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ABSTRACT

This thesis introduces a biologically inspired topology optimization method with the

incorporation of fractones. The proposed method was adapted from a current optimization

method which employs a cellular division model for the generation of topological maps.

Once topologies are generated, they are evaluated for a set of performance functions and

optimized through a genetic algorithm. The proposition of this thesis was that the incor-

poration of fractones into the existing mapping system may improve the overall efficiency

and performance of the optimization algorithm. Fractones are small extracellular struc-

tures believed to regulate the cellular division process through the capture and transport

of growth factors. In this model the distribution and diffusion of growth factors served as

additional control parameters in the creation and optimization of topologies. Both the frac-

tone modified and original methods of the mapping system were applied to an aeroelastic

flapping membrane wing optimization problem in which the supporting lattice structures

of the wings were optimized for power requirement, lift, and thrust performances. The per-

formances of the original and fractone models were compared and analyses of the generated

venation patters were made.

Keywords: Multidisciplinary Design Optimization, Map L-system, Biologically Inspired

Structures, Fractones.
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CHAPTER 1
INTRODUCTION

Topology optimization is the critical field of engineering which aims at optimizing the

material distribution in a given domain such that a set of boundary conditions are satisfied

and a set of performance targets are approached. These techniques are often useful in

industries for reducing the costs of design and preliminary modeling. There are a number

of purposed methods for topology optimization and many of the common methods include

a genetic algorithm for optimization and finite element schemes for evaluation of the design

candidates.

Solid isotopic material with penalization for intermediate densities (SIMP) [1] [2] is

one popular method for topology optimization. This approach uses a discretized domain

with grey scale elements. Rather than strictly solid material and void elements in the

design domain, the elements are allowed to range on a 0 to 1 scale. The resulting structures

however, are difficult to manufacture or not feasible in many cases. To remedy this problem,

a penalization value is assigned and this penalization serves to bias the structure toward

purely solid and void elements. Appropriate selection of the penalization value is crucial

to the performance of this method and is often considered the short fall of this algorithm.

Substantial penalization is needed to avoid large areas of grey, but too large of a penalization

may produce local optima. The quality of the optimized design obtained with the SIMP

method is also strongly dependent on the smoothness of the objective function and the

constraints. In addition, the numerical method for obtaining a solution for the SIMP

method becomes increasingly unstable for highly non-linear problems.

Genetic algorithms are preferred to the previous method for its versatility, ability to

handle complex problems, and gradient free nature. Simple examples of genetic algorithms

directly correlate the genome of a design to the structure. Here each gene is a binary unit

that corresponds to a solid or void element in the discretized domain [3]. The difficulty of

this approach is that refined grids are often required for meaningful results; however this
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increases the computational demands and slows convergence. Many of the designs generated

in this manner are also unfeasible due to occurrences such as checker boarding and island

formations [4]. To avoid these problems, this work uses a genetic algorithm that encodes a

cellular division mapping model [5] [6]. This model generates simple connected structures so

that resolution and connectivity obstacles are removed. The nature of the mapping system

also requires a relatively small set of genes, yet presents a vast pool of potential designs.

1.1 Research Objectives

This thesis is aimed at the development of a new methodology for topology optimization.

This work adapts the existing biologically inspired algorithm which models the cellular

division process to generate topological maps. Previous work has been done to incorporate

this cellular division model to create topologies for a given design problem and optimize the

resulting designs in a genetic algorithm. This process so far has proven successful results.

The proposal here is to improve the existing system through modifications of the bi-

ological model that is the basis of forming the topologies. More specifically, the goal is

to improve the results of the topology generation algorithm by adding additional control

parameters to bias the generated designs to better suit the demands of the design problem.

This is accomplished by implementing another biological phenomenon known as fractones[7]

[8] [9].

Fractones, a fairly recent biological finding, are an extracellular structure believed to

have the ability to govern the location and occurrence of cellular divisions. While fractones

govern where and when the cell divides, the fractones themselves are regulated by a number

of chemicals called growth factors. As these chemicals diffuse, they are captured by the

fractones and when the fractones reach a threshold value of the growth factors, they initiate

a cellular division.

To incorporate the idea of fractones, the topologies here evolve by simulating the dif-

fusion of growth factors along the members of the initial map. A number of fractones are

fixed along the members and once they reach a predefined value of diffusing growth factors,
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they initiate a new division (creation of a new beam) in the design. The distribution of

growth factors, the rate of diffusivity, and the threshold values in the scheme influence the

final topology generated. These modifications may have a number of potential benefits,

including an improved rate of convergence and more optimal designs. The methods are

tested here on a flapping membrane wing optimization test problem.
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CHAPTER 2
METHODS

This chapter will address a number of background areas including: the mapping model

which simulates cellular divisions, the recent finding in the field of neurobiology, known

as fractones, a novel topology optimization method, and an aeroelastic flapping wing op-

timization problem. The first two crucial elements, fractones and the mapping algorithm,

will initially be discussed as distinct and independent topics, and later brought together

to introduce a new model for topology optimization. The motivation and mechanisms of

the proposed model will be described in detail and followed by the description of a specific

engineering application which will be used for validation.

The organization of this chapter will begin with a definition of the map L-system which

is used to generate the topological maps in section 2.1. This section will then be followed by

a closer look into the biological field of cellular division and the inspiration for the methods

developed here, called fractones, in section 2.2. The two preceding sections will then merge

in section 2.3, where the fractone map L-system will be introduced. The manner in which

the fractones are modeled along with the diffusion of their associated growth factors will

be discussed, along with its implementation in the original map L-system. Finally, the

novel method presented will be applied to a sample problem of a flapping membrane wing

optimization which will be addressed in section 2.4.

