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Abstract  

Germline BAP1 mutations predispose to several cancers, in particular malignant 

mesothelioma. Mesothelioma is an aggressive malignancy generally associated 

to professional exposure to asbestos. However, to date we found that none of the 

mesothelioma patients carrying germline BAP1 mutations were professionally 

exposed to asbestos. We hypothesized that germline BAP1 mutations might 

influence the asbestos-induced inflammatory response that is linked to asbestos 

carcinogenesis, thereby increasing the risk of developing mesothelioma after 

minimal exposure. Using a BAP1+/- mouse model, we found that, compared to 

their wild type littermates, BAP1+/- mice exposed to low-dose asbestos fibers 

showed significant alterations of the peritoneal inflammatory response, including 

significantly higher levels of pro-tumorigenic alternatively polarized M2 

macrophages, and lower levels of several chemokines and cytokines. Consistent 

with these data, BAP1+/- mice had a significantly higher incidence of 

mesothelioma after exposure to very low doses of asbestos, doses that rarely 

induced mesothelioma in wild type mice. Our findings suggest that minimal 

exposure to carcinogenic fibers may significantly increase the risk of malignant 

mesothelioma in genetically predisposed individuals carrying germline BAP1 

mutations, possibly via alterations of the inflammatory response. 
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Introduction 

Malignant mesothelioma (MM) is a deadly cancer usually localized to the pleural 

and peritoneal linings1. In the US and in the UK, ~3 200 and ~2 500 individuals 

are diagnosed and die with MM each year, respectively2, 3. About 60-70% of 

mesotheliomas have been associated to exposure to carcinogenic mineral fibers, 

mainly asbestos1. Nevertheless, the risk of developing MM in high-risk cohorts 

professionally exposed to asbestos is ~5%, suggesting that other factors 

contribute to MM pathogenesis1. Mineral fibers promote mesothelioma inducing a 

chronic inflammatory reaction: on one hand this results in the production of 

mutagenic oxygen and nitrogen radicals, and on the other hand it provides 

damaged mesothelial cells with important survival signals4. Although chronic 

inflammation has been associated with the pathogenesis of several cancers, 

competent inflammatory cells also provide immunosurveillance, the host’s 

protection process against nascent transformed cells expressing altered 

antigens5. In fact, different functional and phenotypical cell subtypes are 

associated to anti-tumoral or pro-tumoral immunity6. Macrophages (MΦ) can 

undergo different types of polarization based on the kind and levels of cytokines 

present in the local tissue environment. Classically activated (M1) MΦ have a 

pro-inflammatory anti-tumoral phenotype, while alternatively activated (M2) MΦ 

are involved in immunosuppression and tissue repair7. Tumor-associated 

macrophages (TAM) represent one of the major populations of immune cells 

infiltrating tumors, and usually acquire functional characteristics similar to M2 

MΦ8. The ratio between M2-like and M1-like TAM has prognostic value in MM 



 5

and other cancers, with the former usually associated with a worse prognosis9-11. 

However, the contribution of different MΦ subpopulations to the initiation of 

inflammation-induced cancers is still unclear. MM has a large number of TAM, 

suggesting that they play an important role in this malignancy12.  

Recently, we identified germline mutations in the tumor suppressor gene BRCA1 

associated protein-1 (BAP1) as causative of a novel hereditary cancer syndrome 

characterized by a very high risk of MM, uveal and cutaneous melanoma, several 

other malignancies, and characteristic benign melanocytic tumors we named 

MBAITs13-15. The penetrance of the BAP1 cancer syndrome is ~100%, and 

several patients carrying germline BAP1 mutations develop multiple cancers16. 

Notably, none of the germline BAP1 heterozygous patients who developed MM 

reported professional exposure to asbestos fibers13, 16, suggesting that either 

these MMs were not caused by asbestos, or that minimal amounts of asbestos – 

as in the case of some indoor exposure17 or naturally occurring outdoor 

environmental exposure18 – may be sufficient to cause MM in germline BAP1 

mutation carriers. Here, we experimentally tested in a BAP1+/- murine model 

whether germline BAP1 heterozygosity would result in alterations of the 

asbestos-induced inflammatory response, and whether low doses of asbestos 

might be sufficient to cause MM. 

