
 

 

A COMPUTATIONAL INVESTIGATION OF 

RELATIONAL REASONING IN NONHUMAN ANIMALS 

 

A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE 
UNIVERSITY OF HAWAI‘I AT MᾹNOA IN PARTIAL FULFILLMENT 

OF THE REQUIREMENTS FOR THE DEGREE 
 

MASTER OF ARTS 

IN 

PSYCHOLOGY 

 

MAY 2012 

 

 

 

By 

Margeaux F. Ciraolo 

 

Thesis Committee: 

Leonidas Doumas, Chairperson 
Patricia Couvillon 

Scott Sinnett 
 

Keywords: cognition, animal cognition, computational model, relational reasoning 



 i 

Acknowledgements 

 I would like to acknowledge Drs. Patricia Couvillon, Leonidas Doumas, Brandy 

Fraizer, Scott Sinnett, and Catherine Sophian for their contributions in my continued 

development as a cognitive scientist and the development of this project. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 ii 

Dedication 

To my mother and father, Donna L. & Charles R. Ciraolo; Neal Ching; and the rest of my family. 

To Sif, who may not be able to reason relationally, but loves(Margeaux, Sif). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 iii 

Table of Contents 

TITLE PAGE 
Acknowledgements i 
List of tables iv 
List of figures v 
  
Introduction…………………………………………………………… 1 
     Relational Reasoning 6 
     Computational Models 8 
     Computational Models of Relational Reasoning 10 
     LISA/DORA Models of Relational Reasoning 14 
          i. Nature of representations 15 
          ii. Flow of control 16 
          iii. Relational learning 19 
  
Simulations………...…………………………………………………... 21 
     Simulation 1 – Lazareva et al. (2004) 21 
     Simulation 2 – Cook & Wasserman (2007) 25 
     Simulation 3 – Call & Tomasello (1999) 29 
  
General Discussion……………………………………………………. 33 
  
Future Research……………………………………………………….. 36 
     Predication 36 
     Comparison-Based Predication 37 
     Asynchrony of Firing 38 
     Refinement 39 
     Mapping 40 
  
Conclusion……………………………………………………………... 42 
  
Appendices……………………………………………………………... 44 
     Appendix A 44 
     Appendix B 45 
  
References……………………………………………………………… 50 
 

 

 

 

 



 iv 

List of Tables 

Table 1. Lazareva et al. (2004) Ordered Stimuli Proportions………….... 44 
Table 2. Lazareva et al. (2004) Unordered Stimuli Proportions……….... 44 
Table 3. Lazareva et al.  (2004) Simulation File Overview – Ordered….. 45 
Table 4. Lazareva et al. (2004) Simulation File Overview – Unordered... 46 
Table 5. Cook & Wasserman (2007) Simulation File Overview………... 47 
Table 6. Call & Tomasello (1999) Simulation File Overview…………... 49 
  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 v 

List of Figures 

Figure 1. LISAese Representation……………………………………… 15 
Figure 2. Synchrony of firing in LISA………………………..………… 17 
Figure 3. Lazareva et al. (2004) Simulation Results – Ordered………… 23 
Figure 4. Lazareva et al. (2004) Simulation Results – Unordered……… 23 
Figure 5. Cook & Wasserman (2007) Simulation Results……………… 27 
Figure 6. Call & Tomasello (1999) Simulation Results………………… 31 
  
  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 1 

Introduction 

Since Darwin (1859) suggested that all animals share a common ancestry, researchers 

have attempted to assess how the divergence between human and nonhuman animal biology and 

cognition came about. Animals have a large repertoire of physical and behavioral adaptations 

that have afforded them the ability to overcome myriad obstacles to their existence. On the 

behavioral level, these adaptations are as diverse as the species that exhibit them. One merely has 

to select an animal species at random and do a cursory investigation in order to find many 

complex behaviors which make that animal a perfect fit for the environment that it inhabits. 

However, it is possible that the high degree to which an animal is adapted to its environment may 

limit that animal’s ability to employ flexible behavior. For example, the digger wasp has a highly 

stereotypical set of behavioral steps for readying a nest. If any one of these steps is disrupted in 

the process of nest creation, the digger wasp will not alter its behavioral program, even if doing 

so would ensure the life of its offspring (Fabre, 1919). In short, the digger wasp lacks flexibility 

in its behavioral routine. Indeed, many animal species display rigidity in their behavior. Humans, 

on the other hand, appear to have much more control of their behavior as well as a flexibility that 

has allowed them to manipulate and change their environment. The mechanism that underlies 

this ability may be at the heart of what makes human and nonhuman animal cognition so 

qualitatively different.   

Humans are capable of manipulating their environment in such a way that they create art, 

science, math, and poetry. At different times, scientists have argued that complex tool use, 

grammatically structured language, causal-logical reasoning, and mental state attribution are 

what make human cognition “special.”  However, as researchers have examined what is involved 

in each of these phenomena, they have found compelling evidence that nonhuman animal 
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cognition may be harboring cognitive processes that initially seemed quite unique to humans  

(see, e.g., Lazareva et al., 2004; Gentner, T.Q., 2006; Cook & Wasserman, 2007). The key 

question then becomes: Are the behaviors documented in animal species and humans at all the 

same? At some level they must be, given that at one point humans shared a common ancestor 

with other animal species. In order to properly assess the degree to which human and nonhuman 

animal cognition is similar and different, one must establish how behavioral and cognitive 

changes occurred over time, then suggest a way to adequately study where those changes may 

have occurred in the shared history of nonhuman animals and humans, as well as propose an 

underlying mechanism that may account for the stark contrast between human and nonhuman 

animal cognition.  

Darwin (1859, 1871) began to address this question with the proposal of a process known 

as natural selection. Darwin asserted that all species have come to be as they are today through 

small changes over large periods of time, and that life is a struggle where any mutation that 

betters an individual’s probability of survival and subsequent reproduction will likely be passed 

down to its descendants. The adaptation that allows the cheetah to run so quickly began by some 

proto-cheetah having a mutation that made it just a little bit faster than rest of the members of its 

species, and over many generations and through the accumulation of many mutations, this speed 

became a unique attribute of that particular large cat species. This same logic can be applied to 

behavior; some proto-digger wasp possessed a mutation that compelled it to dig in the first place, 

and through the same processes that endowed the cheetah with its incredible speed, the complex 

nest creation sequence was instantiated and is thus inherited by all modern digger wasps. This is 

indeed an over-simplification of this process, but it is important to illustrate that the mechanism 
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that allows for physical adaptations is the same causal mechanism that allows for behavioral 

adaptations (Brown, 1975).  

Natural selection has resulted in the abundance of species alive today, and much 

(certainly not all) is known about the ways in which animal species have physically changed 

over millennia of evolution. Evolutionary biologists, paleontologists, and others interested in the 

origin of adaptations on the biological level have many tools at their disposal, e.g., the fossil 

record, mitochondrial DNA, and sophisticated dating methods (see McKinney, 1991; Castro et 

al., 1998; Renne et al., 1998).  Researchers interested in the behavioral and cognitive changes 

across time have much less in regards to methodology to work with. Unfortunately, most 

behaviors leave behind little trace, with perhaps the notable exception of early humans from 

whom we have some artifacts, including paintings and tools; yet there is still much debate in 

regards to which artifacts are reflective of modern human cognition (see Henshilwood & 

Marean, 2003 for a discussion). The task for comparative and cognitive psychologists interested 

in how behavioral differences have come about then must begin with an earnest understanding of 

what cognitive capabilities are shared across species. Although in isolation these data do not 

appear to give much insight into how these behaviors were developed and subsequently inherited 

over time, but in conjunction with biological evolution data, researchers may be able to infer at 

which points in time these cognitive differences may have appeared.  

Researchers of various backgrounds have been accruing data in regards to many different 

species’ behavioral capabilities for a long time. At first the methods for assessing the behavior of 

animals was methodologically flimsy and the evidence was mostly anecdotal (e.g., Romanes, 

1882), but eventually these anecdotal methods were abandoned in favor of much more 

parsimonious methods (e.g., Thorndike, 1898). Comparative psychology has continued in this 
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tradition and has developed unique methodologies and has successfully investigated cognitive 

phenomena from low-level associative learning (e.g., Pavlov, 1927) to much more complex 

behaviors like animal communication (e.g., Cheney & Seyfarth, 1990). Currently, researchers 

have a large corpora of experimental data at their disposal and although it has led to many 

insights into the ways in which animal and human cognition could conceivably differ, there is 

still little consensus in regard to which underlying cognitive process or processes allow for the 

behavioral flexibility observed in human reasoning but not in that of other nonhuman animal 

species.  

  Part of what lies at the heart of the issue is that understanding differences in behavior 

across species requires specifying the cognitive processes that give rise to specific behaviors. 

Historically, however, this has not been the focus of comparative studies of cognition in animals. 