2.1 Map L-system

Introduced in 1968 by biologist Aristid Lindenmayer, the Lindenmayer system (or L-system)

is a method of rewriting a series of character/grammar strings in a parallel fashion. The

versatility of the L-system to represent the parameters of any starting element with a

character string and evolve the structure by implementation of the governing production

rules has proven the system to be useful for a number of applications. Some applications

include the ability to produce interesting fractal geometries, model the branching growth
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of plant structures, and simulate cellular divisions (some examples may be seen in figure

2.1). The map L-system [10] [11], proposed by Nakamura, Lindenmayer, and Aizawa, is the

extension of the algorithm which models single layer cellular divisions and is the basis for

the topologies generated in this work.

Figure 2.1: Sample images generated by L-
systems: fractal pattern (top), development
of plant structures (mid and bottom)

Maps are planar graphs defined by a fi-

nite set of regions in which each region is

enclosed by a string of edges which meet

at vertices. Every edge has one or two as-

sociated vertices, all edges are a part of a

region’s boundary, and all edges are con-

nected (such that there are no island for-

mations). A map may be representative of

a single cellular layer where the edges are

the cell wall, the enclosed regions are the

intracellular space within the cells and the

extracellular spaces are omitted. Simulta-

neous cell divisions are modeled with a binary propagating map 0L system with markers

(or mBPM0L-system). The 0L system is the context-free Lindenmayer parallel rewriting

system in which there are no interactions between cells. The map L-system is binary and

propagating because cells are always divided into two daughter cells and in this model cells

are never destroyed or joined. The markers play the functional role of flagging the boundary

edges at potential vertices where the cell may divide and new edges may form [10].

In overview, a two dimensional map L-system is first initiated with an axiom that defines

the edges of the domain. Once initiated, the closed map undergoes a series of subdivisions

by the addition of straight internal edges. The creation and location of these edges are

governed by a predefined set of production rules. The algorithm begins each iteration with

a discretization of the existing edges of the map and a placement of markers at selected

nodes. The discretization patterns of the edges and the location and orientation of markers
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are based on the production rules. Once all edges have been divided and markers placed,

the new edges are created by matching the markers. When two markers are present along

the boundary of a common region, have the same label, and appropriate orientations, they

will form a new wall between the two markers.

A simple example of a map L-system may perhaps be best expressed in its mathematical

form. The system is first defined an alphabet, Σ, which is a finite set of characters (letters

and symbols) and may be represented as Σ = {A,B,C, ..., [, ],+,−}. From this alphabet,

characters are selected to create an axiom, Ω, which is the string that initiates the rewriting

process. Here the axiom will be selected as Ω = ABAB. The third and final item required

is the finite set of production rules or rewriting rules, P . The production rules are also

limited to the characters of the alphabet, Σ, and must take the form α → χ. α is a single

character of the alphabet which serves as the predecessor and χ is the word (or string)

called the successor. Note that if there are multiple rules with identical predecessors and

differing successors, a probability may be assigned to each rule to determine the frequency

at which each are utilized. For this example the set will consist of two production rules:

A → B[−A]x[+A]B

B → A

To this point, the example is nearly a simple D0L-system (deterministic because the prede-

cessors are non-repeating and context free) which is not specific to a map generation. The

example put forth however, may be applied to a mapping problem with the addition of a

few rules.

In a mapping scenario, each letter of the axiom represents an edge of the initial map.

Therefore the length of the axiom must be equal to the number of edges in the initial

structure. It is also customary to include the special characters [, ], +, and - when using

a map L-system. When included in the production rules, the matching brackets, [ and ],

indicate the inclusion of a marker which is labeled by the enclosed character. The orientation
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(+ or -) preceding the label in the closed brackets indicates the directionality of the marker,

in this case the + symbol correlates to a counterclockwise placement of the edge. The

remaining characters of the successor, which are not enclosed by brackets, indicate the

number of segments the preceding edge is divided into. The new edges will be labeled as

prescribed by the rules and nodes are placed between the edges. For example the first edge,

A, which is the lower boundary of the map in figure 2.2, is discretized into three equal

segments. The new edge segments are labeled, B, x, and B respectively. Between the first

and second segments a marker oriented downward is placed and an upward oriented marker

is placed between the second and third segments. Since the first marker is oriented outward

from the map it is discarded while the second marker is eventually paired with the other

inward facing marker on the upper boundary.

After all the pertaining edges are subdivided and markers are placed, the markers are

checked for any possible pairings. As mentioned earlier, a pair of markers are matched if

they belong to the same cell (are on the boundary of the same region), are not located

on the same edge, if their labels are the same, and if they are oriented toward each other.

There may be more than one potential set of marker pairs in a given cell, but the first pair

to be found determines the location of the cell division. After cells are scanned for matching

markers and the locations of the cellular divisions are determined, the remaining markers

are discarded. The resulting maps generated in this example, for an initial square map with

equal subdivisions of the edges, are shown in figure 2.2.

For the purpose of generating and optimizing topological maps in engineering applica-

tions it is practical to enforce a few additional constraints. After satisfying the previous

conditions to create a cell wall, an eligible marker pair and its respective new edge must

also meet certain limits prescribed by the user:

1. Prevention of small angles: the angles between the adjacent edges in the divided cells

must be larger than a prescribed lower limit; this prevents the creation of cells with

narrow angles.

2. Prevention of small areas: each newly formed cell must have a regional area which
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xx
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x AA
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B

B

Second step

Third step Fourth step

Figure 2.2: Example of the mBPMOL-systems process for the first four iterations where
Ω = ABABand P: A→ B[−A]x[+A]B and B → A.

is greater than a prescribed percentage of the original map to avoid the formation of

excessively small regions.

