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ABSTRACT 

The Hawaiian Islands have one of the most spatially-diverse rainfall patterns on 

earth.  Knowledge of these patterns is critical for a variety of resource management 

issues. In this study, month-year rainfall maps from 1920-2007 were developed for the 

major Hawaiian Islands.  A geostatistical method comparison was performed to choose 

the best interpolation method.  The comparison focuses on three kriging algorithms: 

ordinary kriging, cokriging, and kriging with an external drift.  Two covariates, elevation 

and mean rainfall, were tested with cokriging and kriging with external drift.  The 

combinations of methods and covariates were evaluated using cross validation statistics, 

where ordinary kriging produced the lowest error.  To generate the final maps, the 

anomaly method was used to relate station data from each month with the 1978-2007 

mean monthly maps.  The anomalies were interpolated using ordinary kriging, and then 

recombined with the mean maps to produce the final maps for the major Hawaiian 

Islands. 
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CHAPTER 1 

INTRODUCTION 

1.1 Context of Problem 

Precipitation climatologies are very important to research in hydrology and global 

change.  Understanding rainfall patterns is essential for water use planning applications, 

especially in places where water is scarce.  Island communities are particularly sensitive 

to changes in climate, and accurate data is vital for policy decisions and resource 

management plans to cope with these effects.  In the Hawaiian Islands, a diverse terrain, 

as well as varied wind patterns and a persistent trade wind inversion lead to an extremely 

complex rainfall pattern.  Achieving an accurate representation of these patterns is a 

difficult task, and relies on a dense network of stations. 

The recently completed “Rainfall Atlas of Hawai‘i” (Giambelluca et al. 2011) has 

produced mean rainfall maps for the seven major islands of Hawai‘i.  Mean monthly and 

annual maps depict the average spatial rainfall patterns.  The new maps supercede a 

previous Rainfall Atlas (Giambelluca et al. 1986) in which the maps were developed 

using subjective analysis of spatial patterns.  The most recent project is more 

sophisticated in that it uses a Bayesian data fusion method to combine raingage data with 

radar rainfall estimates, mesoscale meteorological model output, PRISM (Parameter-

elevation Regressions on Independent Slopes Model) (Daly et al. 1994), and vegetation-

based rainfall estimates to improve the accuracy of the mean rainfall maps.  These 

resulting maps created for the 2011 Rainfall Atlas are extremely valuable in providing 

more accurate depictions of mean rainfall patterns in Hawai‘i. 

Because the Rainfall Atlas gives only the 30-year mean spatial patterns, it does 

not provide any information about year-to-year rainfall variability.  To allow assessment 

of all types of rainfall variability, including trends, individual month-year maps are 

needed.  However, these maps cannot be produced in the same manner as the mean maps 

because the predictor variables (vegetation, PRISM, MM5, and radar rainfall maps) do 

not exist at a monthly temporal resolution over an extended historical period.  Therefore, 
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another method needs to be developed to utilize the information available in the mean 

Rainfall Atlas maps and combine it with individual monthly raingage totals.    

 One of the best ways to incorporate climatological information with month-year 

data is to use the anomaly method.  The anomaly method interpolates the departures from 

the mean (anomalies) in a given month-year, and combines the interpolated anomaly 

surface with the mean map to produce the final month-year map.  This allows the 

information from the mean maps to serve as a basis for the individual months’ spatial 

patterns. Many different geostatistical interpolation methods are available for spatially 

interpolating the anomalies.  Few geostatistical method comparisons have been done in 

areas comparable to Hawai‘i, however, which makes it difficult to choose a method based 

on previous studies.  A method comparison test is needed to test how different 

interpolation methods perform on rainfall anomalies in Hawai‘i, so that the best method 

can be chosen to produce the month-year rainfall maps.   

 Statement of the Problem.  Currently, spatially continuous monthly maps of 

rainfall do not exist for the Hawaiian Islands.  These are needed for the assessment of 

historical rainfall trends in Hawai‘i and will provide invaluable data for other 

hydrological studies including stream flow and groundwater recharge analysis.  The 

existing methods for creating these maps that have been examined by previous studies are 

not appropriate to directly adopt for interpolating monthly rainfall across the Hawaiian 

Islands.  A method comparison needs to be performed and will be an important addition 

to the geostatistical methods literature. 

Objectives.  The goal of this thesis was to create an 88-year dataset of month-year 

rainfall maps for the seven major islands of Hawai‘i from 1920-2007, and to determine 

the best method for interpolating the spatial patterns of rainfall for individual months.  

The first objective was to perform the method comparison analysis.  The performance of 

several alternative geostatistical methods, applied to the interpolation of anomaly values, 

was evaluated using the cross validation statistics.  The methods were compared to find 

the one best suited to interpolating rainfall anomalies in Hawai‘i.  The next major 

objective of this thesis was to create the month-year maps, since only mean maps have 
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been produced until now.  Quality control was performed to ensure that the maps 

appeared to have realistic patterns.   

 

1.2 Study Area: Hawai‘i 

The area under consideration is the State of Hawai‘i, more specifically – the seven major 

islands Kaua‘i, O‘ahu, Moloka‘i, Lāna‘i, Maui, Kaho‘olawe and Hawai‘i.  The island of 

Ni‘ihau was not considered in this study because there were no rainfall data available.  

The main islands of Hawai‘i are located in the Pacific Ocean between 18.9°N and 

22.24°N latitude, and 160.25°W and 154.8°W longitude.  The islands contain a total land 

area of 16,636.5 km² (Juvik & Juvik 1998), with Hawai‘i Island (commonly referred to as 

the Big Island) being the largest.     

The climate of the Hawaiian Islands is very unique and contains a great deal of 

diversity in a very small area.  This is due to many factors including the large elevation 

gradient (ranging from 0 m at sea level to 4205 m at the peak of Mauna Kea) which 

produces a wide range of temperatures.  One of the greatest factors contributing to the 

diverse climate, however, is the highly spatially variable rainfall distribution across the 

islands.  The average rainfall gradients for some places in Hawai‘i are among the steepest 

in the world, producing a greater range on one small island than occurs across an entire 

continent (Giambelluca et al. 1986).  The majority of the rainfall in Hawai‘i is produced 

through orographic lifting as the trade winds (ENE winds) encounter the windward 

slopes, producing fairly consistent rainfall patterns throughout the year at these windward 

mountain locations (Giambelluca et al. 2011).  At high elevations, however, the growth 

of clouds is persistently capped by the trade wind inversion (TWI).  This is a layer of air 

usually found around 2200 m where the air gets warmer with increased altitude, instead 

of a usual lapse rate situation (Cao et al. 2007).   These are just some of the unique 

elements of Hawai‘i’s climate that make producing maps of rainfall more complicated. 
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1.3 Rainfall Data  

1.3.1 History of Rainfall Measurement 

Over 2,000 raingage stations have operated across the islands over the past 100 years 

(Giambelluca et al. 1986), which provides an extensive monthly rainfall database.  Figure 

1.1 shows the spatial distribution of stations across the islands.  A great deal of work has 

been done to compile the data from these stations and extensive quality control has been 

performed to create the final dataset that was used for the Rainfall Atlas (and will be used 

to create the month-year maps as well).  The oldest raingage in the dataset has readings 

from 1837.  By 1890 there had been 34 stations recording rainfall data.  By 1920, that 

number increased to 422 stations, and by 1950 there had been 1215 active raingage 

stations in Hawai‘i.  From the data available, the number of gages still in operation as of 

2007 was only 340, however.  Figure 1.2 shows the number of raingages operating 

throughout time, and it is clear that there was a sharp decline in stations during the 1980s.  

Over the last 30 years, over 500 stations were discontinued. 

 



5 

 

 

Figure 1.1.  Map of the raingage stations in the State of Hawai‘i. 

 

Figure 1.2.  Number of stations operating in Hawai‘i in each year. 
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Many of these stations, especially in the first half of the 20
th

 century, were well 

maintained by the large sugarcane and pineapple plantations.  Other organizations 

including the Honolulu Board of Water Supply, U.S. Geological Survey (USGS), the 

National Weather Service (NWS), and even private citizens also had interests in water 

availability in Hawai‘i and helped to create the large network of raingages operated in the 

state (Giambelluca et al. 1986).  Most of these gages were manually read, and it was not 

until the latter part of the 20
th

 century that more automatic gages began to replace some 

of these manual gages.  Automatic gages allowed for more reliable data in remote areas, 

since the data collection did not require someone to regularly travel to areas that are 

difficult to access.   

1.3.2 Data Sources 

The majority of the raingage data, especially from the long-term stations, are maintained 

by the State of Hawai‘i.  The observer ideally records daily rainfall values by hand, and 

mails the carbon copies of the record to the office of the State Climatologist and to the 

National Climatic Data Center (NCDC).  Therefore, one would expect these two sources 

of rainfall data to match.  However, due to errors with data entry, there were many 

discrepancies found between the State dataset and the NCDC dataset which had to be 

resolved.   

Aside from these two major sources of data, smaller networks of raingages are 

operated and maintained by private groups and contribute extremely valuable data.  The 

final dataset merged data from the state and NCDC datasets, as well as from USGS (U.S. 

Geological Survey), HaleNet, Hydronet, SCAN (Soil Climate Analysis Network), and 

RAWS (Remote Automated Weather Stations) networks.  The proportions of data in the 

final database from each source break down as follows: approximately 59% of the data 

are from the state dataset alone; 28% are from state and NCDC (overlapping); 8% are 

from the NCDC monthly dataset; 3% are from Hydronet; 1% for USGS; 1% for RAWS; 

and less than 1% from the other small networks.   
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1.3.3 Mean Maps 

As previously mentioned, the newly released Rainfall Atlas project used this database to 

produce mean rainfall maps for Hawai‘i (Giambelluca et al. 2011).  The means of the 

raingage stations over the most recent 30-year period (1978-2007) were used along with a 

new Bayesian data fusion method to incorporate radar estimates, MM5 model output, the 

PRISM dataset (Daly et al. 1994) and vegetation data to produce the final mean maps.  

The output is 13 maps: one for each month and one annual map.  The maps have a spatial 

resolution of 250 m, with an annual range of 10,000 mm (about 400 inches). These mean 

maps along with the rainfall database will serve as the two major inputs for creating the 

month-year maps using the anomaly method. 

 

1.4 Interpolation Methods 

1.4.1 Anomaly Method 

Many methods can be used to develop month-year rainfall maps.  To go from a finite 

number of irregularly spaced points (raingage sites) to a continuous surface (rainfall 

map), some form of interpolation is required, either by the direct interpolation method—

interpolating point data directly, or by the anomaly interpolation method—interpolating 

anomaly values and combining them with the mean map (Dawdy & Langbein 1960; Peck 

& Brown 1962).  When interpolating a complex surface, even from a relatively large 

number of data points, a myriad of different results could be obtained, which makes the 

choice of the method of interpolation critical. It has been shown in many studies that the 

anomaly interpolation method outperforms the direct interpolation method (New et al. 

2000; Chen et al. 2002).  The anomaly method is also appealing for this study because it 

can incorporate the mean maps created for the Rainfall Atlas, and therefore the 

supplementary information they contain.   
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1.4.2 Kriging Methods 

Many gaps still exist in the literature about which methods are best to use to interpolate 

monthly rainfall anomaly values in complex terrain regions.  One of the most widely used 

geostatistical interpolation schemes is kriging, which assumes spatial correlation between 

stations, assigning more weight to stations nearby, assuming they are more alike than 

stations that are farther apart (Webster & Oliver 2007).  Kriging provides an uncertainty 

estimate, and it is able to easily incorporate secondary variables such as elevation 

(Goovaerts 2000; Mair & Fares 2011), radar rainfall estimates (Seo et al. 1990; 

Haberlandt 2007), and atmospheric variables such as cold cloud duration (CCD) remotely 

sensed data (Moges et al. 2007), wind speed and humidity (Kyriakidis et al. 2001).  

Under the kriging approach there are many method variations, creating a huge number of 

combinations when one considers all of the possible covariates combined with the 

different kriging algorithms.   

Previous method evaluations have looked at many of these combinations, but 

most of them differed in scope or terrain type in comparison with Hawai‘i.   Some of the 

case studies only dealt with small networks of stations and were not necessarily in areas 

with as much terrain variation as Hawai‘i (Goovaerts 2000; Vicente-Serrano et al. 2003; 

Moral 2009), which is an important distinciton because landscape heterogeneity has a 

significant impact on precipitation patterns, and the density of the station network also 

influences how well the interpolation performs.  Some studies dealt with interpolation on 

a global scale (New et al. 2000; Chen et al. 2002), which is generally done at a relatively 

coarse spatial resolution.  Many of the projects considered other climate variables besides 

rainfall such as temperature and soil variables. (Bourennane & King 2003; Hengl et al. 

2007), while another common group of case study results were shown only for daily or 

hourly rainfall data (Haberlandt 2007; Yatagai et al. 2008; Haylock et al. 2008).  None of 

these results are directly indicative of which methods will be most successful for 

interpolating monthly rainfall anomaly data in an area like Hawai‘i.   

For uniformity, only one interpolation method will be chosen to produce the 

anomaly maps for all islands.  If there is sufficient evidence to support the choice of a 
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second method, such as a method performing significantly better on one island and 

poorly on the rest of the islands, then a second method will be considered.  Due to the 

heterogeneity in the data throughout time and space, it is expected that the best-

performing method will differ at every time step.  However, the goal is to strive for 

consistency across the state by selecting only one method that performs the best overall. 

 

1.5 Layout of the Thesis 

Following this introductory chapter, Chapter 2 describes the methods used in this study.  

Details about the anomaly method and different kriging methods are explained, as well as 

the procedure for completing the method comparison and generating the final maps.  The 

results are described in Chapter 3, including examples of the final month-year maps and 

the cross validation statistics.  The final chapter contains the discussion and conclusions, 

with suggestions for further steps and a summary of findings. 
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CHAPTER 2 

METHODS 

2.1 Research Strategy 

The objectives of this thesis were to perform a geostatistical method comparison to 

determine the best interpolation method to use for Hawai‘i, and to produce month-year 

rainfall maps of the seven major islands from 1920-2007 using the newly developed 

rainfall database.  Specifically, three different kriging methods were compared (with two 

different covariates) using cross validation statistics for assessment.  The interpolation 

method chosen as the best method was used to interpolate the relative anomaly values, 

creating anomaly maps.  The anomaly maps were then multiplied by the mean maps to 

generate the final rainfall maps.  Both the anomaly maps and final month-year maps will 

be made available for analysis purposes. 