Shettleworth (2009) notes that the attempts to explore cognition in nonhuman animals often cast 

a cognitive difference between human and nonhuman animals – an ‘x,’ then ask: “Do animals 

have ‘x,’ yes or no?” ‘X’ is then subjected to a battery of pass fail/tests which do not end up 

leading to fruitful descriptions of animals’ cognitive abilities, due largely to the fact that 

knowing whether an animal can do a task that humans can also do says nothing about whether or 

not the problem is being solved in the same way. The same can be said of cases where animals 

cannot do a task for our hypothetical ‘x.’ Instead, Shettleworth suggests that “more progress may 

be made by breaking a broadly defined capability down into components, asking which are 

shared among species, and under what conditions, and why” (2009, p. 216). However, few 

cognitive processes cited earlier as potential fundamental differences are specified in enough 

detail to be broken down into components, or realistically differentiated between species. 

Therefore, an alternative tactic to addressing these issues must be developed.  
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The need for a better understanding of the cognitive processes being employed by 

nonhuman animals is shown to be especially important if we consider some examples of attempts 

to find evidence for complex human-like reasoning capabilities in a number of species. For 

example, Bergman et al. (2003) argues that free-ranging baboons have the ability to reason about 

social hierarchy, citing results of playback experiments in which baboons respond more intensely 

to calls from dominance rank reversals from between families than rank reversal calls from 

within families. Likewise, Dally et al. (2006) utilized the natural food caching behaviors of scrub 

jays to show that these birds are capable of a type of mental state attribution. In these 

experiments a dominant conspecific, subordinate conspecific, or preferred partner watched as 

another scrub jay cached a food item. The bird was then able to return and re-cache the food if it 

chose to. They found that scrub jays re-cache more often when a dominant conspecific or 

subordinate conspecific has viewed their cache site in comparison to control viewers (i.e., the 

scrub-jay’s partner or in private).  

On the surface, the behaviors of these two species bear a striking resemblance to human 

reasoning about hierarchies and mental state attribution.  Most would agree that humans have the 

ability to reason about hierarchies (e.g., how people know that the way one speaks to a co-

worker is different than how they address their boss and is also different from how they might 

address the company CEO) or about the mental contents of another (e.g., if Sue knows that Sally 

has had a bad day, Sue may choose not to burden Sally with additional bad news). Therefore it is 

easy to fall into an interpretation where one might hypothesize that the baboons “understand” 

hierarchies or that scrub jays “know” what one another are thinking. However, it is important to 

understand that while behaviors may appear similar on the surface, the underlying mechanisms 

or mental processes employed in their service might be vastly different. A more parsimonious 
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interpretation of the cited studies might be that scrub jays and baboons have abilities that 

function in a similar way as hierarchical reasoning and mental state attribution in humans, but an 

equally plausible interpretation is that they do not.  Instead, it could be the case that these 

animals are relying on perceptual cues (like the presence or absence of a subordinate conspecific) 

and associative learning mechanisms (i.e., when a subordinate conspecific is in view, move the 

food) to reason about those events (Penn et al., 2008). 

It is reasonable to expect some degree of overlap in the cognitive architectures of humans 

and nonhuman animals due to their common descent. However, human thinking appears to be 

qualitatively different from that of even our closest evolutionary relatives. An alternative and 

potentially more worthwhile strategy than those outlined earlier would be to propose an 

underlying cognitive mechanism that could account for the species-level differences seen in 

reasoning capabilities, and then test for the presence or absence of those processes. Therefore, 

the focus of the current study is to analyze a well-known cognitive phenomenon called relational 

reasoning and empirically test whether or not humans and nonhuman animals utilize the same 

processes in tasks of this nature.  

 

1. Relational reasoning 

Relational reasoning is widely recognized as a key component of human thought (see, 

e.g., Gentner, 1983, 1989; Gick & Holyoak, 1980, 1983; Holyoak & Thagard, 1995). It allows 

one to reason about the role that an object plays rather than attending to only the physical 

features of an object, and allows for the flexibility and structural sensitivity required for many 

unique human capabilities, such as language production, art, science, and mathematics (Medin et 

al., 1993). Therefore, relational reasoning is an ideal candidate for an underlying mental process 
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that may be able to account for differences seen between human and nonhuman animal 

intelligence.  

 Relational reasoning requires a specific type of mental representation. In order to reason 

relationally, a system must be able to represent relations as explicit entities that can be 

dynamically bound to arguments (i.e., be predicated). For example, in order to appreciate a 

sentence like “the dog chases the cat,” the concept of “chaser” must be independent from the 

concept of “dog” and likewise, the concept of “chased” must be independent form the concept of 

“cat.”  An explicit representation of “chaser” and “chased” will allow a system to reason 

regardless of to whom or what the representation is bound.1  Therefore, when a spoon chases a 

dinner plate, or when an older brother chases a younger sister, nothing about the underlying 

representation is changed other than the arguments (or actors) being bound to them.  

 Relational reasoning has been investigated in select animal species, both explicitly and 

tangentially. However, relational match to sample tasks have been conducted with a wide range 

of species and at one point it was thought that only humans and symbol-trained apes were 

capable of performing well on these tasks (Thompson & Oden, 2000). The relational match to 

sample paradigm includes the following: a subject is presented with a sample pair that embodies 

some aspect of “sameness” or “differentness” (e.g., the “sameness” can range from identicality to 

sameness on a particular dimension like shape, color, or some other level of abstraction). The 

subject is then faced with a choice between two pairs, one that matches on the particular 

dimension of interest and one that does not. However, there is widespread debate in regards to 

whether “same” and “different” are relational at all, given evidence that entropy may be a salient 

                                                           
1 The types of relational representations detailed here are specific to role-filler binding systems. 
Alternatives to role-filler binding will be discussed in section 3, Computational models of 
relational reasoning. 
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perceptual feature that changes the nature of the task from a relational one to a perceptual one 

(Fagot et al., 2001; Wasserman et al., 2004).  

 Relational match to sample is one of few methodologies that attempt to address relational 

reasoning in animals explicitly; many forms of relational reasoning have been addressed in the 

comparative literature tangentially.  Penn et al. (2008) provide an extensive overview of 

evidence gathered from a large assortment of tasks, including transitive inference, hierarchal 

relations, causal relations, and theory of mind.  These tasks at their core are (or rather can be) 

relational in nature in that some of the successful strategies for performing well on these tasks 

require concepts like ‘bigger-than,’ ‘cause,’ and ‘knows’ to be explicitly predicated. Penn et al. 

argue that none of the cited experiments have successfully demonstrated that animals have a 

capacity for relational reasoning in the same sense that humans do because it is possible that the 

physical features alone may be enough to confer success. Penn et al. go on to suggest that 

perhaps an ideal way to investigate this phenomenon would be to utilize a computational model 

of relational reasoning and test whether or not these process models can account for the 

behavioral data that have already been collected. The present plan of research was inspired by 

this suggestion. 

 

2. Computational models  

Before addressing computational models of relational reasoning specifically, it is 

important to first understand why models like these exist and what benefits they afford 

researchers in understanding cognitive phenomena. The logic falls from many insights starting 

from the early 1950’s, this includes the rejection of radical behaviorism, Marr’s description of 

the levels of analysis (Marr, 1982), and Alan Turing’s description and the implications of the 
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Universal Turing Machine (UTM) (Turing, 1938). These events set in motion the modern 

cognitive tradition of understanding individuals as information-processing machines and gave 

researchers new tools for understanding cognition; tools that have continued to develop over 

time. 

David Marr (1982) set forth a framework for understanding any kind of information-

processing machine; this framework came to be known as “Marr’s levels of analysis”, or simply 

“Marr’s levels.” The levels of analysis are (i) the computational level, (ii) the 

representational/algorithmic level, and (iii) the implementation level. In concert, these three 

“casually and logically related levels” (Marr, 1982) can have a profound impact on the depth at 

which an information-processing system is understood.  

 The first level, the computational level, is an understanding of the goal of an information-

processing system. A clear understanding of the goal of a system answers questions pertaining to 

why the system is doing what it is doing, as well as how that system is doing it. The algorithmic 

and representational level aims to account for the processes being employed by the system and 

address questions about what processes is the system doing, what representations are being 

utilized, and in what way are those representations used? Finally, the implementation level is 

concerned primarily with how the system is instantiated in some physical system. 

 First, it is important to make the argument that humans and animals alike are 

information-processing machines. The idea began to take hold in the 1950’s after the rejection of 

radical behaviorism (the main thesis of which was that it is not possible to study the internal 

components of the mind, only overt observable behaviors) that mental contents could in fact be 

studied. Methodologies were created that demonstrated that something happens between 

perception and output of behavior. In fact, the mind is transforming or processing information in 
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some way. It was also during this time that the computer was identified as a useful analogy for 

understanding the mind (Lachman et al., 1979). In conjunction with Alan Turing’s proof that all 

problems with a solution can be solved utilizing a UTM, modern computational methodologies 

were created.  

