3. Average degradation from bound results for the scaled synthetic traces. All
results are for a 5-minute rescheduling penalty.

Algorithm Degradation from bound
avg. std. max

FCFS 5,869.3 2,789.1 17,403.3
EASY 5,262.0 2,588.9 14,534.1
Greedy*/OPT=AVG 3,326.7 2,561.2 18,310.2
Greedy*/OPT=MIN 3,204.3 2,517.5 19,129.2
Greedy/per/OPT=AVG 29.2 14.3 153.2
Greedy/per/OPT=AVG/MFT=300 27.4 15.5 153.2
Greedy/per/OPT=AVG/MFT=600 27.3 15.5 152.6
Greedy/per/OPT=AVG/MVT=300 27.5 15.8 153.2
Greedy/per/OPT=AVG/MVT=600 27.4 15.9 153.0
Greedy/per/OPT=MIN 29.3 14.3 153.2
Greedy/per/OPT=MIN/MFT=300 27.4 15.7 153.2
Greedy/per/OPT=MIN/MFT=600 27.4 15.9 152.6
Greedy/per/OPT=MIN/MVT=300 27.6 15.9 153.4
Greedy/per/OPT=MIN/MVT=600 27.0 15.5 152.8
Greedy*/per/OPT=AVG 29.2 11.9 101.4
Greedy*/per/OPT=AVG/MFT=300 26.7 13.6 87.1
Greedy*/per/OPT=AVG/MFT=600 25.5 13.2 95.2
Greedy*/per/OPT=AVG/MVT=300 25.6 13.0 81.0
Greedy*/per/OPT=AVG/MVT=600 25.4 13.1 95.2
Greedy*/per/OPT=MIN 29.1 12.3 101.4
Greedy*/per/OPT=MIN/MFT=300 26.4 13.2 87.1
Greedy*/per/OPT=MIN/MFT=600 25.5 13.3 103.9
Greedy*/per/OPT=MIN/MVT=300 25.4 13.0 81.0
Greedy*/per/OPT=MIN/MVT=600 25.1 13.0 95.2
GreedyP*/OPT=AVG 114.3 617.3 9,490.0
GreedyP*/OPT=MIN 115.7 644.0 10,354.2
GreedyP/per/OPT=AVG 18.0 9.7 84.6
GreedyP/per/OPT=AVG/MFT=300 7.7 7.9 84.6
GreedyP/per/OPT=AVG/MFT=600 7.5 7.8 84.6
GreedyP/per/OPT=AVG/MVT=300 7.4 7.8 84.6
GreedyP/per/OPT=AVG/MVT=600 7.3 8.4 96.8
GreedyP/per/OPT=MIN 17.8 9.6 84.6
GreedyP/per/OPT=MIN/MFT=300 7.6 7.9 84.6
GreedyP/per/OPT=MIN/MFT=600 7.3 7.6 84.6
GreedyP/per/OPT=MIN/MVT=300 7.3 7.7 84.6
GreedyP/per/OPT=MIN/MVT=600 7.3 8.5 96.8
GreedyP*/per/OPT=AVG 18.1 8.6 89.9
GreedyP*/per/OPT=AVG/MFT=300 7.1 5.6 90.2

132

Table B.3. (Continued) Average degradation from bound results for the scaled synthetic
traces. All results are for a 5-minute rescheduling penalty.

Algorithm Degradation from bound
avg. std. max

GreedyP*/per/OPT=AVG/MFT=600 6.7 6.3 103.5
GreedyP*/per/OPT=AVG/MVT=300 6.5 6.7 103.5
GreedyP*/per/OPT=AVG/MVT=600 6.3 6.3 103.5
GreedyP*/per/OPT=MIN 17.9 8.6 89.9
GreedyP*/per/OPT=MIN/MFT=300 6.8 6.4 103.5
GreedyP*/per/OPT=MIN/MFT=600 6.3 5.4 90.2
GreedyP*/per/OPT=MIN/MVT=300 6.1 5.4 90.2
GreedyP*/per/OPT=MIN/MVT=600 6.1 6.3 103.5
GreedyPM*/OPT=AVG 124.9 658.4 9,404.5
GreedyPM*/OPT=MIN 124.0 673.5 9,598.8
GreedyPM/per/OPT=AVG 18.1 9.9 93.3
GreedyPM/per/OPT=AVG/MFT=300 7.8 7.5 84.6
GreedyPM/per/OPT=AVG/MFT=600 7.5 7.5 84.6
GreedyPM/per/OPT=AVG/MVT=300 7.4 7.5 84.6
GreedyPM/per/OPT=AVG/MVT=600 7.3 8.0 96.8
GreedyPM/per/OPT=MIN 17.9 9.8 93.0
GreedyPM/per/OPT=MIN/MFT=300 7.6 7.4 84.6
GreedyPM/per/OPT=MIN/MFT=600 7.4 7.5 84.6
GreedyPM/per/OPT=MIN/MVT=300 7.3 7.6 84.6
GreedyPM/per/OPT=MIN/MVT=600 7.3 8.1 96.8
GreedyPM*/per/OPT=AVG 18.2 8.7 89.9
GreedyPM*/per/OPT=AVG/MFT=300 7.1 5.2 80.1
GreedyPM*/per/OPT=AVG/MFT=600 6.8 6.4 103.5
GreedyPM*/per/OPT=AVG/MVT=300 6.4 5.6 90.2
GreedyPM*/per/OPT=AVG/MVT=600 6.5 6.6 103.5
GreedyPM*/per/OPT=MIN 17.9 8.6 89.9
GreedyPM*/per/OPT=MIN/MFT=300 6.9 6.5 103.5
GreedyPM*/per/OPT=MIN/MFT=600 6.4 6.3 103.5
GreedyPM*/per/OPT=MIN/MVT=300 6.3 5.6 90.2
GreedyPM*/per/OPT=MIN/MVT=600 6.1 5.4 90.2
MCB*/OPT=AVG 750.1 1,100.8 6,274.4
MCB*/OPT=AVG/MFT=300 121.9 351.2 3,609.6
MCB*/OPT=AVG/MFT=600 33.2 95.9 1,509.2
MCB*/OPT=AVG/MVT=300 15.3 20.9 270.9
MCB*/OPT=AVG/MVT=600 14.5 40.9 1,068.1
MCB*/OPT=MIN 742.4 1,103.0 6,130.4
MCB*/OPT=MIN/MFT=300 117.8 358.4 3,680.3
MCB*/OPT=MIN/MFT=600 31.7 78.0 1,216.7

133

Table B.3. (Continued) Average degradation from bound results for the scaled synthetic
traces. All results are for a 5-minute rescheduling penalty.

Algorithm Degradation from bound
avg. std. max

MCB*/OPT=MIN/MVT=300 15.7 22.5 270.9
MCB*/OPT=MIN/MVT=600 13.2 21.6 270.9
MCB/per/OPT=AVG 155.8 122.8 913.3
MCB/per/OPT=AVG/MFT=300 23.5 26.0 231.5
MCB/per/OPT=AVG/MFT=600 15.8 19.2 231.4
MCB/per/OPT=AVG/MVT=300 12.1 12.3 127.5
MCB/per/OPT=AVG/MVT=600 11.1 12.6 127.5
MCB/per/OPT=MIN 153.0 118.1 909.5
MCB/per/OPT=MIN/MFT=300 22.1 24.0 231.5
MCB/per/OPT=MIN/MFT=600 15.2 18.9 231.4
MCB/per/OPT=MIN/MVT=300 12.3 14.2 223.0
MCB/per/OPT=MIN/MVT=600 11.0 12.6 127.5
MCB*/per/OPT=AVG 959.5 1,469.0 8,299.4
MCB*/per/OPT=AVG/MFT=300 168.2 516.8 5,469.8
MCB*/per/OPT=AVG/MFT=600 40.3 155.5 2,941.5
MCB*/per/OPT=AVG/MVT=300 14.2 15.7 195.7
MCB*/per/OPT=AVG/MVT=600 12.0 14.5 195.7
MCB*/per/OPT=MIN 956.8 1,486.7 8,398.3
MCB*/per/OPT=MIN/MFT=300 161.4 481.8 4,590.5
MCB*/per/OPT=MIN/MFT=600 37.9 126.9 2,400.6
MCB*/per/OPT=MIN/MVT=300 14.4 17.4 222.2
MCB*/per/OPT=MIN/MVT=600 12.2 15.3 195.7
/per/OPT=AVG 40.4 25.1 238.3
/per/OPT=AVG/MFT=300 40.4 25.0 238.3
/per/OPT=AVG/MFT=600 40.4 25.1 238.3
/per/OPT=AVG/MVT=300 40.4 25.0 238.3
/per/OPT=AVG/MVT=600 40.4 25.0 238.3
/per/OPT=MIN 40.4 25.1 238.3
/per/OPT=MIN/MFT=300 40.4 25.1 238.3
/per/OPT=MIN/MFT=600 40.4 25.1 238.3
/per/OPT=MIN/MVT=300 40.4 25.0 238.3
/per/OPT=MIN/MVT=600 40.4 25.0 238.3
/stretch-per/OPT=AVG 40.2 24.8 236.5
/stretch-per/OPT=AVG/MFT=300 40.2 24.8 236.5
/stretch-per/OPT=AVG/MFT=600 40.2 24.8 236.5
/stretch-per/OPT=AVG/MVT=300 40.2 24.8 236.5
/stretch-per/OPT=AVG/MVT=600 40.2 24.8 236.5
/stretch-per/OPT=MAX 40.2 24.8 236.9

134

Table B.3. (Continued) Average degradation from bound results for the scaled synthetic
traces. All results are for a 5-minute rescheduling penalty.

Algorithm Degradation from bound
avg. std. max

/stretch-per/OPT=MAX/MFT=300 40.2 24.8 236.9
/stretch-per/OPT=MAX/MFT=600 40.2 24.8 236.9
/stretch-per/OPT=MAX/MVT=300 40.2 24.8 236.9
/stretch-per/OPT=MAX/MVT=600 40.2 24.8 236.9

135

Table B.4. Preemption and migration bandwidth consumption for DFRS algorithms.
Average and maximum values over scaled synthetic traces with load ≥ 0.7.

Algorithm Bandwidth consumption
(GB / sec)

pmtn mig
avg. max avg. max

Greedy*/OPT=AVG 0.00 0.00 0.00 0.00
Greedy*/OPT=MIN 0.00 0.00 0.00 0.00
Greedy/per/OPT=AVG 0.44 1.02 0.21 0.63
Greedy/per/OPT=AVG/MFT=300 0.44 1.04 0.20 0.62
Greedy/per/OPT=AVG/MFT=600 0.44 1.03 0.20 0.62
Greedy/per/OPT=AVG/MVT=300 0.44 1.03 0.20 0.63
Greedy/per/OPT=AVG/MVT=600 0.44 1.04 0.19 0.60
Greedy/per/OPT=MIN 0.48 1.08 0.21 0.60
Greedy/per/OPT=MIN/MFT=300 0.47 1.08 0.20 0.59
Greedy/per/OPT=MIN/MFT=600 0.47 1.08 0.19 0.58
Greedy/per/OPT=MIN/MVT=300 0.47 1.06 0.19 0.57
Greedy/per/OPT=MIN/MVT=600 0.47 1.07 0.18 0.58
Greedy*/per/OPT=AVG 0.45 1.28 0.28 0.69
Greedy*/per/OPT=AVG/MFT=300 0.45 1.27 0.27 0.66
Greedy*/per/OPT=AVG/MFT=600 0.44 1.26 0.26 0.67
Greedy*/per/OPT=AVG/MVT=300 0.44 1.26 0.26 0.65
Greedy*/per/OPT=AVG/MVT=600 0.44 1.26 0.25 0.65
Greedy*/per/OPT=MIN 0.50 1.29 0.27 0.66
Greedy*/per/OPT=MIN/MFT=300 0.50 1.29 0.26 0.65
Greedy*/per/OPT=MIN/MFT=600 0.50 1.29 0.26 0.63
Greedy*/per/OPT=MIN/MVT=300 0.50 1.27 0.26 0.63
Greedy*/per/OPT=MIN/MVT=600 0.49 1.27 0.24 0.62
GreedyP*/OPT=AVG 0.06 0.17 0.00 0.00
GreedyP*/OPT=MIN 0.06 0.17 0.00 0.00
GreedyP/per/OPT=AVG 0.46 1.05 0.20 0.64
GreedyP/per/OPT=AVG/MFT=300 0.46 1.07 0.19 0.61
GreedyP/per/OPT=AVG/MFT=600 0.46 1.06 0.19 0.60
GreedyP/per/OPT=AVG/MVT=300 0.46 1.07 0.19 0.62
GreedyP/per/OPT=AVG/MVT=600 0.46 1.05 0.18 0.60
GreedyP/per/OPT=MIN 0.50 1.11 0.20 0.60
GreedyP/per/OPT=MIN/MFT=300 0.49 1.11 0.19 0.58
GreedyP/per/OPT=MIN/MFT=600 0.49 1.10 0.18 0.58
GreedyP/per/OPT=MIN/MVT=300 0.49 1.10 0.18 0.57
GreedyP/per/OPT=MIN/MVT=600 0.49 1.11 0.18 0.57
GreedyP*/per/OPT=AVG 0.53 1.36 0.28 0.68
GreedyP*/per/OPT=AVG/MFT=300 0.52 1.35 0.27 0.69

136

Table B.4. (Continued) Preemption and migration bandwidth consumption for DFRS
algorithms. Average and maximum values over scaled synthetic traces with load ≥ 0.7.