We used constitutive BAP1+/- mice (C57BL/6 background) generated by breeding 

mice with loxP sites flanking BAP1 exons 4 and 5 with mice expressing a 

constitutive general Cre deleter19. While homozygous BAP1 deficiency in mice 

results in embryonic lethality19, BAP1+/- mice are viable and healthy. Compared to 
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wild type littermates, BAP1+/- mice expressed about half the amount of BAP1 

protein in relevant tissues (Suppl. Fig 1).  

In our experiments, we used 10-12 weeks old mice of either sex equally 

distributed in the experimental groups using a computational random number 

generator. All the experiments were approved by the University of Hawaiʻi 

Institutional Animal Care and Use Committee (IACUC). Unless otherwise 

specified, results are presented as median [interquartile range].  

Results 

First, we exposed BAP1+/- mice and BAP1+/+ for five weeks to receive injections 

with glass beads or a low amount of crocidolite asbestos fibers (0.05 mg/week). 

After performing a peritoneal lavage, we counted the total number of peritoneal 

cells and determined via flow cytometry the percentage of total and subset-

specific leukocytes. CD45+ leukocytes represented 95-99% of the total cells 

recovered in each group. In the glass control groups, macrophages and B cells 

represented the most abundant population, regardless of genotype (Table 1). 

Upon exposure to low-dose crocidolite fibers, the cellular inflammatory response 

was largely overlapping in mice with either genotype. We observed a significant 

increase in total number of leukocytes and in the relative percentage of 

neutrophils, and, at the same time, a significant decrease in the percentage of B 

cells and macrophages (Table 1). Further characterization of the cell types 

revealed that exposure to crocidolite fibers induced significant alterations in 

macrophages polarization in BAP1+/- mice (Fig. 1a). In the macrophages from 

BAP1+/- mice exposed to asbestos fibers, the normalized mean fluorescence 



 7

intensity (MFI) for CD206 (marker of M2 macrophages) was significantly higher 

compared to controls (197.1% [160.6-256.8] vs 163.1% [125.4-186.7], P < 0.05), 

whereas the normalized MFI for CD86 (marker of M1 macrophages) was 

significantly lower compared to controls (74.6% [57.6-90.3] vs 95.8% [77.4-

109.1], P < 0.05) (Fig. 1b). Accordingly, the percentage of M1 macrophages 

(CD206- CD86+ cells) was significantly lower in BAP1+/- mice (43.2% [28.9-44.9] 

vs 67.3% [46.7-78.2] of total macrophages, P < 0.05). On the other hand, the 

percentage of M2 macrophages (defined as CD206+ CD86- cells) was 

significantly higher in BAP1+/- mice compared to wild type littermates (3.8% [2.1-

6.8] vs 1.2% [0.5-3.6%] of total macrophages, P < 0.05). Double positive 

(CD206+ CD86+) macrophages, which represent a transition state from M1 to 

M2, were also more represented in BAP1+/- mice compared to wild type 

littermates (40.0% [30.7-47.0] vs 26.0% [13.3-37.6] of total macrophages, P < 

0.05) (Fig. 1c). Moreover, the M2/M1 ratio (overall percentage of CD206+ cells 

divided by overall percentage of CD86+ cells) was significantly higher in 

asbestos-exposed BAP1+/- mice compared to controls (0.54 [0.48-0.66] vs 0.36 

[0.16-0.56], P < 0.05) (Fig. 1d).  

Next, we compared the profiles of cytokines and chemokines present in 

peritoneal lavages of these same mice. Compared to wild type littermates, the 

levels of monocyte chemoattractant protein-1 (MCP-1) were significantly lower in 

BAP1+/- mice exposed to glass (2.5 pg/mL [2.3-5.2] vs 33.6 pg/mL [6.5-51.7], P < 

0.01) and in BAP1+/- mice exposed to asbestos (52.4 pg/mL [4.7-113.4] vs 178.5 

pg/mL [102.9-373.2], P < 0.05) (Fig. 2a). Analogously, compared to wild type 
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littermates, the levels of leukemia inhibitory factor (LIF) were significantly lower in 

the BAP1+/- mice exposed to glass (0.9 pg/mL [0.9-1.0] vs 6.9 pg/mL [1.1-13.5], P 