 Modern computational models are in fact quite different from one another in that they can 

approach the problem of understanding cognition from one of many angles and from different 

levels of Marr’s levels of analysis. Marr himself argued that some problems are better 

understood at some levels versus other levels. However, he did go on to note that an algorithmic 

and representational account is best understood by first understanding the nature of the problem 

(i.e., the computational level) rather than assessing the third level (i.e., the physical 

implementation) and then attempting to understand the algorithmic and representational levels 

(i.e., it is easier to go down the levels than it is to go up them), and finally that a complete and 

full understanding of an information processing machine would capture all three levels. 

 

3. Computational models of relational reasoning 

Marr’s levels of analysis have a direct impact on how computational models of relational 

cognition have been designed. Successful models attempt to address relational reasoning by 

giving a satisfactory description of the behavior to be modeled, they specify the nature of 

representation in conjunction with how representations are used to generalize, reason, etc., and 

some are created using a neurally plausible architecture (one that can be seen as being easily 

realizable within the neurons of a brain).  However, it is important to first address the various 
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ways in which relational reasoning has been addressed in models and specify what a model has 

to do in order to best approximate how people reason relationally. 2 

Computational accounts of relational reasoning typically take the format of one of three 

types of models: symbolic, connectionist, or symbolic-connectionist. The first two types have 

different strengths and weaknesses that will be discussed in the following section. The latter 

attempts to marry the strengths of symbolic models and connectionist models in a such a way 

that none of the negative implications of choosing a symbolic or connectionist method of 

modeling human relational reasoning come along for the ride.  

Human relational representations are considered to be symbolic in nature, Fodor & 

Pylshyn (1988) famously argue that this is the case because it is possible for one to think the 

thought “John loves Mary” and also be able to consider, similarly, that “Mary loves John.” This 

argument is typically cited as the “argument from systematicity.” However, to avoid the pitfalls 

of such a vague argument, the reasoning that human relational reasoning must be symbolic is 

borrowed from Doumas & Hummel (2005) – relational reasoning is symbolic as it entails the 

ability to represent relational roles independently of their arguments as well as specify which 

roles are bound to which arguments. The ability to maintain role-filler independence leads to an 

appreciation of what different bindings of the same relational roles and fillers have in common 

and how they differ, which is readily apparent in human reasoning. For example, if one considers 

the novel sentence, “the glarbile flarbs the vilbil.” Although glarbile, flarbs, and vilbil carry little 

semantic information it is possible to parse the sentence in such a way that the reasoner knows 
                                                           

2 Although the following descriptions are based on attempts to understand human 
relational reasoning, it is important to recall that the focus of the present research is to 
meaningfully differentiate between nonhuman animal and human cognition. In this way, 
researchers might come to understand what aspects of human relational reasoning may be 
present/absent in animal reasoning. Therefore an understanding of what humans do when they 
reason relationally is necessary. 
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that the flarber is the glarbile and the flarbed is the vibil. One merely has to change the ordering 

of the sentence in order to recognize instead that the vilbil is now doing the flarbing and the 

glarbile is now flarbed. Without a symbolic representation such structural sensitivity would not 

be possible. 

On the other hand, traditional connectionists reject the notion completely that relational 

reasoning is at all symbolic. They argue instead that mental representations are instantiated in 

patterns of activations of nodes in a network (which can easily be realized as neurons in the 

brain). Therefore a single concept is represented as pattern of activation across nodes or units and 

any single element, node, or unit can and will participate in the representation of many different 

concepts. In this way connectionist models are capable of capturing some of the semantic content 

that may be shared across different concepts. For example, the conceptualization of a dog and cat 

are indeed similar, but they share little in common at all with a fish, and even less in common 

with a telephone. Distributed representations like those used in connectionist models model the 

relative likeness of dogs, cats, fish, and telephones very well. That is, there will be more units in 

common activated when thinking about dogs and cats than when thinking about dogs and 

telephones. In addition to this powerful aspect of these models, they have incredibly graceful 

degradation. In the same way that when a human suffers brain damage, reasoning may indeed be 

impaired; when nodes in the network are “damaged” the model will continue to reason, albeit 

somewhat impaired (Doumas & Hummel, 2005). 

Although this natural inferential power is highly desirable it comes at the cost of the 

strength of symbolic methods of modeling human relational reasoning. It is important to note 

that instantiating representations in this distributed fashion violates role-filler independence 

while also making it unclear as to which roles are bound to which fillers. Roles and fillers are 
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conjunctively coded in some connectionist models. This comes with incredible implications for 

what it means to be John in “John loves Mary” and what it means to be John in “Mary loves 

John.” John in the former is therefore unlike John in the latter as the lover and the beloved role is 

coded conjunctively. Similarly, in cases where connectionist models choose to code entire 

propositions conjunctively one loses information about whether John is a woman or man or 

which attributes belong to being loved versus loving someone, etc. (Doumas & Hummel, 2005). 

Another serious negative implication of connectionist models lies in the fact that 

connectionist models learn to associate nodes in an input layer with an output layer, and these 

associations are typically between lists of features. Meaning that the performance of 

connectionist models is often times a function of how complete the training of the model is and 

which features are shared across those concepts that have been mapped. The Story Gestalt 

model, a model of story comprehension (St. John & McClelland, 1990), is often cited as 

embodying this particular drawback. St. John gave the model training on 1,000,000 examples of 

simple stories in the form of: <person> decided to go to <destination> so <person> drove 

<vehicle> to <destination>. When presented with a novel person and destination the model was 

incapable of inferring that the destination that individual drove to was the one in which the 

individual decided to go, demonstrating the model was insensitive to the structure of the story 

and instead was only capable of generating answers (destinations in this case) that it had 

previously mapped (Hummel & Holyoak, 2000; Doumas & Hummel, 2005; Marcus, 1998). 

In summary, traditional connectionist models are able to generalize in a way that 

researchers know humans are capable, however they lack the ability to reason relationally 

because they are not sensitive to structure, nor are they capable of sufficiently representing roles 

and fillers independently. Whereas traditional symbolic models lack the ability to capture shades 
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of meaning and semantics in such a way that they could recognize that a cat is more like a dog 

than a fish, but more like a fish than a telephone. Additionally, traditional connectionist models 

also have a fairly transparent implementation (i.e., nodes in a network are most like neurons in 

the brain), whereas symbolic models do not. The alternative to these two types of model, 

symbolic-connectionist models, takes the flexibility of a distributed representation and marries it 

with the ability to represent relational roles independently of their arguments as well as specify 

which roles are bound to which arguments (Doumas & Hummel, 2005). The LISA/DORA 

models of relational reasoning (Hummel & Holyoak 1997, 2003; Doumas et al., 2008) are two 

symbolic-connectionists models that are relevant to the current research. 

 

4. LISA/DORA models of relational reasoning 

To date, there are many significant models of relational reasoning (e.g., Falkenhainer et 

al., 1989; Holyoak & Thagard, 1989), however of particular interest to the proposed study are 

two of these models of relational reasoning: LISA (Learning and Inference with Schemas and 

Analogies), developed by Hummel & Holyoak (1997, 2003) and DORA (Discovery of Relations 

by Analogy), developed by Doumas et al. (2008). These symbolic-connectionist models offer an 

exciting opportunity to explore the boundaries of nonhuman animal cognition. LISA/DORA 

collectively account for approximately 90 phenomena from the literature on human cognitive 

development (e.g., Hummel & Holyoak 1997, 2003; Doumas et al., 2008). 

 DORA was developed from LISA, in response to the criticism that the LISA model was 

the not able to account for where structured representations like those used in the model originate 

from (Munakata & O’Reilly, 2003; O’Reilly & Busby, 2002; O’Reilly et al., 2003). DORA 

solves this particular problem by offering a neurally plausible instantiation of how structured 
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representations could be learned from unstructured examples observed in the environment. For 

the sake of brevity the models are best understood in regards to (i) the nature of their 

representations, (ii) the interaction between the recipient and the driver, and (iii) how the DORA 

model learns relations.  

 

4.1 The nature of representations 

 

Figure 1. 

 

 

Representations within LISA/DORA exist as a hierarchy of distributed and localist units 

in a layered connectionist architecture (see Figure 1).  On the bottom layer of the representational 

structure are semantic units coding for the features of objects and roles (or predicates), in a 

distributed fashion.3  

                                                           
3 In DORA, semantic units are shared between predicates and objects for two important reasons. 
First, it is important for the meaning of some property of an object and the explicit predicate of 
that property to mean the same thing (Doumas et al., 2008). That is, ‘blue’ as a feature of the 
ocean would otherwise be unlike blue as a predicate, which can then be that cast upon any object 
(Hummel & Holyoak 1997, 2003; Doumas et al., 2008). In addition to these shared meanings, 
this shared semantic pool is important because of the role that comparison plays in learning 
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In the layer above the layer of semantic units are localist predicate-object (or PO) units. 