For practical problems, the structure must also have a finite number of edges. In some cases

the cell divisions will cease when all edges of the map are labeled with a terminal token such

(such as x in the previous example). Otherwise there exists a maximum number of iterations

to be completed. Since this value is highly variable and dependent on the problem at hand,

a number of iterations may be prescribed at the start of the map generation program or

optimized in the genetic algorithm.

This section has provided a brief introduction to L-systems and an overview of the map

L-system as is pertinent to topological map generations. For more details and information

on Lindenmayer systems, the reader is referred to [10] and the references there in. The next
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section will further investigate the biological aspects of cellular division and their associated

regulation mechanisms.

2.2 Fractones

In cellular biology the mitotic phase, or period of active cellular division, is generally a

minor component of the overall cell cycle. A majority of the cell’s time is rather spent in

preparation for a cellular division, where accumulation of mass and nutrients and synthesis

of DNA occurs. Cell cycles may also be dormant at times when inactive time gaps are

included [12]. While rapid cellular division may take place in the early stages of life to

promote growth of the individual, the main purpose of cellular divisions in adult organisms

is for the maintenance of the body. Adult cellular divisions are reduced to the replacement

of damaged and aged cells and to meet the overall functional needs of the individual. As

a result, the frequency of cellular divisions is highly variable and dependent on the type of

cell and the physical state of the body. To accommodate for these variable rates of demand,

the cells will typically enter periods of arrest or dormancy until an external indicator is

presented and initiates the division process.

For this engineering application, our interest lies in the regulation of the cell cycle.

Many cells do not replicate very frequently and often branch from the cell cycle into a

dormant phase until signaled to resume active division. In these cases the cell only begins

to actively divide when initiated by an external source, most often by cell-type specific

molecules known as growth factors. Our focus is in better understanding these control

and regulation processes which govern the cell cycle and initiate cellular divisions. Recent

findings in the area of neurosciences have introduced new concepts for better understanding

such regulatory processes. The results of these studies, which will be reviewed in this

section, are the inspiration for the model presented in this work.

In adult neurogenesis, neurons are generated from neural stem and progenitor cells

(NSPC) . NSPC are localized in specific area of the brain, most notably the subependymal

layer of the left ventricle [7] [8]. Neural stem cell differentiation and proliferation in these
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areas are also known to be governed by the presence of growth factors, but the details of

this regulatory process have remained unknown.

Figure 2.3: Cell proliferation and Fractones in
the lateral ventricle: Fractones (arrows, green
labeled N-sulfated HS) and proliferating cells
(red labeled BrdU+) near the N-sulfated hep-
aran sulfate fractone structures.

It has been hypothesized that the ex-

tracellular matrix in the adjacent regions

of the left ventricle wall also plays a con-

tributing role in the initiation of cellular

divisions. Close examination of these re-

gions have brought attention to branched

structures in the extracellular matrix which

come in direct contact with the NSPC. This

branched (stem and bulb) structure which

binds to the NSPC has assumed the term,

fractones[7] [8]. Fractones are believed to

be associated with the material of base-

ment membranes which is the surface tissue

containing high concentrations of extracel-

lular molecules (ECM). These extracellular

molecules include heparan sulfate proteo-

glycans (HSPG) which is a known binding cofactor of growth factors[7].

Imaging and statistical analysis methods have produced many new findings and evi-

dence supporting the relationships theorized above. Molecules comprising the basement

membranes have been identified in fractones structures, confirming that the two materials

are indeed affiliated. A high density of cell proliferation was also observed near fractones,

especially those containing N-sulfate HSPG[7]. Immunolabeling techniques were performed

to identify cells recently entering mitosis in several dissection samples. It was found that

the majority of cells initiating cellular division were in the areas adjacent to fractones and

capillaries, however statistical analysis revealed that cells initiating mitosis were generally

in closer proximity to fractones[7]. These results indicate that fractones store the fibrob-
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last growth factor 2 (FGF-2) via binding with HSPG and they are the main structures in

relaying FGF-2 (growth factors) to the neural stem cells which then undergo mitosis.

The introduction to fractones presented here express the basic concepts that are of

interest in this work. For further details on the analysis of fractones refer to [7] and [8].

2.3 The Fractone Map L-system

Thus far the map L-system and fractones have been introduced individually. In this next

segment, the map L-system will undergo modifications to incorporate the idea of fractones

and generate the resulting fractone map L-system.

It was previously demonstrated that fractones play a vital role in initiating division of

their associated cells through the capture and delivery of growth factors from the extra-

cellular space to the eligible cell. The model proposed here utilizes a similar and slightly

simplified concept. For the purposes of this study, fractones are modeled as small and

stationary structures which passively capture and consume simply diffusing growth factors.

The fractones initiate mitosis in its neighboring cell once a threshold quantity of the growth

factors is accumulated. The rates of growth factor accumulation in these structures are

governed by a constant diffusion coefficient and the initial distribution of the growth factor

molecules.

Integration of the fractones into the map L-system is accomplished by the assumption

that all of the previously introduced markers in the map L-system represent fractones. All

boundary and internal nodes also indicate active fractones (corner nodes are neglected). For

simplification it is assumed that all markers (i.e. fractones) are actively consuming growth

factors and remain active for the remaining iterations of the map generation. The fractones

also have the same affinity for growth factors, and all fractones have the same threshold

value. There is only one type of growth factor present in this model and the diffusivity of

the molecule is constant throughout the system.