< 0.01), and in the BAP1+/- mice exposed to asbestos (78.2 pg/mL [41.0-134.4] 

vs 201.9 pg/mL [116.9-274.8], P < 0.05) (Fig. 2b). Moreover, lavages from 

BAP1+/- mice exposed to asbestos contained significantly lower amounts of 

keratinocyte-derived chemokine (KC) compared to wild type littermates (253.4 

pg/mL [19.5-557.1] vs 675.3 pg/mL [469.8-1741.5], P < 0.05) (Fig. 2c). We also 

observed that eotaxin levels were significantly lower in BAP1+/- mice compared to 

wild type littermates in the glass exposed control group (1.73 ng/mL [1.11-2.06] 

vs 3.27 ng/mL [1.94-3.92], P < 0.05); the same trend, although non-significant, 

was retained following asbestos exposure (3.33 ng/mL [2.56-4.33] vs 4.70 ng/mL 

[3.13-6.30], P = 0.28) (Fig. 2d). Levels of IL-6 also differed between genotypes 

upon asbestos exposure, though this difference did not reach nominal 

significance (P = 0.08) (Fig. 2e). Both IL-6 and LIF belong to the IL-6 family of 

cytokines, and in our samples their levels significantly correlated (R2 = 0.62, P < 

0.0001) (Fig. 2f). Finally, levels of G-CSF, IL-5, IP-10, and VEGF significantly 

increased after asbestos exposure, independently of the genotype (Suppl. Fig 

2a-d). Levels of several other cytokines were below the lower limit of detection of 

our assay. Together, these results indicated that germline BAP1 heterozygosity 

significantly influenced the peritoneal inflammatory response upon asbestos 

exposure. 

Therefore, we sought to experimentally study the relationship between asbestos 

dosage and MM carcinogenesis in the context of BAP1 heterozygosis. Based on 
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previous publications on murine models20, 21, and on our own experience 

(Carbone, unpublished observations), doses of asbestos ranging from 3 to 5 mg 

induce MM in ~20-40% of exposed animals, while 0.5 mg of asbestos induce MM 

in 0-10% of exposed animals. BAP1+/+ mice and BAP1+/- mice received ten 

weekly injections of 0.5 mg of crocidolite asbestos fibers (total of 5 mg, referred 

to as “standard-dose” as it is the dose most commonly used to induced MM in 

rodents), 0.05 mg of crocidolite fibers (total of 0.5 mg, referred to as “low-dose”), 

or 0.5 mg of inert glass beads (total of 5 mg, negative control). During the 13 

months of follow up after the last injection, we did not observe MM or any other 

spontaneous tumor in the glass control groups. In mice exposed to asbestos 

fibers, MM was the only malignancy observed. In the low-dose group, crocidolite 

fibers caused pathologically confirmed MM in 9/25 (36.0%) BAP1+/- mice 

compared to 5/50 (10.0%) BAP1+/+ mice (P = 0.010). Similarly, in the standard-

dose group, MM was diagnosed in 15/25 (60.0%) BAP1+/- mice compared to 

14/50 (28.0%) BAP1+/+ mice (P = 0.011) (Fig. 3a). Immunohistochemical staining 

of the tumors revealed expression of the mesothelial marker WT1 (Fig. 3b), 

supporting the histologic diagnosis of MM. In sporadic human MM, somatic BAP1 

inactivation is one of the most frequent events, and it has been reported in about 

40-60% of the cases13, 22-27. Consistent with these human data, BAP1 nuclear 

staining was absent in all MM analyzed arising from BAP1+/- mice and in 66.7% 

from BAP1+/+ mice (Fig. 3c). With regard to histology, all the MMs we observed in 

human germline BAP1 mutation carriers were epithelioid13. In sporadic human 

MMs, several groups have reported that mutations of BAP1 occur primarily in 
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epithelioid MM24, 25, although this is not unequivocal28. All the MMs we observed 

in our BAP1+/- and BAP1+/+ mice displayed, totally or partially, sarcomatoid 

features. This is likely due to interspecies differences, since sarcomatoid 

features, contrary to what happens in human MMs, were also prevalent in MMs 

arising from other independent murine models of asbestos-induced MM29, 30. 

BAP1+/- mice had also a significantly shorter survival, i.e. life-span, compared to 

BAP1+/+ mice, both in the low-dose (P < 0.01) and the standard-dose group (P < 

0.001) (Fig. 3d).    

Discussion 

Taken together, our results showed that germline BAP1 heterozygosity is 

associated with a significantly altered peritoneal inflammatory response upon 

exposure to asbestos fibers and to an increased risk of MM following exposure to 

minimal amounts of asbestos that rarely cause MM in wild type animals. BAP1 is 

a nuclear deubiquitinating enzyme and an important epigenetic regulator via 

deubiquitination of histone H2A31. Originally discovered in 199832, it has several 

cell-intrinsic tumor suppressive functions, such as regulation of gene 

transcription33, cell cycle and replication34-36, and DNA damage response37, 38. 