Algorithm Bandwidth consumption
(GB / sec)

pmtn mig
avg. max avg. max

GreedyP*/per/OPT=AVG/MFT=600 0.52 1.36 0.26 0.69
GreedyP*/per/OPT=AVG/MVT=300 0.52 1.35 0.26 0.66
GreedyP*/per/OPT=AVG/MVT=600 0.51 1.35 0.25 0.65
GreedyP*/per/OPT=MIN 0.58 1.37 0.28 0.65
GreedyP*/per/OPT=MIN/MFT=300 0.57 1.38 0.26 0.65
GreedyP*/per/OPT=MIN/MFT=600 0.57 1.38 0.26 0.65
GreedyP*/per/OPT=MIN/MVT=300 0.57 1.37 0.25 0.62
GreedyP*/per/OPT=MIN/MVT=600 0.56 1.36 0.24 0.63
GreedyPM*/OPT=AVG 0.03 0.08 0.02 0.05
GreedyPM*/OPT=MIN 0.03 0.07 0.02 0.05
GreedyPM/per/OPT=AVG 0.46 1.05 0.21 0.64
GreedyPM/per/OPT=AVG/MFT=300 0.46 1.05 0.20 0.64
GreedyPM/per/OPT=AVG/MFT=600 0.45 1.04 0.20 0.61
GreedyPM/per/OPT=AVG/MVT=300 0.45 1.06 0.20 0.62
GreedyPM/per/OPT=AVG/MVT=600 0.45 1.06 0.19 0.60
GreedyPM/per/OPT=MIN 0.49 1.10 0.21 0.60
GreedyPM/per/OPT=MIN/MFT=300 0.49 1.10 0.20 0.61
GreedyPM/per/OPT=MIN/MFT=600 0.49 1.10 0.19 0.58
GreedyPM/per/OPT=MIN/MVT=300 0.49 1.10 0.19 0.57
GreedyPM/per/OPT=MIN/MVT=600 0.49 1.10 0.18 0.57
GreedyPM*/per/OPT=AVG 0.51 1.33 0.29 0.68
GreedyPM*/per/OPT=AVG/MFT=300 0.50 1.33 0.28 0.69
GreedyPM*/per/OPT=AVG/MFT=600 0.50 1.35 0.27 0.68
GreedyPM*/per/OPT=AVG/MVT=300 0.49 1.33 0.27 0.67
GreedyPM*/per/OPT=AVG/MVT=600 0.49 1.34 0.26 0.65
GreedyPM*/per/OPT=MIN 0.56 1.37 0.29 0.66
GreedyPM*/per/OPT=MIN/MFT=300 0.55 1.36 0.27 0.66
GreedyPM*/per/OPT=MIN/MFT=600 0.55 1.36 0.27 0.65
GreedyPM*/per/OPT=MIN/MVT=300 0.55 1.36 0.27 0.64
GreedyPM*/per/OPT=MIN/MVT=600 0.54 1.34 0.26 0.62
MCB*/OPT=AVG 0.38 1.15 1.16 2.35
MCB*/OPT=AVG/MFT=300 0.18 0.99 0.86 2.98
MCB*/OPT=AVG/MFT=600 0.14 0.67 0.73 2.60
MCB*/OPT=AVG/MVT=300 0.13 0.48 0.61 2.09
MCB*/OPT=AVG/MVT=600 0.12 0.39 0.53 1.49
MCB*/OPT=MIN 0.42 1.26 1.17 2.36

137

Table B.4. (Continued) Preemption and migration bandwidth consumption for DFRS
algorithms. Average and maximum values over scaled synthetic traces with load ≥ 0.7.

Algorithm Bandwidth consumption
(GB / sec)

pmtn mig
avg. max avg. max

MCB*/OPT=MIN/MFT=300 0.20 0.98 0.86 2.89
MCB*/OPT=MIN/MFT=600 0.15 0.78 0.75 2.72
MCB*/OPT=MIN/MVT=300 0.13 0.72 0.63 2.12
MCB*/OPT=MIN/MVT=600 0.13 0.37 0.53 1.51
MCB/per/OPT=AVG 0.52 1.07 0.69 2.92
MCB/per/OPT=AVG/MFT=300 0.50 1.05 0.55 2.14
MCB/per/OPT=AVG/MFT=600 0.49 1.04 0.51 1.66
MCB/per/OPT=AVG/MVT=300 0.49 1.07 0.47 1.32
MCB/per/OPT=AVG/MVT=600 0.49 1.06 0.43 1.18
MCB/per/OPT=MIN 0.56 1.10 0.69 3.03
MCB/per/OPT=MIN/MFT=300 0.54 1.10 0.55 2.04
MCB/per/OPT=MIN/MFT=600 0.53 1.09 0.51 1.68
MCB/per/OPT=MIN/MVT=300 0.53 1.11 0.47 1.40
MCB/per/OPT=MIN/MVT=600 0.53 1.12 0.43 1.12
MCB*/per/OPT=AVG 0.67 1.08 1.21 2.54
MCB*/per/OPT=AVG/MFT=300 0.54 1.05 0.89 3.12
MCB*/per/OPT=AVG/MFT=600 0.51 1.03 0.77 2.69
MCB*/per/OPT=AVG/MVT=300 0.50 1.07 0.65 2.08
MCB*/per/OPT=AVG/MVT=600 0.50 1.09 0.57 1.53
MCB*/per/OPT=MIN 0.72 1.15 1.21 2.68
MCB*/per/OPT=MIN/MFT=300 0.58 1.12 0.89 3.02
MCB*/per/OPT=MIN/MFT=600 0.55 1.10 0.77 2.76
MCB*/per/OPT=MIN/MVT=300 0.54 1.11 0.65 2.16
MCB*/per/OPT=MIN/MVT=600 0.54 1.11 0.56 1.53
/per/OPT=AVG 0.45 1.02 0.21 0.64
/per/OPT=AVG/MFT=300 0.45 1.03 0.21 0.64
/per/OPT=AVG/MFT=600 0.45 1.04 0.21 0.64
/per/OPT=AVG/MVT=300 0.45 1.02 0.21 0.63
/per/OPT=AVG/MVT=600 0.45 1.03 0.20 0.62
/per/OPT=MIN 0.49 1.07 0.21 0.62
/per/OPT=MIN/MFT=300 0.49 1.07 0.21 0.62
/per/OPT=MIN/MFT=600 0.49 1.07 0.21 0.62
/per/OPT=MIN/MVT=300 0.49 1.08 0.20 0.60
/per/OPT=MIN/MVT=600 0.49 1.08 0.19 0.58
/stretch-per/OPT=AVG 0.28 0.66 0.39 0.79
/stretch-per/OPT=AVG/MFT=300 0.28 0.66 0.39 0.78

138

Table B.4. (Continued) Preemption and migration bandwidth consumption for DFRS
algorithms. Average and maximum values over scaled synthetic traces with load ≥ 0.7.

Algorithm Bandwidth consumption
(GB / sec)

pmtn mig
avg. max avg. max

/stretch-per/OPT=AVG/MFT=600 0.28 0.66 0.39 0.78
/stretch-per/OPT=AVG/MVT=300 0.28 0.68 0.38 0.79
/stretch-per/OPT=AVG/MVT=600 0.28 0.68 0.37 0.78
/stretch-per/OPT=MAX 0.28 0.65 0.39 0.81
/stretch-per/OPT=MAX/MFT=300 0.28 0.65 0.39 0.81
/stretch-per/OPT=MAX/MFT=600 0.28 0.65 0.39 0.81
/stretch-per/OPT=MAX/MVT=300 0.28 0.65 0.38 0.81
/stretch-per/OPT=MAX/MVT=600 0.28 0.64 0.37 0.78

139

Table B.5. Preemption and migration frequency in terms of number of preemption and
migration occurrences per hour. Average and maximum values over scaled synthetic
traces with load ≥ 0.7.

Algorithm Occurrences / hour
pmtn mig

avg. max avg. max
Greedy*/OPT=AVG 0.00 0.00 0.00 0.00
Greedy*/OPT=MIN 0.00 0.00 0.00 0.00
Greedy/per/OPT=AVG 30.12 75.96 38.81 124.56
Greedy/per/OPT=AVG/MFT=300 29.82 75.24 36.41 110.88
Greedy/per/OPT=AVG/MFT=600 29.63 75.96 35.46 112.32
Greedy/per/OPT=AVG/MVT=300 29.69 74.88 35.46 118.08
Greedy/per/OPT=AVG/MVT=600 29.55 74.52 33.91 107.64
Greedy/per/OPT=MIN 32.58 83.52 38.79 110.52
Greedy/per/OPT=MIN/MFT=300 32.28 82.80 36.23 107.28
Greedy/per/OPT=MIN/MFT=600 32.18 82.80 35.15 106.56
Greedy/per/OPT=MIN/MVT=300 32.25 82.80 35.11 103.68
Greedy/per/OPT=MIN/MVT=600 32.04 83.16 33.60 103.68
Greedy*/per/OPT=AVG 26.07 73.08 55.45 126.00
Greedy*/per/OPT=AVG/MFT=300 25.68 71.64 53.16 119.16
Greedy*/per/OPT=AVG/MFT=600 25.39 71.28 51.96 117.36
Greedy*/per/OPT=AVG/MVT=300 25.23 71.28 51.74 123.12
Greedy*/per/OPT=AVG/MVT=600 24.86 70.56 50.07 120.24
Greedy*/per/OPT=MIN 29.27 84.96 58.06 124.56
Greedy*/per/OPT=MIN/MFT=300 28.74 83.16 55.46 123.84
Greedy*/per/OPT=MIN/MFT=600 28.58 83.88 54.32 123.12
Greedy*/per/OPT=MIN/MVT=300 28.50 83.52 53.86 120.96
Greedy*/per/OPT=MIN/MVT=600 28.08 83.52 51.97 117.36
GreedyP*/OPT=AVG 5.78 20.52 0.00 0.00
GreedyP*/OPT=MIN 5.67 18.00 0.00 0.00
GreedyP/per/OPT=AVG 30.86 76.68 37.70 111.96
GreedyP/per/OPT=AVG/MFT=300 30.46 74.88 35.37 108.72
GreedyP/per/OPT=AVG/MFT=600 30.31 75.24 34.51 110.88
GreedyP/per/OPT=AVG/MVT=300 30.39 77.04 34.63 106.56
GreedyP/per/OPT=AVG/MVT=600 30.17 77.04 33.08 103.68
GreedyP/per/OPT=MIN 33.34 85.32 37.52 107.64
GreedyP/per/OPT=MIN/MFT=300 32.95 83.88 35.05 104.40
GreedyP/per/OPT=MIN/MFT=600 32.79 84.60 34.07 103.68
GreedyP/per/OPT=MIN/MVT=300 32.88 84.60 34.17 105.84
GreedyP/per/OPT=MIN/MVT=600 32.70 83.52 32.74 101.52
GreedyP*/per/OPT=AVG 37.08 83.52 56.42 123.12
GreedyP*/per/OPT=AVG/MFT=300 35.90 84.96 53.48 123.12

140

Table B.5. (Continued) Preemption and migration frequency in terms of number of
preemption and migration occurrences per hour. Average and maximum values over
scaled synthetic traces with load ≥ 0.7.