PO units act as tokens of individual predicates and objects and are connected to the semantic 

units in the layer below. Above the PO units, localist role-binding (RB) units, link predicate and 

object units into role-filler pairs. Proposition (P) units in the top layer, link sets of RB units 

together to form whole propositions (see Figure 1).  

 

4.2 Flow of Control 

 As propositions in LISA/DORA enter active memory they are divided into two mutually 

exclusive sets for the purposes of reasoning. The first set, the driver, controls the sequence of 

firing events within the model and is analogous to what the model is “attending to” at a given 

time. The activated semantic units linked to the tokens in the driver retrieve propositions (stored 

in long term memory) into the second set, the recipient, making them available for mapping to 

propositions in the driver. Activation in the model then flows from the driver into the shared pool 

of semantic units, which in turn causes the recipient to become active in response (Doumas et al., 

2008).  

When a proposition becomes active in the driver, role-filler bindings must be represented 

dynamically on the units that maintain role-filler independence (see, e.g., Hummel & Holyoak, 

1997). In LISA binding information is carried via synchrony of firing; units representing 

relational roles fire at the same time as their arguments and out of synchrony with other role-

filler bindings. In the relation loves(Neal, Margo) Neal is fired at the same time as the role 

“lover” and Margo is fired at the same time as the role “beloved” but out of synchrony with Neal 

and “lover.”  Carrying binding information via synchrony allows for versatile representations, 

                                                                                                                                                                                           
higher relational structures (which will be addressed in greater detail during the discussion about 
relational learning). 
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where changing the relation to loves(Margo, Neal) would only involve changing when units fire 

(i.e., Margo would be fired at the same time as “lover” and Neal at the same time as “beloved”).  

In DORA binding information is carried via asynchrony of firing. In asynchrony of 

firing, roles and the arguments to which they are bound fire in direct sequence as asynchronous 

couplets. In the example loves(Neal, Margo) Neal and the role “lover” would fire in direct 

sequence forming the concept lover(Neal) and Margo and the role “beloved” would likewise fire 

in direct sequence, resulting in the concept beloved(Margo). 

Figure 2. 

 
Figure 2: Binding by synchrony in LISA (Hummel & Holyoak, 1997; 
2003): The lightly colored Neal and lover are fired in synchrony with one 
another and out of synchrony with the white colored Margo and beloved. 
While Margo and beloved are fired in synchrony with one another. In 
DORA, Margo and beloved fire, instead, in close temporal proximity.  

 

 The asynchronous firing patterns that carry binding information are reliant on inhibitory 

signals. The first of these signals is lateral inhibition; units in the same layer connected to the 
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same unit above will compete to become active (e.g., PO units that are connected to RB units 

will compete for activation). In addition to lateral inhibition, each token unit is yoked to an 

inhibitor unit that integrates information from that particular token unit and active units in all the 

layers above. The inhibitor unit will eventually become active and turn off that token unit. A 

local refresh signal functions at the level of POs and becomes active any time there are no active 

PO units in the driver (i.e., the POs in the driver have been effectively inhibited and no other PO 

units are active yet), causing POs in the driver and recipient as well as the semantic units to 

refresh, returning all of their activations to zero. Similarly, a global refresh signal functions at the 

level of RBs and becomes active in the same way, but instead refreshes all units in the driver and 

the recipient, likewise returning all their activations to zero when there are no active RBs in the 

driver. The local refresh signal is important because it allows PO units in the recipient to keep 

pace with PO units in the driver and serves as punctuation between a role and its filler signal 

(e.g., Horn et al., 1992; Horn & Usher, 1990; Hummel & Holyoak 1997, 2003; von der Malsburg 

& Buhmann, 1992). Likewise, the global refresh signal is important because it allows units in the 

recipient to keep pace with units in the driver and serves as punctuation between sets of RBs in a 

proposition.  

 For example, a typical firing sequence would be: a P unit becomes active in the driver, 

activating connected RB units in the layer below, which compete to become active (because of 

noise in the system, one of the RB units will win the competition and become active). After an 

RB unit becomes active the unit will fire and excite PO units in the layer below. After the PO 

units compete to become active (once again, one will win due to noise in the system), this now 

active PO unit’s inhibitor will eventually inhibit and turn off this unit. The local refresh signal 

can then take place (zeroing out all driver and recipient POs and semantics), thus allowing the 
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other related PO unit to become active. Similarly, once the previously activated RB unit’s 

inhibitor becomes active the global inhibitor fires, zeroing out all units in the driver and the 

recipient. Note that in this typical firing sequence PO units will oscillate twice as quickly as RB 

units because their inhibitory information is being integrated from both the layer of PO units and 

layer of RB units. 

 

4.3 Relational Learning  

 Learning in DORA is achieved primarily through comparison. Initially, DORA starts 

with simple feature-vector representations of objects (i.e., a node connected to a set of features 

describing that object). As DORA goes through the process of comparing one object to another 

object, the corresponding features of those objects fire at the same time. Any semantic features 

that the two objects have in common become highlighted, receiving twice as much activation as 

unshared units. DORA then recruits a new PO unit and begins learning positive connections 

between the new PO unit and the more active semantic units in proportion to their activation 

(Doumas et al., 2008).  The result is an explicit representation of all the properties shared 

between the two objects, which may contain some extraneous information. For example, if a red 

apple is compared to a red fire engine, the explicit representation of “red” may also carry with it 

the feature of “shiny.” Therefore additional examples of red are needed in order to weed out 

unnecessary extraneous features. After this process is applied over much iteration this new PO 

unit becomes an explicit and structured representation of object properties and relational roles 

that can be linked together to create full relational structures.  

 Note that this description of the DORA model is a cursory overview. There are many 

other capabilities (like learning whole relations) that are not addressed in this description of the 
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model and these processes are the only ones central to the current discussion. For additional 

discussion of the details of mapping and learning in the DORA model please see Doumas et al. 

(2008).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 21 

Simulations 

 The general purpose of this research is to provide a computational account of relational 

reasoning experiments for nonhuman animals utilizing a model of human relational reasoning. 

Although the description of the DORA/LISA models that are to be used in this experiment are 

such that they primarily apply to humans, for the following simulations the only features that will 

be utilized are those that simulate associative learning (i.e., traditional connectionist learning), 

which involves simply creating connections between coactive units. Therefore, if simulations can 

be carried out successfully only utilizing connectionist learning, there is good reason to believe 

that associative learning mechanisms are all that are necessary to perform these tasks.4 The 

following sections will briefly describe the behavioral data collected by the researchers who 

performed the studies, a description of how the study was reconceptualized for the purposes of 

simulations, and a brief discussion of the implications of these simulations. 

 

Simulation 1 – Lazareva et al. (2004) 

 Lazareva et al. (2004) utilized a familiar paradigm initially created to test transitive 

responding in a number of species including humans (McGonigle & Chalmers, 1977; Bryant & 

Trabasso, 1971) to ascertain whether or not hooded crows (Corvus cornix) with adequate training 

would be able to reason about untested pairs of stimuli. Initially crows were either trained on one 

of two manipulations involving linearly ordered stimuli placed on cards for which color co-

varied with size (they were ordered either biggest to smallest or smallest to biggest) or unordered 

stimuli that only varied in color (they were all the same size).  The trainings encompassed the 

                                                           
4  Notice that utilizing the model in this way does not invoke any use of symbolic thought, as it is 
theorized that humans do. Whether or not animals invoke symbolic thought to reason is still 
subject to debate (Penn et al., 2008).   
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following pairings (+ denotes rewarded stimuli, - notes non-rewarded stimuli): A-/B+, B-/C+, C-

/D+, and D-/E+. The critical test of an understanding of transitive inference was in B-/D+ 

pairings, as B and D had both been rewarded an equal number of times. Lazareva et al. found 

that hooded crows that were given linearly ordered stimuli were able to perform better on novel 

B-/D+ trials than crows that had unordered stimuli that varied on color alone. The authors 

concluded that linearly ordered stimuli were necessary for proper responding in transitive 

inference tasks for hooded crows.  

 The experiment presented by Lazareva et al. (2004) was reconfigured for simulation in 

DORA by first taking the total number pairings of A-/B+, B-/C+, C-/D+, and D-/E+ trials and 

creating instances in memory proportional to the number of training trials each individual crow 

had with the stimuli (see Appendix A, Table 1 for the stimuli proportions for the ordered 

manipulation and Appendix A, Table 2 for the stimuli proportions for the unordered 

manipulations).  The number of stimuli that corresponded with each reinforced and non-

reinforced pairing was then saved to a memory set. A total of eight memory sets were created 

(four unordered stimuli memory sets and four ordered stimuli memory sets). Each of the eight 

memory sets were run for 40 trials of B-/D+ pairings. The memory sets for unordered and 

ordered stimuli varied from one another in regard to the features present. In ordered stimuli 

features involved relative surface area, color, absolute size, and whether or not the item was 

rewarded or non-rewarded. In unordered stimuli features included only color and whether the 

stimuli had been rewarded or non-rewarded (see Appendix B, Table 3 & 4 for a detailed 

description of these simulation files).  