The diffusion of the growth factors along the edges is approximated with a one dimen-

sional, piecewise linear finite element scheme. Diffusion is modeled along each line segment
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between markers and each segment is discretized with a constant number of uniform nodes.

The source term of the diffusion equation is set to zero and the initial distribution of the

growth factor is prescribed. All segment ends (fractone locations) are prescribed Dirichlet

boundary conditions with a fixed concentration of zero.

The diffusion model is also prescribed a finite number of uniform time steps and after

each time step, the amount of growth factors consumed at each node is computed. All eligi-

ble markers must accumulate the threshold value of growth factors in addition to satisfying

all other requirements to form a pair and initiate a new cell wall formation. One example

for such a case where the fractones influence the topology can be seen in figure 2.4.

(a) (b) (c)

Figure 2.4: First iteration of a mapping with and without fractones with axiom: ABAB
and production rules:A→ B[+A]x[+A]x[+A]B and B→A: a) First subdivision using original
mapping system b) Diffusion of growth factors along linearized edges of the map (starting at
bottom edge): GF concentration vs. x c) First subdivision using fractone mapping system

After each iteration of the map generation when additional markers are placed and new

walls may be formed, the growth factors are redistributed. For each existing segment that

undergoes new subdivisions, the total quantity of growth factor is conserved and distributed

among the new subsections. The existing growth factors of the edge are accumulated and

dispersed with a weighted distribution governed by the length of each new segment. When

a new wall is formed, an initial concentration of growth factors must also be assigned. In

this case the average growth factor concentration of all existing segments is computed and
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assigned to the newly formed wall segments. This averaging is performed to remove any bias

of wall formations at this member due to extremely low or high concentrations of growth

factors relative to the remaining edges.

The growth factor concentrations for these calculations are carried over from the previous

iteration in the map generation. If a pair of markers were matched in the preceding iteration,

the growth factor concentrations of all edges during the first time step in which both markers

reached the threshold value, serve as the initial conditions for the next iteration of the map.

If there were no matching pairs in the previous iteration, the growth factor concentrations

along all the edges during the last time step are the values carried over to the next iteration

of the map generation.

While this method is more complex and requires greater computational time to generate

maps compared to the original map L-system, it has the potential to improve the overall

performance of the optimization with the addition of the diffusion parameters in the genetic

algorithm. This scheme may prove to be beneficial when applied to complex optimization

problems such as the application presented in the next section.

2.4 Flapping Wing Optimization

An aeroelastic flapping membrane wing model [6] will serve as the test application of the

above mentioned optimization methods. This problem analyzes the performance of a for-

ward flight flapping membrane wing for a micro air vehicle. These bio-inspired wings are

comprised of thin, flexible membranes reinforced with a rigid beam network, similar in form

to the veined wings of insects. The performance of the wing structures are influenced by

the venation patters of the supporting members and it is this topology which will undergo

optimization. Both the original and fractone inspired map L-systems will be applied inde-

pendently and the resulting maps will be used to generate the Pareto curves parameterized

by the designs power requirement and thrust generation.

Evaluation of the wings under the given flight conditions are to be accomplished as

follows. The structural modeling of the wing will be completed using a finite element
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analysis of the membranes with a triangular mesh (figure 2.5). The respective governing

equation is applied to each element of the membrane:

Nx · w,xx +2Nxy · w,xy +Ny · w,yy +fz(x, y, t) = ρ · w,tt (2.1)

where N is the pre-stressed resultants, w and f are the out-of-plane displacement and applied

force per area, and ρ is the membrane density per length. The Euler-Bernoulli equation is

used to analyze the beam members (battens, leading edge, tip, and root) [6].

Figure 2.5: Finite element mesh of a sample wing design: triangular mesh of membrane,
battens (red)

The governing equations are converted into the usual finite element matrix form:

M · u′′ + C · u′ +K · u = F (2.2)

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix, F is the

accumulated load vector, and u is the total deformation of the structure [6] [13]. Here the

solution, u, is also approximated with a linear combination of modes:

u = Φ · η (2.3)

where Φ is the modal matrix of natural vibrations and η is the modal amplitudes.
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Prior to evaluating the performance of the wing designs, a few parameters must be

defined. The flight kinematics are characterized by two angles of the wing, the first is the

static angle of attack with respect to the external flow, α, and the second value, β, prescribes

the range of the sinusoidal flapping. A constant velocity is also defined for the external air

flow and a body attached coordinate system is utilized for the remaining computations.

Figure 2.6: Characteristic angles and span-wise stations of the flapping wing with an at-
tached coordinate system

The aerodynamic loads as opposed to the structural analysis are evaluated with a number

of span-wise cross-sections of the wing. The pressure across the wing is determined by

applying the no-penetration condition at each span-wise station:

ν + λ = uo ·
∂h

∂x′
+
∂h

∂t
+ νo + ν1 · x′/b (2.4)

where h is the shape of the wing, uo is the horizontal velocity, the last three terms are the

vertical velocity (where b is the local semi-chord), and ν and λ are the induced flow from

the bound and trailing circulations [6]. The terms h, ν and λ are transformed using the

Glauert space ϕ = acos(x′/b) for computations henceforth and the resulting integrations

are computed using a defined set of Gaussian integration points.

The loads acting over each span section are computed using:

Fy′ =

∫ b

−b
∆P · dx′ + F νy′ (2.5)
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Fx′ =

∫ b

−b
∆P · ∂h

∂x′
· dx′ − 2π · b · ρ∞ · (nuo + ho − λo + uo · Σn ·

hn
b

)2 + F νx′ (2.6)

and the respective viscous terms are computed as follows (F vy′ is determined similarly):

F vx′ = b · ρinfty · U2
∞ · (CD0 · cos2αs + CDπ/2 · sin2αs) · uo/

√
u2o + v2o (2.7)

αs = atan(
h(−b)− h(b)

2b
) + atan(

vo
uo

) (2.8)

where αs is the local angle of attack, and CD0 and CDπ/2 are the drag coefficients at angles

0 and π/2 respectively.