Algorithm Occurrences / hour
pmtn mig

avg. max avg. max
GreedyP*/per/OPT=AVG/MFT=600 35.58 84.60 52.38 120.60
GreedyP*/per/OPT=AVG/MVT=300 35.33 84.24 52.26 117.00
GreedyP*/per/OPT=AVG/MVT=600 34.70 82.80 50.41 114.84
GreedyP*/per/OPT=MIN 39.67 97.92 58.56 127.08
GreedyP*/per/OPT=MIN/MFT=300 38.67 98.28 55.64 124.20
GreedyP*/per/OPT=MIN/MFT=600 38.39 96.48 54.46 122.40
GreedyP*/per/OPT=MIN/MVT=300 38.27 97.56 53.82 119.52
GreedyP*/per/OPT=MIN/MVT=600 37.70 97.20 52.14 119.16
GreedyPM*/OPT=AVG 2.31 9.72 3.75 14.04
GreedyPM*/OPT=MIN 2.25 10.08 3.69 13.32
GreedyPM/per/OPT=AVG 30.36 77.04 39.63 114.84
GreedyPM/per/OPT=AVG/MFT=300 29.96 75.24 37.04 114.12
GreedyPM/per/OPT=AVG/MFT=600 29.79 77.40 36.13 109.80
GreedyPM/per/OPT=AVG/MVT=300 29.90 75.60 36.03 113.40
GreedyPM/per/OPT=AVG/MVT=600 29.70 77.04 34.83 116.28
GreedyPM/per/OPT=MIN 32.93 84.24 39.21 112.32
GreedyPM/per/OPT=MIN/MFT=300 32.46 84.60 36.78 108.36
GreedyPM/per/OPT=MIN/MFT=600 32.34 83.88 35.87 108.72
GreedyPM/per/OPT=MIN/MVT=300 32.44 84.24 35.78 108.72
GreedyPM/per/OPT=MIN/MVT=600 32.24 83.16 34.31 106.56
GreedyPM*/per/OPT=AVG 32.78 80.28 60.90 129.60
GreedyPM*/per/OPT=AVG/MFT=300 31.93 81.00 57.83 123.48
GreedyPM*/per/OPT=AVG/MFT=600 31.57 81.00 56.72 119.88
GreedyPM*/per/OPT=AVG/MVT=300 31.19 78.84 56.59 121.32
GreedyPM*/per/OPT=AVG/MVT=600 30.60 79.56 54.88 120.96
GreedyPM*/per/OPT=MIN 35.78 96.48 62.95 135.72
GreedyPM*/per/OPT=MIN/MFT=300 34.88 95.04 59.84 132.48
GreedyPM*/per/OPT=MIN/MFT=600 34.45 92.88 58.68 130.32
GreedyPM*/per/OPT=MIN/MVT=300 34.25 94.32 58.31 128.52
GreedyPM*/per/OPT=MIN/MVT=600 33.80 94.32 56.45 127.08
MCB*/OPT=AVG 56.54 214.56 470.14 998.28
MCB*/OPT=AVG/MFT=300 20.23 162.72 327.56 1,313.64
MCB*/OPT=AVG/MFT=600 12.86 90.36 279.56 1,201.68
MCB*/OPT=AVG/MVT=300 10.04 51.84 238.86 1,101.60
MCB*/OPT=AVG/MVT=600 9.27 37.80 206.62 822.60
MCB*/OPT=MIN 61.66 230.40 490.48 1,005.48

141

Table B.5. (Continued) Preemption and migration frequency in terms of number of
preemption and migration occurrences per hour. Average and maximum values over
scaled synthetic traces with load ≥ 0.7.

Algorithm Occurrences / hour
pmtn mig

avg. max avg. max
MCB*/OPT=MIN/MFT=300 21.60 174.96 337.86 1,343.16
MCB*/OPT=MIN/MFT=600 13.24 102.96 291.29 1,306.80
MCB*/OPT=MIN/MVT=300 10.25 78.48 247.80 1,083.24
MCB*/OPT=MIN/MVT=600 9.51 38.16 212.16 825.48
MCB/per/OPT=AVG 38.66 83.52 235.57 1,181.88
MCB/per/OPT=AVG/MFT=300 35.19 80.28 164.35 798.48
MCB/per/OPT=AVG/MFT=600 34.72 79.56 149.35 709.92
MCB/per/OPT=AVG/MVT=300 34.57 80.64 139.75 600.84
MCB/per/OPT=AVG/MVT=600 34.15 78.48 124.47 480.24
MCB/per/OPT=MIN 41.59 86.76 243.13 1,269.00
MCB/per/OPT=MIN/MFT=300 38.09 86.04 167.67 826.56
MCB/per/OPT=MIN/MFT=600 37.47 84.96 151.97 755.64
MCB/per/OPT=MIN/MVT=300 37.32 86.40 142.42 619.92
MCB/per/OPT=MIN/MVT=600 36.93 86.76 126.13 490.68
MCB*/per/OPT=AVG 70.98 163.44 461.18 1,045.44
MCB*/per/OPT=AVG/MFT=300 44.52 128.52 314.64 1,351.80
MCB*/per/OPT=AVG/MFT=600 38.07 83.52 263.46 1,245.60
MCB*/per/OPT=AVG/MVT=300 35.99 80.64 222.61 1,057.32
MCB*/per/OPT=AVG/MVT=600 35.09 77.04 191.91 795.24
MCB*/per/OPT=MIN 77.04 170.28 479.31 1,109.52
MCB*/per/OPT=MIN/MFT=300 47.63 135.00 325.09 1,370.16
MCB*/per/OPT=MIN/MFT=600 41.08 93.60 271.59 1,337.76
MCB*/per/OPT=MIN/MVT=300 38.88 86.40 227.80 1,129.32
MCB*/per/OPT=MIN/MVT=600 37.94 85.32 194.57 836.28
/per/OPT=AVG 31.29 76.32 38.76 113.76
/per/OPT=AVG/MFT=300 31.17 75.96 39.00 114.84
/per/OPT=AVG/MFT=600 31.23 75.96 38.96 113.40
/per/OPT=AVG/MVT=300 31.16 75.24 37.86 111.24
/per/OPT=AVG/MVT=600 31.04 75.24 36.62 111.60
/per/OPT=MIN 33.83 84.24 38.69 111.24
/per/OPT=MIN/MFT=300 33.83 84.24 38.69 111.24
/per/OPT=MIN/MFT=600 33.83 84.24 38.69 111.24
/per/OPT=MIN/MVT=300 33.88 83.52 37.62 107.64
/per/OPT=MIN/MVT=600 33.76 84.60 36.21 104.04
/stretch-per/OPT=AVG 20.64 43.20 62.89 140.04
/stretch-per/OPT=AVG/MFT=300 20.65 42.48 63.03 140.40

142

Table B.5. (Continued) Preemption and migration frequency in terms of number of
preemption and migration occurrences per hour. Average and maximum values over
scaled synthetic traces with load ≥ 0.7.

Algorithm Occurrences / hour
pmtn mig

avg. max avg. max
/stretch-per/OPT=AVG/MFT=600 20.62 43.56 62.88 138.96
/stretch-per/OPT=AVG/MVT=300 20.62 43.20 61.58 136.80
/stretch-per/OPT=AVG/MVT=600 20.60 43.56 59.78 132.48
/stretch-per/OPT=MAX 20.41 45.36 67.26 159.48
/stretch-per/OPT=MAX/MFT=300 20.41 45.36 67.26 159.48
/stretch-per/OPT=MAX/MFT=600 20.41 45.36 67.26 159.48
/stretch-per/OPT=MAX/MVT=300 20.35 46.44 65.60 158.40
/stretch-per/OPT=MAX/MVT=600 20.25 46.80 63.87 153.36

143

Table B.6. Preemption and migration frequency in terms of number of preemption and
migration occurrences per job. Average and maximum values over scaled synthetic traces
with load ≥ 0.7.

Algorithm Occurrences / job
pmtn mig

avg. max avg. max
Greedy*/OPT=AVG 0.00 0.00 0.00 0.00
Greedy*/OPT=MIN 0.00 0.00 0.00 0.00
Greedy/per/OPT=AVG 5.03 21.58 4.79 18.26
Greedy/per/OPT=AVG/MFT=300 4.98 21.52 4.52 15.80
Greedy/per/OPT=AVG/MFT=600 4.94 20.66 4.41 16.26
Greedy/per/OPT=AVG/MVT=300 4.95 21.03 4.40 17.08
Greedy/per/OPT=AVG/MVT=600 4.91 21.01 4.22 15.65
Greedy/per/OPT=MIN 5.41 21.76 4.81 16.17
Greedy/per/OPT=MIN/MFT=300 5.36 21.55 4.52 15.40
Greedy/per/OPT=MIN/MFT=600 5.33 21.31 4.39 15.27
Greedy/per/OPT=MIN/MVT=300 5.34 21.83 4.37 15.21
Greedy/per/OPT=MIN/MVT=600 5.29 21.94 4.20 14.83
Greedy*/per/OPT=AVG 3.95 20.26 6.59 17.29
Greedy*/per/OPT=AVG/MFT=300 3.89 19.76 6.36 16.62
Greedy*/per/OPT=AVG/MFT=600 3.85 19.57 6.23 16.52
Greedy*/per/OPT=AVG/MVT=300 3.81 19.60 6.18 16.42
Greedy*/per/OPT=AVG/MVT=600 3.75 19.24 5.98 16.01
Greedy*/per/OPT=MIN 4.49 22.55 6.94 17.65
Greedy*/per/OPT=MIN/MFT=300 4.41 22.07 6.66 17.31
Greedy*/per/OPT=MIN/MFT=600 4.38 21.89 6.55 17.38
Greedy*/per/OPT=MIN/MVT=300 4.37 21.71 6.48 17.26
Greedy*/per/OPT=MIN/MVT=600 4.29 21.80 6.25 16.53
GreedyP*/OPT=AVG 0.58 2.09 0.00 0.00
GreedyP*/OPT=MIN 0.57 2.04 0.00 0.00
GreedyP/per/OPT=AVG 5.16 21.11 4.67 16.20
GreedyP/per/OPT=AVG/MFT=300 5.09 21.05 4.41 15.45
GreedyP/per/OPT=AVG/MFT=600 5.05 20.97 4.32 15.12
GreedyP/per/OPT=AVG/MVT=300 5.06 20.52 4.33 15.29
GreedyP/per/OPT=AVG/MVT=600 5.02 20.36 4.14 14.68
GreedyP/per/OPT=MIN 5.54 22.20 4.67 15.76
GreedyP/per/OPT=MIN/MFT=300 5.47 21.45 4.39 15.09
GreedyP/per/OPT=MIN/MFT=600 5.45 21.41 4.28 15.30
GreedyP/per/OPT=MIN/MVT=300 5.46 21.94 4.29 15.04
GreedyP/per/OPT=MIN/MVT=600 5.41 21.37 4.11 14.29
GreedyP*/per/OPT=AVG 5.37 22.68 6.78 17.07
GreedyP*/per/OPT=AVG/MFT=300 5.21 22.27 6.47 17.30

144

Table B.6. (Continued) Preemption and migration frequency in terms of number of
preemption and migration occurrences per job. Average and maximum values over scaled
synthetic traces with load ≥ 0.7.

Algorithm Occurrences / job
pmtn mig

avg. max avg. max
GreedyP*/per/OPT=AVG/MFT=600 5.17 21.34 6.35 17.24
GreedyP*/per/OPT=AVG/MVT=300 5.12 21.58 6.32 16.78
GreedyP*/per/OPT=AVG/MVT=600 5.03 21.52 6.09 16.26
GreedyP*/per/OPT=MIN 5.87 24.87 7.09 17.91
GreedyP*/per/OPT=MIN/MFT=300 5.73 23.92 6.78 17.45
GreedyP*/per/OPT=MIN/MFT=600 5.69 24.22 6.65 17.17
GreedyP*/per/OPT=MIN/MVT=300 5.66 24.30 6.54 17.04
GreedyP*/per/OPT=MIN/MVT=600 5.56 23.88 6.34 16.48
GreedyPM*/OPT=AVG 0.24 1.11 0.37 1.18
GreedyPM*/OPT=MIN 0.23 1.19 0.36 1.22
GreedyPM/per/OPT=AVG 5.11 20.79 4.88 16.67
GreedyPM/per/OPT=AVG/MFT=300 5.03 20.61 4.60 15.78
GreedyPM/per/OPT=AVG/MFT=600 5.01 20.41 4.50 15.52
GreedyPM/per/OPT=AVG/MVT=300 5.02 20.99 4.48 15.41
GreedyPM/per/OPT=AVG/MVT=600 4.98 21.06 4.33 16.83
GreedyPM/per/OPT=MIN 5.52 21.65 4.85 16.03
GreedyPM/per/OPT=MIN/MFT=300 5.43 21.97 4.58 15.71
GreedyPM/per/OPT=MIN/MFT=600 5.41 21.39 4.49 15.59
GreedyPM/per/OPT=MIN/MVT=300 5.42 21.67 4.45 15.15
GreedyPM/per/OPT=MIN/MVT=600 5.37 22.19 4.28 15.07
GreedyPM*/per/OPT=AVG 4.88 22.02 7.30 18.27
GreedyPM*/per/OPT=AVG/MFT=300 4.76 21.49 6.98 17.71
GreedyPM*/per/OPT=AVG/MFT=600 4.70 21.30 6.85 17.02
GreedyPM*/per/OPT=AVG/MVT=300 4.65 21.03 6.81 17.11
GreedyPM*/per/OPT=AVG/MVT=600 4.55 20.70 6.61 17.24
GreedyPM*/per/OPT=MIN 5.42 24.00 7.59 18.32
GreedyPM*/per/OPT=MIN/MFT=300 5.29 23.42 7.27 18.23
GreedyPM*/per/OPT=MIN/MFT=600 5.23 23.76 7.14 17.80
GreedyPM*/per/OPT=MIN/MVT=300 5.19 23.12 7.07 17.32
GreedyPM*/per/OPT=MIN/MVT=600 5.11 23.23 6.84 16.94
MCB*/OPT=AVG 6.10 17.36 55.01 86.16
MCB*/OPT=AVG/MFT=300 2.02 14.26 31.45 80.96
MCB*/OPT=AVG/MFT=600 1.31 9.68 25.24 65.40
MCB*/OPT=AVG/MVT=300 1.03 2.88 20.89 42.69
MCB*/OPT=AVG/MVT=600 0.97 3.42 18.17 41.67
MCB*/OPT=MIN 6.67 18.83 57.46 90.29

145

Table B.6. (Continued) Preemption and migration frequency in terms of number of
preemption and migration occurrences per job. Average and maximum values over scaled
synthetic traces with load ≥ 0.7.