 

2.2 Database Development 

2.2.1 Gap Filling 

The number of raingage stations in operation at any given time varied greatly, which 

reduced the spatial and temporal resolution of the dataset.  To address these temporal 

gaps in the dataset, a gap-filling procedure was used on stations with at least 20 years of 

original data (Eischeid et al. 2000) to create a serially complete dataset.  This procedure 

uses five different statistical methods to fill gaps in the monthly data using data from 

nearby stations.  Any stations with less than 20 years of data could not establish robust 

regressions and were filled using a simpler Normal Ratio Method (Paulhus & Kohler 

1952).  The missing monthly values were filled in as much as possible from 1920 to 

2007.  The filled data were rigorously tested to ensure that these new values were 

reasonable and maintained the statistical characteristics of each station (Giambelluca et 

al. 2011).  Whenever the filled values did not pass these tests, the values were removed 

from the dataset, leaving blank values for some stations.  Creating this serially complete 

dataset helped to reduce interpolation error in the final maps since the spatial extent of 
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the station coverage is much greater in any given month using the filled data than it is 

using the original, unfilled data.  It also allows for better comparison between stations 

since they almost all have data in every period.   

2.2.2 Quality Control 

Other than compiling and filling the dataset, the majority of the work done on the dataset 

was done to quality check the values and coordinates.  With the coordinates, the datum 

and locations had to be adjusted for many of the stations.  Most raingage coordinates 

were given in the Old Hawaiian Datum, and had to be converted to NAD83.  Some 

stations were plotted in the ocean, whereas others disagreed on the location when 

multiple datasets were compared (mostly due to lack of precision).  These were resolved 

using a report entitled “Climatologic Stations in Hawai‘i”, Report R42, a book of all the 

station locations published in 1973 by DLNR, as well as elevation analysis and in some 

cases contacting the particular station’s observer.   

For the data values, data homogeneity testing was performed using standardized 

reference series (Wang et al. 2007; Wang 2008) in order to identify inhomogeneities in 

the data.  Any stations that were marked in the station metadata as “accumulated”, i.e., 

read at a frequency of less than once per day with the multi-day total recorded, were 

identified and any totals accumulated over more than one month were removed from the 

dataset manually. Any extreme outliers and negative values were also removed.  Some of 

the automatic gages with missing daily values were prorated so as not to introduce a 

negative bias by assuming all missing days were zero, and a cutoff was set to determine 

how many missing days constituted a missing monthly value.  A few stations were found 

to have overlapping data values, or the same year entered twice with different values.  

Issues like these relating to data values were checked against the original paper records 

whenever possible and corrected as appropriate.    

 

 

 



12 

 

2.3 Develop Anomalies 

The anomaly method (Jones 1994; New et al. 2000) first interpolates the monthly 

departures from the reference period mean, and then combines that surface with the mean 

map to create the final monthly rainfall map.  This method produces better results than 

interpolating the raw rainfall totals at a regional scale (Chen et al. 2002), and has been 

used in a number of studies (Dawdy & Langebein 1960; Peck & Brown 1962; de 

Montmollin et al. 1980; Bradley et al. 1987; Dai et al. 1997; Brown & Comrie 2002; 

Mitchell & Jones 2005; Haylock et al. 2008).  It can recreate the climatological pattern 

even when some of the data are missing for a particular month (Yatagai et al. 2008) since 

monthly anomalies are more likely to be a product of large-scale circulation (New et al. 

1999).  Some studies use standardization due to the skewed nature of precipitation 

distributions, and approaches include calculating the anomalies in standard deviation 

terms (Jones & Hulme 1996), or using some type of distribution (e.g., gamma 

distribution, Diaz et al. 1989).  Most studies, however, tend to use the absolute anomaly 

(individual value minus the mean) or relative anomaly (individual value divided by the 

mean).  For precipitation, relative anomalies are preferred to absolute anomalies because 

the percentage better preserves the variance relationship between the value and the mean 

(New et al. 2000).    

 The data values at every raingage station were converted into relative anomalies 

by dividing the station value by the mean monthly value at that location (e.g., a January 

data value was divided by the January mean value).  These anomaly values are 

dimensionless, i.e., the units are inches per inch.  The mean monthly values were 

extracted from the Rainfall Atlas of Hawai‘i mean monthly maps (Giambelluca et al. 

2011) using ArcGIS™ 10 (ESRI, Redlands, CA, USA).  All station data were used, 

including short-term stations that were not able to be gap filled.  These relative anomalies 

were interpolated using the method chosen by the method comparison test, and those 

interpolated anomaly surfaces will then be multiplied back by the mean maps 
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2.4 Kriging 

2.4.1 Kriging Theory 

As for choosing the best interpolation scheme for the anomalies, a method comparison 

was completed to test the performances of different combinations of kriging algorithms 

with different covariates.  Kriging refers to a subset of geostatistical methods that rely on 

the spatial structure of the data, assuming data points that are closer together are more 

alike than points that are further apart.  Kriging is an unbiased and optimal estimator, 

which means that the weights used for the points must sum to one, and the goal of the 

estimator is to minimize the estimation variance (Goovaerts 1997).  Kriging uses a 

semivariogram to assess the dissimilarity between points in a search neighborhood (or 

covariance to measure the similarity between points).  For known values z(  ), z(  ), … , 

z(  ), at points   ,    , … ,    for a variable Z, the experimental semivariogram        at 

lag   is shown in Equation 2.1: 

 

where      is the number of pairs of data points a vector   apart.  The spherical 

variogram model used in this study is characterized by linear behavior at the origin, and 

curves gradually toward the sill (Goovaerts 2000).  The spherical model is the most 

widely used model as it is usually the best fit in one, two and three-dimensions.  The 

equation for the spherical model is shown in Equation 2.2:  

     

 
 
 
 
 

   

  
  

  
 
 

 
 
 

 
 
 

             

  
 

                                          

                                                                                     

where   is the sill variance and   is the range (Webster & Oliver 2007). 
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2.4.2 Method Choices 

Ordinary kriging (OK) is the most frequently used and robust type of kriging.  OK 

interpolates the point data alone (without secondary variables), and is used in most 

method comparison studies as a base method against which to compare other methods 

(Goovaerts 2000; Kyriakidis et al. 2001; Moges et al. 2007; Moral 2009; Mair & Fares 

2011).  In most of these studies, methods that incorporate a secondary variable proved to 

outperform OK.  However, Mair & Fares found in their study on west O‘ahu island, 

Hawai‘i, that OK consistently performed the best.    

 Many interpolation methods incorporate a secondary variable.  A common 

method used to incorporate a covariate is ordinary cokriging (OCK).  OCK capitalizes on 

the cross-semivariance between the primary and secondary variables, and incorporates 

that information into the kriging matrix, which makes this method more computationally 

expensive and complex than OK.  Another way to include secondary information is in the 

form of an external drift, as in the kriging with external drift method (KED).  This 

method has been shown to outperform OK and OCK (Goovaerts 2000; Kyriakidis et al. 

2001; Moral 2009).  Appendix A contains complete equations for these methods. 

2.4.3 Secondary Variables 

In many studies, a secondary variable is shown to greatly improve interpolation results 

(Goovaerts, 2000; Kyriakidis et al. 2001; Moges et al. 2007; Moral 2009).  A densely 

sampled or spatially continuous secondary variable can improve the measurement of the 

primary variable that may be less densely sampled, since it draws from existing patterns 

rather than the stations alone.  The first variable considered as a covariate for this project 

was elevation.  Elevation has been used by many to help interpolate rainfall because of 

the strong orographic influences on precipitation (Daly et al. 1994).  However, other 

studies have shown that when compared to atmospheric variables, elevation is not very 

well correlated with rainfall data (Kyriakidis et al. 2001).  Because it is one of the most 

commonly used covariates, elevation was included to test how well it works in Hawai‘i’s 

complex terrain.  A 30 m resolution digital elevation model (DEM) was used for the 

State, with values ranging from 0 m to 4200 m. 
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Another variable that seemed like an appropriate candidate for a secondary 

variable was mean monthly rainfall from the 2011 Rainfall Atlas maps.  On a month-year 

time scale, Daly et al. 2004 found that mean monthly rainfall maps were much better 

predictors than elevation.  The mean maps contain additional information about the 

complex rainfall patterns through the incorporation of additional predictor datasets.  The 

Rainfall Atlas mean maps are at 250 m resolution, with mean annual rainfall ranging 

from 204 mm to 10,271 mm (8 inches to 404 inches).  The values from both sets of maps 

were extracted at every station point using ArcGIS™ 10 (ESRI, Redlands, CA, USA). 

 

2.5 Method Comparison 

For the complete method comparison, all 12 months were tested on every island for a 30-

year period.  The period of 1940-1969 was chosen for the comparison because the middle 

part of the century had the largest amount of original data compared to the beginning or 

end of the century (where more of the data were gap-filled).  For the method comparison 

and mapping, Kaho‘olawe, with only five stations, was combined with Maui.  The other 

five islands were analyzed independently. 

2.5.1 ArcGIS 

ArcGIS™ 10 (ESRI, Redlands, CA, USA) was the main software package that was used 

to complete the method comparison.  The ordinary kriging (OK) and ordinary cokriging 

(OCK) methods were available in this program, and since ArcGIS™ gave the option to 

auto-fit variogram parameters and has a more powerful user interface to visualize and 

prepare final maps (Hengl et al. 2007), this was used as the primary program for 

producing OK and OCK maps, as well as processing the output for the final maps.  The 

relative anomaly values were imported into file geodatabases so that null values could be 

supported, given that there were many station records (despite gap filling) that did not 

have data in every month and year.  The secondary variables, elevation and the 2011 

Rainfall Atlas monthly means, were already in raster format to be used for cokriging.   
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To create the maps, an OK (or OCK) geostatistical layer was created in the 

ArcGIS 10™ Geostatistical Wizard once per island, setting a lag and neighborhood size.  

That example layer was saved as a template, and using Python command line code, the 

remaining month-years for each island were created by taking the template and updating 

the data source to reflect the month-year, and auto-fitting the nugget, range, and sill 

values.  The cross validation tool was then used (via Python commands) to extract the 

mean error statistics needed for the method comparison.  This was performed for OK, 

OCK with elevation, and OCK with the 2011 Rainfall Atlas from 1940-1969 for all 

months and islands. 

2.5.2 GSLIB 

Since kriging with external drift (KED) was not available in ArcGIS™ 10, a different 

geostatistical software package was used: GSLIB (Deutsch & Journel 1998).  Unlike 

ArcGIS™ 10, GSLIB requires the user to model variograms manually and purchase a 

separate interface.  This program handles spatial data using grids instead of coordinates, 

which meant that all the station anomaly data and raster information from the secondary 

variables had to be converted to a simple grid (using rows and columns instead of 

coordinates) for each island.  The station anomaly data also had to be reformatted to a 

style specific to GSLIB.   

 Once all the data was correctly formatted, the variograms were computed for each 

month and year.  To visualize the data and test the model parameters, the variogram 

output was imported into Microsoft Excel and the spherical model was plotted.  The 

parameters were adjusted manually, and re-plotted in GSLIB once parameters were set.  

Then the KED was run, and the cross validation output was saved.  This procedure was 

completed for KED with elevation and KED with the 2011 Rainfall Atlas monthly mean 

maps from 1940-1969 for all months and islands. 

2.5.3 Assessment of Cross Validation Statistics 

The kriging methods were assessed by comparing the cross validation statistics for the 

different methods, as these are more bias-free than the error map produced directly by the 
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kriging interpolation.  Although there are still weaknesses with the cross validation 

method (Jeffrey et al. 2001), it is the most widely used way to complete method 

intercomparisons.  The two error statistics that were used to analyze the results were the 

mean absolute error (MAE) and the root mean square error (RMSE), as these are 

considered the “best” measures of overall performance (Willmott 1982).  MAE is a 

natural measure of average error, and expresses the errors in the same units as the 

rainfall.  RMSE is a measure of random error, and is a very commonly used statistic due 

to its sensitivity to outliers.  The MAE and RMSE equations are shown in Equations 2.3 

and 2.4: 

     
 

 
         

 

   

                                                                                                                     

       
 

 
         

 

   

 

 
  

                                                                                                        

where   is the count of stations,     are the predicted values at each station, and    are the 

observed values.  The error (       gives an idea of the bias of the interpolation 

(positive or negative), whereas RMSE is a measure of scatter.  The MAE and RMSE 

values of the stations were computed for every island-month and year for all five 

methods: OK, OCK with elevation, OCK with mean rainfall, KED with elevation, and 

KED with mean rainfall.  This was done by using Microsoft Excel VBA code to compile 

the data from the software’s cross validation outputs.   

With the cross validation statistics organized, there were four different ways to 

choose the “best” method for a given island-month: 

 Category 1: The minimum of the average 30 years of MAE values  

 Category 2: The highest percent of years (out of 30) where a method had the 

minimum MAE value 

 Category 3: The minimum of the average 30 years of RMSE values   
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 Category 4: The highest percent of years (out of 30) where a method had the 

minimum RMSE value 

A ranking system was developed to choose one best method for every island-month, to 

incorporate how well the methods performed in each category.  In each of the four 

categories, the methods were ranked 1 to 5 (best to worst), and the method with the 

lowest average rank across the four categories was deemed the best method (Hofstra et al. 

2008).  Table 2.1 shows an example of the ranking scheme, where ordinary kriging 

achieves the lowest average rank and would be chosen as the best method for this island-

month.  Since only one method would be used to produce the final maps, single factor 

ANOVA (Analysis of Variance) testing was used to compare the mean statistics for 

different methods to see if they were significantly different from each other.   Methods 

were defined as having a statistically significantly different means if the F value was 

greater than the critical F value, and if the p-value was less than alpha (the alpha value 

used for this testing was 0.05).  

 

Table 2.1.  Example of the ranking procedure for the method comparison assessment for 

a sample island-month.  Units for categories 1 and 3 are the same as the relative 

anomalies: dimensionless (inches per inch). 