BAP1 knockdown in MM cell lines has been paradoxically associated to a 

decreased proliferation, with an accumulation of cells in the S phase of the cell 

cycle22, suggesting that BAP1 loss might promote tumorigenesis inducing a 

delayed, but more permissive, G1/S checkpoint22. Heterozygous germline 

mutations of other important tumor suppressor genes, such as BRCA1, 

CDKN2A, and RB1, increase risk of cancer specifically to one or very few 
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anatomical sites39. One of the few tumor suppressor genes whose germline 

heterozygosity, similar to BAP1, is associated to increased risk of cancer to 

several sites is TP53, which encodes p5339. Besides its well-known intrinsic 

functions, recently a novel non-cell-autonomous tumor suppressor effect of p53 

has been described, via regulation of macrophage polarization and cytokine 

release40. Our results suggest that germline BAP1 heterozygosity, similarly to 

TP53, influences in vivo macrophage polarization and cytokine release.  Indeed, 

BAP1+/- mice exposed to asbestos had significantly more M2-like pro-tumoral 

macrophages. Also, the chemokines MCP-1 and KC, and two cytokines of the IL-

6 family (IL-6 itself and LIF) are soluble mediators significantly reduced in BAP1+/- 

mice exposed to asbestos. MCP-1 and IL-6 have been reported to increase 

following asbestos exposure and have been linked to asbestos pathogenesis41, 

42. Our results support these findings and also suggest that this inflammatory 

response might be associated with increased immunosurveillance, since lower 

levels of these and other inflammatory mediators in BAP1+/- mice are associated 

with higher M2/M1 macrophage ratio and higher MM incidence following 

asbestos exposure. Interestingly, BAP1 has been recently showed to regulate 

the myeloid stem cell compartment via complex alterations of the transcriptional 

profile, possibly via its interaction with transcriptional co-regulators such as Host 

Cell Factor-1 (HCF-1) and Additional Sex Combs Like-1 (ASXL1)19.  

Altogether, our results suggest a novel, complex model of asbestos-induced MM 

pathogenesis, in which the chronic inflammatory response can have 

preferentially anti-tumoral or pro-tumoral roles, depending on the cellular and 
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soluble mediators involved. To explain the observed intra- and inter-familial 

variability of cancer types in germline BAP1 mutated carriers, we hypothesized 

that MM might be more prevalent in individuals/families exposed to low levels of 

asbestos15, levels that are not, or only marginally, carcinogenic for the population 

at large. Our results support our hypothesis, as we found that 36% of BAP1+/- 

mice exposed to low doses of asbestos developed MM, compared to 10% of wild 

type mice. Moreover, we found that MM is significantly more frequent in BAP1+/- 

mice exposed to standard doses of asbestos. This finding corroborates the 

recent results of Xu et al. that were obtained in an independent murine model29. 

Both studies found a shorter lifespan of asbestos exposed BAP1 heterozygous 

mice compared to wild type littermates, suggesting that BAP1+/- mice might 

develop MM at an earlier age compared to wild type littermates. Similarly, 

individuals carrying germline BAP1 mutations are diagnosed with MM at a much 

younger age compared to sporadic MM cases (mean age 55 years vs 72 years, 

respectively)16. Accordingly, although MMs in carriers of germline BAP1 

mutations are less aggressive and are associated with survivals from diagnosis 

of 5-10 years16, compared to an average of 1 year in sporadic MM patients, the 

former die at an earlier age compared to the latter. Survival from diagnosis could 

not be evaluated in our model, as per IACUC requirements, mice were 

euthanized at the first clinical evidences of disease.  

Mechanistically, Xu et al. suggest that the increased MM incidence in BAP1 

heterozygous mice was partially related to BAP1-dependent transcriptional 

regulation of the tumor suppressor retinoblastoma protein29. Our findings expand 
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what was previously reported by implicating novel tumor suppressor effects of 

BAP1 mediated via the microenvironment.  