Algorithm Occurrences / job
pmtn mig

avg. max avg. max
MCB*/OPT=MIN/MFT=300 2.18 15.58 32.59 89.17
MCB*/OPT=MIN/MFT=600 1.37 8.67 26.28 68.39
MCB*/OPT=MIN/MVT=300 1.06 3.08 21.73 46.10
MCB*/OPT=MIN/MVT=600 1.00 2.89 18.68 41.15
MCB/per/OPT=AVG 6.34 25.03 25.02 41.57
MCB/per/OPT=AVG/MFT=300 6.04 24.52 18.31 36.68
MCB/per/OPT=AVG/MFT=600 5.97 24.57 16.87 35.67
MCB/per/OPT=AVG/MVT=300 5.94 25.07 15.76 33.88
MCB/per/OPT=AVG/MVT=600 5.85 24.90 14.18 33.19
MCB/per/OPT=MIN 6.83 26.38 25.74 43.24
MCB/per/OPT=MIN/MFT=300 6.51 26.03 18.75 38.89
MCB/per/OPT=MIN/MFT=600 6.42 26.10 17.23 36.68
MCB/per/OPT=MIN/MVT=300 6.39 26.37 16.13 36.79
MCB/per/OPT=MIN/MVT=600 6.30 26.13 14.45 34.48
MCB*/per/OPT=AVG 11.97 26.78 70.57 106.14
MCB*/per/OPT=AVG/MFT=300 7.54 26.28 39.94 105.55
MCB*/per/OPT=AVG/MFT=600 6.59 24.99 31.32 78.30
MCB*/per/OPT=AVG/MVT=300 6.24 25.69 25.53 53.96
MCB*/per/OPT=AVG/MVT=600 6.08 25.58 22.24 50.41
MCB*/per/OPT=MIN 13.01 28.93 73.61 117.15
MCB*/per/OPT=MIN/MFT=300 8.11 27.86 41.44 112.18
MCB*/per/OPT=MIN/MFT=600 7.13 27.14 32.52 81.60
MCB*/per/OPT=MIN/MVT=300 6.72 27.27 26.33 54.97
MCB*/per/OPT=MIN/MVT=600 6.57 26.52 22.55 50.29
/per/OPT=AVG 5.25 22.34 4.89 16.87
/per/OPT=AVG/MFT=300 5.24 22.85 4.92 17.02
/per/OPT=AVG/MFT=600 5.24 22.90 4.92 16.88
/per/OPT=AVG/MVT=300 5.23 22.16 4.78 16.52
/per/OPT=AVG/MVT=600 5.20 22.95 4.63 16.52
/per/OPT=MIN 5.65 23.23 4.90 16.58
/per/OPT=MIN/MFT=300 5.65 23.23 4.90 16.58
/per/OPT=MIN/MFT=600 5.65 23.23 4.90 16.58
/per/OPT=MIN/MVT=300 5.65 23.25 4.77 16.00
/per/OPT=MIN/MVT=600 5.63 22.78 4.59 15.51
/stretch-per/OPT=AVG 3.79 16.03 9.58 23.98
/stretch-per/OPT=AVG/MFT=300 3.79 15.86 9.60 24.02

146

Table B.6. (Continued) Preemption and migration frequency in terms of number of
preemption and migration occurrences per job. Average and maximum values over scaled
synthetic traces with load ≥ 0.7.

Algorithm Occurrences / job
pmtn mig

avg. max avg. max
/stretch-per/OPT=AVG/MFT=600 3.78 16.13 9.58 23.79
/stretch-per/OPT=AVG/MVT=300 3.77 16.24 9.36 23.27
/stretch-per/OPT=AVG/MVT=600 3.77 16.00 9.11 22.63
/stretch-per/OPT=MAX 3.79 16.71 10.41 26.96
/stretch-per/OPT=MAX/MFT=300 3.79 16.71 10.41 26.96
/stretch-per/OPT=MAX/MFT=600 3.79 16.71 10.41 26.96
/stretch-per/OPT=MAX/MVT=300 3.78 17.13 10.14 26.75
/stretch-per/OPT=MAX/MVT=600 3.76 17.52 9.87 25.78

147

BIBLIOGRAPHY

[1] A. Buttari, J. Kurzak, and J. Dongarra, “Limitations of the PlayStation 3 for high

performance cluster computing,” Innovative Computing Laboratory, University of

Tennessee Knoxville, Tech. Rep. UT-CS-07-597, Apr. 2007.

[2] M. A. Baker, “Cluster computing whitepaper,” arXiv:cs/0004014v2, Dec. 2001.

[3] “Top 500 supercomputer sites.” [Online]. Available: http://www.top500.org/

[4] S. Warfield, F. Jolesz, and R. Kikinis, “A high performance computing approach to

the registration of medical imaging data,” Parallel Computing, vol. 24, no. 9-10, pp.

1345–1368, 1998.

[5] S. Shingu, H. Takahara, H. Fuchigami, M. Yamada, Y. Tsuda, W. Ohfuchi, Y. Sasaki,

K. Kobayashi, T. Hagiwara, S.-i. Habata, M. Yokokawa, H. Itoh, and K. Otsuka,

“A 26.58 Tflops global atmospheric simulation with the spectral transform method

on the earth simulator,” in Proceedings of the 2002 ACM/IEEE Conference on

Supercomputing, Nov. 2002, pp. 1–19.

[6] Y. M. Rhee and V. S. Pande, “Multiplexed-replica exchange molecular dynamics

method for protein folding simulation,” Biophysical Journal, vol. 84, no. 2, pp.

775–786, 2003.

[7] O. G. Staadt, J. Walker, C. Nuber, and B. Hamann, “A survey and performance

analysis of software platforms for interactive cluster-based multi-screen rendering,”

in ACM SIGGRAPH Conference in Asia courses, Dec. 2008.

148

http://www.top500.org/

[8] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on large

clusters,” in Proceedings of the 6th Symposium on Operating System Design and

Implementation, Dec. 2002, pp. 137–150.

[9] “Apache hadoop project.” [Online]. Available: http://hadoop.apache.org/

[10] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: Distributed data-

parallel programs from sequential building blocks,” in Proceedings of the 2nd ACM

SIGOPS/EuroSys European Conference on Computer Systems. ACM Press, Mar.

2007, pp. 59–72.

[11] “IBM introduces ready-to-use cloud computing,” 2007. [Online]. Available:

http://www-03.ibm.com/press/us/en/pressrelease/22613.wss

[12] “Amazon elastic compute cloud.” [Online]. Available: http://aws.amazon.com/ec2

[13] J. G. Koomey, “Estimating total power consumption by servers in the U.S. and

the world,” Feb. 2007. [Online]. Available: http://enterprise.amd.com/Downloads/

svrpwrusecompletefinal.pdf

[14] “Report to congress on server and data center energy efficiency,” U.S.

Environmental Protection Agency, Aug. 2007. [Online]. Available: http:

//www.energystar.gov/ia/partners/prod_development/downloads/EPA_Datacenter_

Report_Congress_Final1.pdf

[15] C. B. Lee and A. E. Snavely, “Precise and realistic utility functions for user-centric

performance analysis of schedulers,” in Proceedings of the 16th ACM International

Symposium on High-Performance Distributed Computing, Jun. 2007, pp. 107–116.

[16] U. Schwiegelshohn and R. Yahyapour, “Fairness in parallel job scheduling,” Journal

of Scheduling, vol. 3, no. 5, pp. 297–320, 2000.

149

http://hadoop.apache.org/
http://www-03.ibm.com/press/us/en/pressrelease/22613.wss
http://aws.amazon.com/ec2
http://enterprise.amd.com/Downloads/svrpwrusecompletefinal.pdf
http://enterprise.amd.com/Downloads/svrpwrusecompletefinal.pdf
http://www.energystar.gov/ia/partners/prod_development/downloads/EPA_Datacenter_Report_Congress_Final1.pdf
http://www.energystar.gov/ia/partners/prod_development/downloads/EPA_Datacenter_Report_Congress_Final1.pdf
http://www.energystar.gov/ia/partners/prod_development/downloads/EPA_Datacenter_Report_Congress_Final1.pdf

[17] D. Lifka, “The ANL/IBM SP scheduling system,” in Proceedings of the 1st

Workshop on Job Scheduling Strategies for Parallel Processing, ser. Lecture Notes

in Computer Science, D. G. Feitelson and L. Rudolph, Eds. Springer, Apr. 1995,

vol. 949, pp. 295–303.

[18] C. B. Lee and A. E. Snavely, “On the user-scheduler dialogue: Studies of user-

provided runtime estimates and utility functions,” International Journal of High

Performance Computing Applications, vol. 20, no. 4, pp. 495–506, 2006.

[19] R. P. Doyle, J. S. Chase, O. M. Asad, W. Jin, and A. M. Vahdat, “Model-based

resource provisioning in a web service utility,” in Proceedings of the 4th USENIX

Symposium on Internet Technologies and Systems. USENIX, Mar. 2003, pp.

57–71.

[20] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper, “Workload analysis and

demand prediction of enterprise data center applications,” in Proceedings of the

2007 IEEE International Symposium on Workload Characterization, Sep. 2007, pp.

171–180.

[21] D. Gmach, J. Rolia, L. Cherkasova, G. Belrose, T. Turicchi, and A. Kemper, “An

integrated approach to resource pool management: Policies, efficiency and quality

metrics,” in Proceedings of the 38th Annual IEEE/IFIP International Conference

on Dependable Systems and Networks. IEEE Computer Society Press, Jun. 2008,

pp. 326–335.

[22] X. Zhu, D. Young, B. J. Watson, Z. Wang, J. Rolia, S. Singhal, B. McKee, C. Hyser,

D. Gmach, R. Gardner, T. Christian, and L. Cherkasova, “1000 islands: Integrated

capacity and workload management for the next generation data center,” in

150

Proceedings of the 5th IEEE International Conference on Autonomic Computing,

Jun. 2008, pp. 172–181.

[23] M. Aron, P. Druschel, and W. Zwaenepoel, “Cluster reserves: A mechanism for

resource management in cluster-based network servers,” in Proceedings of the

2000 ACM SIGMETRICS Conference on Measurement and Modeling of Computer

Systems, Jun. 2000, pp. 90–101.

[24] J. Rolia, A. Andrzejak, and M. Arlitt, “Automating enterprise application placement

in resource utilities,” in Proceedings of the 14th IFIP/IEEE International Workshop

on Distributed Systems: Operations and Management, ser. Lecture Notes in

Computer Science, M. Brunner and A. Keller, Eds. Springer, Oct. 2003,

vol. 2867, pp. 118–129.

[25] A. Karve, T. Kimbrel, G. Pacifici, M. Spreitzer, M. Steinder, M. Sviridenko, and

A. N. Tantawi, “Dynamic placement for clustered web applications,” in Proceedings

of the 15th International Conference on the World Wide Web, 2006, pp. 595–604.

[26] T. Kimbrel, M. Steinder, M. Sviridenko, and A. N. Tantawi, “Dynamic application

placement under service and memory constraints,” in Proceedings of the 4th

International Workshop on Experimental and Efficient Algorithms, ser. Lecture

Notes in Computer Science, S. E. Nikoletseas, Ed. Springer, May 2005, vol. 3503,

pp. 391–402.

[27] C. Tang, M. Steinder, M. Spreitzer, and G. Pacifici, “A scalable application

placement controller for enterprise data centers,” in Proceedings of the 16th

International Conference on the World Wide Web, May 2007, pp. 331–340.

[28] B. N. Chun and D. E. Culler, “User-centric performance analysis of market-based

cluster batch schedulers,” in Proceedings of the 2nd IEEE International Symposium

151

on Cluster Computing and the Grid. IEEE Computer Society Press, May 2002,

pp. 30–38.

[29] S. Srinivasan, R. Kettimuthu, V. Subramani, and P. Sadayappan, “Characterization

of backfilling strategies for parallel job scheduling,” in Proceedings of the 2002

International Conference on Parallel Processing Workshops, Aug. 2002, pp. 514–

522.

[30] A. W. Mu’alem and D. G. Feitelson, “Utilization, predictability, workloads, and user

runtime estimates in scheduling the IBM SP2 with backfilling,” IEEE Transactions

on Parallel and Distributed Systems, vol. 12, no. 6, pp. 529–543, 2001.

[31] S.-H. Chiang, A. Arpaci-Dusseau, and M. K. Vernon, “The impact of more

accurate requested runtimes on production job scheduling performance,” in

Proceedings of the 8th International Workshop on Job Scheduling Strategies for

Parallel Processing, ser. Lecture Notes in Computer Science, D. G. Feitelson,

L. Rudolph, and U. Schwiegelshohn, Eds. Springer, Jun. 2002, vol. 2537, pp.

103–127.

[32] J. P. Jones and B. Nitzberg, “Scheduling for parallel supercomputing: A historical

perspective on achievable utilization,” in Proceedings of the 5th Workshop on Job

Scheduling Strategies for Parallel Processing, ser. Lecture Notes in Computer

Science, D. G. Feitelson and L. Rudolph, Eds. Springer, Apr. 1999, vol. 1659, pp.

1–16.