 OK OCK_EL OCK_RF KED_EL KED_RF 

Category 1: Min Avg MAE 0.00830 0.00833 0.01515 0.00873 0.02309 

Rank 1 1 2 4 3 5 

Category 2: Max % Years 

with lowest MAE 
0.2 0.2 0.333 0.167 0.1 

Rank 2 2 2 1 4 5 

Category 3: Min Avg RMSE 0.76966 0.82541 0.82252 0.86421 0.86593 

Rank 3 1 3 2 4 5 

Category 4: Max % Years 

with lowest RMSE 
0.533 0.067 0.3 0 0.1 

Rank 4 1 4 2 5 3 

Average Rank 1.25 2.75 2.25 4 4.5 

Note: OK is ordinary kriging, OCK_EL is ordinary cokriging with elevation, OCK_RF is 

ordinary cokriging with mean rainfall, KED_EL is kriging with external drift with elevation, and 

KED_RF is kriging with external drift with mean rainfall.  MAE is mean absolute error; RMSE is 

root mean square error. 
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2.4.4 Pilot Study 

A preliminary test was performed for a five year period in two months, January and July 

1996-2000, for the island of Kaua‘i to test the three methods, and determine whether the 

methods performed differently in the summer and winter seasons.  The three algorithms 

chosen (OK, OCK, and KED) were used with the two covariates.  However, the 2011 

Rainfall Atlas maps were not completed at the time of this preliminary study, so the 1986 

Rainfall Atlas mean maps were used in their place.  The cross validation results (error 

and root mean square error, RMSE) for January are shown in Table 2.2, and the results 

for July are shown in Table 2.3, with average values shown in Table 2.4.  In all tables, the 

method with the lowest average absolute statistic (last column) is shown in bold 

(indicating that it performed the best over that period).   

 

Table 2.2.  January cross validation results – Kaua‘i sample period, 1996-2000.  Units for 

error and RMSE are the same as the relative anomalies: dimensionless (inches per inch).   

  Jan 1996 Jan 1997 Jan 1998 Jan 1999 Jan 2000 Avg Jan 

Error OK -0.00252 -0.00694 0.00005 0.00088 -0.00025 -0.00175 

 OCK_EL -0.00174 -0.00604 0.00028 0.00138 -0.00051 -0.00133 

 OCK_RF -0.00208 -0.00605 0.00008 0.00088 -0.00061 -0.00155 

 KED_EL 0.01003 0.01776 -0.00481 0.01049 0.00012 0.00672 

 KED_RF 0.00515 0.01030 -0.00442 0.00472 -0.00311 0.00253 

RMSE OK 0.33020 0.34310 0.17180 0.16870 0.21190 0.24514 

 OCK_EL 0.33040 0.34180 0.17150 0.16950 0.20980 0.24460 

 OCK_RF 0.32980 0.34160 0.17140 0.16870 0.20920 0.24414 

 KED_EL 0.34636 0.37035 0.19103 0.18934 0.24091 0.26760 

 KED_RF 0.33802 0.35929 0.21647 0.19176 0.24851 0.27081 

Note: OK is ordinary kriging, OCK_EL is ordinary cokriging with elevation, OCK_RF is 

ordinary cokriging with mean rainfall, KED_EL is kriging with external drift with elevation, and 

KED_RF is kriging with external drift with mean rainfall.  RMSE is root mean square error. 
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Table 2.3.  July cross validation results – Kaua‘i sample period, 1996-2000.  Units for 

error and RMSE are the same as the relative anomalies: dimensionless (inches per inch). 

  Jul 1996 Jul 1997 Jul 1998 Jul 1999 Jul 2000 Avg Jul 

Error OK -0.00913 -0.01244 -0.00223 -0.01284 -0.00417 -0.00816 

 OCK_EL -0.01148 -0.01462 -0.00226 -0.01685 -0.01110 -0.01126 

 OCK_RF -0.01156 -0.01463 -0.00243 -0.01770 -0.01145 -0.01155 

 KED_EL 0.00905 -0.00589 0.00018 -0.00803 0.01007 0.00107 

 KED_RF -0.00759 0.00016 -0.00332 -0.01700 0.01724 -0.00210 

RMSE OK 0.43860 0.89140 0.21580 0.98700 0.52340 0.61124 

 OCK_EL 0.45290 0.89900 0.21750 1.00500 0.54200 0.62328 

 OCK_RF 0.45400 0.90010 0.21710 1.01300 0.54270 0.62538 

 KED_EL 0.46495 0.95492 0.22443 1.23257 0.59965 0.69530 

 KED_RF 0.39730 0.87037 0.21354 1.05819 0.51403 0.61068 

Note: OK is ordinary kriging, OCK_EL is ordinary cokriging with elevation, OCK_RF is 

ordinary cokriging with mean rainfall, KED_EL is kriging with external drift with elevation, and 

KED_RF is kriging with external drift with mean rainfall.  RMSE is root mean square error. 

 

 

Table 2.4.  Average cross validation results – Kaua‘i sample period, 1996-2000.  Units 

for error and RMSE are the same as the relative anomalies: dimensionless (inches per 

inch). 

  Avg Jan Avg Jul Avg All 

Error OK -0.00175 -0.00816 -0.00496 

 OCK_EL -0.00133 -0.01126 -0.00629 

 OCK_RF -0.00155 -0.01155 -0.00655 

 KED_EL 0.00672 0.00107 0.00390 

 KED_RF 0.00253 -0.00210 0.00021 

RMSE OK 0.24514 0.61124 0.42819 

 OCK_EL 0.24460 0.62328 0.43394 

 OCK_RF 0.24414 0.62538 0.43476 

 KED_EL 0.26760 0.69530 0.48145 

 KED_RF 0.27081 0.61068 0.44075 

Note: OK is ordinary kriging, OCK_EL is ordinary cokriging with elevation, OCK_RF is 

ordinary cokriging with mean rainfall, KED_EL is kriging with external drift with elevation, and 

KED_RF is kriging with external drift with mean rainfall.  RMSE is root mean square error. 
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Comparing three methods and two different covariates, it was difficult to determine 

which method performed the best overall.  Both KED methods showed a slight positive 

bias (positive error values), while all three ordinary kriging methods showed a slight 

negative bias.  Ordinary cokriging (OCK) performed better in January, kriging with 

external drift (KED) performed better in July, and ordinary kriging (OK) had the best 

average RMSE statistics.  Therefore, more tests were needed to determine the best 

methods to use to make the final maps.  Figure 2.1 shows the output from OCK with 

elevation (OCK_EL) for January 1996-2000 (the method with the lowest overall error 

value in January). The pilot study showed that all methods performed well, but results 

from only five years in two different months were not conclusive enough to choose a 

method for the test island, which is why a more complete, 30-year test was performed for 

all months and islands. 
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Figure 2.1.  Pilot study results for January, Kaua‘i using ordinary cokriging with 

elevation (with the points representing the raingage stations used for that map). a) 

January 1996; b) January 1997; c) January 1998; d) January 1999; e) January 2000. 

 

 

 



23 

 

2.6 Final Maps 

2.6.1 Anomaly Maps 

With an interpolation method chosen, the final month-year maps could then be produced.  

The first step was to generate anomaly maps by interpolating the relative anomalies at the 

raingage stations for the remaining month-years that were not already completed in the 

method comparison step.  This was done by following the same procedure used in the 

method comparison, including the generation of cross validation statistics to compare the 

results for all 88 years with the 30-year sample.  To ensure that the auto-fit variogram 

parameters had produced reasonable patterns, the geostatistical layers were all examined 

manually.  Also, for a better transition from geostatistical layer to raster, a smooth 

neighborhood setting was used (with a 0.3 smoothing factor) for all maps.  These 

anomaly maps will also be part of the output, as they are useful for many analyses.  The 

maps were masked by the coastline using ArcGIS™ 10 (ESRI, Redlands, CA, USA) and 

saved as raster layers with the same extent and 250 m spatial resolution as the mean maps 

so that the pixels would match. 

2.6.2 Generating Monthly Rainfall Maps 

Once the anomaly maps were completed, they needed to be converted back into a rainfall 

map.  Since the anomaly values were generated by dividing the rainfall value at the 

station by the Rainfall Atlas mean, the anomaly maps had to be multiplied by the Rainfall 

Atlas mean maps to produce the final month-year rainfall maps.  The anomaly maps were 

multiplied by the mean maps using ArcGIS (e.g., January anomalies were multiplied by 

the January mean map).  All 12 monthly maps in each year were then summed together to 

produce annual maps for each year.  These final maps were also converted from inches to 

millimeters by multiplying the maps by a factor of 25.4. 
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CHAPTER 3 

RESULTS 

3.1 Method Comparison 

The performance of each interpolation method is summarized in Table 3.1, which shows 

the average error statistics and ranks for each island.  Based on the ranking procedure 

described previously, ordinary kriging (OK) was chosen as the best method to use for 

interpolating rainfall anomalies in Hawai‘i.  Overall, OK showed the smallest cross 

validation errors (had the least bias and scatter) compared to the other four methods.  This 

result was unequivocal in three of the islands (Kaua‘i, O‘ahu, and Hawai‘i islands), while 

for the other islands OK was selected for about half of the months.  Table 3.2 shows the 

best interpolation methods chosen by each island-month based on the MAE and RMSE 

values using the ranking scheme described in the previous chapter.  The differences 

between the top methods were small, however.  A visual example comparing the five 

methods is shown for May 1964 for O‘ahu in Figure 3.1, where rainfall for all five maps 

is shown on the same scale.  The scatterplots of all 30 years for May on O‘ahu are shown 

for the five methods in Figure 3.2.  The r² results are very similar for all methods in this 

month, but OK shows the highest correlation of all the methods.  The details regarding 

which method was chosen by each of the four categories in every island-month can be 

found in Appendix B.   
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Table 3.1. Summary of the four categories of error statistics and the final rank score from 

the cross validation test for all islands, averaged over all months.  Units for MAE and 

RMSE are the same as the relative anomalies: dimensionless (inches per inch). 

  

Avg 

MAE 
Avg 

Rnk 

Avg % 

Yrs Min 

MAE 
Avg

Rnk 

Avg 

RMSE 
Avg 

Rnk 

Avg % 

Yrs Min 

RMSE 
Avg 

Rnk 

Avg 

All 

Ranks 

Ka OK 0.00118 1.42 0.703 1.00 0.32559 1.00 0.806 1.00 1.10 

 

OCK_EL 0.00242 2.33 0.089 3.08 0.34871 3.08 0.053 2.83 2.83 

 

OCK_RF 0.00280 2.92 0.081 3.17 0.34617 2.42 0.056 2.67 2.79 

 

KED_EL 0.00924 4.25 0.061 3.42 0.55001 5.00 0.006 3.92 4.15 

 

KED_RF 0.00624 4.08 0.067 3.33 0.35913 3.50 0.081 2.92 3.46 

Oa OK 0.00057 1.50 0.589 1.00 0.31999 1.00 0.806 1.00 1.13 

 

OCK_EL 0.00224 3.33 0.075 3.83 0.34869 4.08 0.011 3.58 3.71 

 

OCK_RF 0.00132 2.42 0.139 2.83 0.33903 2.58 0.061 2.75 2.65 

 

KED_EL 0.00261 3.83 0.097 3.33 0.35562 4.67 0.006 3.83 3.92 

 

KED_RF 0.00295 3.92 0.100 3.33 0.33743 2.67 0.117 2.33 3.06 

Mo OK 0.00447 2.83 0.244 2.25 0.54863 1.42 0.367 1.50 2.00 

 

OCK_EL 0.00395 2.33 0.197 2.58 0.58013 3.83 0.089 3.75 3.13 

 

OCK_RF 0.00409 2.42 0.347 1.25 0.56777 2.17 0.322 1.75 1.90 

 

KED_EL 0.00814 3.75 0.111 4.17 0.58706 4.33 0.067 4.33 4.15 

 

KED_RF 0.00829 3.67 0.100 4.25 0.57984 3.25 0.156 3.00 3.54 

La OK 0.00902 2.50 0.289 2.00 0.33618 2.17 0.200 2.67 2.33 

 

OCK_EL 0.01194 3.67 0.131 3.58 0.34000 3.42 0.153 3.50 3.54 

 

OCK_RF 0.00972 2.42 0.192 2.75 0.33399 1.83 0.208 2.50 2.38 

 

KED_EL 0.01806 4.00 0.114 4.17 0.39878 5.00 0.089 4.33 4.38 

 

KED_RF 0.01055 2.42 0.275 1.92 0.33428 2.58 0.350 1.25 2.04 

Ma OK 0.00309 2.33 0.286 1.75 0.56646 1.42 0.433 1.33 1.71 

 

OCK_EL 0.00394 3.00 0.119 3.92 0.58017 3.33 0.067 4.00 3.56 

 

OCK_RF 0.00304 2.00 0.333 1.58 0.57111 2.33 0.322 1.83 1.94 

 

KED_EL 0.01301 3.58 0.183 2.75 0.53275 4.25 0.072 3.67 3.56 

 

KED_RF 0.01628 4.08 0.078 4.42 0.54533 3.67 0.106 3.75 3.98 

Ha OK 0.00086 1.58 0.417 1.00 0.43304 1.00 0.631 1.00 1.15 

 

OCK_EL 0.00304 3.08 0.125 3.58 0.45664 3.58 0.047 4.00 3.56 

 

OCK_RF 0.00158 2.17 0.244 2.25 0.44589 2.33 0.181 2.25 2.25 

 

KED_EL 0.00405 3.92 0.117 3.67 0.46507 4.67 0.056 3.58 3.96 

 

KED_RF 0.00513 4.25 0.097 3.92 0.46254 3.42 0.086 3.33 3.73 

Note: OK is ordinary kriging, OCK_EL is ordinary cokriging with elevation, OCK_RF is 

ordinary cokriging with mean rainfall, KED_EL is kriging with external drift with elevation, and 

KED_RF is kriging with external drift with mean rainfall.  MAE is mean absolute error; RMSE is 

root mean square error. 