During simulations the model would retrieve items from memory and then attempt to 

map them to the current focus of attention in the driver (i.e., the novel B-/D+ pairing). Successful 
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mappings were those where B- was successfully mapped to non-rewarded stimuli from memory 

or D+ was successfully mapped to rewarded stimuli from memory. Unsuccessful retrievals from 

memory were not counted as misses (i.e., when the model failed to retrieve anything from 

memory, as there is an element of chance associated with retrieval from memory, the retrieval 

function would be called again until something relevant was pulled from the memory set). 

Incorrect B- to rewarded stimuli mappings and D+ to unrewarded stimuli mappings were 

counted as incorrect. 

 

 

Figure 3: Results of the simulation of the ordered 
stimuli. Dark bars denote the original subjects’ 
performance, where light bars denote the 
performance of the model. 

Figure 4: Results of the simulation of the unordered 
stimuli. Dark bars denote the original subjects’ 
performance, where light bars denote the 
performance of the model. 

      

The results of simulation of the Lazareva et al. (2004) study are pictured in Figures 3 and 

4. In the ordered manipulation (Figure 3), DORA simulated Crow 4 the best (Crow 4’s 

performance was at 82% correct on B-/D+ trials, while DORA performance at 80% correct). 

Results were similarly close for Crow 3 (with the crow performing at 85% correct and DORA 

performing at 87.5% correct). Simulations for Crow 1 & 2 were not as close, with the model 
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underperforming slightly, relative to the behavioral data collected; Crow 1 scored 82% correct 

while the model performed at 75% correct, and Crow 2 also scored 82% correct while the model 

performed at 77.5%.   

In the unordered manipulation (Figure 4), DORA was able to closely model the 

performance of Crow 1 (50% correct for the subject, 55% correct for the model). The model did 

a sufficient job at performing at or around chance much like Crows 2 & 3, although the 

difference was not as small as that of Crow 1. The last subject’s performance was significantly 

below chance, where the model performed at chance, 52.5%. 

In the simulation of Lazareva et al. (2004), DORA was able to reliably account for four 

out of four crows in the linearly ordered stimuli manipulation. Lazareva et al. argue that linearly 

ordered stimuli are necessary components for hooded crows to perform transitive inference tasks. 

Few would deny that crows are capable of some sensitivity to surface area, or relative size of two 

objects, and would be able to learn to discern between two stimuli of different sizes. The real 

question is, had the crows learned a concept of “bigger-than?” Or rephrased, had the crows 

successfully predicated a “bigger” relation and were they able to use it in service of reasoning 

about the novel B-/D+ pairing? The simulations demonstrate that associative mechanisms are 

enough to achieve above chance performance. Couvillon & Bitterman (1992) further 

demonstrated the idea that associative learning mechanisms are sufficient for transitive inference 

tasks by utilizing Rescorla & Wagner’s (1972) mathematical model to simulate similar data 

compiled by Fersen et al. (1991). Couvillon & Bitterman’s conclusion is further validated by 

DORA’s results.  

Lazareva et al.’s (2004) unordered transitive inference task was also replicated 

successfully by DORA. Recall that in the unordered manipulation color was the only salient 
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feature associated with reward and non-reward, by having one less systematic feature in the 

system associated with reward, it was much more difficult for the model to reliably retrieve from 

memory and map appropriately. Although, as stated, the model does not punish objects for 

having less features – one less feature that co-varies reliably with reward does impact how often 

that object will be retrieved from memory and does impact how readily it will be able to be 

mapped to another object. This can account for the differential results between conditions, all 

other things held equal. In sum, the evidence seems to suggest that instead of a predicated 

“bigger-than” or “more-than” concept, the crows were reasoning with associative mechanisms in 

conjunction with the extra boost to memory afforded by the relative disparities across surface 

areas on each of the cards.  

 

Simulation 2 - Cook & Wasserman (2007) 

 Relational match to sample (RMTS) tasks have been used to assess a number of species’ 

understanding of the relationship between items, and at one point it was thought that only 

humans and language-trained apes were capable of succeeding in these tasks.  In RMTS tasks, a 

sample pair that is either same or different is pitted against two choices: a same pair that is not a 

perceptual match to the sample pair or a different pair. Furthermore, putting a member of the 

same pair in the different pair increases the level of difficulty because a subject can then reason 

based on either “same pair” or “same item.”  Cook & Wasserman (2007) demonstrate that in 

sample and test arrays that consist of 16 multi-element arrays, pigeons are capable of being 

successful on RMTS tasks.  

 The simulation of the Cook & Wasserman (2007) study was done under the assumption 

that entropy is a meaningful perceptual feature of arrays with 16 icons. Likewise, it is the 
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assumption of the simulation that at first the pigeons in the study adopted a rote memorization 

tactic, and over each phase slowly abandoned this in favor of entropy detection. Across baseline 

trials, the pigeons consistently achieved above chance performance ranging from 71% (Phase 4) 

to 81.8% (Phase 2), but dropped to below chance performance on novel stimuli and novel stimuli 

configurations, with increasing improvement to transfer tasks across each phase. This falls in line 

with the notion that rote memorization, which was an unsuccessful tactic because the transfer 

tasks were novel, was the preliminary tactic and was slowly abandoned for entropy or, similarly, 

the pigeons eventually learned that entropy was the relevant perceptual feature over each phase.  

 Ten simulation files were created for each phase; five were “different” samples and five 

were “same” samples. In phase 1 simulations, the different objects were created by randomly 

selecting three of twenty features with two noise features appended to the object. Same objects 

were created by randomly selecting one of twenty features with two noise features appended to 

the object. 5 In phase 2 simulations, one of the features in the different objects was replaced with 

a high entropy feature; in the same objects no features were removed, but a low entropy feature 

was added. In phase 3.1 simulations, one noise object was removed and replaced with another 

high entropy feature in the different objects and in the same objects nothing was removed, but a 

second low entropy feature was added. In phase 3.2 simulations, another feature was removed 

from different objects and replaced with a third high entropy feature, while no features were 

removed from same objects and a third low entropy feature was added. In the final manipulation, 

the arrays had their noise features reintroduced to simulate the novelty of the test sets in phase 4 

(see Cook & Wasserman, 2007). A detailed table that depicts the simulation files for this 

experiment can be found in Appendix B, Table 5.  

                                                           
5 In DORA objects with more features than another object do not get preferential treatment 
during mapping.  
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 In each simulation, the sample (either same or different) was loaded into the driver with 

the choices (in this case both a “same” object and “different” object) loaded into the recipient 

and then mapped. A successful mapping was one in which the model mapped the same choice to 

the same sample, or different choice to a different sample. Incorrect mappings were ones in 

which the model mapped a same sample or choice to a different sample or choice. Twenty total 

trials were run per phase (each stimuli configuration was run twice), for a total of one hundred 

trials across all phases.  

 

 
Figure 5: Results of the simulation of Cook & Wasserman (2007) 
study. Dark bars denote the original subjects’ performance, where 
light bars denote the performance of the model. 
 

 
The results of the simulation of the Cook & Wasserman (2007) relational match to 

sample are summarized in Figure 5. In the original data sample, after Phase 1, pigeons’ transfer 

to probes was 45.3% correct; the simulation of Phase 1 in DORA was able to closely replicate 

Phase 1 trials, performing at 40% correct. During phase 2, the transfer for all three pigeons to 

probes was 59.2% correct which, once again, was closely approximated by the model’s 

simulation, which performed at 55% correct. When novel samples were once again presented to 
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the pigeons in phase 3.1, the performance of the subjects was at 70.1% correct while the model 

performed almost identically, with 70% correct. In phase 3.2, the pigeon’s pooled correct 

responses was 76% (this is also the best the pigeons performed on the task in all) while the 

model predicted their performance to be at 80%. In the final phase the model predicted that the 

animals would perform at about 70% correct while the subjects performed at 63%. Overall, the 

model was able to account for the data in these tests.  