Moreover, we discovered that BAP1+/- mice exposed to low doses of asbestos 

developed MMs at a similar rate as BAP1+/+ mice exposed to 10 times higher 

doses. Therefore, although it is not possible to directly compare the low-dose 

exposure in mice to indoor and/or outdoor environmental exposure in humans, 

our findings support our hypothesis that germline BAP1 heterozygosity increases 

susceptibility to the carcinogenic effects of low doses of asbestos.  

Based on our results, we suggest that prevention programs of MM in individuals 

carrying germline BAP1 mutations should focus on reducing exposure to even 

minimal sources of carcinogenic fibers, levels that are within the acceptable 

“safe” limits for the population at large (0.1 fibers/cc of air as an eight-hour time-

weighted average, as per US Occupational Safety & Health Administration 

standards43). Finally, while our model focuses on asbestos as a trigger, this novel 

non-cell-autonomous tumor suppressive function of BAP1 may not be restricted 

to the peritoneal compartment or to the asbestos stimulation, and may contribute 

to the large numbers and diverse types of tumors that arises in carriers of the 

BAP1 cancer syndrome. 
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Table 1. Major subpopulations of peritoneal leukocytes are not influenced 

by germline BAP1 heterozygosity. BAP1+/- mice (n = 7 per group)  and BAP1+/+ 

(n = 9 per group) were injected intraperitoneally every week for five weeks with 

0.05 mg of inert glass beads or crocidolite asbestos fibers, for a total dose of 

0.25 mg per mouse. Sample size was estimated hypothesizing a 60% difference 

in the levels of at least one cytokine. Full mineralogical characterization of 

crocidolite fibers used in these experiments was reported previously44. Next, 

mice were sacrificed by CO2 asphyxiation, and the abdominal cavity was washed 

with 5 ml of PBS. The peritoneal cells obtained were pelleted and supernatant 

was removed for later cytokine analysis. Cells were blindly characterized with the 

following antibodies: CD45  (leukocytes; anti-CD45-BV711, 563709, BD 

Biosciences), F4/80 (MΦ; anti-F4/80-AlexaFluor®488, MCA497A488T, AbD 

Serotec), Ly-6G (neutrophils; anti-Ly6G-BV421, 562737, BD Biosciences), CD3 

(T cells; anti-CD3-APC, 17-0032-80, eBioscience), and B220 (B cells; anti-B220-

PE, 561878, BD Biosciences). Comparisons between groups were calculated 

using Mann-Whitney U test for rank comparisons. Results are presented as 

median [interquartile range]. 
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Cells 
WT 
Glass 

WT 
Asb 

Het 
Glass 

Het 
Asb 

P value 

WT  
(G vs A) 

Het  
(G vs A) 

Glass 
(WT vs 
Het) 

Asb (WT 
vs Het) 

Total 
leukoc
ytes (× 
106) 

2.7 [1.3-
3.6]  

6.1 [3.5-
14.2]  

2.7 [1.3-
4.9]  

 8.5 [4.9-
12.7] 

< 0.01 < 0.05 ns ns 

Neut 
(%) 

1.8 [1.6-
2.4] 

13.0 [11.3-
16.4] 

1.1 [0.8-
2.2]  

10.4 [9.9-
16.6] 

< 0.0001 < 0.001 ns ns 

B cells 
(%) 

20.4 [17.5-
26.3] 

12.7 [9.9-
14.2] 

19.4 [17.8-
21.3] 

10.3 [8.6-
12.6] 

< 0.01 < 0.01 ns ns 

T cells 
(%) 

7.0 [5.1-
10.4] 

5.0 [3.8-
6.4] 

6.4 [4.1-
10.8] 

7.7 [4.3-
8.4] 

ns ns ns ns 

MΦ 
(%) 

33.4 [27.0-
38.5] 

21.3 [18.6-
27.5] 

24.2 [20.1-
45.2] 

19.2 [14.6-
22.8] 

< 0.01 < 0.05 ns ns 

 

Figure Legend 

Figure 1. MΦ polarization is altered in BAP1+/- mice exposed to low doses 

of asbestos fibers. Macrophages and macrophage subtypes were identified 

using a separate tube of peritoneal cells stained for general MΦ markers CD11b 

(anti-CD11b-Bv711, 563168, BD Biosciences) and F4/80, CD206 (M2 marker; 

anti-CD206-APC, 141707, BioLegend), and CD86 (M1 marker; anti-CD86-PE, 

561963, BD Biosciences). (a) Representative flow cytometry dot plot of 

peritoneal MΦ in BAP1+/- mice and wild type littermates after short-term treatment 

with glass beads or crocidolite asbestos. (b) Mean fluorescence intensities of 

CD86 and CD206. (c) Percentage of MΦ subpopulations: M1 (CD86+ CD206-), 

M2 (CD86- CD206+), Double positive (DP) (CD86+ CD206+). (d) M2/M1 ratio 

(overall percentage of CD206+ cells divided by overall percentage of CD86+ 

cells). Comparisons between heterozygous and wild-type groups were calculated 
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using Mann-Whitney U test for rank comparisons. * (P < 0.05). The experiment 

was replicated two times. 