Ka is Kaua‘i, Oa is O‘ahu, Mo is Moloka‘i, La is Lāna‘i, Ma is Maui, and Ha is Hawai‘i Island.   
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Table 3.2. Best interpolation method for each island-month based on the cross validation 

test, 1940-1969. 

 Hawai‘i Kaua‘i Lāna‘i Maui Moloka‘i O‘ahu 

Jan OK OK OK OCK_RF OK OK 

Feb OK OK OK OCK_RF OCK_RF OK 

Mar OK OK KED_RF OK OCK_RF OK 

Apr OK OK KED_RF OK OCK_RF OK 

May OK OK OK OK OCK_RF OK 

Jun OK OK KED_RF OCK_RF OK OK 

Jul OK OK OCK_RF OK OCK_RF OK 

Aug OK OK OK OK OK OK 

Sep OK OK OK OK OK OK 

Oct OK OK OK OK OK OK 

Nov OK OK OCK_RF OK OCK_RF OK 

Dec OK OK KED_RF OCK_RF OCK_RF OK 

Note: OK is ordinary kriging, OCK_EL is ordinary cokriging with elevation, OCK_RF is 

ordinary cokriging with mean rainfall, KED_EL is kriging with external drift with elevation, and 

KED_RF is kriging with external drift with mean rainfall. 
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Figure 3.1.  Example of the rainfall output from five different interpolation methods for 

O‘ahu May 1964.  a) O‘ahu rainfall map, May 1964, created by kriging with external 

drift with elevation; b) O‘ahu rainfall map, May 1964, created by kriging with external 

drift with mean rainfall; c) O‘ahu rainfall map, May 1964, created by ordinary cokriging 

with elevation; d) O‘ahu rainfall map, May 1964, created by ordinary cokriging with 

mean rainfall; e) O‘ahu rainfall map, May 1964, created by ordinary kriging. 
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Figure 3.2.  Example scatterplots of measured versus predicted rainfall for all 30 years of 

O‘ahu May (1940-1969) with R² values for each of the five methods.  a) O‘ahu May 

scatterplot of kriging with external drift with elevation results; b) O‘ahu May scatterplot 

of kriging with external drift with mean rainfall results; c) O‘ahu May scatterplot of 

ordinary cokriging with elevation results; d) O‘ahu May scatterplot of ordinary cokriging 

with mean rainfall results; e) O‘ahu May scatterplot of ordinary kriging results. 

y = 0.9315x

R² = 0.7536

0

2

4

6

8

10

0 5 10

P
r
e
d

ic
te

d

Measured

O‘ahu May, KED_EL

y = 0.9339x

R² = 0.7658

0

2

4

6

8

10

0 5 10

P
r
e
d

ic
te

d

Measured

O‘ahu May, KED_RF

y = 0.9331x

R² = 0.7572

0

2

4

6

8

10

0 5 10

P
r
e
d

ic
te

d

Measured

O‘ahu May, OCK_EL

y = 0.931x

R² = 0.7651

0

2

4

6

8

10

0 5 10

P
r
e
d

ic
te

d

Measured

O‘ahu May, OCK_RF

y = 0.9251x

R² = 0.7772

0

2

4

6

8

10

0 5 10

P
r
e
d

ic
te

d

Measured

O‘ahu May, OK



29 

 

OK was the method chosen for the majority of months (55 island-months out of a 

possible 72).  For the 17 months where OK was not chosen as the best method, the means 

of the methods were compared to see if there were large differences in method 

performance.  The ANOVA results (Table 3.3) indicated that the OK method was not 

significantly different from the method chosen as the best.  Since OK still performed well 

in these island-months despite not having the best ranked statistics, it was decided that 

OK would be selected as the method used to interpolate the anomalies for all island-

months. 

 

Table 3.3. ANOVA results for the island-months where ordinary kriging was not chosen 

as the best method. 

 Error   RMSE   

 F P-value F crit F P-value F crit 

Lāna‘i Mar 0.33794 0.85202 2.43407 0.18890 0.94388 2.43407 

Lāna‘i Apr 0.71862 0.58051 2.43407 0.42949 0.78715 2.43407 

Lāna‘i Jun 0.12099 0.88619 3.10130 0.41472 0.79783 2.43407 

Lāna‘i Jul 1.36288 0.26133 3.10130 0.72400 0.57688 2.43407 

Lāna‘i Nov 0.86487 0.48670 2.43407 0.34703 0.84575 2.43407 

Lāna‘i Dec 0.58011 0.67752 2.43407 0.48070 0.74987 2.43407 

Maui Jan 1.12104 0.34894 2.43407 1.24611 0.29411 2.43407 

Maui Feb 2.24789 0.06675 2.43407 0.15678 0.95967 2.43407 

Maui Jun 0.79959 0.52731 2.43407 0.16566 0.95549 2.43407 

Maui Dec 2.16775 0.07552 2.43407 0.05624 0.99406 2.43407 

Moloka‘i Feb 1.79455 0.13306 2.43407 0.22155 0.92605 2.43407 

Moloka‘i Mar 0.62418 0.64599 2.43407 0.08605 0.98664 2.43407 

Moloka‘i Apr 0.23396 0.91886 2.43407 0.04113 0.99676 2.43407 

Moloka‘i May 1.81085 0.12985 2.43407 0.07979 0.98842 2.43407 

Moloka‘i Jul 0.64382 0.63211 2.43407 0.05801 0.99370 2.43407 

Moloka‘i Nov 1.18044 0.32192 2.43407 0.12313 0.97398 2.43407 

Moloka‘i Dec 0.54007 0.58465 3.10130 0.10599 0.98027 2.43407 
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3.2 Final Maps 

A total of 6,336 anomaly maps and 6,864 rainfall maps were created (anomaly maps were 

not used to produce the annual maps).  An additional 6,864 rainfall maps were generated 

in millimeters, which gives a total of 20,064 maps.  Figures 3.3 – 3.8 contain the maps 

with the maximum and minimum rainfall for each island over the entire 88-year period 

paired next to the anomaly map for that month.  The rainfall values are scaled the same 

for each island set, as are the anomaly values.  The extreme range in values over this 88-

year period is apparent, with the maximum Maui map showing values from less than one 

inch to over 200 inches in a single month on this one island.  More sample maps of the 

most recent 15 years of October on Moloka‘i are shown in Figure 3.9, where the scale for 

all maps is the same for comparison.  The complete set of month-year maps is available 

as raster GIS layers and can be downloaded from the Rainfall Atlas website by December 

2012: http://rainfall.geography.hawaii.edu/downloads.html.   

 

 

 

http://rainfall.geography.hawaii.edu/downloads.html
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Figure 3.3.  a) Maximum rainfall map and corresponding anomaly map for Kaua‘i 

(January 1921); b) Minimum rainfall map and corresponding anomaly map for Kaua‘i 

(February 1983).  Relative anomalies are percentages of the mean. 
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Figure 3.4.  a) Maximum rainfall map and corresponding anomaly map for O‘ahu 

(February 1932); b) Minimum rainfall map and corresponding anomaly map for O‘ahu 

(February 1983).  Relative anomalies are percentages of the mean. 
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Figure 3.5.  a) Maximum rainfall map and corresponding anomaly map for Moloka‘i 

(November 1965); b) Minimum rainfall map and corresponding anomaly map for 

Moloka‘i (March 1983).  Relative anomalies are percentages of the mean. 
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Figure 3.6.  a) Maximum rainfall map and corresponding anomaly map for Lāna‘i 

(March  1951); b) Minimum rainfall map and corresponding anomaly map for Lāna‘i 

(June 1990).  Relative anomalies are percentages of the mean. 
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Figure 3.7.  a) Maximum rainfall map and corresponding anomaly map for Maui and 

Kaho‘olawe (March  1942); b) Minimum rainfall map and corresponding anomaly map 

for Maui and Kaho‘olawe (January 1977).  Relative anomalies are percentages of the 

mean. 
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Figure 3.8.  a) Maximum rainfall map and corresponding anomaly map for Hawai‘i 

(March  1980); b) Minimum rainfall map and corresponding anomaly map for Hawai‘i 

(January 1953).  Relative anomalies are percentages of the mean. 
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Figure 3.9.  Examples of the last 15 years of October rainfall maps for Moloka‘i.  a) 

October 1993; b) October 1994; c) October 1995; d) October 1996; e) October 1997; f) 

October 1998; g) October 1999; h) October 2000; i) October 2001; j) October 2002; k) 

October 2003; l) October 2004; m) October 2005; n) October 2006; o) October 2007. 
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Figure 3.9.  (Continued) Examples of the last 15 years of October rainfall maps for 

Moloka‘i.   
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Figure 3.9.  (Continued) Examples of the last 15 years of October rainfall maps for 

Moloka‘i.   
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Figure 3.9.  (Continued) Examples of the last 15 years of October rainfall maps for 

Moloka‘i.   
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Figure 3.9.  (Continued) Examples of the last 15 years of October rainfall maps for 

Moloka‘i.   
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The monthly mean rainfall statistics are shown in Figure 3.10 for each island, 

where the characteristic annual cycle of rainfall in Hawai‘i can be seen immediately.  

February is typically lower than January and March, which tend to be some of the highest 

rainfall months, with the summer months showing the lowest rainfall.  The minimum, 

maximum, and mean statistics for each island and month, including the anomaly maps 

and annual maps are shown in Appendix C.  These statistics for the annual maps are 

shown in Table 3.4, where one location on Maui had an annual value of over 600 inches 

(a location on Kaua‘i had 576 inches in that same year, 1982).  Table 3.5 documents the 

minimum, maximum, and average number of raingage stations used on each island.  The 

number of gages varied throughout time as the station network evolved, with the highest 

numbers of stations seen during the 1950s and 1960s.   

 

Figure 3.10.   Mean monthly rainfall statistics derived from the month-year maps, 

averaged over all 88 years (in inches) for each island-month.  Ka is Kaua‘i, Oa is O‘ahu, 

Mo is Moloka‘i, La is Lāna‘i, Ma is Maui, and Ha is Hawai‘i Island.   
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Table 3.4.  Statistics for the annual maps for all islands (in inches), over all 88 years. 

 Minimum Maximum Mean 

Kaua‘i 6.193 576.683 81.920 

O‘ahu 5.837 428.052 61.413 

Moloka‘i 2.731 269.969 45.513 

Lāna‘i 2.427 83.443 21.653 

Maui & Kaho‘olawe 1.720 608.403 76.326 

Hawai‘i 2.497 453.255 71.198 

 

 

Table 3.5.  Minimum, maximum and mean statistics for the number of raingage stations 

used to make the maps for each island, averaged over all months. 

 Minimum Maximum Mean 

Kaua‘i 167 211 179 

O‘ahu 274 356 312 

Moloka‘i 62 87 72 

Lāna‘i 40 50 44 

Maui & Kaho‘olawe 208 250 232 

Hawai‘i 275 348 304 

 

3.3 Cross Validation Comparison 

The means of the cross validation statistics (MAE and RMSE) for the final maps were 

compared with the cross validation statistics from the method comparison test to 

determine whether the results from the method comparison were representative of the 

final outcome.  The final maps spanned an 88-year period from 1920-2007, while the 

method comparison test statistics only covered a 30-year period from 1940-1969.  When 

the statistics were tested together, the final statistics were comparable in every island-

month.  Table 3.6 shows the average of the monthly results of comparing the average 

MAE and average RMSE for all years between the five methods tested in the 30-year 

method comparison with the OK results from all 88 years, and the full results by month 

are found in Appendix D.   

The new results could only be compared with the results from the 30-year test for 

ranking categories 1 and 3: minimum average MAE and RMSE.  Since categories 2 and 4 
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relied on testing the minimum value in each year, the OK results from all 88 years would 

be virtually the same as the 30-year OK results since only the 1940-1969 period can be 

used (the other methods do not have information for the full 88-year period).  The OK 

results from all 88 years were ranked with the five methods from the 30-year test from 1 

to 6 (best to worst), using only categories 1 and 3.  The averages of these ranks over all 

months are shown in Table 3.6 for each island, with complete monthly results shown in 

Appendix D. 

 

Table 3.6.  Average MAE and average RMSE results for all islands with the average 

rank value for 30-year cross validation results (5 methods) and 88-year cross validation 

results (1 method).  Units for MAE (mean absolute error) and RMSE (root mean square 

error) are the same as the relative anomalies: dimensionless (inches per inch). 

  30-Year Cross Validation Results 88-Year 

Final Results 

  OK OCK_EL OCK_RF KED_EL KED_RF OK 

Ka Avg MAE 0.00118 0.00242 0.00280 0.00924 0.00624 0.00046 

 Avg RMSE 0.32559 0.34871 0.34617 0.55001 0.35913 0.34169 

 Avg Rank 1.88 3.42 3.42 5.63 4.58 2.08 

Oa Avg MAE 0.00057 0.00224 0.00132 0.00261 0.00295 0.00112 

 Avg RMSE 0.31999 0.34869 0.33903 0.35562 0.33743 0.36790 

 Avg Rank 1.33 4.29 2.88 4.71 3.88 3.92 

Mo Avg MAE 0.00447 0.00395 0.00409 0.00814 0.00829 0.00292 

 Avg RMSE 0.54863 0.58013 0.56777 0.58706 0.57984 0.58662 

 Avg Rank 2.63 3.63 2.83 4.71 4.13 3.08 

La Avg MAE 0.00902 0.01194 0.00972 0.01806 0.01055 0.00487 

 Avg RMSE 0.33618 0.34000 0.33399 0.39878 0.33428 0.38043 

 Avg Rank 2.88 4.13 2.63 5.25 2.83 3.29 

Ma Avg MAE 0.00309 0.00394 0.00304 0.01301 0.01628 0.00123 

 Avg RMSE 0.56646 0.58017 0.57111 0.53275 0.54533 0.51113 

 Avg Rank 2.29 3.79 2.5 4.46 4.46 3.5 

Ha Avg MAE 0.00086 0.00304 0.00158 0.00405 0.00513 0.00084 

 Avg RMSE 0.43304 0.45664 0.44589 0.46507 0.46254 0.45125 

 Avg Rank 1.67 4.08 2.83 5.17 4.63 2.63 

Note: OK is ordinary kriging, OCK_EL is ordinary cokriging with elevation, OCK_RF is 

ordinary cokriging with mean rainfall, KED_EL is kriging with external drift with elevation, and 

KED_RF is kriging with external drift with mean rainfall. 