Once again, DORA reliably modeled the data of the Cook & Wasserman RMTS task with 

retrieval from memory and mapping. In this case, the variability of performance was captured by 

introducing noise and entropy detection over the course of the trials. This simulation does make 

the explicit assumption that the pigeons in the RMTS task were, at first, relying on rote 

memorization in order to learn the baseline set and then, after multiple transfer tasks, eventually 

abandoned that method in favor of entropy-related selection. Transfer stimuli (as noted by Cook 

& Wasserman, 2007) were differentially rewarded, so it is important to address why the pigeons 

might have abandoned rote memorization in favor of entropy detection. This could be in large 

part due to the sheer volume of stimuli to be memorized. For example, Set1/Set2 (i.e., Phase 1) 

contained 160 stimuli – 80 same arrays and 80 different arrays. Similarly, in Phase 1 Set 1 was 

the sample stimuli and Set 2 encompassed the choice or test stimuli, the transfer task simply 

involved making Set 2 the sample stimuli and Set 1 the choice stimuli. A method in which the 

animal memorizes the Set 1 samples and the Set 2 choices would then prove difficult to 

generalize to Set 2 samples with Set 1 choices (this was demonstrated in the data provided by 

Cook & Wasserman; see Figure 5.).  

 Fagot et al. (2001) established that entropy could be a salient perceptual feature 

associated with relational match to sample, and there has been growing concern that RMTS tasks 
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lack the power to demonstrate relational reasoning ever since. In this simulation the model has 

demonstrated that, indeed, it is not necessary to have a predicated representation of same or 

different in order to perform above chance; instead a subject merely needs to be able to perceive 

entropy. The argument has been made that same/different discriminations in humans are 

likewise, due to sensitivity to entropy. However it is important to note that predicated sameness 

and differentness manifests itself in other tasks of human cognition. For example, it is unlikely 

that entropy has anything to do with understanding that loves and hates are the same in some 

sense (i.e., they are both very strong emotions).  

 The DORA simulations of the Cook & Wasserman (2007) relational match to sample 

task lends support to the notion that entropy may be the only necessary feature of multi-element 

relational match to sample arrays. In conjunction with retrieval from memory and mapping, there 

may be no need to understand anything like a concept of sameness or differentness in order to 

perform well on these tasks.  

 

Simulation 3 - Call & Tomasello (1999) 

Theory of mind tasks are often thought to be relational in nature, as it requires a subject 

to reason based upon the mental contents of another, effectively casting a belief state on some 

proposition, making the relational structure higher-order (e.g., knows(John, loves(Mary, Paul))). 

Reasoning in this manner is sophisticated and is present in children by age five (Call & 

Tomasello 1999). Theory of mind is a hotly debated topic within the comparative literature (see 

Penn & Povenilli 2007 for a discussion). Call & Tomasello (1999) attempted to test whether or 

not chimpanzees (Pan troglodytes) and orangutans (Pongo pygmaeus) are capable of reasoning 

about the false beliefs of an observer. In this experiment the apes were tested on all the 
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component capabilities one would need in order to understand a false belief task, which involved 

following a marker placed by an observer, tracking the movement of food between boxes, as 

well as tracking the movement of a box that had food inside of it. In the final manipulation of the 

task the observer’s mental contents became critical to selecting the box containing the food 

reward and all apes performed far below chance on these false belief trials (although they 

maintained above chance performance on the other non-false belief component tasks). 

This task was simulated by first making the assumption that instead of reasoning based 

upon the actions of an observer, the apes in the study were instead reasoning based on some form 

of the following logic: if the food is seen to be in a particular location, choose that location; or if 

nothing has been seen, instead choose the box with the marker on it. All four control test 

situations as well as the false belief task were then coded with a box1 and box2 object that had 

feature vectors that consisted of features of boxes as well as features like having a mark or 

having seen food put into the particular box. These simulation file configurations can be seen in 

Appendix B, Table 6. Notice that the various manipulations do not appear to differ from each 

other meaningfully; the objects were coded based upon what was viewed by the subject, and not 

by taking into consideration all aspects of the task. In addition to the five task situations, two 

objects were created and placed in the driver. These objects can be thought of as representations 

of selection criteria as they are not predicated, but instead just offer a way for the model to map 

onto the task trials and for us to decipher what those mappings in turn mean. The selection 

criterion was then loaded into the driver while the boxes were loaded into the recipient and the 

model was to map between the two. A successful mapping was counted when the proper 

selection criteria were mapped to the proper object, other mappings were considered misses. A 

total of ten trials per manipulation were simulated. 
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Figure 6: Results of the simulation of the Call & 
Tomasello (1999) study. Dark bars denote the original 
subjects’ performance, where light bars denote the 
performance of the model. 

 

The results from the simulation of the Call & Tomasello (1999) non-verbal false belief task are 

pictured in Figure 6. In all three manipulations of the control task (visible displacement, invisible 

displacement, and ignore communicator conditions) the model was 100% accurate. In 

comparison, the apes’ scored 95% correct in the visible displacement task, 92% correct on the 

invisible displacement task, and 93% correct on the ignore communicator task. Similarly, the 

model performed at 0% on the false belief manipulation, while the apes performed at 10.7% 

correct. The DORA model was able to perform flawlessly on all of Call & Tomasello’s control 

tasks, resembling the behavioral data collected. The apes performed above 90% on all of these 

control tasks. Furthermore, the apes performed at significantly below chance for the false-belief 

task, whereas the simulation of the false-belief task proved to be impossible for the model. The 

small differences that were observed between the model and the behavioral data could likely be 

simulated by adding some noise into the simulations, as the model does not have to worry about 
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monitoring its own attention. The simulations assume perfect attention, however it could be the 

case that the apes were not paying full attention to the task at all times, and this may account for 

the less than 100% performance on their part.  

 These simulations imply that instead of predicating anything in regard to the knowledge 

of the mental contents of another, the apes were reasoning by retrieving memories of receiving 

food rewards and the associated perceptual features of the task configuration, and mapping those 

features onto the test configurations. Call & Tomasello (1999) admit that the marker proved to be 

such a salient predictor of the reward that the apes appeared to be unwilling to abandon this 

strategy in favor of reasoning about the cues from the observer. Furthermore, Call & Tomasello 

go on to discuss the possibility that the task may have been too difficult as success would have 

involved coordinating many different small pieces of evidence. In support of this notion, the 

results were simulated without any kind of information from the observer or from the hider. 

Instead, the only necessary features were the two boxes, whether they had been marked or not, 

and whether the animal saw the food enter a particular box. Therefore it is unlikely that the 

observer’s behavior had any impact on the apes’ reasoning. These results further validate Call & 

Tomasello’s conclusion that the apes were not capable of utilizing the mental contents of the 

observer to reason successfully on the false-belief task. Although it by no means demonstrates 

definitively that theory of mind capabilities do not exist in apes, it does show that future tasks 

developed to test for theory of mind need to be cautious about what salient perceptual features 

exist in their tasks, such that alternative methods for reasoning may prove to be successful. As 

Call & Tomasello demonstrate, it is important that in theory of mind tasks that the presence or an 

absence of a theory of mind must be the only possible explanation of the outcome. 
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General Discussion 

The goal of the present research was to demonstrate that relational reasoning might be 

able to account for the divergence between the reasoning capabilities of human and nonhuman 

animals. In humans we observe flexible reasoning capabilities that allow for the technological 

advances seen in culture and society today. On the other hand, animals appear to be limited in 

their reasoning capabilities. Three behavioral studies that attempted to assess relational reasoning 

capabilities within animal species (two of which claimed to have properly demonstrated such 

abilities) were simulated using DORA, a model of human relational reasoning, by only using the 

retrieval from memory and mapping functions on perceptual features. These two processes in 

isolation demonstrate that all three studies could be simulated with only associative learning 

mechanisms (i.e., that the ability to map the perceptual features of one item to another item in 

memory or to an item that is the focus of attention). 

The results of these experiments, however, do not definitively demonstrate that relational 

reasoning is absent in nonhuman animals, only that attempts thus far are incapable, in principle, 

of demonstrating relational reasoning, for two very important reasons. First, the relevant 

perceptual features in any task that may lend themselves to associative mechanisms like 

perceptual mapping are sometimes non-obvious. It is certainly the case that entropy is a non-

obvious feature of multi-element same/different arrays. In tasks of transitive inference, especially 

those that employ linearly ordered stimuli, confounding perceptual features do exist. Many 

species have demonstrated sensitivity to surface areas, and it could be argued that species would 

be greatly disadvantaged if they were incapable of discerning between which is “less” and which 

is “more.” However, this does not provide proof positive that the animal has obtained anything 
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resembling a concept like “bigger-than” or “more-than.” Instead, it only shows that surface area 

is a salient perceptual feature in discrimination tasks.  

The second issue with tasks of relational reasoning as presented to animals is they 

typically involve interpolation and not extrapolation. Any predicated concept extrapolates with 

little effort. Recall that part of what makes relational reasoning so powerful is that it is 

functionalized and therefore these concepts can be applied to novel cases, and these novel cases 

can be reasoned about with no training necessary at all. However, it is common within the 

comparative literature to demonstrate only interpolation. In the case of Lazareva et al. (2004) the 

B-/D+ pairing is a case of interpolation as the crows had already learned reward/no reward 

mappings for both of these cases. A better test of whether or not a “bigger-than” concept had 

been predicated could have been demonstrated by an X-/Y+ pairing., If the concept has been 

learned, it should generalize to X-/Y+ pairings without training.  