A coupling of the two previous models (structural and airload) is employed to solve for

the wing response at each temporal state. The loads are solved for at each cross-sectional

segment and interpolated into the structural finite element mesh. The value of the pressure

is evaluated at the center of each finite element and considered to be constant over the

entire element. The deformation of the wing is determined and the wing shape is updated.

When the air vehicle is subjected to time-periodic flight conditions, the above solution

may also be assumed to be time-periodic upon degradation of any transient terms. Each

complete flapping cycle may therefore be discretized in time and the set of time-monolithic

solutions are approximated using a finite element method.

Further details and information on evaluation of this model may be found in [6] and the

references therein.

2.4.1 Genetic Algorithm

Once the topological maps have been generated by the previously discussed scheme, there

is then the need for a system to evaluate, analyze and optimize the maps to produce

useful results. Here the topologies are optimized using a genetic algorithm (GA). Just

as biological evolution continues to progress by the process of natural selection, the nature

of this method is to mimic the evolutionary process by preserving the most fit individuals.

Genetic algorithms also allow for mutations and hybridization of individuals to produce
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offspring, however the advantage here is that computational process is greatly accelerated

compared to the conventional evolution process.

The genetic algorithm generally begins with strings of numbers (equal in length) which

are analogous to genomes of a common species. Each numerical string represents one

individual and the number of strings represents the population size, which is constant

through each generation. The genomes are representative of the structures which are to

be optimized; in this case each genome may be translated into a topological map by the

(fractone) map L-system. The individual genes or elements of the string are used to generate

the axiom and production rules associated with the map L-system. The first set of numbers

in the genome is translated into the axiom, generating a character label and directionality for

each initial edge of the map. The majority of the genes used occur in the second extraction

from the genome. This set generates the production rules which again prescribe a number

of character strings and associated orientations for the markers. In the case of the fractone

map L-system, an additional three genes are placed at the tail of the genome. These last

three genes contain the values for the threshold, diffusivity, and initial concentration of the

growth factors in the fractone model. The only constraint placed on these values is that

the threshold value must be less than the initial concentration.

Once the genomes are translated into their associated maps, they are evaluated by a

function unique to the problem at hand and each member of the population is ranked based

on their fitness. The most fit individuals are retained to repopulate the next generation of

individuals by a combination of random mutation and cross-over of two parent genomes. The

probabilities of crossover and mutation shall be cautiously selected by the user to ensure

that the desirable characteristics are retained while allowing enough variation to avoid

convergence at local optima. Once the offspring are generated, they are also evaluated for

fitness and pooled together with the parent genomes. The combined population is ranked

and the best genomes are selected to begin the next iteration. The process is completed

when a prescribed number of iterations are achieved.

While a single objective optimization problem would be a straightforward example for
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determining ”fitness” in a genetic algorithm, it is often desired that a multiobjective opti-

mization be performed. In this case there is a defined constraint:

g(x) ≤ 0 (2.9)

and a vector of objective functions to be minimized:

{f1(x), f2(x), · · · , fn(x)} (2.10)

This problem is solved using a non-domination ranking system in which designs are preferred

if they perform superior to other designs in one or more of the objective functions. Generally

there is no single optimum design, and rather a Pareto front is formed. The points along

the Pareto optimum are characterized such that one objective function cannot be improved

without compensation in another target function. A niching scheme based on the proximity

of points is also employed and promotes a greater spread of the Pareto front. The topological

designs contained in or closest to the Pareto front are ranked higher and favored in the

selection of parents for the next generation.
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CHAPTER 3
RESULTS AND DISCUSSION

The previous section presented the methodologies for performing a topology optimization

using a biologically inspired fractone model. In this section the results are presented for

an optimization of the venation pattern for a flapping membrane wing of a micro air vehi-

cle. Both the original map L-system topology generation and the fractone map L-system

methods are employed and the resulting performances are compared. Some optimal wing

designs and their performances are introduced here along with some analysis of the Pareto

fronts generated during the optimizations.

3.1 Wing Design

The wing structure was composed of a thin latex membrane and a carbon fiber lattice

structure. The membrane was characterized with an isotropic pre-stress condition and the

carbon fiber beams were prescribed a rectangular cross-section. These details, along with

the remaining material and geometric properties of the wing are presented in Table 3.1.

property membrane battens leading edge

elastic modulus, E 2 MPa 300 GPa 300 GPa
Poisson’s ratio, ν 0.5 0.34 0.34

density, ρ 1200 kg/m3 1600 kg/m3 1600 kg/m3

thickness 0.1 mm 0.8 mm 2 mm
width - 3 mm 5 mm

pre-stress, Nx, Ny 10 N/m - -

Table 3.1: Material and geometric properties of the membrane wing

The wing shape was defined with a root chord of 0.16 meters, a wing length of 0.4 meters,

and a tip chord of 0.04 meters. A parabolic camber was prescribed with a maximum value

of 2% the local chord length. There was no twist of the original wing, the dihedral angle

was zero, and the angle of attack (α) was set to 4 ◦.

The kinematics of flight were parameterized with a flapping frequency (ω) of 40 rad/s
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and a 30 ◦ amplitude of sinusoidal flapping (β). The flow velocity (U∞) was 10 m/s and the

density of air (ρ∞) was 1.225 kg/m3. The drag coefficients, CD0 and CDπ/2, were 0.05 and

2 respectively.