Ka is Kaua‘i, Oa is O‘ahu, Mo is Moloka‘i, La is Lāna‘i, Ma is Maui, and Ha is Hawai‘i island. 
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CHAPTER 4 

DISCUSSION AND CONCLUSIONS 

 

Month-year rainfall maps of the major Hawaiian Islands were produced from 1920 – 

2007 using ordinary kriging of the relative rainfall anomalies.  A geostatistical method 

comparison was successfully completed between ordinary kriging, kriging with an 

external drift, and ordinary cokriging using elevation and monthly mean rainfall maps as 

covariates.  The interpolation methods were evaluated using cross validation statistics, 

specifically: mean absolute error (MAE) and root mean square error (RMSE).  Methods 

were ranked based on these error statistics, and the best ranked method, ordinary kriging, 

was chosen to create the month-year rainfall maps.   

 The differences between the methods’ performances were fairly small in most 

cases.  Many times, greater differences were seen between months within a method than 

between methods.  All methods seemed to perform better in winter months than in the 

summer, but seasonality did not seem to favor one method over another – the rank order 

remained fairly steady throughout the year.  The ANOVA testing showed how truly 

similar these mean error values were, allowing for the conclusion that ordinary kriging 

was the best method to use for the interpolation of the month-year anomalies for all 

months and islands. 

 Based on the numerous geostatistical method comparison studies that have been 

performed globally, it was not expected that ordinary kriging would be a better predictor 

of rainfall than more complex methods that incorporate a secondary variable.  However, 

none of the other studies were performed on a surface comparable to Hawai‘i, or on the 

same time scale or variable with a similar station network density, which is why the 

comparison was performed here.  The only previous study that corroborates these results 

is that of Mair and Fares (2011) who found that over a small area on western O‘ahu, 

ordinary kriging produced more accurate rainfall predictions than simple kriging with 

varying local means (SKlm) using elevation and distance to a regional rainfall maximum 
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as the two secondary variables.  SKlm has been shown to produce similar results to KED 

(Goovaerts 2000).  Based on this evidence, using a secondary variable does not seem to 

provide a better prediction when interpolating the rainfall surface in Hawai‘i. 

 It was unsure whether the 30-year period chosen for the method comparison test 

would be representative of the entire 88-year period.  The years 1940-1969 were chosen 

for the large active station network during this time and therefore the high percentage of 

original station data available.  The 5-year, 2-month pilot study performed for Kaua‘i 

produced inconclusive results, prompting the choice of a longer study period for all 

islands.  Not only were the results of the 30-year comparison test conclusive, but the 

cross validation statistics from the 88-year period showed that the 30-year results were 

representative of the entire period.  When the MAE and RMSE results from the 88-year 

period using OK were compared with the 30-year results for the five methods used in the 

comparison test (looking only at the minimum average MAE and RMSE, ranking 

categories 1 and 3), the 88-year OK results were among the top ranked methods in almost 

every month-year across the across the islands (Appendix D).   

 While performing the visual quality checks (QC) on the final maps, many of the 

map surfaces appeared to show a smooth pattern.  However, in a few instances the pattern 

of the rainfall map was not smooth, even when the anomaly surface was fairly smooth.  

This problem appeared to be more severe in months where the rainfall values were 

relatively low, perhaps causing more detail to be visible than would be if the values were 

higher.  It is unclear how a month-year rainfall map should look, and how smooth it 

should be.  Maps of this temporal scale have not been produced in Hawai‘i before, and it 

is not known whether an irregular surface is realistic.  The non-exact nature of the kriging 

interpolator will have the effect of over-smoothing peaks and troughs to produce a more 

even surface.  The extent of this over-smoothing has yet to be explored with these month-

year maps. 

 Assessing the uncertainty in the map estimates is an important step for providing 

users with an idea of the accuracy of the product.  The cross validation statistics give an 

idea of how accurate the interpolation is, and calculating trends and performing spatial 
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trend analysis will be an important way to compare the map values with the data that has 

already been assessed.  Another test that can be done right away is to aggregate the 

month-year maps into mean values and compare them with existing mean maps, which 

are accepted as having appropriate rainfall values.  Table 4.1 compares the mean annual 

values from the month-year maps (the average of the most recent 30 year period, 1978-

2007) with the mean climatology values from the 2011 Rainfall Atlas (average of the 

1978-2007 rainfall) and the 1971-2000 PRISM map values (Daly et al. 2006).  When the 

means were compared, the month-year annual estimate showed an underestimation of the 

mean for most islands.  Four out of the six islands had month-year means below the 

Rainfall Atlas and PRISM, with Kaua‘i and O‘ahu showing the largest discrepancies 

(with month-year maps averaging about 6 inches lower).  Though the mean annual values 

from the month-year maps are within a similar range as the other climatologies, this 

underestimation could be caused by excess smoothing of rainfall peak areas.   

 

Table 4.1.  Comparison of mean values between the 2011 Rainfall Atlas, PRISM maps, 

and the 30-year mean values from the month-year maps (1978-2007), in inches. 

 
2011 Rainfall 

Atlas 
PRISM 

Annual Month-Year Maps 

(30-yr mean) 

Kaua‘i 84.26 86.74 79.04 

O‘ahu 64.10 67.14 59.35 

Moloka‘i 48.58 43.83 46.47 

Lāna‘i 22.04 24.22 20.92 

Maui & Kaho‘olawe 77.36 74.36 75.64 

Hawai‘i 72.75 72.65 70.16 

 

One important item that this study can provide is a template for generating current 

maps.  New data can be entered into the rainfall database and turned into a map using the 

same procedure as these historical month-year maps.  The only difference will be the 

database used.  The serially complete database helped to fill in the gaps caused by the 

declining raingage station network in Hawai‘i.  If new data are imported into the database 

without this filling procedure, a sharp discontinuity may be seen between the 2007 and 
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the 2008 maps because of the abrupt change in the number of stations available for 

analysis. Therefore, this filling procedure should be applied to any data used for future 

map updates to take advantage of the rich information provided by historical stations.   

The ideal solution to the decline in the network would be to install more raingages 

across the state, however, Hawai‘i will probably never see a network as dense as it was in 

the 1960s (with over 1,000 stations operating at once).  With regard to the spatial 

distribution of the station network, Table 3.5 shows the obvious bias in station placement.  

The island of O‘ahu has more raingage stations than the island of Hawai‘i, which is more 

than six times the size of O‘ahu.  Installation of any new raingages in the State should 

take into account the locations of current stations, and where the largest spatial gaps are 

occurring. 

In summary, month-year rainfall maps from 1920-2007 have been generated for 

Hawai‘i, with accompanying anomaly maps relative to the 1978-2007 mean.  These maps 

may slightly underestimate peak rainfall on some islands, but more analysis is required.  

Based on cross validation results, it was concluded that ordinary kriging outperformed 

ordinary cokriging and kriging with an external drift using elevation and mean rainfall as 

secondary variables.  The final maps were created by using ordinary kriging to interpolate 

the anomaly values, and this procedure can be used in the future to produce current 

month-year maps as the data become available.   
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APPENDIX A 

(Adapted from Webster & Oliver 2007; Deutsch & Journel 1998; and Goovaerts 1997) 

 Ordinary kriging is the most common and robust type of kriging; it is a weighted 

linear combination of data values.  Kriging will estimate values of a variable Z given 

known values z(  ), z(  ), … , z(  ), at points   ,    , … ,   .  Equation A.1 shows how 

to estimate Z at a point    : 

              

 

   

                                                                                                                         

where    are the weights.  Kriging is an unbiased estimator, so the weights must sum to 

one (Equation A.2).  The weights are not just a function of the distance between the 

known data points and the prediction points, but also based on the spatial structure of the 

points (spatial autocorrelation) – quantified by the semivariance.   

     

 

   

                                                                                                                                           

With every estimate there is an accompanying kriging variance, expressed by       .  

The variance is defined in Equation A.3: 

             

 

   

                       

 

   

 

   

                                                                

where          is the semivariance of Z between the ith data point and the estimated 

point   , and          is the semivariance between the two data points    and   .   

Since kriging is also an optimal estimator, its goal is to minimize variance.  To 

solve for the kriged estimate, the next step is to find the weights that accomplish this goal 

of minimizing the kriging variance.  A Lagrange multiplier method is used to ensure 

minimized variance under unbiased conditions.  This creates N+1 equations with N+1 
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unknowns for ordinary kriging (including the Lagrange multiplier,  ), as seen in 

Equation A.4: 

                              

 

   

                                                                                      

 In matrix form, the kriging equations are shown in Equation A.5: 

                                                                                                                                                     

where: 

   

 
 
 
 
 
 
 
                          

                          
     
     
     

                           
      

 
 
 
 
 
 

 

  

 
 
 
 
 
 
 

  
  
 
 
 
  

      
 
 
 
 
 
 

     

 
 
 
 
 
 
 
        

        
 
 
 

        
  

 
 
 
 
 
 

    

Therefore, to solve for the weights, the matrix A needs to be inverted, as in Equation A.6 

(since the interpolation is only working with a subset of data most of the time, the 

matrices are smaller and it is relatively computationally rapid): 

                                                                                                                                                  

The mean of the surface does not need to be known (as in Simple Kriging), and 

instead is re-estimated at every location (therefore using moving-window 

neighborhoods).  Ordinary kriging also assumes a stationary mean instead of a drift 

present, as in Universal Kriging (UK).  In UK the trend is modeled as a function of 

coordinates.  The drift may also be defined by one or more external variables, which is 
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the case in Kriging with External Drift (KED).  KED with one external variable uses N+2 

equations, accounting for the 2 constraints on the weights (add one constraint per external 

drift variable included).  The trend,     , is modeled as a linear function of the external 

drift variable     , seen in Equation A.7: 

                                                                                                                                      

where    and    are regression coefficients estimated by the kriging system at each 

search neighborhood.  KED can account for changes in correlation across the study area 

because the relationship between the external variable and the rainfall is assessed locally 

(Goovaerts, 2000).  The KED estimator is shown in Equation A.8:  

            
        

 

   

                                                                                                           

The weights (  
   

) are obtained by the solution of the system of N+2 equations in 

Equation A.9: 

  

 
 
 
 
 
 
 
 
 
   

   

 

   

                                    

 

   

                         

     
   

 

   

   

    
   

 

   

                                   

       

 A limitation of KED is that the secondary variable needs to be known for all 

target points and at all primary data points.  When using a secondary variable that does 

not meet these criteria, the cokriging method is often used.  Cokriging takes advantage of 

the cross-semivariance between the primary and secondary variables to add information 

that the primary variable is missing.  For one secondary variable ( ), the ordinary 

cokriging (OCK) estimator is shown in Equation A.10: 
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where the weights       are for the      samples, and the weights         are for the      

samples.  The traditional constraints on the weights are that the sum of the weights for the 

primary variable       must equal one, and the weights for the secondary variable         

must sum to zero.  In matrix form,     represents a matrix of semivariances between 

sampling points, shown in Equation A.11, and has order    ×   : 

     

 
 
 
 
 
 
 
                               

 

                               
 

    
    
    

       
            

            
    

  
 
 
 
 
 
 

                                                     

The   matrix includes the two Lagrange parameters (accounting for the two bias 

constraints on the weights), and the b matrix (Equation A.12) includes vectors of 

autosemivariance for the primary variable  , and cross-semivariances with the secondary 

variable  : 

    

 
 
 
 
 
 
          

          
 
 
 

       
     

 
 
 
 
 

                         

 
 
 
 
 
 
          

          
 
 
 

       
     

 
 
 
 
 

                                                           

The matrix equation,      , for ordinary cokriging is shown in Equation A.13: 
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The three methods detailed in this appendix, ordinary kriging, kriging with an 

external drift, and ordinary cokriging, will be the methods compared in this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



54 

 

APPENDIX B 

Table B.1.  Method comparison: cross validation results for Kaua‘i.  Best method chosen 

by each of the four ranking categories in each month. 

 

Category 1: Category 2: Category 3: Category 4: 

 

 

Min Avg MAE Max % Years 

with lowest MAE 
Min Avg RMSE Max % Years 

with lowest RMSE 
Best Rank 

Jan OK OK OK OK OK 

Feb OK OK OK OK OK 

Mar KED_EL OK OK OK OK 

Apr OK OK OK OK OK 

May OK OK OK OK OK 

Jun OK OK OK OK OK 

Jul OK OK OK OK OK 

Aug KED_RF OK OK OK OK 

Sep OK OK OK OK OK 

Oct OCK_EL OK OK OK OK 

Nov OK OK OK OK OK 

Dec OK OK OK OK OK 

  

Note: OK is ordinary kriging, OCK_EL is ordinary cokriging with elevation, OCK_RF is 

ordinary cokriging with mean rainfall, KED_EL is kriging with external drift with elevation, and 

KED_RF is kriging with external drift with mean rainfall.  MAE is mean absolute error; RMSE is 

root mean square error. 
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Table B.2.  Method comparison: cross validation results for O‘ahu.  Best method chosen 

by each of the four ranking categories in each month. 

 

Category 1: Category 2: Category 3: Category 4: 

 

 

Min Avg MAE Max % Years 

with lowest MAE 
Min Avg RMSE Max % Years 

with lowest RMSE 
Best Rank 

Jan OK OK OK OK OK 

Feb OK OK OK OK OK 

Mar OK OK OK OK OK 

Apr OK OK OK OK OK 

May OCK_RF OK OK OK OK 

Jun KED_RF OK OK OK OK 

Jul OK OK OK OK OK 

Aug KED_EL OK OK OK OK 

Sep OCK_RF OK OK OK OK 

Oct OCK_RF OK OK OK OK 

Nov OK OK OK OK OK 

Dec OK OK OK OK OK 

  

Note: OK is ordinary kriging, OCK_EL is ordinary cokriging with elevation, OCK_RF is 

ordinary cokriging with mean rainfall, KED_EL is kriging with external drift with elevation, and 

KED_RF is kriging with external drift with mean rainfall.  MAE is mean absolute error; RMSE is 

root mean square error. 
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Table B.3.  Method comparison: cross validation results for Moloka‘i.  Best method 

chosen by each of the four ranking categories in each month. 