Consider the following scenario: One is invited to guess the rules to a game by observing 

the behavior of game host and a contestant. The game host says, “One”; the contestant replies, 

“One.” The game host says, “Two,” and the contestant replies, “Two.” Then the game host says 

“Flower,” and the contestant replies, “Flower.” What would the contestant likely say if the game 

host says “bouncy?” It is likely that your answer would be “bouncy”. This is an example of the 

identity function (formally: f (x) = x), or simply the “you say what I say” game. Notice that since 

the rule has been functionalized, regardless of what takes the role of x, the output will always be 

x. This function extrapolates without any additional training. Now imagine a possible world in 

which one could not generate an output without previous experience with the input. In order to 

perform properly on the “you say what I say” game, one would first have to learn all possible 

mappings; A would have to be mapped to A, B to B, and so on. In the case one was presented 
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with the novel “bouncy” example, the answer would be unknown because a mapping from 

bouncy to bouncy has never been learned (Doumas & Hummel, 2003; Hummel & Holyoak 

2000). In the context of the Lazareva et al. (2004) ordered stimuli experiment, mappings had 

been generated to B-/D+ in the context of B-/C+ and C-/D+ pairings.  

In sum, although the simulations contained in this research are not enough in and of 

themselves to disprove the hypothesis that animals are capable of relational reasoning, they do 

establish that current tests of relational reasoning are not sufficient to demonstrate this 

phenomenon in nonhuman animals, echoing the conclusions drawn by Penn et al. (2008).  

Relational reasoning is yet to be successfully demonstrated in nonhuman animals, lending some 

credence to the notion that aspects of relational reasoning as observed in humans may be 

diminished or even missing in their entirety in animals. Understanding which aspects and 

underlying mechanisms are and are not present in nonhuman animals is still a primary goal, and 

should be investigated in future research.  
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Future Research 

 The following descriptions are of manipulations that could be made to the DORA/LISA 

models of relational reasoning in future research. The goal would be to develop the models of 

relational reasoning to account for the animal data across different species by establishing which 

mechanisms may or may not be present by removing aspects of relational reasoning from the 

human version of the model. 

 

1. Predication  

Predication is broadly used throughout the description of the DORA/LISA models to 

mean “the ability to represent something as an explicit entity” (Gentner, 1983). Within the 

models, predication is the outcome of four very important processes: retrieval of propositions 

from long-term memory (LTM), analogical mapping of propositions currently in working 

memory, intersection discovery for predication and refinement, and linking of role-filler sets into 

higher arity structures via self-supervised learning (SSL) (for the sake of brevity SSL will not be 

discussed here, instead please see Doumas et al. (2008) for details).  Therefore, one way to begin 

asking questions about the nature of relational reasoning in nonhuman animals may be to begin 

with an understanding of how predication may come to be in different species. For example, we 

can begin by asking whether or not the cognitive architecture of nonhuman animals allows for 

the predication of relational properties. Admittedly, how DORA goes through the process of 

predication is partly due to the way in which DORA carries binding information. For the 

purposes of separating our potential manipulations dealing with predication, which is the focus 

of this section, manipulations associated with binding are covered in the section Asynchrony of 

Firing below.  
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Within DORA, predication is done throughout the process of building a representation 

allowing for higher arity structures and is done in the following way: first, DORA begins with a 

feature vector (that is, nodes that code for features in a network that are associated with a 

particular object).  The features in this vector are then compared to get PO units that code 

explicitly for role information. This process is important because these new PO representations 

can then be bound (i.e., predicated about) objects. PO units are then linked together to create 

role-filler pairs for the purpose of long term storage.6 RB (role-binding) units are then linked 

together in the layer above into full relational propositions, known as P units. This comparison-

based learning process is then applied iteratively, refining PO and propositional representations. 

The final outcome of this process is a full LISAese representation (see Figure 1) that supports the 

high-level relational cognition seen in humans.   

Therefore, truncating the representational structure at these different levels is ripe for 

exploration. Perhaps it is the case that nonhuman animals are incapable of representing role-filler 

pairs, leaving them with mental representations that only code for roles and predicates with no 

clear way to link them together. Alternatively, it could be the case that nonhuman animals are 

capable of representing role-filler pairs, but are unable to represent entire propositions. 

 

2. Comparison-Based Predication 

The aforementioned process of predicating higher arity structures by recruiting new 

nodes within the model is driven by DORA’s ability to compare (Doumas et al., 2008). 

Comparison plays a key role in how relations are initially learned by highlighting shared 

                                                           
6 RB units are essential for establishing the asynchrony patterns that carry binding information in 
working memory. This prevents features of one role-filler pair from becoming conflated with 
features in the other role-filler pair. 
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properties between objects and roles (Gentner, 1983, 2003; Mandler, 1988, 1992, 2004). These 

shared properties make up what information is being encoded into the recruited nodes that in turn 

make up the more complicated structures in DORA’s mental representations. It could then be the 

case that the ability to compare may have some fundamental limitations in nonhuman animals. 

That is to say that perhaps what things are highlighted during the process of comparison are 

unlike those things being highlighted when a human compares objects and roles. It could also be 

the case that co-activation in PO units is not enough, in and of itself, to warrant recruitment of 

the new nodes to code for more complicated aspects of the representational structure. This leaves 

comparison-based predication as a worthwhile variable to manipulate.  

 

3.  Asynchrony of Firing 

 A reoccurring theme throughout the cognitive modeling of the relational reasoning 

literature is that an adequate symbolic account of human relational reasoning requires dynamic 

binding. Binding, in and of itself, is simply a way to link together representations while 

maintaining independence of those representations. Frequently referred to as the “binding 

problem,” this problem is addressed in the DORA model by systematic asynchrony of firing. 

Asynchrony of firing, as described earlier, involves roles and the arguments that are bound 

together to fire in close temporal proximity to each other (Doumas et al., 2008). Therefore, 

timing of firing signals is subject to manipulation within the model.  

 One way in which the firing signals can be manipulated is via the inhibitory refresh 

signals that separate RBs and POs (see Horn et al, 1992; Horn & Usher 1990; Hummel & 

Holyoak 1997, 2003), which create a predictable pattern of activation on the semantic units. 

Global inhibitory signals are easy candidates for variable manipulation; the timing of which can 
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be changed or they could be removed completely. Inhibitory signals are also used between nodes 

at the same level; these types of inhibitory signals are a type of lateral inhibition (e.g., where 

firing a node at the level of RBs inhibitory signals are sent to competing RB units which in turn 

excite the PO units in the layer below). In this case, lateral inhibition can be removed and the 

ability of the model to reason can then be assessed. 

 

4. Refinement 

 Due to the way in which DORA learns relational representations from unstructured 

examples (via a comparison algorithm that looks for featural overlap that in turn recruits nodes to 

code for those featural overlaps), initial representations will code unnecessary additional features 

as part of the initial structure. For example when attempting to learn to predicate the concept big 

using the exemplars ‘robot’ and ‘cactus,’ the initial representation may be confounded with the 

feature green, as the exemplars offered to the model for learning may both coincidentally be 

green (Doumas et al., 2008). However, as the model runs through multiple examples of big, big 

becomes properly predicated and featural overlaps that are extraneous are weeded out. This 

process is done through a self-supervised learning (SSL) algorithm (see Doumas et al. (2008) for 

a discussion of how SSL is used to refine predicates). The details of this process are not 

important in the limit, but the fact that SSL is allowed to occur for new predicates is in and of 

itself an interesting point. It could be the case that while attempting to predicate parts of the 

relational structure in nonhuman animals, the cognitive processes that allow refinement to take 

place may not be present, leaving animals with ‘dirty’ representations. 

Within the comparative psychology literature the ability for animals to solve any 

particular task seems relatively task specific. For example, in the Visalberghi & Limongelli 
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(1994) test of causal reasoning in capuchin monkeys, subjects attempted to retrieve a piece of 

food placed in a transparent tube using a straight stick. There was a trap in the middle of the tube 

in which the food would fall if it was pushed over the hole. The idea was to push the food away 

from the hole in order to retrieve the food. After 90 trials, only one of the four subjects was able 

to successfully perform the task. Furthermore when the experimenters put the hole above the 

food (removing the hole as an obstacle), the one successful subject still treated the hole as if it 

was an obstacle. These results led Penn et al. (2008) to conclude that the causal knowledge used 

by nonhuman primates is “tightly coupled to specific task parameters and bodily movements” 

(2008, p. 119). 