[33] D. G. Feitelson, “Parallel workloads archive.” [Online]. Available: http:

//www.cs.huji.ac.il/labs/parallel/workload/

152

http://www.cs.huji.ac.il/labs/parallel/workload/
http://www.cs.huji.ac.il/labs/parallel/workload/

[34] A. Acharya and S. K. Setia, “Availability and utility of idle memory in workstation

clusters,” ACM SIGMETRICS Performance Evaluation Review, vol. 27, no. 1, pp.

35–46, 1999.

[35] D. G. Feitelson, “Memory usage in the LANL CM-5 workload,” in Proceedings of

the 3rd Workshop on Job Scheduling Strategies for Parallel Processing, ser. Lecture

Notes in Computer Science, D. G. Feitelson and L. Rudolph, Eds. Springer, Apr.

1997, vol. 1291, pp. 78–94.

[36] S. K. Setia, M. S. Squillante, and V. K. Naik, “The impact of job memory

requirements on gang-scheduling performance,” ACM SIGMETRICS Performance

Evaluation Review, vol. 26, no. 4, pp. 30–39, 1999.

[37] A. Batat and D. G. Feitelson, “Gang scheduling with memory considerations,”

in Proceedings of the 14th International Parallel and Distributed Processing

Symposium, May 2000, pp. 109–114.

[38] S.-H. Chiang and M. K. Vernon, “Characteristics of a large shared-memory

production workload,” in Proceedings of the 7th International Workshop on Job

Scheduling Strategies for Parallel Processing, ser. Lecture Notes in Computer

Science, D. G. Feitelson and L. Rudolph, Eds. Springer, Jun. 2001, vol. 2221, pp.

159–187.

[39] H. Li, D. Groep, and L. Wolters, “Workload characteristics of a multi-cluster

supercomputer,” in Proceedings of the 10th International Workshop on Job

Scheduling Strategies for Parallel Processing, ser. Lecture Notes in Computer

Science, D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn, Eds. Springer, Jun.

2004, vol. 3277, pp. 176–193.

153

[40] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C. Sevcik, and P. Wong,

“Theory and practice in parallel job scheduling,” in Proceedings of the 3rd

Workshop on Job Scheduling Strategies for Parallel Processing, ser. Lecture Notes

in Computer Science, D. G. Feitelson and L. Rudolph, Eds. Springer, Apr. 1997,

vol. 1291, pp. 1–34.

[41] Y. Wiseman and D. G. Feitelson, “Paired gang scheduling,” IEEE Transactions on

Parallel and Distributed Systems, vol. 14, no. 6, pp. 581–592, 2003.

[42] J. K. Ousterhout, “Scheduling techniques for concurrent systems,” in Proceedings

of the 3rd International Conferance on Distributed Computing Systems, Oct. 1982,

pp. 22–30.

[43] D. G. Feitelson and L. Rudolph, “Distributed hierarchical control for parallel

processing,” IEEE Computer, vol. 23, no. 5, pp. 65–77, 1990.

[44] ——, “Gang scheduling performance benefits for fine-grain synchronization,”

Journal of Parallel and Distributed Computing, vol. 16, no. 4, pp. 306–318, Dec.

1992.

[45] D. G. Feitelson and M. A. Jette, “Improved utilization and responsiveness with gang

scheduling,” in Proceedings of the 3rd Workshop on Job Scheduling Strategies for

Parallel Processing, ser. Lecture Notes in Computer Science, D. G. Feitelson and

L. Rudolph, Eds. Springer, Apr. 1997, vol. 1291, pp. 238–261.

[46] D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn, “Parallel job scheduling – a

status report,” in Proceedings of the 10th International Workshop on Job Scheduling

Strategies for Parallel Processing, ser. Lecture Notes in Computer Science, D. G.

Feitelson, L. Rudolph, and U. Schwiegelshohn, Eds. Springer, Jun. 2004, vol.

3277, pp. 1–16.

154

[47] F. Wang, M. Papaefthymiou, and M. S. Squillante, “Performance evaluation of

gang scheduling for parallel and distributed multiprogramming,” in Proceedings of

the 3rd Workshop on Job Scheduling Strategies for Parallel Processing, ser. Lecture

Notes in Computer Science, D. G. Feitelson and L. Rudolph, Eds. Springer, Apr.

1997, vol. 1291, pp. 277–298.

[48] A. Hori, H. Tezuka, and Y. Ishikawa, “Highly efficient gang scheduling

implementation,” in Proceedings of the 1998 ACM/IEEE Conference on High

Performance Networking and Computing, Nov. 1998.

[49] M. A. Jette, “Performance characteristics of gang scheduling in multiprogrammed

environments,” in Proceedings of the 1997 ACM/IEEE Conference on Supercom-

puting, Nov. 1997.

[50] J. E. Moreira, W. Chan, L. L. Fong, H. Franke, and M. A. Jette, “An infrastructure

for efficient parallel job execution in terascale computing environments,” in

Proceedings of the 1998 ACM/IEEE Conference on High Performance Networking

and Computing, Nov. 1998.

[51] D. G. Feitelson, “Packing schemes for gang scheduling,” in Proceedings of the 2nd

Workshop on Job Scheduling Strategies for Parallel Processing, ser. Lecture Notes

in Computer Science, D. G. Feitelson and L. Rudolph, Eds. Springer, Apr. 1996,

vol. 1162, pp. 89–110.

[52] W. Lee, M. Frank, V. Lee, K. Mackenzie, and L. Rudolph, “Implications of I/O for

gang scheduled workloads,” in Proceedings of the 3rd Workshop on Job Scheduling

Strategies for Parallel Processing, ser. Lecture Notes in Computer Science, D. G.

Feitelson and L. Rudolph, Eds. Springer, Apr. 1997, vol. 1291, pp. 215–237.

155

[53] L. Cherkasova, D. Gupta, E. Ryabinkin, R. Kurakin, V. Dobretsov, and A. Vahdat,

“Optimizing grid site manager performance with virtual machines,” in Proceedings

of the 3rd USENIX Workshop on Real, Large Distributed Systems, 2006. [Online].

Available: http://www.usenix.org/events/worlds06/tech/

[54] W. J. Leinberger, G. Karypis, and V. Kumar, “Gang scheduling for distributed

memory systems,” University of Minnesota Department of Computer Science and

Engineering, Tech. Rep. 00-014, Feb. 2000.

[55] E. Frachtenberg, D. G. Feitelson, F. Petrini, and J. Fernandez, “Flexible

coscheduling: Mitigating load imbalance and improving utilization of heterogeneous

resources,” in Proceedings of the 17th International Parallel and Distributed

Processing Symposium, Apr. 2003.

[56] A. C. Arpaci-Dusseau, “Implicit coscheduling: coordinated scheduling with implicit

information in distributed systems,” Ph.D. Dissertation, University of California at

Berkeley, Dec. 1998.

[57] ——, “Implicit coscheduling: coordinated scheduling with implicit information in

distributed systems,” ACM Transactions on Computer Systems, vol. 19, no. 3, pp.

283–331, 2001.

[58] P. G. Sobalvarro, S. Pakin, W. E. Weihl, and A. A. Chien, “Dynamic coscheduling

on workstation clusters,” in Proceedings of the 4th Workshop on Job Scheduling

Strategies for Parallel Processing, ser. Lecture Notes in Computer Science, D. G.

Feitelson and L. Rudolph, Eds. Springer, Mar. 1998, vol. 1459, pp. 231–256.

[59] F. Petrini and W.-c. Feng, “Time-sharing parallel jobs in the presence of multiple

resource requirements,” in Proceedings of the 6th Workshop on Job Scheduling

156

http://www.usenix.org/events/worlds06/tech/

Strategies for Parallel Processing, ser. Lecture Notes in Computer Science, D. G.

Feitelson and L. Rudolph, Eds. Springer, May 2000, vol. 1911, pp. 113–136.

[60] S. Agarwal, G. S. Choi, C. R. Das, A. B. Yoo, and S. Nagar, “Co-ordinated

coscheduling in time-sharing clusters through a generic framework,” in Proceedings

of the 5th IEEE International Conference on Cluster Computing. IEEE Computer

Society Press, Dec. 2003, pp. 84–91.

[61] A. Bouteiller, H.-L. Bouziane, T. Herault, P. Lemarinier, and F. Cappello, “Hybrid

preemptive scheduling of MPI applications on grids,” in Proceedings of the 5th

IEEE/ACM International Workshop on Grid Computing, Nov. 2004, pp. 130–137.

[62] R. H. Arpaci, A. C. Dusseau, A. M. Vahdat, L. T. Liu, T. E. Anderson, and D. A.

Patterson, “The interaction of parallel and sequential workloads on a network of

workstations,” ACM SIGMETRICS Performance Evaluation Review, vol. 23, no. 1,

pp. 267–278, 1995.

[63] G. S. Choi, J.-H. Kim, D. Ersoz, A. B. Yoo, and C. R. Das, “Coscheduling

in clusters: Is it a viable alternative?” in Proceedings of the 2004 ACM/IEEE

Conference on High Performance Networking and Computing, Nov. 2004.

[64] P. Strazdins and J. Uhlmann, “A comparison of local and gang scheduling on

a Beowulf cluster,” in Proceedings of the 6th IEEE International Conference on

Cluster Computing. IEEE Computer Society Press, Sep. 2004, pp. 55–62.

[65] E. Frachtenberg, D. G. Feitelson, F. Petrini, and J. Fernandez, “Adaptive parallel

job scheduling with flexible coscheduling,” IEEE Transactions on Parallel and

Distributed Systems, vol. 16, no. 11, pp. 1066–1077, 2005.

[66] C. Anglano, “A comparative evaluation of implicit coscheduling strategies

fornetworks of workstations,” in Proceedings of the 9th IEEE International

157

Symposium on High-Performance Distributed Computing, Aug. 2000, pp. 221–

228.

[67] S. Nagar, A. Banerjee, A. Sivasubramaniam, and C. R. Das, “Alternatives to

coscheduling a network of workstations,” Journal of Parallel and Distributed

Computing, vol. 59, no. 2, pp. 302–327, 1999.

[68] G. S. Choi, S. Agarwal, J.-H. Kim, A. B. Yoo, and C. R. Das, “Impact of

job allocation strategies for communication driven coscheduling in clusters,” in

Proceedings of 9th European International Conference on Parallel Processing, ser.

Lecture Notes in Computer Science, H. Kosch, L. Böszörményi, and H. Hellwagner,

Eds. Springer, Aug. 2003, vol. 2790, pp. 160–168.

[69] W. Emeneker, D. Jackson, J. Butikofer, and D. Stanzione, “Dynamic virtual

clustering with Xen and Moab,” in Proceedings of the 4th International Symposium

on Parallel and Distributed Processing and Applications Workshops, ser. Lecture

Notes in Computer Science, Dec. 2006, vol. 4331, pp. 440–451.

[70] K. Govil, D. Teodosiu, Y. Huang, and M. Rosenblum, “Cellular disco: resource

management using virtual clusters on shared-memory multiprocessors,” ACM

Transactions on Computer Systems, vol. 18, no. 3, pp. 229–262, 2000.

[71] D. Irwin, J. S. Chase, L. Grit, A. Yumerefendi, D. Becker, and K. Yocum, “Sharing

networked resources with brokered leases,” in Proceedings of the 2006 USENIX

Annual Technical Conference. USENIX, May/Jun. 2006.

[72] N. Kiyanclar, G. A. Koenig, and W. Yurcik, “Maestro-VC: A paravirtualized

execution environment for secure on-demand cluster computing,” in Proceedings of

the 6th IEEE International Symposium on Cluster Computing and the Grid. IEEE

Computer Society Press, May 2006.

158

[73] L. Ramakrishnan, D. Irwin, L. Grit, A. Yumerefendi, A. Iamnitchi, and J. S. Chase,

“Toward a doctrine of containment: Grid hosting and adaptive resource control,” in

Proceedings of the 2006 ACM/IEEE Conference on High Performance Networking

and Computing, Nov. 2006.

[74] M. Rodriguez, D. Tapiador, J. Fontán, E. Huedo, R. S. Montero, and I. M. Llorente,

“Dynamic provisioning of virtual clusters for grid computing,” in Proceedings of

the 2008 Euro-Par Workshops, ser. Lecture Notes in Computer Science, E. César,

M. Alexander, A. Streit, J. L. Träff, C. Cérin, A. Knüpfer, D. Kranzlmüller, and

S. Jha, Eds. Springer, Aug. 2008, vol. 5415, pp. 23–32.

[75] S. Yamasaki, N. Maruyama, and S. Matsuoka, “Model-based resource selection

for efficient virtual cluster deployment,” in Proceedings of the 2nd International

Workshop on Virtualization Technology in Distributed Computing, Nov. 2007.

[76] H. Nishimura, N. Maruyama, and S. Matsuoka, “Virtual clusters on the fly – fast,

scalable, and flexible installation,” in Proceedings of the 7th IEEE International

Symposium on Cluster Computing and the Grid. IEEE Computer Society Press,

May 2007, pp. 549–556.

[77] W. Emeneker and D. Stanzione, “Increasing reliability through dynamic virtual

clustering,” in Proceedings of the High Availability and Performance Computing

Workshop, Oct. 2006. [Online]. Available: http://xcr.cenit.latech.edu/hapcw2006/

program

[78] B. Sotomayor, K. Keahey, and I. Foster, “Combining batch execution and leasing

using virtual machines,” in Proceedings of the 17th ACM International Symposium

on High-Performance Distributed Computing, Jun. 2008, pp. 87–96.