 

Category 1: Category 2: Category 3: Category 4: 

 

 

Min Avg MAE Max % Years 

with lowest MAE 
Min Avg RMSE Max % Years 

with lowest RMSE 
Best Rank 

Jan OK OCK_EL KED_RF KED_RF OK 

Feb OCK_EL OCK_RF OCK_RF OCK_RF OCK_RF 

Mar OK OCK_RF OCK_RF OCK_RF OCK_RF 

Apr OCK_RF OCK_RF OK OK OCK_RF 

May KED_RF OCK_RF OK OK OCK_RF 

Jun OK OCK_RF OK OK OK 

Jul KED_EL OCK_RF OK OK OCK_RF 

Aug KED_RF OK OK OK OK 

Sep OCK_EL OCK_RF OK OK OK 

Oct OCK_EL OCK_RF OK OK OK 

Nov OCK_RF OK OCK_RF OCK_RF OCK_RF 

Dec OCK_EL OCK_RF OCK_RF OCK_RF OCK_RF 

  

Note: OK is ordinary kriging, OCK_EL is ordinary cokriging with elevation, OCK_RF is 

ordinary cokriging with mean rainfall, KED_EL is kriging with external drift with elevation, and 

KED_RF is kriging with external drift with mean rainfall.  MAE is mean absolute error; RMSE is 

root mean square error. 
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Table B.4.  Method comparison: cross validation results for Lāna‘i.  Best method chosen 

by each of the four ranking categories in each month. 

 

Category 1: Category 2: Category 3: Category 4: 

 

 

Min Avg MAE Max % Years 

with lowest MAE 
Min Avg RMSE Max % Years 

with lowest RMSE 
Best Rank 

Jan OK OK KED_RF KED_RF OK 

Feb KED_EL KED_RF OK OK OK 

Mar KED_RF KED_RF KED_RF KED_RF KED_RF 

Apr KED_RF KED_RF KED_RF KED_RF KED_RF 

May OK OK OCK_RF KED_RF OK 

Jun KED_RF KED_RF OCK_RF OCK_RF KED_RF 

Jul OCK_RF OCK_EL KED_RF KED_RF OCK_RF 

Aug KED_RF OK OCK_EL KED_RF OK 

Sep OK OK OK KED_RF OK 

Oct OK OK OK KED_RF OK 

Nov KED_RF OCK_RF OCK_RF OK OCK_RF 

Dec KED_RF OK OK KED_RF KED_RF 

   

Note: OK is ordinary kriging, OCK_EL is ordinary cokriging with elevation, OCK_RF is 

ordinary cokriging with mean rainfall, KED_EL is kriging with external drift with elevation, and 

KED_RF is kriging with external drift with mean rainfall.  MAE is mean absolute error; RMSE is 

root mean square error. 
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Table B.5.  Method comparison: cross validation results for Maui & Kaho‘olawe.  Best 

method chosen by each of the four ranking categories in each month. 

 

Category 1: Category 2: Category 3: Category 4: 

 

 

Min Avg MAE Max % Years 

with lowest MAE 
Min Avg RMSE Max % Years 

with lowest RMSE 
Best Rank 

Jan KED_EL OCK_RF OCK_RF OCK_RF OCK_RF 

Feb OCK_RF OCK_RF OCK_RF OCK_RF OCK_RF 

Mar OK OK OK OK OK 

Apr OK OK OK OK OK 

May OCK_RF OK OK OK OK 

Jun OCK_EL OCK_RF KED_EL OK OCK_RF 

Jul OCK_EL OCK_RF OK OK OK 

Aug OCK_EL OCK_RF OK OCK_RF OK 

Sep OK OCK_RF OK OK OK 

Oct OCK_RF OCK_RF OK OK OK 

Nov KED_RF KED_EL OK OK OK 

Dec OCK_RF OCK_RF OK OK OCK_RF 

  

Note: OK is ordinary kriging, OCK_EL is ordinary cokriging with elevation, OCK_RF is 

ordinary cokriging with mean rainfall, KED_EL is kriging with external drift with elevation, and 

KED_RF is kriging with external drift with mean rainfall.  MAE is mean absolute error; RMSE is 

root mean square error. 
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Table B.6.  Method comparison: cross validation results for Hawai‘i.  Best method 

chosen by each of the four ranking categories in each month. 

 

Category 1: Category 2: Category 3: Category 4: 

 

 

Min Avg MAE Max % Years 

with lowest MAE 
Min Avg RMSE Max % Years 

with lowest RMSE 
Best Rank 

Jan OK OK OK OK OK 

Feb OK OK OK OK OK 

Mar OCK_RF OK OK OK OK 

Apr OK OK OK OK OK 

May OCK_RF OK OK OK OK 

Jun OK OK OK OK OK 

Jul OK OK OK OK OK 

Aug OCK_EL OK OK OK OK 

Sep OCK_EL OK OK OK OK 

Oct KED_EL OK OK OK OK 

Nov OK OK OK OK OK 

Dec OK OK OK OK OK 

  

Note: OK is ordinary kriging, OCK_EL is ordinary cokriging with elevation, OCK_RF is 

ordinary cokriging with mean rainfall, KED_EL is kriging with external drift with elevation, and 

KED_RF is kriging with external drift with mean rainfall.  MAE is mean absolute error; RMSE is 

root mean square error. 
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APPENDIX C 

Table C.1.  Monthly statistics for the Kaua‘i anomaly (anom) and rainfall (RF) maps (in 

inches), over all 88 years. 

  Minimum Maximum Mean 

Anom Jan 0.0027 7.7695 1.1739 

 Feb 0.0032 5.8405 1.0298 

 Mar 0.0043 12.4897 1.0229 

 Apr 0.0013 13.1452 1.1851 

 May 0.0005 8.0554 1.0129 

 Jun 0.0001 22.2439 0.9861 

 Jul 0.0012 10.8148 1.0676 

 Aug 0.0018 17.0010 1.0738 

 Sep 0.0029 6.8185 0.9468 

 Oct 0.0055 5.9967 0.9433 

 Nov 0.0013 4.2945 0.9174 

 Dec 0.0017 6.0187 1.0444 

RF Jan 0.0094 111.6923 9.0419 

 Feb 0.0113 89.3922 6.8064 

 Mar 0.0079 108.3324 8.2155 

 Apr 0.0011 90.8546 7.2834 

 May 0.0007 87.6665 5.5981 

 Jun 0.0000 59.7252 4.5289 

 Jul 0.0005 75.9853 5.8631 

 Aug 0.0008 65.3431 5.6608 

 Sep 0.0022 64.4539 5.0487 

 Oct 0.0128 62.1177 6.6385 

 Nov 0.0033 95.5403 8.3970 

 Dec 0.0064 76.9851 8.8024 

 Annual 6.1934 576.6827 81.9195 
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Table C.2.  Monthly statistics for the O‘ahu anomaly (anom) and rainfall (RF) maps (in 

inches), over all 88 years. 

  Minimum Maximum Mean 

Anom Jan 0.0033 6.2178 1.0541 

 Feb 0.0021 6.4196 1.0533 

 Mar 0.0035 9.5895 1.0407 

 Apr 0.0020 10.7687 1.1231 

 May 0.0005 10.7422 0.9801 

 Jun 0.0006 12.6595 0.8890 

 Jul 0.0105 7.1306 0.9126 

 Aug 0.0011 8.9807 0.8943 

 Sep 0.0067 14.6868 0.8380 

 Oct 0.0020 9.6290 0.8945 

 Nov 0.0028 7.7845 0.9300 

 Dec 0.0152 8.8511 1.0339 

RF Jan 0.0122 71.7901 7.1796 

 Feb 0.0045 86.2780 5.6759 

 Mar 0.0071 70.5138 6.4331 

 Apr 0.0025 72.1082 5.3400 

 May 0.0004 55.4634 3.9971 

 Jun 0.0002 35.2287 3.1856 

 Jul 0.0036 42.3023 3.8593 

 Aug 0.0018 56.2262 3.8023 

 Sep 0.0108 43.1215 3.5419 

 Oct 0.0044 43.6860 5.1105 

 Nov 0.0071 68.3767 6.2655 

 Dec 0.0467 62.7786 7.0224 

 Annual 5.8368 428.0517 61.4130 
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Table C.3.  Monthly statistics for the Moloka‘i anomaly (anom) and rainfall (RF) maps 

(in inches), over all 88 years. 

  Minimum Maximum Mean 

Anom Jan 0.0066 8.3108 0.9939 

 Feb 0.0186 5.3488 0.9482 

 Mar 0.0057 8.5690 1.0718 

 Apr 0.0031 9.3781 0.9935 

 May 0.0001 5.8088 0.8360 

 Jun 0.0001 14.5270 0.9168 

 Jul 0.0002 7.3343 0.8877 

 Aug 0.0114 13.4869 0.8682 

 Sep 0.0094 19.3348 1.4470 

 Oct 0.0010 8.6369 0.9368 

 Nov 0.0116 9.4739 0.9604 

 Dec 0.0022 6.1675 0.9628 

RF Jan 0.0166 58.0474 5.9864 

 Feb 0.0383 50.6888 4.4041 

 Mar 0.0089 47.2679 5.4809 

 Apr 0.0044 41.2873 4.1086 

 May 0.0001 33.1243 2.8704 

 Jun 0.0000 41.1062 2.2219 

 Jul 0.0002 33.3209 2.4493 

 Aug 0.0036 29.8986 2.1312 

 Sep 0.0003 28.3881 2.2908 

 Oct 0.0019 34.6517 3.3924 

 Nov 0.0220 58.7871 4.8105 

 Dec 0.0046 38.8711 5.3665 

 Annual 2.7310 269.9688 45.5131 
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Table C.4.  Monthly statistics for the Lāna‘i anomaly (anom) and rainfall (RF) maps (in 

inches), over all 88 years. 

  Minimum Maximum Mean 

Anom Jan 0.0011 5.9586 1.0646 

 Feb 0.0057 4.7561 0.9019 

 Mar 0.0034 13.3311 1.2430 

 Apr 0.0031 12.0740 1.0888 

 May 0.0020 12.7245 1.0542 

 Jun 0.0012 7.1600 0.7820 

 Jul 0.0016 14.0240 0.9941 

 Aug 0.0077 12.0166 1.0559 

 Sep 0.0002 8.1794 0.9778 

 Oct 0.0056 4.7291 1.0014 

 Nov 0.0005 6.1179 0.8855 

 Dec 0.0005 3.9869 0.9107 

RF Jan 0.0035 19.6763 3.6104 

 Feb 0.0103 15.2980 2.4421 

 Mar 0.0046 30.4772 2.6948 

 Apr 0.0040 19.0975 1.5859 

 May 0.0012 19.1357 1.1103 

 Jun 0.0008 9.3533 0.6656 

 Jul 0.0010 10.3351 0.6926 

 Aug 0.0010 6.9222 0.6259 

 Sep 0.0001 11.8103 1.0891 

 Oct 0.0084 11.1385 1.8201 

 Nov 0.0013 19.8558 2.4077 

 Dec 0.0016 17.1304 2.9056 

 Annual 2.4271 83.4425 21.6531 
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Table C.5.  Monthly statistics for the Maui & Kaho‘olawe anomaly (anom) and rainfall 

(RF) maps (in inches), over all 88 years. 

  Minimum Maximum Mean 

Anom Jan 0.0004 7.9592 1.0313 

 Feb 0.0014 7.8959 1.0789 

 Mar 0.0000 12.7831 1.1039 

 Apr 0.0010 15.5440 1.2551 

 May 0.0016 10.0302 0.9563 

 Jun 0.0001 28.8155 0.8637 

 Jul 0.0002 25.1266 1.1432 

 Aug 0.0008 26.4126 1.1774 

 Sep 0.0009 17.5191 1.0750 

 Oct 0.0004 13.9177 1.1340 

 Nov 0.0001 8.9170 0.9176 

 Dec 0.0002 7.2607 0.9966 

RF Jan 0.0013 107.8208 8.4644 

 Feb 0.0022 111.1893 6.9407 

 Mar 0.0000 206.2669 8.7223 

 Apr 0.0004 125.2418 7.7223 

 May 0.0007 67.1540 5.0056 

 Jun 0.0000 102.6735 3.8044 

 Jul 0.0000 82.9018 5.2414 

 Aug 0.0001 90.7815 5.0698 

 Sep 0.0001 83.6842 4.3691 

 Oct 0.0001 144.3712 5.4064 

 Nov 0.0002 103.5891 7.3643 

 Dec 0.0005 111.9078 8.2151 

 Annual 1.7195 608.4033 76.3258 
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Table C.6.  Monthly statistics for the Hawai‘i anomaly (anom) and rainfall (RF) maps (in 

inches), over all 88 years. 

  Minimum Maximum Mean 

Anom Jan 0.0034 7.2278 1.0551 

 Feb 0.0169 11.2081 1.0801 

 Mar 0.0023 8.6382 0.9564 

 Apr 0.0049 7.8969 1.0381 

 May 0.0132 8.0732 1.0246 

 Jun 0.0110 7.9032 0.9196 

 Jul 0.0104 6.3835 0.8981 

 Aug 0.0063 8.0529 1.0738 

 Sep 0.0241 7.1609 0.9689 

 Oct 0.0009 7.0263 1.0722 

 Nov 0.0030 13.5376 0.9215 

 Dec 0.0000 7.3319 1.0288 

RF Jan 0.0074 98.7022 6.9801 

 Feb 0.0160 92.8080 5.7495 

 Mar 0.0025 139.2772 8.0323 

 Apr 0.0035 104.1811 6.9460 

 May 0.0309 68.0857 5.1669 

 Jun 0.0073 56.1794 3.7521 

 Jul 0.0034 76.3046 5.0859 

 Aug 0.0085 74.2489 5.7828 

 Sep 0.0233 57.2755 4.8151 

 Oct 0.0010 59.2960 5.3554 

 Nov 0.0027 106.8192 6.8533 

 Dec 0.0001 87.5853 6.6785 

 Annual 2.4973 453.2547 71.1978 
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APPENDIX D 

Table D.1. Kaua‘i cross validation statistics: compare all years (OK) with the 30-year 

test for 5 methods. 