This type of task specificity may be the byproduct of mental representations that , once 

created, do not go through any type of refinement or updating and therefore are not generalizable 

to other tasks. Alternatively, animal mental representations may go through some refinement, but 

the refinement process may asymptote much earlier than those of the SSL presently implemented 

within the DORA model.  

 

 

5. Mapping 

Generally speaking, mapping creates opportunities for DORA to predicate new properties 

by linking together units that are active at the same time. When units in the driver and the 

recipient map together this signals that units share some correspondence with each other. 

Mapping is involved in many of the aforementioned processes, specifically, predication of new 

properties, formation of new relations, as well as refinement (Doumas et al., 2008). Changing the 

way the model maps will then also have implications for those processes. Similarly, changing the 
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way the model maps in any combination of those processes may also hold the key to some of the 

gradients in behavior observed across species and between human and nonhuman animals. 
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Conclusion 

 Understanding the nature of nonhuman animal cognition is an incredibly important task 

for comparative and cognitive psychologists alike. Although the applied aspects may not be 

directly evident, this research does have the potential to cause researchers to reflect on the nature 

of the questions they posit to nonhuman animal species. In addition, computational modelers of 

human cognition have enjoyed some great successes in understanding the way that the human 

mind works. This work could prove to be a launching point for the creation of neurally plausible 

cognitive models of animal mental processes as well. It could also in the future provide an 

excellent basis for evolutionary biologists to search for the structural differences that support the 

process level differences that may be observed (Penn et al., 2008). 

 Broader implications of such research may require us to reanalyze the use of nonhuman 

animals as behavioral models of genetic and psychological diseases. For example, developing 

drug treatments for a spectrum disease like autism with the aide of transgenic mice may prove to 

be difficult if the way in which mice come to represent their world is drastically different to the 

way in which humans come to represent and manipulate those representations of their world. If 

the mental world of animals and humans differ at some important level it is important to realize 

that drugs tested on and used to treat human-like symptoms in animals may prove to have limited 

effect on humans.  

 The simulations and data collected for these experiments are only step one in the process 

of understanding the underlying differences that may account for the divergence between animal 

and nonhuman animal cognition by establishing that present research is not sufficient to draw 

claims about relational reasoning in nonhuman animals. Further demonstrating the need for 

formal models of mental processes. The next steps for understanding what underlying processes 
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(or lack thereof) seemingly preclude nonhuman animals from this ability have already been 

described in the Future Research section. Making functional changes to the architecture of 

cognitive models of relational reasoning in an attempt to better understand what underlying 

mechanisms may or may not be present in animal cognition is an important next step for 

researchers interested in an understanding of relational reasoning in nonhuman animals that 

satisfies all of Marr’s levels of analysis. 
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APPENDIX A 
 
Table 1. 
Lazareva et al. (2004) Ordered Stimuli Proportions 
 
Raw Trials Crow 1 Crow 2  Crow 3 Crow 4 
A-/B+ 131 114 96 127 
B-/C+ 153 83 122 96 
C-/D+ 71 256 145 98 
D-/E+  60 151 50 39 
Total 415 604 413 360 
     
% Trials     
A-/B+ 31.5% 18.8% 25% 35.2% 
B-/C+ 36.8% 13.7% 31.8% 26.6% 
C-/D+ 17.1% 42.3% 37.8% 27.2% 
D-/E+  14.4% 25% 13% 10.8% 
     
Trials in memory     
A-/B+ 16 9 12 18 
B-/C+ 18 7 16 13 
C-/D+ 9 22 17 14 
D-/E+  7 12 6 5 
 
Table 2. 
Lazareva et al. (2004) Unordered Stimuli Proportions 
 
Raw Trials Crow 1 Crow 2  Crow 3 Crow 4 
A-/B+ 170 96 273 364 
B-/C+ 72 76 117 64 
C-/D+ 591 224 269 622 
D-/E+  217 93 86 89 
Total 1050 489 745 1139 
     
% Trials     
A-/B+ 16.2% 19.6% 36.6% 32% 
B-/C+ 6.9% 15.5% 15.7% 5.6% 
C-/D+ 56.2% 45% 36.1% 54.6% 
D-/E+  23.5% 19% 11.5% 7.8% 
     
Trials in memory     
A-/B+ 8 10 18 16 
B-/C+ 4 8 8 3 
C-/D+ 28 23 18 27 
D-/E+  10 9 6 4 
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APPENDIX B 
 

 
Table 3. 
Lazareva et al. (2004) Simulation File Overview – Ordered Stimuli 

Ordered Stimuli – A-/B+ Ordered Stimuli B-/C+ 
Object Features Object Features 
A- - B- - 
 color1  color2 
 size1  size2 
 noReward  noReward 
B+ + C+ + 
 color2  color3 
 size2  size3 
 reward  reward 
    

Ordered Stimuli C-/D+ Ordered Stimuli D-/E+ 
Object Features Object Features 
C- - D- - 
 color3  color4 
 size3  size4 
 noReward  noReward 
D+ + E+ + 
 color4  color5 
 size4  size5 
 reward  reward 
    

Ordered Stimuli B-/D+ 
Object Features 
testB- - 
 color2 
 size2 
  
testD+ + 
 color4 
 size4 
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Table 4. 
Lazareva et al. (2004) Simulation File Overview – Unordered Stimuli 

Unordered Stimuli – A-/B+ Unordered Stimuli B-/C+ 
Object Features Object Features 
A- noReward B- noReward 
 color1  color2 
B+ reward C+ reward 
 color2  color3 
    

Unordered Stimuli C-/D+ Unordered Stimuli D-/E+ 
Object Features Object Features 
C- noReward D- noReward 
 color3  color4 
D+ reward E+ reward 
 color4  color5 
    

Unordered Stimuli B-/D+ 
Object Features 
testB- color2 
  
testD+ color4 
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Table 5. 
Cook & Wasserman (2007) Simulation File Overview 

Stimuli Configuration 1 – Phase 1  
Object Features Object Features 
sampleDiff1 feature11 diffChoice1 feature20 
 feature13  feature15 
 feature7  feature14 
 noise1  noise1 
 noise2  noise2 
  sameChoice1 feature4 
   noise1 
   noise2 

Stimuli Configuration 1 – Phase 2  
Object Features Object Features 
sampleDiff1 feature11 diffChoice1 feature20 
 feature13  feature15 
 entropyHi1  entropyHi1 
 noise1  noise1 
 noise2  noise2 
  sameChoice1 feature4 
   entropyLo1 
   noise1 
   noise2 

Stimuli Configuration 1 – Phase 3  
Object Features Object Features 
sampleDiff1 feature11 diffChoice1 feature20 
 feature13  feature15 
 entropyHi1  entropyHi1 
 entropyHi2  entropyHi2 
 noise1  noise1 
  sameChoice1 feature4 
   entropyLo1 
   entropyLo2 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 noise1 
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Stimuli Configuration 1 – Phase 3.2  
Object Features Object Features 
sampleDiff1 feature11 diffChoice1 feature20 
 entropyHi1  entropyHi1 
 entropyHi2  entropyHi2 
 entropyHi3  entropyHi3 
 noise1  noise1 
  sameChoice1 feature4 
   entropyLo1 
   entropyLo2 
   entropyLo3 
   noise1 
    

Stimuli Configuration 1 – Phase 5  
Object Features Object Features 
sampleDiff1 feature11 diffChoice1 feature20 
 entropyHi1  entropyHi1 
 entropyHi2  entropyHi2 
 entropyHi3  entropyHi3 
 noise1  noise1 
 noise2  noise2 
  sameChoice1 feature4 
   entropyLo1 
   entropyLo2 
   entropyLo3 
   noise1 
   noise2 
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Table 6. 
Call & Tomasello (1999) Simulation File Overview 

Control Task 1 – Marker Tracking Control Task 2 – Visible Displacement 
Object Features Object Features 
0box1 boxf1 1box1 boxf1 
 boxf2  boxf2 
 boxf3  boxf3 
 hasMarker1  sawFood1 
 hasMarker2  sawFood2 
0box2 boxf1 1box2 boxf1 
 boxf2  boxf2 
 boxf3  boxf4 
   hasMarker1 
    

Control Task 3 – Invisible Displacement Control Task 4 – Ignore Observer 
Object Features Object Features 
2box1 boxf1 3box1 boxf1 
 boxf2  boxf2 
 boxf3  boxf3 
 hasMarker1  sawFood1 
 hasMarker2  sawFood2 
2box2 boxf1 3box2 boxf1 
 boxf2  boxf2 
 boxf4  boxf4 
   hasMarker1 
    

False Belief Task Memory Mappings 
Object Features Object Features 
4box1 boxf1 markerBox boxf1 
 boxf2  boxf2 
 boxf3  hasMarker1 
 hasMarker1  hasMarker2 
 hasMarker2 sawBox boxf1 
4box2 boxf1  boxf2 
 boxf2  boxf4 
 boxf4  sawFood1 
   sawFood2 
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