A number of parameters were also prescribed for the evaluation process which computed

the fitness of each wing design. The structural analysis of the wings was performed with a

finite element method using 20 modes. Airload analysis was performed with 20 span wise

wing stations with 20 Gauss points and 6 inflow states. The flight dynamics were computed

using a total of 100 timesteps per flapping cycle and 5 full cycles.

Three coefficients were defined for the multidisciplinary optimization of the wings. The

lift generation, thrust generation, and power requirements were evaluated as follows:

CL = −Fx/(0.5 · ρ∞ · U2
∞ · S)

CP = P/(0.5 · ρ∞ · U3
∞ · S)

CT = −Fy/(0.5 · ρ∞ · U2
∞ · S)

where F represents the respective forces, P is the accumulated power, and S is the area

of the wing. For this optimization all coefficients were averaged over the flapping cycle

and the lift coefficient was selected for the constraint function. The critical CL value had a

magnitude of 0.4892 (corresponding to a recorded average lift required for maximum thrust)

and the constraint function was defined as:

g(x) = CL − 0.4892 (3.1)

The thrust and power coefficients were retained as the two objective functions (f1(x), f2(x))

to generate the Pareto fronts. A population size of 200 individuals and 200 generations were

used in the genetic algorithm. The crossover probability of the genomes was 0.8 and the

probability of mutation was 0.1.

The map L-system was constrained to a 20 letter alphabet and a maximum of 8 letters

per production rule. A total of 4 iterations in the map generation were allowed. Growth
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factor diffusion was assessed in the fractone map L-system with a fixed number and length

of timesteps. A total of 5 timesteps were used in each iteration of the map generation and

each step was uniform with a length of 0.1.

A large variety of skeletal designs were generated from the optimization schemes pa-

rameterized here. A glimpse at the diverse pool of the resulting topologies can be seen in

figure 3.1. Here the most optimal designs for the power and thrust objective functions are

displayed. Each set of structures were randomly selected from a fractone and non-fractone

based optimization. The drastic differences in the power and thrust optimums are apparent

as well as the similarities of results generated within each set. Both skeletal structures for

optimal power coefficients contain very few members. The optimal design produced using

the fractone system is especially sparse, while the design generated without fractones in-

cludes some reinforcement of the trailing edge. Similarly both designs for optimal thrust

closely resemble each other with higher densities of the lattice structures and the majority

of the members oriented span-wise.

(a) Optimal power coefficient design
without fractones: CP,avg = 0.3971,
CT,avg = 0.1873, conavg =0.0081

(b) Optimal thrust coefficient design
without fractones: CP,avg =0.5270,
CT,avg =0.2503, conavg = 4.79e−4

(c) Optimal power coefficient de-
sign using fractones: CP,avg =0.4085,
CT,avg =0.1975, conavg =0.0105

(d) Optimal thrust coefficient de-
sign using fractones: CP,avg =0.5142,
CT,avg =0.2380, conavg =0.0046

Figure 3.1: Optimal power and thrust coefficient designs
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A selection of the resulting wings and their performances are presented in greater detail

in figures 3.2 to 3.15. This collection includes a minimum power coefficient wing design

resulting from the original map and fractone mapping systems in figures 3.2 and 3.9 respec-

tively. An optimal thrust coefficient layout is also presented for the original and fractone

mapping cases in figures 3.3 and 3.10 respectively. A total of five intermediate structures

were also selected at random from each of the mapping scenarios and are displayed in figures

3.4 thru 3.8 and 3.11 through 3.15.

These results illustrate the structural dependence of the performances and correlate to

the results found in [6]. As seen in the cases of the minimum power requirement designs, the

lack of reinforcement at the trailing edge allowed for steeper gradients of displacement in the

membranes. This allowed the wing a greater contour to the flow conditions and minimized

the total power demand by reducing the aerodynamic resistance during both the upstroke

and down-stroke of the flap. The compensation of this design however, was a reduction in

peak thrust and lift performance. These designs (especially the fractone generated design

with only one batten) had inferior lift performance to all other designs; while the lack of

reinforcement allowed the wing to contour to more to flow, it reduced the occurrence of

increased cambering and inflation.

In contrast to the power optimal designs, the stiffened thrust optimal designs exhibited

reduced gradients with respect to the structures out-of-plane deformation. In both thrust

optimal designs, the out-of-plane deformations were due to span-wise bending of the struc-

tures. During the down-stroke of these designs, when the lift was increased, it is seen that

the angle of attack was also slightly reduced and this favored the generation of thrust.

Interesting results are also observed in the inspection of the random designs. In many

of these scenarios, inflation occurred where venation was sparse and large deformation

gradients were formed. Presumably these occurrences favored a lift optimal design. An

interesting design is also seen in figure 3.13, in which chord wise reinforcements were in-

corporated. This design resulted in intermediate performance in all three design variables

between the thrust and power optimal designs.
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(a) Optimized map layout (b) Meshed wing structure

(c) Lift coeff vs. t/T , conavg =0.0081 (d) Power coeff vs t/T, CP,avg =0.3971

(e) Thrust coeff vs. t/T, CT,avg =0.1873

(f) Deformation of wing over a flapping cycle

Figure 3.2: Optimal power coefficient design: Original mapping system Run 1
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(a) Optimized map layout (b) Meshed wing structure

(c) Lift coeff vs. t/T , conavg = 4.79e−4 (d) Power coeff vs t/T, CP,avg =0.5370

(e) Thrust coeff vs. t/T, CT,avg =0.2503

(f) Deformation of wing over a flapping cycle

Figure 3.3: Optimal thrust coefficient design: Original mapping system Run 1
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(a) Optimized map layout (b) Meshed wing structure