  

 30-Year Cross Validation Results 
88-Year 

Final Results 

    OK OCK_EL OCK_RF KED_EL KED_RF OK 

Jan Avg MAE 0.00124 0.00222 0.00281 0.00352 0.00319 0.00073 

 
Rank MAE 2 3 4 6 5 1 

 
Avg RMSE 0.29654 0.32184 0.32014 0.41814 0.34959 0.29414 

 
Rank RMSE 2 4 3 6 5 1 

  Avg Rank 2 3.5 3.5 6 5 1 

Feb Avg MAE 0.00183 0.00292 0.00367 0.01412 0.00487 0.00022 

 
Rank MAE 2 3 4 6 5 1 

 
Avg RMSE 0.30934 0.33693 0.33377 0.47260 0.34959 0.30019 

 
Rank RMSE 2 4 3 6 5 1 

  Avg Rank 2 3.5 3.5 6 5 1 

Mar Avg MAE 0.00043 0.00342 0.00113 0.00010 0.00583 0.00007 

 
Rank MAE 3 5 4 2 6 1 

 
Avg RMSE 0.31777 0.36617 0.36003 0.43763 0.35919 0.30712 

 
Rank RMSE 2 5 4 6 3 1 

  Avg Rank 2.5 5 4 4 4.5 1 

Apr Avg MAE 0.00375 0.00647 0.00833 0.00948 0.01330 0.00148 

 
Rank MAE 2 3 4 5 6 1 

 
Avg RMSE 0.34019 0.34906 0.34850 0.65957 0.37216 0.35842 

 
Rank RMSE 1 3 2 6 5 4 

  Avg Rank 1.5 3 3 5.5 5.5 2.5 

May Avg MAE 0.00141 0.00259 0.00280 0.00148 0.00998 0.00059 

 
Rank MAE 2 4 5 3 6 1 

 
Avg RMSE 0.33811 0.35220 0.34791 0.50988 0.37682 0.33901 

 
Rank RMSE 1 4 3 6 5 2 

  Avg Rank 1.5 4 4 4.5 5.5 1.5 

Jun Avg MAE 0.00131 0.00313 0.00401 0.01214 0.00472 0.00064 

 
Rank MAE 2 3 4 6 5 1 

 
Avg RMSE 0.38526 0.40394 0.40490 0.81653 0.39836 0.45026 

 
Rank RMSE 1 3 4 6 2 5 

  Avg Rank 1.5 3 4 6 3.5 3 

Jul Avg MAE 0.00076 0.00100 0.00081 0.03071 0.00887 0.00066 

 
Rank MAE 2 4 3 6 5 1 

 
Avg RMSE 0.39879 0.41803 0.41854 0.82416 0.44026 0.43464 

 
Rank RMSE 1 2 3 6 5 4 

  Avg Rank 1.5 3 3 6 5 2.5 
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Table D.1. (Continued) Kaua‘i cross validation statistics: compare all years (OK) with 

the 30-year test for 5 methods. 

  
30-Year Cross Validation Results 

88-Year 

Final Results 

    OK OCK_EL OCK_RF KED_EL KED_RF OK_ALL 

Aug Avg MAE 0.00060 0.00009 0.00116 0.00253 0.00006 0.00021 

 
Rank MAE 4 2 5 6 1 3 

 
Avg RMSE 0.43930 0.46039 0.45605 0.90978 0.45432 0.40861 

 
Rank RMSE 2 5 4 6 3 1 

  Avg Rank 3 3.5 4.5 6 2 2 

Sep Avg MAE 0.00051 0.00113 0.00202 0.01177 0.00463 0.00013 

 
Rank MAE 2 3 4 6 5 1 

 
Avg RMSE 0.29938 0.32219 0.32008 0.47779 0.32781 0.35541 

 
Rank RMSE 1 3 2 6 4 5 

  Avg Rank 1.5 3 3 6 4.5 3 

Oct Avg MAE 0.00050 0.00015 0.00048 0.00691 0.00803 0.00009 

 
Rank MAE 4 2 3 5 6 1 

 
Avg RMSE 0.23602 0.25476 0.25157 0.33304 0.27449 0.27675 

 
Rank RMSE 1 3 2 6 4 5 

  Avg Rank 2.5 2.5 2.5 5.5 5 3 

Nov Avg MAE 0.00090 0.00292 0.00358 0.01211 0.00599 0.00050 

 
Rank MAE 2 3 4 6 5 1 

 
Avg RMSE 0.23974 0.26403 0.26357 0.35449 0.26469 0.26761 

 
Rank RMSE 1 3 2 6 4 5 

  Avg Rank 1.5 3 3 6 4.5 3 

Dec Avg MAE 0.00096 0.00300 0.00282 0.00601 0.00547 0.00025 

 
Rank MAE 2 4 3 6 5 1 

 
Avg RMSE 0.30668 0.33501 0.32894 0.38658 0.34230 0.30814 

 
Rank RMSE 1 4 3 6 5 2 

  Avg Rank 1.5 4 3 6 5 1.5 

 

Note: OK is ordinary kriging, OCK_EL is ordinary cokriging with elevation, OCK_RF is 

ordinary cokriging with mean rainfall, KED_EL is kriging with external drift with elevation, and 

KED_RF is kriging with external drift with mean rainfall.  MAE is mean absolute error; RMSE is 

root mean square error.  Units for MAE and RMSE are the same as the relative anomalies: 

dimensionless (inches per inch). 
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Table D.2.  O‘ahu cross validation statistics: compare all years (OK) with the 30-year 

test for 5 methods. 

  

 30-Year Cross Validation Results 
88-Year Final 

Results 

    OK OCK_EL OCK_RF KED_EL KED_RF OK 

Jan Avg MAE 0.00091 0.00178 0.00156 0.00464 0.00319 0.00080 

 
Rank MAE 2 4 3 6 5 1 

 
Avg RMSE 0.28012 0.30503 0.29995 0.30908 0.33616 0.31802 

 
Rank RMSE 1 3 2 4 6 5 

  Avg Rank 1.5 3.5 2.5 5 5.5 3 

Feb Avg MAE 0.00032 0.00076 0.00045 0.00147 0.00531 0.00156 

 
Rank MAE 1 3 2 4 6 5 

 
Avg RMSE 0.31808 0.35356 0.33402 0.35011 0.33616 0.34248 

 
Rank RMSE 1 6 2 5 3 4 

  Avg Rank 1 4.5 2 4.5 4.5 4.5 

Mar Avg MAE 0.00018 0.00135 0.00182 0.00357 0.00302 0.00081 

 
Rank MAE 1 3 4 6 5 2 

 
Avg RMSE 0.33315 0.36933 0.35840 0.37998 0.34234 0.33958 

 
Rank RMSE 1 5 4 6 3 2 

  Avg Rank 1 4 4 6 4 2 

Apr Avg MAE 0.00086 0.00304 0.00136 0.00126 0.00716 0.00260 

 
Rank MAE 1 5 3 2 6 4 

 
Avg RMSE 0.34364 0.36495 0.36026 0.38711 0.36806 0.42270 

 
Rank RMSE 1 3 2 5 4 6 

  Avg Rank 1 4 2.5 3.5 5 5 

May Avg MAE 0.00036 0.00141 0.00002 0.00077 0.00387 0.00144 

 
Rank MAE 2 4 1 3 6 5 

 
Avg RMSE 0.38287 0.41719 0.39531 0.41698 0.39944 0.42474 

 
Rank RMSE 1 5 2 4 3 6 

  Avg Rank 1.5 4.5 1.5 3.5 4.5 5.5 

Jun Avg MAE 0.00044 0.00512 0.00168 0.00107 0.00022 0.00049 

 
Rank MAE 2 6 5 4 1 3 

 
Avg RMSE 0.33513 0.36379 0.35680 0.36573 0.34757 0.42918 

 
Rank RMSE 1 4 3 5 2 6 

  Avg Rank 1.5 5 4 4.5 1.5 4.5 

Jul Avg MAE 0.00008 0.00576 0.00272 0.00591 0.00173 0.00138 

 
Rank MAE 1 5 4 6 3 2 

 
Avg RMSE 0.36457 0.39455 0.38137 0.39804 0.37387 0.40683 

 
Rank RMSE 1 4 3 5 2 6 

  Avg Rank 1 4.5 3.5 5.5 2.5 4 
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Table D.2. (Continued) O‘ahu cross validation statistics: compare all years (OK) with the 

30-year test for 5 methods. 

 
 

 30-Year Cross Validation Results 
88-Year Final 

Results 

    OK OCK_EL OCK_RF KED_EL KED_RF OK 

Aug Avg MAE 0.00250 0.00182 0.00393 0.00172 0.00361 0.00177 

 
Rank MAE 4 3 6 1 5 2 

 
Avg RMSE 0.36808 0.39757 0.38879 0.42119 0.39094 0.38420 

 
Rank RMSE 1 5 3 6 4 2 

  Avg Rank 2.5 4 4.5 3.5 4.5 2 

Sep Avg MAE 0.00021 0.00184 0.00016 0.00269 0.00233 0.00042 

 
Rank MAE 2 4 1 6 5 3 

 
Avg RMSE 0.31402 0.33639 0.33210 0.35330 0.32265 0.40595 

 
Rank RMSE 1 4 3 5 2 6 

  Avg Rank 1.5 4 2 5.5 3.5 4.5 

Oct Avg MAE 0.00038 0.00072 0.00036 0.00115 0.00074 0.00067 

 
Rank MAE 2 4 1 6 5 3 

 
Avg RMSE 0.25467 0.27856 0.27544 0.28360 0.26419 0.32790 

 
Rank RMSE 1 4 3 5 2 6 

  Avg Rank 1.5 4 2 5.5 3.5 4.5 

Nov Avg MAE 0.00010 0.00141 0.00083 0.00140 0.00159 0.00062 

 
Rank MAE 1 5 3 4 6 2 

 
Avg RMSE 0.26300 0.28811 0.28102 0.29183 0.27561 0.29924 

 
Rank RMSE 1 4 3 5 2 6 

  Avg Rank 1 4.5 3 4.5 4 4 

Dec Avg MAE 0.00050 0.00184 0.00098 0.00571 0.00261 0.00084 

 
Rank MAE 1 4 3 6 5 2 

 
Avg RMSE 0.28260 0.31525 0.30492 0.31055 0.29219 0.31398 

 
Rank RMSE 1 6 3 4 2 5 

  Avg Rank 1 5 3 5 3.5 3.5 

 

Note: OK is ordinary kriging, OCK_EL is ordinary cokriging with elevation, OCK_RF is 

ordinary cokriging with mean rainfall, KED_EL is kriging with external drift with elevation, and 

KED_RF is kriging with external drift with mean rainfall.  MAE is mean absolute error; RMSE is 

root mean square error.  Units for MAE and RMSE are the same as the relative anomalies: 

dimensionless (inches per inch). 
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Table D.3. Moloka‘i cross validation statistics: compare all years (OK) with the 30-year 

test for 5 methods. 

 
 

 30-Year Cross Validation Results 
88-Year 

Final Results 

    OK OCK_EL OCK_RF KED_EL KED_RF OK 

Jan Avg MAE 0.00050 0.00100 0.00122 0.00212 0.00208 0.00115 

 
Rank MAE 1 2 4 6 5 3 

 
Avg RMSE 0.39795 0.41986 0.40018 0.41449 0.36474 0.37960 

 
Rank RMSE 3 6 4 5 1 2 

  Avg Rank 2 4 4 5.5 3 2.5 

Feb Avg MAE 0.00389 0.00108 0.00343 0.00279 0.00395 0.00324 

 
Rank MAE 5 1 4 2 6 3 

 
Avg RMSE 0.34462 0.36842 0.34349 0.37147 0.36474 0.38408 

 
Rank RMSE 2 4 1 5 3 6 

  Avg Rank 3.5 2.5 2.5 3.5 4.5 4.5 

Mar Avg MAE 0.00004 0.00117 0.00126 0.00591 0.00564 0.00116 

 
Rank MAE 1 3 4 6 5 2 

 
Avg RMSE 0.48917 0.51676 0.48625 0.52388 0.50539 0.45863 

 
Rank RMSE 3 5 2 6 4 1 

  Avg Rank 2 4 3 6 4.5 1.5 

Apr Avg MAE 0.00238 0.00202 0.00151 0.00271 0.00210 0.00107 

 
Rank MAE 5 3 2 6 4 1 

 
Avg RMSE 0.46061 0.48644 0.46631 0.49104 0.47134 0.49624 

 
Rank RMSE 1 4 2 5 3 6 

  Avg Rank 3 3.5 2 5.5 3.5 3.5 

May Avg MAE 0.00560 0.00400 0.00115 0.00388 0.00070 0.00193 

 
Rank MAE 6 5 2 4 1 3 

 
Avg RMSE 0.49638 0.52028 0.50799 0.53290 0.52059 0.48030 

 
Rank RMSE 2 4 3 6 5 1 

  Avg Rank 4 4.5 2.5 5 3 2 

Jun Avg MAE 0.00830 0.00833 0.01515 0.00873 0.02309 0.00296 

 
Rank MAE 2 3 5 4 6 1 

 
Avg RMSE 0.76966 0.82541 0.82252 0.86421 0.86593 0.85332 

 
Rank RMSE 1 3 2 5 6 4 

  Avg Rank 1.5 3 3.5 4.5 6 2.5 

Jul Avg MAE 0.01557 0.01311 0.00851 0.00792 0.00964 0.00974 

 
Rank MAE 6 5 2 1 3 4 

 
Avg RMSE 0.65232 0.69095 0.68552 0.68659 0.68399 0.62638 

 
Rank RMSE 2 6 4 5 3 1 

  Avg Rank 4 5.5 3 3 3 2.5 
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Table D.3. (Continued) Moloka‘i cross validation statistics: compare all years (OK) with 

the 30-year test for 5 methods. 