159

http://xcr.cenit.latech.edu/hapcw2006/program
http://xcr.cenit.latech.edu/hapcw2006/program

[79] N. Fallenbeck, H.-J. Picht, M. Smith, and B. Freisleben, “Xen and the art of cluster

scheduling,” in Proceedings of the 2nd International Workshop on Virtualization

Technology in Distributed Computing, Nov. 2007.

[80] P. Ruth, J. Rhee, D. Xu, R. Kennell, and S. Goasguen, “Autonomic live adaptation

of virtual computational environments in a multi-domain infrastructure,” in

Proceedings of the 3rd IEEE International Conference on Autonomic Computing,

Jun. 2006, pp. 5–14.

[81] L. V. Kalé, “Performance and productivity in parallel programming via

processor virtualization,” in Proceedings of the 1st Workshop on Productivity

and Performance in High-End Computing, Feb. 2004, pp. 40–49.

[82] A. Feldmann, M.-Y. Kao, J. Sgall, and S.-H. Teng, “Optimal online scheduling of

parallel jobs with dependencies,” Carnegie Mellon University School of Computer

Science, Tech. Rep. CMU-CS-92-189, Sep. 1992.

[83] B. Lin and P. A. Dinda, “Vsched: Mixing batch and interactive virtual machines

using periodic real-time scheduling,” in Proceedings of the 2005 ACM/IEEE

Conference on High Performance Networking and Computing, Nov. 2005.

[84] S. Ali, J.-K. Kim, H. J. Siegel, and A. A. Maciejewski, “Static heuristics for robust

resource allocation of continuously executing applications,” Journal of Parallel and

Distributed Computing, vol. 68, no. 8, pp. 1070–1080, 2008.

[85] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, and T. Wood, “Dynamic

provisioning of multi-tier internet applications,” in Proceedings of the 2nd IEEE

International Conference on Autonomic Computing, Jun. 2005, pp. 217–228.

[86] “Linode virtual hosting service.” [Online]. Available: http://linode.com/

160

http://linode.com/

[87] B. Urgaonkar, A. L. Rosenberg, and P. Shenoy, “Application placement on a cluster

of servers,” International Journal of Foundations of Computer Science, vol. 18,

no. 5, pp. 1023–1041, 2007.

[88] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, M. Kalantar, S. Krishakumar,

D. P. Pazel, J. Pershing, and B. Rochwerger, “Océano – SLA based management of

a computing utility,” in Proceedings of the IEEE/IFIP International Symposium on

Integrated Network Management, May 2001, pp. 855–868.

[89] B. Urgaonkar, P. Shenoy, and T. Roscoe, “Resource overbooking and application

profiling in shared hosting platforms,” ACM SIGOPS Operating Systems Review,

vol. 36, pp. 239–254, 2002.

[90] M. A. Bender, S. Chakrabarti, and S. Muthukrishnan, “Flow and stretch metrics for

scheduling continuous job streams,” in Proceedings of the 9th Annual ACM-SIAM

Symposium On Discrete Algorithms, Jan. 1998, pp. 270–279.

[91] A. Legrand, A. Su, and F. Vivien, “Minimizing the stretch when scheduling flows of

divisible requests,” Journal of Scheduling, vol. 11, no. 5, pp. 381–404, 2008.

[92] A. Chandra, W. Gong, and P. Shenoy, “Dynamic resource allocation for shared

data centers using online measurements,” in Proceedings of the 11th International

Workshop on Quality of Service, Jun. 2003, pp. 381–400.

[93] H. Nguyen Van, F. Dang Tran, and J.-M. Menaud, “Autonomic virtual resource

management for service hosting platforms,” in Proceedings of the ICSE 2009

Workshop on Software Engineering Challenges in Cloud Computing, May 2009.

[94] ——, “SLA-aware virtual resource management for cloud infrastructures,”

in Proceedings of the 9th IEEE International Conference on Computer and

Information Technology, Oct. 2009, pp. 357–362.

161

[95] K. Shen, H. Tang, T. Yang, and L. Chu, “Integrated resource management for

cluster-based internet services,” in Proceedings of the 5th Symposium on Operating

System Design and Implementation, Dec. 2002.

[96] G. Pacifici, M. Spreitzer, A. N. Tantawi, and A. Youssef, “Performance

management for cluster-based web services,” IEEE Journal on Selected Areas

in Communications, vol. 23, no. 12, pp. 2333–2343, Dec. 2005.

[97] F. Hermenier, X. Lorca, J.-M. Menaud, G. Muller, and J. Lawall, “Entropy: a

consolidation manager for clusters,” INRIA, Tech. Rep. RR-6639, 2008.

[98] F. Hermenier, A. Lèbre, and J.-M. Menaud, “Cluster-wide context switch

of virtualized jobs,” INRIA, Tech. Rep. RR-6929, 2009. [Online]. Available:

http://hal.inria.fr/inria-00383325/en/

[99] F. Hermenier, X. Lorca, J.-M. Menaud, G. Muller, and J. Lawall, “Entropy:

a consolidation manager for clusters,” in Proceedings of the 2009 ACM

SIGPLAN/SIGOPS International Conference on Virtual Execution Environments.

ACM, Mar. 2009.

[100] D. Gupta, K. Yocum, M. McNett, A. C. Snoeren, A. M. Vahdat, and G. M. Voelker,

“To infinity and beyond: Time warped network emulation,” in Proceedings of the

3rd Symposium on Networked Systems Design and Implementation, May 2006, pp.

87–100.

[101] M. N. Bennani and D. A. Menascé, “Resource allocation for autonomic data centers

using analytic performance models,” in Proceedings of the 2nd IEEE International

Conference on Autonomic Computing, Jun. 2005, pp. 229–240.

[102] D. Carrera, M. Steinder, I. Whalley, J. Torres, and E. Ayguadé, “Utility-based

placement of dynamic web applications with fairness goals,” in Proceedings of the

162

http://hal.inria.fr/inria-00383325/en/

11th Network Operations and Management Symposium. IEEE/IFIP, Apr. 2008,

pp. 9–16.

[103] Y. Chen, S. Iyer, X. Liu, D. Milojicic, and A. Sahai, “Translating service level

objectives to lower level policies for multi-tier services,” Cluster Computing,

vol. 11, no. 3, pp. 299–311, 2008.

[104] D. Kusic, J. O. Kephart, J. E. Hanson, N. Kandasamy, and G. Jiang, “Power and

performance management of virtualized computing environments via lookahead

control,” Cluster Computing, vol. 12, no. 1, pp. 1–15, 2009.

[105] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Merchant,

and K. Salem, “Adaptive control of virtualized resources in utility computing

environments,” in Proceedings of the 2nd ACM SIGOPS/EuroSys European

Conference on Computer Systems. ACM Press, Mar. 2007, pp. 289–302.

[106] Y. Song, H. Wang, Y. Li, B. Feng, and Y. Sun, “Multi-tiered on-demand resource

scheduling for VM-based data center,” in Proceedings of the 9th IEEE International

Symposium on Cluster Computing and the Grid. IEEE Computer Society Press,

May 2009, pp. 148–155.

[107] W. E. Walsh, G. Tesauro, J. O. Kephart, and R. Das, “Utility functions in autonomic

systems,” in Proceedings of the 1st IEEE International Conference on Autonomic

Computing, May 2004, pp. 70–77.

[108] R. Wang and N. Kandasamy, “A distributed control framework for

performance management of virtualized computing environments: some

preliminary results,” in Proceedings of the 1st Workshop on Automated Control

for Datacenters and Clouds, Jun. 2009, pp. 7–12. [Online]. Available:

http://www.cs.duke.edu/nicl/acdc09/

163

http://www.cs.duke.edu/nicl/acdc09/

[109] R. P. Goldberg, “Survey of virtual machine research,” IEEE Computer, vol. 7, no. 6,

pp. 34–45, 1974.

[110] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,

I. Pratt, and A. Warfield, “Xen and the art of virtualization,” in Proceedings of the

19th ACM Symposium on Operating Systems Principles, Oct. 2003, pp. 164–177.

[111] B. Clark, T. Deshane, E. Dow, S. Evanchik, M. Finlayson, J. Herne, and J. N.

Matthews, “Xen and the art of repeated research,” in Proceedings of the FREENIX

Track of the 2004 USENIX Annual Technical Conference, Jun./Jul. 2004, pp. 135–

144.

[112] N. Bobroff, R. Coppinger, L. Fong, S. Seelam, and J. Xu, “Scalability analysis

of job scheduling using virtual nodes,” in Proceedings of the 14th International

Workshop on Job Scheduling Strategies for Parallel Processing, ser. Lecture Notes

in Computer Science, E. Frachtenberg and U. Schwiegelshohn, Eds. Springer,

May 2009, vol. 5798, pp. 190–206.

[113] L. Cherkasova, D. Gupta, and A. Vahdat, “When virtual is harder than real: Resource

allocation challenges in virtual machine based IT environments,” Hewlett-Packard

Labs, Tech. Rep. HPL-2007-25, 2007.

[114] N. Bhatia and J. S. Vetter, “Virtual cluster management with Xen,” in Proceedings of

the 2007 Euro-Par Workshops, ser. Lecture Notes in Computer Science, L. Bougé,

M. Forsell, J. L. Träff, A. Streit, W. Ziegler, M. Alexander, and S. Childs, Eds.

Springer, Aug. 2007, vol. 4854, pp. 185–194.

[115] “Intel virtualization technology.” [Online]. Available: http://www.intel.com/

technology/virtualization/index.htm

164

http://www.intel.com/technology/virtualization/index.htm
http://www.intel.com/technology/virtualization/index.htm

[116] C. Macdonell and P. Lu, “Pragmatics of virtual machines for high-performance

computing: A quantitative study of basic overheads,” in Proceedings of the 2007

High Performance Computing & Simulation Conference, Jun. 2007.

[117] M. F. Mergen, V. Uhlig, O. Krieger, and J. Xenidis, “Virtualization for high-

performance computing,” ACM SIGOPS Operating Systems Review, vol. 40, no. 2,

pp. 8–11, 2006.

[118] F. Calzolari, “High availability using virtualization,” Ph.D. Dissertation, Universitá

de Pisa, 2006.

[119] N. Barcelo, N. Legg, and T. Bressoud, “The performance cost of virtual

machines on big data problems in compute clusters,” in Proceedings

of the Midstates Conference for Undergraduate Research in Computer Science

and Mathematics, Nov. 2008, pp. 22–29. [Online]. Available: http:

//www3.wooster.edu/cs/mcurcsm2008/papers/vmclusters.pdf

[120] W. Emeneker and D. Stanzione, “HPC cluster readiness of Xen and User

Mode Linux,” in Proceedings of the 8th IEEE International Conference on Cluster

Computing. IEEE Computer Society Press, Sep. 2006.

[121] W. Huang, J. Liu, B. Abali, and D. K. Panda, “A case for high performance

computing with virtual machines,” in Proceedings of the 20th Annual International

Conference on Supercomputing, Jun./Jul. 2006, pp. 125–134.

[122] A. Ranadive, M. Kesavan, A. Gavrilovska, and K. Schwan, “Performance

implications of virtualizing multicore cluster machines,” in Proceedings of the 2nd

Workshop on System-level Virtualization for High Performance Computing, Mar.

2008, pp. 1–8. [Online]. Available: http://www.csm.ornl.gov/srt/hpcvirt08/

165

http://www3.wooster.edu/cs/mcurcsm2008/papers/vmclusters.pdf
http://www3.wooster.edu/cs/mcurcsm2008/papers/vmclusters.pdf
http://www.csm.ornl.gov/srt/hpcvirt08/

[123] L. Youseff, R. Wolski, B. Gorda, and C. Krintz, “Evaluating the performance impact

of Xen on MPI and process execution for HPC systems,” in Proceedings of the

1st International Workshop on Virtualization Technology in Distributed Computing,

Nov. 2006.

[124] ——, “Paravirtualization for HPC systems,” in Proceedings of the 4th International

Symposium on Parallel and Distributed Processing and Applications Workshops,

ser. Lecture Notes in Computer Science, Dec. 2006, vol. 4331, pp. 474–486.

[125] L. Youseff, K. Seymour, H. You, J. Dongarra, and R. Wolski, “The impact of

paravirtualized memory heirarchy on linear algebra computational kernels and

software,” in Proceedings of the 17th ACM International Symposium on High-

Performance Distributed Computing, Jun. 2008, pp. 141–152.

[126] L. Cherkasova and R. Gardner, “Measuring CPU overhead for I/O processing in

the Xen virtual machine monitor,” in Proceedings of the 2005 USENIX Annual

Technical Conference, May/Jun. 2005.

[127] A. Gavrilovska, S. Kumar, H. Raj, K. Schwan, V. Gupta, R. Nathuji, R. Niranjan,

A. Ranadive, and P. Saraiya, “High-performance hypervisor architectures:

Virtualization in HPC systems,” in Proceedings of the 1st Workshop on System-level

Virtualization for High Performance Computing, Mar. 2007. [Online]. Available:

http://www.csm.ornl.gov/srt/hpcvirt07/

[128] A. Warfield, S. Hand, T. Harris, and I. Pratt, “Isolation of shared network resources

in XenoServers,” PlanetLab Project, Tech. Rep. PDN-02-2006, Nov. 2002. [Online].