(c) Lift coeff vs. t/T , conavg = 0.0014 (d) Power coeff vs t/T, CP,avg =0.4325

(e) Thrust coeff vs. t/T, CT,avg =0.2086

(f) Deformation of wing over a flapping cycle

Figure 3.4: Random design #1: Original mapping system Run 1
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(a) Optimized map layout (b) Meshed wing structure

(c) Lift coeff vs. t/T , conavg = 0.0224 (d) Power coeff vs t/T, CP,avg =0.4936

(e) Thrust coeff vs. t/T, CT,avg =0.2316

(f) Deformation of wing over a flapping cycle

Figure 3.5: Random design #2: Original mapping system Run 1
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(a) Optimized map layout (b) Meshed wing structure

(c) Lift coeff vs. t/T , conavg = 0.0081 (d) Power coeff vs t/T, CP,avg =0.5039

(e) Thrust coeff vs. t/T, CT,avg =0.2371

(f) Deformation of wing over a flapping cycle

Figure 3.6: Random design #3: Original mapping system Run 1
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(a) Optimized map layout (b) Meshed wing structure

(c) Lift coeff vs. t/T , conavg = 0.0034 (d) Power coeff vs t/T, CP,avg =0.4390

(e) Thrust coeff vs. t/T, CT,avg =0.2120

(f) Deformation of wing over a flapping cycle

Figure 3.7: Random design #4: Original mapping system Run 1
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(a) Optimized map layout (b) Meshed wing structure

(c) Lift coeff vs. t/T , conavg = 0.0099 (d) Power coeff vs t/T, CP,avg =0.4750

(e) Thrust coeff vs. t/T, CT,avg =0.2235

(f) Deformation of wing over a flapping cycle

Figure 3.8: Random design #5: Original mapping system Run 1
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(a) Optimized map layout (b) Meshed wing structure

(c) Lift coeff vs. t/T , conavg =0.0105 (d) Power coeff vs. t/T, CP,avg =0.4085

(e) Thrust coeff vs. t/T, CT,avg =0.1975

(f) Deformation of wing over a flapping cycle

Figure 3.9: Optimal power coefficient design: Fractone mapping system Run 2
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(a) Optimized map layout (b) Meshed wing structure

(c) Lift coeff vs. t/T , conavg =0.0046 (d) Power coeff vs. t/T, CP,avg =0.5142

(e) Thrust coeff vs. t/T, CT,avg =0.2380

(f) Deformation of wing over a flapping cycle

Figure 3.10: Optimal thrust coefficient design: Fractone mapping system Run 2
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(a) Optimized map layout (b) Meshed wing structure

(c) Lift coeff vs. t/T , conavg =0.0807 (d) Power coeff vs. t/T, CP,avg =0.4489

(e) Thrust coeff vs. t/T, CT,avg =0.2141

(f) Deformation of wing over a flapping cycle

Figure 3.11: Random Design #1: Fractone mapping system Run 2
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(a) Optimized map layout (b) Meshed wing structure

(c) Lift coeff vs. t/T , conavg =0.0114 (d) Power coeff vs. t/T, CP,avg =0.4726

(e) Thrust coeff vs. t/T, CT,avg =0.2220

(f) Deformation of wing over a flapping cycle

Figure 3.12: Random Design #2: Fractone mapping system Run 2
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(a) Optimized map layout (b) Meshed wing structure

(c) Lift coeff vs. t/T , conavg =0.0017 (d) Power coeff vs. t/T, CP,avg =0.4321

(e) Thrust coeff vs. t/T, CT,avg =0.2051

(f) Deformation of wing over a flapping cycle

Figure 3.13: Random Design #3: Fractone mapping system Run 2
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(a) Optimized map layout (b) Meshed wing structure

(c) Lift coeff vs. t/T , conavg =0.0043 (d) Power coeff vs. t/T, CP,avg =0.4640

(e) Thrust coeff vs. t/T, CT,avg =0.2168

(f) Deformation of wing over a flapping cycle

Figure 3.14: Random Design #4: Fractone mapping system Run 2
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(a) Optimized map layout (b) Meshed wing structure

(c) Lift coeff vs. t/T , conavg =0.0153 (d) Power coeff vs. t/T, CP,avg =0.4285

(e) Thrust coeff vs. t/T, CT,avg =0.2021

(f) Deformation of wing over a flapping cycle

Figure 3.15: Random Design #5: Fractone mapping system Run 2
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3.2 Pareto Front Analysis

A total of ten trials were performed for each of the fractone and non-fractone optimizations.

A typical Pareto front resulting in the final (200th) generation can be seen in figure 3.16.

The Pareto front exhibited here illustrates a wide distribution of points as biased by the

niching technique and superior performance of individuals compared to the other random

designs.

Figure 3.16: Sample Pareto Front (obtained from Run 2 without fractones):- Power coeffi-
cient vs. Thrust Coefficient, Pareto front (red) and other random designs (black)

3.2.1 Repeatability and Performance

The Pareto fronts obtained in the final generation of each of the ten trials were collected to

observe the repeatability of the algorithm. Figure 3.17 displays the repeatability of results

from both the fractone and original mapping schemes. The two different methods appear

to have comparable performances in terms of repeatability as seen from the clustering of

points and relatively narrow band-widths of the collected fronts.