 

Figure 2. Several cytokines and chemokines are differentially expressed in 

lavage from BAP1+/- mice.  

The supernatants recovered from the peritoneal lavages were concentrated 45-

60 times using Amicon Ultra Centrifuge Filters with a 3,000 Dalton cutoff. Levels 

of 32 cytokines and chemokines were detected in concentrated lavages using 

human cytokine multiplex kits (EMD Millipore Corporation, Billerica, MA). Levels 

of MCP-1 (a), LIF (b), KC (c), eotaxin (d) and IL-6 (e) in lavages from BAP1 wild 

type and heterozygous mice after short-term exposure to glass beads or 

crocidolite fibers. Comparisons between heterozygous and wild type groups were 

calculated using Mann-Whitney U test for rank comparisons. * (P < 0.05), ** (P < 

0.01)  (f) Correlation of IL-6 and LIF levels (both belonging to the IL-6 family of 

cytokines) calculated using linear regression. The experiment was replicated two 

times. 

 

Figure 3. BAP1+/- mice develop more MMs and have shorter survival 

compared to wild type littermates. Briefly, BAP1+/+ mice (n = 50 per group) and 

BAP1+/- mice (n = 25 per group) were injected intraperitoneally every week for 

ten weeks with 0.05 mg (low dose) or 0.5 mg (standard dose) of UICC 

crocidolite. 0.5 mg of glass beads were injected at the same schedule as control. 

Sample size was estimated to detect a difference in MM incidence between the 
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low-exposed groups ≥ 25%. Mice were monitored daily for clinical evidence of 

abdominal swelling, and euthanized in presence of respiratory distress, gait 

instability, unresponsiveness to pain stimuli, or when tumor burden was obvious. 

Upon detection of illness, mice were sacrificed by CO2 asphyxiation, and all the 

major organs were evaluated histologically. (a) MM incidence in BAP1+/- mice 

and wild type littermates after long-term exposure to glass beads or asbestos 

fibers (standard and low dose) was compared using Fisher’s exact test. * (P < 

0.05) (b) Formalin-fixed/paraffin-embedded samples were cut into 5 μm sections 

and stained with Hematoxylin and Eosin (H&E) according to standard procedure. 

The pathological diagnosis of mesothelioma was based on H&E staining and 

supported by WT1 nuclear staining in tumor cells. H&E and immunostainings 

were blindly interpreted by M.C and A.P., both US board specialized pathologists 

with expertise in human and animal mesotheliomas14, 45, 46 (c) Tumors were also 

stained with a rabbit polyclonal anti-BAP1 antibody to evaluate presence and 

localization of BAP1. (d) Survival curves of BAP1+/- mice and wild type littermates 

after long-term exposure to asbestos fibers (standard and low dose) were 

compared using log-rank (Mantel-Cox) test. . ** (P < 0.01), *** (P < 0.001). The 

experiment was performed one time. 

 

Figure S1. BAP1 protein levels in relevant tissues from heterozygous and 

wild type mice. 

BAP1 protein levels in peritoneal macrophages and mesothelial cells from 

heterozygous and wild type mice. Antibodies used are: rabbit anti-BAP1 
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(D7W7O; Cell Signaling Technology) and mouse anti-β-actin (C4; Santa Cruz 

Biotechnology). The experiment was replicated three times. 

 

Figure S2. Levels of other cytokines and chemokines are not differentially 

expressed.  

Material and methods are the same as Fig. 2. (a), G-CSF (b), VEGF (c), IL-5 (d) 

IP-10 in lavages from BAP1 wild type and heterozygous mice after short-term 

exposure to glass beads or crocidolite fibers. Comparisons between 

heterozygous and wild type groups were calculated using Mann-Whitney U test 

for rank comparisons. No statistically significant differences were observed. The 

experiment was replicated two times. 
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