Available: http://www.planet-lab.org/files/pdn/PDN-02-006/pdn-02-006.pdf

[129] P. Willmann, J. Shafer, D. Carr, A. Menon, S. Rixner, A. L. Cox, and W. Zwaenepoel,

“Concurrent direct network access for virtual machine monitors,” in Proceedings

166

http://www.csm.ornl.gov/srt/hpcvirt07/
http://www.planet-lab.org/files/pdn/PDN-02-006/pdn-02-006.pdf

of the 13th International Conference on High-Performance Computer Architecture.

IEEE, Feb. 2007, pp. 306–317.

[130] S. Govindan, A. R. Nath, A. Das, B. Urgaonkar, and A. Sivasubramaniam,

“Xen and co.: Communication-aware CPU scheduling for consolidated Xen-

based hosting platforms,” in Proceedings of the 3rd ACM SIGPLAN/SIGOPS

International Conference on Virtual Execution Environments. ACM, Jun. 2007.

[131] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat, “Enforcing performance

isolation across virtual machines in Xen,” in Proceedings of the 7th

ACM/IFIP/USENIX Middleware Conference, Dec. 2006, pp. 342–362.

[132] J. Liu, W. Huang, B. Abali, and D. K. Panda, “High performance VMM-bypass

I/O in virtual machines,” in Proceedings of the 2006 USENIX Annual Technical

Conference. USENIX, May/Jun. 2006.

[133] K. Nesbit, J. Laudon, and J. E. Smith, “Virtual private caches,” in Proceedings of

the 34th International Symposium on Computer Architecture, Jun. 2007, pp. 57–68.

[134] K. Nesbit, M. Moreto, F. Cazorla, A. Ramirez, and M. Valero, “Multicore resource

management,” IEEE Micro, May 2008.

[135] D. Ongaro, A. L. Cox, and S. Rixner, “Scheduling I/O in virtual machine monitors,”

in Proceedings of the 4th ACM SIGPLAN/SIGOPS International Conference on

Virtual Execution Environments. ACM, Mar. 2008.

[136] D. Gupta, L. Cherkasova, and A. M. Vahdat, “Comparison of the three CPU

schedulers in Xen,” ACM SIGMETRICS Performance Evaluation Review, vol. 35,

no. 2, pp. 42–51, 2007.

167

[137] D. Schanzenbach and H. Casanova, “Accuracy and responsiveness of CPU sharing

using Xen’s cap values,” University of Hawai‘i at Mānoa Department of Information

and Computer Sciences, Tech. Rep. ICS2008-05-01, May 2008. [Online]. Available:

http://www.ics.hawaii.edu/research/tech-reports/ICS2008-05-01.pdf

[138] S.-H. Chiang, R. K. Mansharamani, and M. K. Vernon, “Use of application

characteristics and limited preemption for run-to-completion parallel processor

scheduling policies,” in Proceedings of the 1994 ACM SIGMETRICS Conference

on Measurement and Modeling of Computer Systems, May 1994, pp. 33–44.

[139] R. Kettimuthu, V. Subramani, S. Srinivasan, T. Gopalsamy, D. K. Panda, and

P. Sadayappan, “Selective preemption strategies for parallel job scheduling,”

International Journal of High Performance Computing and Networking, vol. 3,

no. 2, pp. 122–152, 2005.

[140] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif, “Black-box and gray-box

strategies for virtual machine migration,” in Proceedings of the 4th Symposium on

Networked Systems Design and Implementation, Apr. 2007, pp. 229–242.

[141] S. K. Setia, “Trace-driven analysis of migration-based gang scheduling policies

for parallel computers,” in Proceedings of the 1997 International Conference on

Parallel Processing, Aug. 1997, pp. 489–492.

[142] Y. Zhang, H. Franke, J. E. Moreira, and A. Sivasubramaniam, “An integrated

approach to parallel scheduling using gang-scheduling, backfilling and migration,”

IEEE Transactions on Parallel and Distributed Systems, vol. 14, no. 3, pp. 236–247,

2003.

168

http://www.ics.hawaii.edu/research/tech-reports/ICS2008-05-01.pdf

[143] M. Zhao and R. J. Figueiredo, “Experimental study of virtual machine migration in

support of reservation of cluster resources,” in Proceedings of the 2nd International

Workshop on Virtualization Technology in Distributed Computing, Nov. 2007.

[144] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and

A. Warfield, “Live migration of virtual machines,” in Proceedings of the 2nd

Symposium on Networked Systems Design and Implementation, May 2005, pp.

273–286.

[145] L. Grit, D. Irwin, A. Yumerefendi, and J. S. Chase, “Virtual machine hosting

for networked clusters: Building the foundations for autonomic orchestration,”

in Proceedings of the 1st International Workshop on Virtualization Technology in

Distributed Computing, Nov. 2006.

[146] L. Grit, D. Irwin, V. Marupadi, P. Shivam, A. Yumerefendi, J. S.

Chase, and J. Albrecht, “Harnessing virtual machine resource control

for job management,” in Proceedings of the 1st Workshop on System-level

Virtualization for High Performance Computing, Mar. 2007. [Online]. Available:

http://www.csm.ornl.gov/srt/hpcvirt07/

[147] M. McNett, D. Gupta, A. M. Vahdat, and G. M. Voelker, “Usher: An extensible

framework for managing clusters of virtual machines,” in Proceedings of the 21st

Large Installation System Administration Conference, Nov. 2007, pp. 167–181.

[Online]. Available: http://www.usenix.org/event/lisa07/tech/full_papers/

[148] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff,

and D. Zagorodnov, “The Eucalyptus open-source cloud-computing system,”

in Proceedings of the Conference on Cloud Computing and Its Applications, Oct.

2008. [Online]. Available: http://www.cca08.org/papers.php

169

http://www.csm.ornl.gov/srt/hpcvirt07/
http://www.usenix.org/event/lisa07/tech/full_papers/
http://www.cca08.org/papers.php

[149] “VirtualCenter.” [Online]. Available: http://www.vmware.com/products/vi/vc

[150] “Citric XenServer enterprise edition.” [Online]. Available: http://www.xensource.

com/products/Pages/XenEnterprise.aspx

[151] C. B. Lee, Y. Schwartzman, J. Hardy, and A. E. Snavely, “Are user runtime estimates

inherently inaccurate?” in Proceedings of the 10th International Workshop on Job

Scheduling Strategies for Parallel Processing, ser. Lecture Notes in Computer

Science, D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn, Eds. Springer, Jun.

2004, vol. 3277, pp. 253–263.

[152] J. Rolia, L. Cherkasova, M. Arlitt, and A. Andrzejak, “A capacity management

service for resource pools,” in Proceedings of the 5th International Workshop on

Software and Performance, 2005, pp. 229–237.

[153] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, and T. Wood, “Agile dynamic

provisioning of multi-tier internet applications,” ACM Transactions on Autonomous

and Adaptive Systems, vol. 3, no. 1, pp. 1–39, 2008.

[154] T. Wood, L. Cherkasova, K. Ozonat, and P. Shenoy, “Profiling and

modeling resource usage of virtualized applications,” in Proceedings of the 9th

ACM/IFIP/USENIX Middleware Conference, Dec. 2008, pp. 366–387.

[155] P. Pradhan, R. Tewari, S. Sahu, A. Chandra, and P. Shenoy, “An observation-

based approach towards self-managing web servers,” in Proceedings of the 10th

International Workshop on Quality of Service, May 2002.

[156] D. Gupta, R. Gardner, and L. Cherkasova, “XenMon: QoS monitoring and

performance profiling tool,” Hewlett-Packard Labs, Tech. Rep. HPL-2005-187,

2005.

170

http://www.vmware.com/products/vi/vc
http://www.xensource.com/products/Pages/XenEnterprise.aspx
http://www.xensource.com/products/Pages/XenEnterprise.aspx

[157] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Antfarm: Tracking

processes in a virtual machine environment,” in Proceedings of the 2006 USENIX

Annual Technical Conference. USENIX, May/Jun. 2006, pp. 1–14.

[158] ——, “Geiger: Monitoring the buffer cache in a virtual machine environment,”

in Proceedings of the 12th International Conference on Architectural Support for

Programming Languages and Operating Systems. ACM Press, Oct. 2006, pp.

14–24.

[159] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson, “An application of bin-packing

to multiprocessor scheduling,” SIAM Journal on Computing, vol. 7, pp. 1–17, 1978.

[160] M. Bichler, T. Setzer, and B. Speitkamp, “Capacity planning for virtualized

servers,” in Proceedings of the 16th Annual Workshop on Information Technologies

& Systems, 2006. [Online]. Available: http://papers.ssrn.com/sol3/JELJOUR_

Results.cfm?form_name=journalbrowse&journal_id=1015620

[161] N. Bansal, A. Caprara, and M. Sviridenko, “Improved approximation algorithms for

multidimensional bin packing problems,” in Proceedings of the 47th Annual IEEE

Symposium on Foundations of Computer Science. IEEE Computer Society Press,

Oct. 2006, pp. 697–708.

[162] J. Csirik, J. B. G. Frenk, M. Labbe, and S. Zhang, “On multidimensional vector bin

packing,” Acta Cybernetica, vol. 9, no. 4, pp. 361–369, 1990.

[163] B. T. Han, G. Diehr, and J. S. Cook, “Multiple-type, two-dimensional bin packing

problems: Applications and algorithms,” Annals of Operations Research, vol. 50,

no. 1, pp. 239–261, 1994.

[164] L. T. Kou and G. Markowsky, “Multidimensional bin packing algorithms,” IBM

Journal of Research and Development, vol. 21, no. 5, pp. 443–448, 1977.

171

http://papers.ssrn.com/sol3/JELJOUR_Results.cfm?form_name=journalbrowse&journal_id=1015620
http://papers.ssrn.com/sol3/JELJOUR_Results.cfm?form_name=journalbrowse&journal_id=1015620

[165] W. J. Leinberger, V. Kumar, and G. Karypis, “Job scheduling in the presence of

multiple resource requirements,” University of Minnesota Department of Computer

Science and Engineering, Tech. Rep. 99-025, May 1999.

[166] W. J. Leinberger, G. Karypis, and V. Kumar, “Multi-capacity bin packing algorithms

with applications to job scheduling under multiple constraints,” in Proceedings of

the 1999 International Conference on Parallel Processing, Sep. 1999, pp. 404–412.

[167] W. J. Leinberger, G. Karypis, V. Kumar, and R. Biswas, “Load balancing across near-

homogeneous multi-resource servers,” in Proceedings of the 9th Heterogeneous

Computing Workshop, May 2000, pp. 60–71.

[168] W. J. Leinberger, “Scheduling heuristics for improved utilization in multi-resource

parallel systems,” Ph.D. Dissertation, University of Minnesota, Oct. 2001.

[169] K. Maruyama, S. K. Chang, and D. T. Tang, “A general packing algorithm

for multidimensional resource requirements,” International Journal of Parallel

Programming, vol. 6, no. 2, pp. 131–149, 1977.

[170] E. G. Coffman, Jr. and G. S. Lueker, “Approximation algorithms for extensible bin

packing,” Journal of Scheduling, vol. 9, no. 1, pp. 63–69, 2006.

[171] P. Dell’Olmo, H. Kellerer, M. G. Speranza, and Z. Tuza, “A 13/12 approximation

algorithm for bin packing with extendable bins,” Information Processing Letters,

vol. 65, no. 5, pp. 229–233, 1998.

[172] L. Epstein, “Bin stretching revisited,” Acta Informatica, vol. 39, no. 2, pp. 97–117,

2003.

[173] ——, “On variable-sized vector packing,” Acta Cybernetica, vol. 16, pp. 47–56,

2003.

172

[174] M. N. Garofalakis and Y. E. Ioannidis, “Parallel query scheduling and optimization

with time- and space-shared resources,” in Proceedings of the 23rd International

Conference on Very Large Data Bases, Aug. 1997, pp. 296–305.

[175] M. R. Garey and D. S. Johnson, Computers and Intractability, a Guide to the

Theory of NP-Completeness. New York, USA: W.H. Freeman and Company,

1979.

[176] N. Roy, J. S. Kinnebrew, N. Shankaran, G. Biswas, and D. C. Schmidt, “Toward

effective multi-capacity resource allocation in distributed real-time and embedded

systems,” in Proceedings of the 11th IEEE International Symposium on Object-

Oriented Real-Time Distributed Computing, May 2008, pp. 124–128.

[177] W. Fernandez de la Vega and G. S. Lueker, “Bin packing can be solved within 1 + ε

in linear time,” Combinatorica, vol. 1, no. 4, pp. 349–355, 1981.

[178] C. Chekuri and S. Khanna, “On multi-dimensional packing problems,” SIAM

Journal on Computing, vol. 33, no. 4, pp. 837–851, 2004.

[179] A. Caprara and P. Toth, “Lower bounds and algorithms for the 2-dimensional vector

packing problem,” Discrete Applied Mathematics, vol. 111, no. 3, pp. 231–262,

2001.