The collection of Pareto fronts from the two methods were further combined in figure

3.18 to compare the performance of the two methods. The dispersion of points belonging to
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the two cases is fairly even and consistent. No single method appears to perform drastically

superior to the other since the two sets are clustered together rather than detached. Close

inspection of the leading edge of the front (the lower-left edge of the collected points)

however, appears to indicate a slight domination of the fractone model. A majority of the

most optimal designs in this application belong to the fractone derived topologies.

3.2.2 Convergence

Determination of the rate of convergence for the Pareto fronts was first approximated with

a plotting of Pareto fronts from each generation. This was completed for each of the twenty

runs, however visual assessment of the point of convergence was difficult to determine. An

example of one such plot can be seen in figure 3.19 in which the 200 generations were plotted

using 5 colors to distinguish every set of 40 generations.

To better determine the convergence, the Pareto fronts were numerically approximated

by computing an averaged norm. The minimum distances from each point in a Pareto front

to the set of points in the 200th generation Pareto front were estimated and averaged for

each approaching generation. Since the span of Pareto fronts varied over each generation,

the points which exceeded the span of the final (200th) Pareto front were eliminated for this

approximation for the convergence rate. The resulting convergence rates were compiled and

can be seen in figure 3.20. Here the convergence rates appear to be comparable, however the

rate of convergence with the fractone mapping scheme appears to be more variable between

runs while the non-fractone mapping system converges with slightly better repeatability.

The convergence curves for each of the 10 runs were also averaged among both the

fractone and original cases. The two curves are compared in figure 3.21. This graph

illustrates that the averaged convergence rates for the fractone and non-fractone models are

indeed comparable. Both models are rapidly improved over the first few generations as seen

by the rapid decrease in the averaged distance between Pareto fronts. Both models are also

nearly converged to the optimal designs by the 100th generation. The results presented in

this figure seem to contradict the initial prediction that the fractone model may improve
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the convergence rates of the optimization. It must be noted though, that the convergence

rates were computed with respect to the Pareto fronts generated in each individual test run.

These Pareto fronts have marginal differences and as seen in the previous subsection and

the actual Pareto front of the fractone cases may be slightly more optimal.

Limited improvement in the convergence of the fractone model may be due to the

parameters assigned to the mapping algorithm. As previously mentioned, the map L-

system enforces a number of preceding requirements for the matching of markers. Since the

fractone model must also satisfy all other preexisting rules for matching markers, including

the requirement of similar character labels, the influence of the fractone model was greatly

limited in this study.
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(a) Original mapping (no fractones)

(b) Fractone mapping

Figure 3.17: Final Pareto fronts collected from runs 1 through10 (each test batch displayed
in different colors and markers)
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Figure 3.18: Collection of final Pareto fronts from 10 runs: fractone mapping in blue,
original mapping in red
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Figure 3.19: Visual assessment of convergence of Pareto fronts using 5 colors (Run 1 without
fractones): Generations 1-40(red), 41-80(yellow), 81-120(blue), 121-160(pink), and 161-200
green)
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Figure 3.20: Convergence rates for 10 runs : fractone mapping in blue, original mapping in
red
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Figure 3.21: Averaged convergence rates for 10 runs: fractone mapping in blue, original
mapping in red

44



CHAPTER 4
CONCLUSION

This work introduced a new method for topology optimization. The new approach adapted

a topological mapping algorithm originally inspired by the cellular division process, and

imposed the additional constraint of fractones. The modeling of growth factor diffusion and

capture within the map L-system created an additional control parameter for optimization

by the genetic algorithm.

The resulting multidisciplinary optimization method was tested with a flapping mem-

brane wing problem in which the layout of reinforcement members was improved. The

topologies generated in this application were optimized for average lift generation, thrust

generation, and power requirements of the wing structures under a prescribed flight con-

dition. The resulting Pareto fronts and wing performances were analyzed and interesting

findings were made.

A wide variety of wing topologies were generated from the optimization process and

the range of the venation patterns were found to produce uniquely different performances

during flight. Similarities among the power and thrust optimal designs were also found.

The power optimal designs were generally less structured so that the wings were allowed to

contour to the flow and minimize the aerodynamic resistance. The thrust optimal designs

on the other hand had much higher densities of span-wise reinforcements which caused

gradual deformations along the wing structure during flight.

While the venation patterns generated from the optimizations produced great diver-

sity and successful results, the performances of the two optimization methods themselves

showed less variation. The Pareto fronts generated by the fractone inspired method and

the original map L-system method were analyzed for fitness, repeatability, and convergence.

Comparisons of the two optimization approaches were made and little difference was found

between the two in all three categories of performance. The lack of effectiveness from the

fractone model is predicted to arise from the layers of requirements placed on the matching
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of markers in the mapping systems.

4.1 Future Work

As earlier mentioned, it would be desirable to repeat the methods presented here with a

modification to the mapping system. Since a number of other requirements are imposed

by the map L-system in the matching of markers, it may desirable to place fractones only

where the eligible (matching label and orientation) markers are located. Enforcement of the

fractone and diffusion model after the eligible matching marker pairs of the map L-system

are found may increase the influence of the fractone method. Evaluation of the resulting

model may then be used to once again assess the effect of fractones on convergence rates

and topological designs.

Other future testing may include variation of the cross-over and mutation probabilities

in the genetic algorithm to determine the influence of each parameter independently. Fur-

ther modifications of the fractone model may also be made. While this study considered

a constant distribution of growth factors along the perimeters of the edges, the method

may be further improved by encoding a non-uniform distribution in the genome of the

mapping system as well. Variations of the fractones themselves are also possible. In this

study the fractones remained active once they were formed and continued to consume the

diffusing growth factors, however they may also be inactivated once the mapping iteration

is completed and new fractones are placed.
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