[180] F. C. R. Spieksma, “A branch-and-bound algorithm for the two-dimensional vector

packing problem,” Computers and Operations Research, vol. 21, no. 1, pp. 19–25,

1994.

[181] H. Kellerer and V. Kotov, “An approximation algorithm with absolute worst-case

performance ratio 2 for two-dimensional vector packing,” Operations Research

Letters, vol. 31, no. 1, pp. 35–41, 2003.

173

[182] H. Shachnai and T. Tamir, “Approximation schemes for generalized 2-dimensional

vector packing with application to data placement,” in Proceedings of the

6th International Workshop on Approximation Algorithms for Combinatorial

Optimization Problems and the 7th International Workshop on Randomization and

Approximation Techniques in Computer Science, ser. Lecture Notes in Computer

Science, S. Arora, K. Jansen, J. D. P. Rolim, and A. Sahai, Eds. Springer, Aug.

2003, vol. 2764, pp. 165–177.

[183] J. Gueyoung, K. Joshi, and M. Hiltunen, “Performance aware regeneration in

virtualized multitier applications,” in Proceedings of Proactive Failure Avoidance

Recovery and Maintenance (PFARM), Jun. 2009.

[184] M. Stillwell, D. Schanzenbach, F. Vivien, and H. Casanova, “Resource allocation

using virtual clusters,” University of Hawai‘i at Mānoa Department of Information

and Computer Sciences, Tech. Rep. ICS2008-09-01, Sep. 2008. [Online]. Available:

http://www.ics.hawaii.edu/research/tech-reports/ics2008-09-15.pdf

[185] ——, “Resource allocation using virtual clusters,” in Proceedings of the 9th IEEE

International Symposium on Cluster Computing and the Grid. IEEE Computer

Society Press, May 2009, pp. 260–267, for a more detailed version, see [184].

[186] L. Marchal, Y. Yang, H. Casanova, and Y. Robert, “Steady-state scheduling of

multiple divisible load applications on wide-area distributed computing platforms,”

International Journal of High Performance Computing Applications, vol. 20, no. 3,

pp. 365–381, 2006.

[187] A. S. Shulz and M. Skutella, “Scheduling unrelated machines by randomized

rounding,” SIAM Journal on Discrete Mathematics, vol. 15, no. 4, pp. 450–469,

2002.

174

http://www.ics.hawaii.edu/research/tech-reports/ics2008-09-15.pdf

[188] “GAlib: A C++ library of genetic algorithm components.” [Online]. Available:

http://lancet.mit.edu/ga/

[189] “CPLEX.” [Online]. Available: http://www.ilog.com/products/cplex/

[190] M. Stillwell, D. Schanzenbach, F. Vivien, and H. Casanova, “Resource allocation

algorithms for virtualized service hosting platforms,” Journal of Parallel and

Distributed Computing (JPDC), vol. 70, no. 9, pp. 962–974, 2010.

[191] M. A. Bender, S. Muthukrishnan, and R. Rajaraman, “Approximation algorithms

for average stretch scheduling,” Journal of Scheduling, vol. 7, no. 3, pp. 195–222,

2004.

[192] S. Muthukrishnan, R. Rajaraman, A. Shaheen, and J. Gehrke, “Online scheduling

to minimize average stretch,” in Proceedings of the 40th Annual Symposium on

Foundations of Computer Science. IEEE Computer Society Press, Oct. 1999, pp.

433–443.

[193] S. Albers, “Better bounds for online scheduling,” SIAM Journal on Computing,

vol. 29, no. 2, pp. 459–473, 1999.

[194] Z. Ivković and E. L. Lloyd, “Fully dynamic algorithms for bin packing: Being

(mostly) myopic helps,” SIAM Journal on Computing, vol. 28, no. 2, pp. 574–611,

1999.

[195] Y. Azar, A. Z. Broder, and A. R. Karlin, “On-line load balancing,” in Proceedings

of the 33rd Annual Symposium on Foundations of Computer Science, Oct. 1992, pp.

218–225.

175

http://lancet.mit.edu/ga/
http://www.ilog.com/products/cplex/

[196] Y. Azar, B. Kalyanasundaram, S. Plotkin, K. R. Pruhs, and O. Waarts, “On-line load

balancing of temporary tasks,” Journal of Algorithms, vol. 22, no. 1, pp. 93–110,

1997.

[197] J. Edmonds, “Scheduling in the dark,” in Proceedings of the 31st ACM Symposium

on Theory of Computing, May 1999, pp. 179–188.

[198] N. Bansal, K. Dhamdhere, J. Könemann, and A. Sinha, “Non-clairvoyant scheduling

for minimizing mean slowdown,” Algorithmica, vol. 40, no. 4, pp. 305–318, 2004.

[199] D. P. Bertsekas and R. Gallager, Data Networks, 2nd ed. Prentice Hall, 1992.

[200] S. Cochrane, K. Kutzer, and L. McIntosh, “Solving the HPC I/O bottleneck: SunTM

LustreTM storage system,” Sun BluePrintsTM Online, Sun Microsystems, Apr. 2009.

[201] A. Sandgren, D. G. Feitelson, and M. Jack, “The HPC2N log,” 2006. [Online].

Available: http://www.cs.huji.ac.il/labs/parallel/workload/l_hpc2n/index.html

[202] D. G. Feitelson and D. Tsafrir, “Workload sanitation for performance evaluation,” in

Proceedings of the 2006 IEEE International Symposium on Performance Analysis

of Systems and Software, Mar. 2006, pp. 221–230.

[203] U. Lublin and D. G. Feitelson, “The workload on parallel supercomputers: Modeling

the characteristics of rigid jobs,” Journal of Parallel and Distributed Computing,

vol. 63, no. 11, 2003.

[204] D. G. Feitelson and L. Rudolph, “Metrics and benchmarking for parallel job

scheduling,” in Proceedings of the 4th Workshop on Job Scheduling Strategies for

Parallel Processing, ser. Lecture Notes in Computer Science, D. G. Feitelson and

L. Rudolph, Eds. Springer, Mar. 1998, vol. 1459, pp. 1–24.

176

http://www.cs.huji.ac.il/labs/parallel/workload/l_hpc2n/index.html

[205] V. Lo, J. Mache, and K. Windisch, “A comparative study of real workload traces and

synthetic workload models for parallel job scheduling,” in Proceedings of the 4th

Workshop on Job Scheduling Strategies for Parallel Processing, ser. Lecture Notes

in Computer Science, D. G. Feitelson and L. Rudolph, Eds. Springer, Mar. 1998,

vol. 1459, pp. 25–46.

[206] E. Frachtenberg and D. G. Feitelson, “Pitfalls in parallel job scheduling evaluation,”

in Proceedings of the 11th International Workshop on Job Scheduling Strategies

for Parallel Processing, ser. Lecture Notes in Computer Science, D. G. Feitelson,

E. Frachtenberg, L. Rudolph, and U. Schwiegelshohn, Eds. Springer, Jun. 2005,

vol. 3834, pp. 257–282.

[207] D. Tsafrir and D. G. Feitelson, “Instability in parallel job scheduling simulation:

The role of workload flurries,” in Proceedings of the 20th International Parallel and

Distributed Processing Symposium, Apr. 2006.

[208] M. Stillwell, F. Vivien, and H. Casanova, “Dynamic fractional resource scheduling

for HPC workloads,” in Proceedings of the 24th International Parallel and

Distributed Processing Symposium, Apr. 2010.

[209] ——, “Fine-grain dynamic resource allocation vs. batch scheduling,” IEEE

Transactions on Parallel and Distributed Systems, submitted for publication.

[210] “Usher clients.” [Online]. Available: http://usher.ucsd.edu/trac/wiki/UsherClients

[211] “Usher plugins.” [Online]. Available: http://usher.ucsd.edu/trac/wiki/UsherPlugins

[212] “Usher events.” [Online]. Available: http://usher.ucsd.edu/trac/wiki/

UsherDevelopment#UsherEvents

[213] “cpulimit.” [Online]. Available: http://cpulimit.sourceforge.net/

177

http://usher.ucsd.edu/trac/wiki/UsherClients
http://usher.ucsd.edu/trac/wiki/UsherPlugins
http://usher.ucsd.edu/trac/wiki/UsherDevelopment#UsherEvents
http://usher.ucsd.edu/trac/wiki/UsherDevelopment#UsherEvents
http://cpulimit.sourceforge.net/

[214] N. Bansal, T. Kimbrel, and K. R. Pruhs, “Dynamic speed scaling to manage

energy and temperature,” in Proceedings of the 45th Annual IEEE Symposium on

Foundations of Computer Science. IEEE Computer Society Press, Oct. 2004, pp.

520–529.

[215] D. J. Bradley, R. E. Harper, and S. W. Hunter, “Workload-based power management

for parallel computer systems,” IBM Journal of Research and Development, vol. 47,

no. 5–6, pp. 703–718, 2003.

[216] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and R. P. Doyle,

“Managing energy and server resources in hosting centers,” in Proceedings of the

18th ACM Symposium on Operating Systems Principles, Oct. 2001, pp. 103–116.

[217] G. Sabin and P. Sadayappan, “Unfairness metrics for space-sharing parallel job

schedulers,” in Proceedings of the 11th International Workshop on Job Scheduling

Strategies for Parallel Processing, ser. Lecture Notes in Computer Science, D. G.

Feitelson, E. Frachtenberg, L. Rudolph, and U. Schwiegelshohn, Eds. Springer,

Jun. 2005, vol. 3834, pp. 238–256.

[218] L. Barsanti and A. C. Sodan, “Adaptive job scheduling strategies via predictive

job resource allocation,” in Proceedings of the 12th International Workshop on

Job Scheduling Strategies for Parallel Processing, ser. Lecture Notes in Computer

Science, E. Frachtenberg and U. Schwiegelshohn, Eds. Springer, Jun. 2006, vol.

4376, pp. 115–140.

[219] “RUBBoS: Bulletin board benchmark.” [Online]. Available: http://jmob.ow2.org/

rubbos.html

[220] “RUBiS: Rice University bidding system.” [Online]. Available: http://rubis.ow2.org/

178

http://jmob.ow2.org/rubbos.html
http://jmob.ow2.org/rubbos.html
http://rubis.ow2.org/

[221] “TPC-W: a transactional web e-Commerce benchmark.” [Online]. Available:

http://www.tpc.org/tpcw/

[222] D. Bailey, T. Harris, W. Saphir, R. van der Wijngaart, A. Woo,

and M. Yarrow, “The NAS parallel benchmarks 2.0,” NASA Advanced

Supercomputing Division, Tech. Rep. NAS-95-020, 1995. [Online]. Available:

http://www.nas.nasa.gov/News/Techreports/1995/PDF/nas-95-020.pdf

179

http://www.tpc.org/tpcw/
http://www.nas.nasa.gov/News/Techreports/1995/PDF/nas-95-020.pdf

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Introduction
	Problem Statement
	Approach
	Organization

	Current Approaches and Their Limitations
	Scientific and HPC Workloads
	Batch Scheduling
	Gang Scheduling
	Co-Scheduling
	Discussion

	Service Hosting Workloads
	Conclusion

	Dynamic Fractional Resource Scheduling
	The DFRS Approach
	System Overview
	Optimization Objective Function
	Off-line, On-line, and Adaptation Scenarios

	Practical Considerations
	Virtual Machine Technology
	Discovery of Resource Requirements and Needs

	Conclusion

	The Off-line Problem
	Problem Definition
	Theoretical Background, Complexity, and (In-)Approximability
	Mixed-Integer Linear Program Formulation

	Algorithms
	Exact Solution
	Greedy Algorithms
	Relaxed LP Solution and its Uses
	Genetic Algorithm
	Vector Packing Algorithms

	Experimental Methodology
	Experimental Results
	Greedy Algorithms
	LP-based Algorithms
	Genetic Algorithm
	Vector Packing Algorithms
	Impact of Instance Parameters
	Opt vs. LPBound
	Optimizing Average Yield

	Multi-VM jobs
	Data-parallel jobs
	Multi-Instance jobs

	Conclusion

	The On-line Problem
	Problem Definition
	Related Work
	Theoretical Difficulty of Maximum Stretch Minimization

	Algorithms
	Greedy Task Mapping
	Task Mapping as Vector Packing
	Prioritizing Jobs
	When to Compute New Task Mappings
	Resource Allocation
	Optimizing the Stretch Directly

	Experimental Methodology
	Discrete Event Simulator
	Workloads

	Experimental Results
	Conclusion

	The Adaptation Problem
	Bandwidth Consumption for Previous Results
	Problem Definition
	Computational Complexity
	MILP Formulation

	Reducing Bandwidth Consumption
	Conclusion

	Feasibility Study of DFRS in Practice
	Platform Description
	Resource Allocation and Discovery
	VM Caps and Weights in Xen
	Algorithms

	Experimental Methodology
	Experimental Results
	Conclusion

	Conclusion
	Contribution of this Dissertation
	Highlights of Scientific Findings
	Future Work
	Algorithmic and Theoretical Extensions
	Development and Evaluation of a Practical System

	List of Publications
	Additional Tables
	Bibliography