 
 

 30-Year Cross Validation Results 
88-Year 

Final Results 

    OK OCK_EL OCK_RF KED_EL KED_RF OK 

Aug Avg MAE 0.00513 0.01206 0.00653 0.02332 0.00140 0.00205 

 
Rank MAE 3 5 4 6 1 2 

 
Avg RMSE 0.64606 0.70529 0.66719 0.68348 0.67744 0.60992 

 
Rank RMSE 2 6 3 5 4 1 

  Avg Rank 2.5 5.5 3.5 5.5 2.5 1.5 

Sep Avg MAE 0.00288 0.00007 0.00601 0.02315 0.02650 0.00303 

 
Rank MAE 2 1 4 5 6 3 

 
Avg RMSE 1.08065 1.12349 1.16657 1.15021 1.10386 1.38267 

 
Rank RMSE 1 3 5 4 2 6 

  Avg Rank 1.5 2 4.5 4.5 4 4.5 

Oct Avg MAE 0.00353 0.00060 0.00114 0.00676 0.01361 0.00367 

 
Rank MAE 3 1 2 5 6 4 

 
Avg RMSE 0.45210 0.46562 0.47803 0.48971 0.55180 0.49598 

 
Rank RMSE 1 2 3 4 6 5 

  Avg Rank 2 1.5 2.5 4.5 6 4.5 

Nov Avg MAE 0.00189 0.00247 0.00159 0.00195 0.00818 0.00349 

 
Rank MAE 2 4 1 3 6 5 

 
Avg RMSE 0.41987 0.43888 0.41799 0.44450 0.46109 0.48526 

 
Rank RMSE 2 3 1 4 5 6 

  Avg Rank 2 3.5 1 3.5 5.5 5.5 

Dec Avg MAE 0.00394 0.00148 0.00162 0.00838 0.00257 0.00148 

 
Rank MAE 5 2 3 6 4 1 

 
Avg RMSE 0.37424 0.40018 0.37120 0.39227 0.38711 0.38702 

 
Rank RMSE 2 6 1 5 4 3 

  Avg Rank 3.5 4 2 5.5 4 2 

 

Note: OK is ordinary kriging, OCK_EL is ordinary cokriging with elevation, OCK_RF is 

ordinary cokriging with mean rainfall, KED_EL is kriging with external drift with elevation, and 

KED_RF is kriging with external drift with mean rainfall.  MAE is mean absolute error; RMSE is 

root mean square error.  Units for MAE and RMSE are the same as the relative anomalies: 

dimensionless (inches per inch). 
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Table D.4. Lāna‘i cross validation statistics: compare all years (OK) with the 30-year test 

for 5 methods. 

 
 

 30-Year Cross Validation Results 
88-Year 

Final Results 

    OK OCK_EL OCK_RF KED_EL KED_RF OK 

Jan Avg MAE 0.00328 0.00830 0.00645 0.01041 0.00873 0.00276 

 
Rank MAE 2 4 3 6 5 1 

 
Avg RMSE 0.22024 0.23088 0.22213 0.27719 0.21115 0.22968 

 
Rank RMSE 2 5 3 6 1 4 

  Avg Rank 2 4.5 3 6 3 2.5 

Feb Avg MAE 0.00313 0.00394 0.00166 0.00019 0.00153 0.00206 

 
Rank MAE 5 6 3 1 2 4 

 
Avg RMSE 0.20531 0.20789 0.20618 0.23818 0.21115 0.22461 

 
Rank RMSE 1 3 2 6 4 5 

  Avg Rank 3 4.5 2.5 3.5 3 4.5 

Mar Avg MAE 0.00803 0.00555 0.00521 0.00422 0.00078 0.00315 

 
Rank MAE 6 5 4 3 1 2 

 
Avg RMSE 0.37860 0.37413 0.36195 0.40727 0.33162 0.38163 

 
Rank RMSE 4 3 2 6 1 5 

  Avg Rank 5 4 3 4.5 1 3.5 

Apr Avg MAE 0.01197 0.01684 0.01180 0.00725 0.00356 0.00525 

 
Rank MAE 5 6 4 3 1 2 

 
Avg RMSE 0.32744 0.33129 0.32669 0.40375 0.32384 0.40589 

 
Rank RMSE 3 4 2 5 1 6 

  Avg Rank 4 5 3 4 1 4 

May Avg MAE 0.01032 0.01655 0.01432 0.01562 0.02006 0.00655 

 
Rank MAE 2 5 3 4 6 1 

 
Avg RMSE 0.48725 0.49508 0.48362 0.57252 0.49009 0.47027 

 
Rank RMSE 3 5 2 6 4 1 

  Avg Rank 2.5 5 2.5 5 5 1 

Jun Avg MAE 0.00521 0.00881 0.00650 0.02463 0.00402 0.00456 

 
Rank MAE 3 5 4 6 1 2 

 
Avg RMSE 0.32438 0.32949 0.32031 0.40259 0.32718 0.44555 

 
Rank RMSE 2 4 1 5 3 6 

  Avg Rank 2.5 4.5 2.5 5.5 2 4 

Jul Avg MAE 0.01949 0.02072 0.01892 0.05701 0.03112 0.00800 

 
Rank MAE 3 4 2 6 5 1 

 
Avg RMSE 0.46132 0.45955 0.45738 0.56151 0.45211 0.48032 

 
Rank RMSE 4 3 2 6 1 5 

  Avg Rank 3.5 3.5 2 6 3 3 
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Table D.4. (Continued) Lāna‘i cross validation statistics: compare all years (OK) with 

the 30-year test for 5 methods. 

 
 

 30-Year Cross Validation Results 
88-Year 

Final Results 

    OK OCK_EL OCK_RF KED_EL KED_RF OK 

Aug Avg MAE 0.01466 0.01772 0.01872 0.02617 0.01178 0.00538 

 
Rank MAE 3 4 5 6 2 1 

 
Avg RMSE 0.55601 0.55382 0.55418 0.65229 0.57152 0.57306 

 
Rank RMSE 3 1 2 6 4 5 

  Avg Rank 3 2.5 3.5 6 3 3 

Sep Avg MAE 0.01518 0.02384 0.01606 0.03464 0.02695 0.01076 

 
Rank MAE 2 4 3 6 5 1 

 
Avg RMSE 0.40403 0.41347 0.40549 0.44154 0.41081 0.49506 

 
Rank RMSE 1 4 2 5 3 6 

  Avg Rank 1.5 4 2.5 5.5 4 3.5 

Oct Avg MAE 0.00683 0.00871 0.00863 0.01917 0.01180 0.00422 

 
Rank MAE 2 4 3 6 5 1 

 
Avg RMSE 0.28000 0.28405 0.28060 0.34694 0.28350 0.40000 

 
Rank RMSE 1 4 2 5 3 6 

  Avg Rank 1.5 4 2.5 5.5 4 3.5 

Nov Avg MAE 0.00415 0.00349 0.00251 0.00833 0.00157 0.00249 

 
Rank MAE 5 4 3 6 1 2 

 
Avg RMSE 0.21716 0.22124 0.21623 0.26763 0.21796 0.23818 

 
Rank RMSE 2 4 1 6 3 5 

  Avg Rank 3.5 4 2 6 2 3.5 

Dec Avg MAE 0.00600 0.00882 0.00581 0.00906 0.00475 0.00331 

 
Rank MAE 4 5 3 6 2 1 

 
Avg RMSE 0.17249 0.17913 0.17314 0.21393 0.18043 0.22089 

 
Rank RMSE 1 3 2 5 4 6 

  Avg Rank 2.5 4 2.5 5.5 3 3.5 

 

Note: OK is ordinary kriging, OCK_EL is ordinary cokriging with elevation, OCK_RF is 

ordinary cokriging with mean rainfall, KED_EL is kriging with external drift with elevation, and 

KED_RF is kriging with external drift with mean rainfall.  MAE is mean absolute error; RMSE is 

root mean square error.  Units for MAE and RMSE are the same as the relative anomalies: 

dimensionless (inches per inch). 
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Table D.5. Maui & Kaho‘olawe cross validation statistics: compare all years (OK) with 

the 30-year test for 5 methods. 

 
 

 30-Year Cross Validation Results 
88-Year 

Final Results 

    OK OCK_EL OCK_RF KED_EL KED_RF OK 

Jan Avg MAE 0.00127 0.00218 0.00099 0.00006 0.00067 0.00119 

 
Rank MAE 5 6 3 1 2 4 

 
Avg RMSE 0.28591 0.30590 0.28299 0.29997 0.35973 0.32663 

 
Rank RMSE 2 4 1 3 6 5 

  Avg Rank 3.5 5 2 2 4 4.5 

Feb Avg MAE 0.00090 0.00032 0.00028 0.00399 0.00325 0.00047 

 
Rank MAE 4 2 1 6 5 3 

 
Avg RMSE 0.33204 0.34622 0.33173 0.34840 0.35973 0.34394 

 
Rank RMSE 2 4 1 5 6 3 

  Avg Rank 3 3 1 5.5 5.5 3 

Mar Avg MAE 0.00209 0.00443 0.00338 0.00452 0.00977 0.00212 

 
Rank MAE 1 4 3 5 6 2 

 
Avg RMSE 0.36453 0.37281 0.36794 0.38056 0.37707 0.39546 

 
Rank RMSE 1 3 2 5 4 6 

  Avg Rank 1 3.5 2.5 5 5 4 

Apr Avg MAE 0.00035 0.00191 0.00134 0.01336 0.01659 0.00188 

 
Rank MAE 1 4 2 5 6 3 

 
Avg RMSE 0.46336 0.47283 0.47245 0.49930 0.47637 0.57289 

 
Rank RMSE 1 3 2 5 4 6 

  Avg Rank 1 3.5 2 5 5 4.5 

May Avg MAE 0.00214 0.00549 0.00161 0.00530 0.00778 0.00166 

 
Rank MAE 3 5 1 4 6 2 

 
Avg RMSE 0.45846 0.46874 0.47410 0.47929 0.46999 0.48760 

 
Rank RMSE 1 2 4 5 3 6 

  Avg Rank 2 3.5 2.5 4.5 4.5 4 

Jun Avg MAE 0.01516 0.01302 0.01483 0.07409 0.09424 0.00138 

 
Rank MAE 4 2 3 5 6 1 

 
Avg RMSE 1.69805 1.70324 1.68373 1.04881 1.19777 0.67616 

 
Rank RMSE 5 6 4 2 3 1 

  Avg Rank 4.5 4 3.5 3.5 4.5 1 

Jul Avg MAE 0.00460 0.00298 0.00477 0.01844 0.01795 0.00045 

 
Rank MAE 3 2 4 6 5 1 

 
Avg RMSE 0.85299 0.87589 0.85427 0.89286 0.88154 0.75784 

 
Rank RMSE 2 4 3 6 5 1 

  Avg Rank 2.5 3 3.5 6 5 1 
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Table D.5. (Continued) Maui & Kaho‘olawe cross validation statistics: compare all years 

(OK) with the 30-year test for 5 methods. 

 
 

 30-Year Cross Validation Results 
88-Year 

Final Results 

    OK OCK_EL OCK_RF KED_EL KED_RF OK 

Aug Avg MAE 0.00394 0.00262 0.00443 0.01187 0.02197 0.00009 

 
Rank MAE 3 2 4 5 6 1 

 
Avg RMSE 0.69168 0.71544 0.70412 0.72615 0.71493 0.69198 

 
Rank RMSE 1 5 3 6 4 2 

  Avg Rank 2 3.5 3.5 5.5 5 1.5 

Sep Avg MAE 0.00036 0.00359 0.00238 0.01326 0.01138 0.00045 

 
Rank MAE 1 4 3 6 5 2 

 
Avg RMSE 0.57985 0.59420 0.59646 0.59262 0.58748 0.70664 

 
Rank RMSE 1 4 5 3 2 6 

  Avg Rank 1 4 4 4.5 3.5 4 

Oct Avg MAE 0.00324 0.00395 0.00024 0.01011 0.01070 0.00199 

 
Rank MAE 3 4 1 5 6 2 

 
Avg RMSE 0.46732 0.48018 0.47448 0.48976 0.48960 0.51393 

 
Rank RMSE 1 3 2 5 4 6 

  Avg Rank 2 3.5 1.5 5 5 4 

Nov Avg MAE 0.00243 0.00439 0.00191 0.00077 0.00040 0.00225 

 
Rank MAE 5 6 3 2 1 4 

 
Avg RMSE 0.29421 0.30660 0.29600 0.31083 0.30713 0.32570 

 
Rank RMSE 1 3 2 5 4 6 

  Avg Rank 3 4.5 2.5 3.5 2.5 5 

Dec Avg MAE 0.00063 0.00246 0.00028 0.00037 0.00070 0.00077 

 
Rank MAE 3 6 1 2 4 5 

 
Avg RMSE 0.30909 0.31996 0.31511 0.32449 0.32265 0.33484 

 
Rank RMSE 1 3 2 5 4 6 

  Avg Rank 2 4.5 1.5 3.5 4 5.5 

 

Note: OK is ordinary kriging, OCK_EL is ordinary cokriging with elevation, OCK_RF is 

ordinary cokriging with mean rainfall, KED_EL is kriging with external drift with elevation, and 

KED_RF is kriging with external drift with mean rainfall.  MAE is mean absolute error; RMSE is 

root mean square error.  Units for MAE and RMSE are the same as the relative anomalies: 

dimensionless (inches per inch). 
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Table D.6. Hawai‘i cross validation statistics: compare all years (OK) with the 30-year 

test for 5 methods. 

 
 

 30-Year Cross Validation Results 
88-Year 

Final Results 

    OK OCK_EL OCK_RF KED_EL KED_RF OK 

Jan Avg MAE 0.00088 0.00369 0.00147 0.00174 0.00558 0.00098 

 
Rank MAE 1 5 3 4 6 2 

 
Avg RMSE 0.33584 0.35872 0.34279 0.35820 0.44867 0.41048 

 
Rank RMSE 1 4 2 3 6 5 

  Avg Rank 1 4.5 2.5 3.5 6 3.5 

Feb Avg MAE 0.00061 0.00279 0.00188 0.00618 0.00740 0.00052 

 
Rank MAE 2 4 3 5 6 1 

 
Avg RMSE 0.42510 0.44491 0.43610 0.46067 0.44867 0.44742 

 
Rank RMSE 1 3 2 6 5 4 

  Avg Rank 1.5 3.5 2.5 5.5 5.5 2.5 

Mar Avg MAE 0.00009 0.00291 0.00004 0.00432 0.00337 0.00059 

 
Rank MAE 2 4 1 6 5 3 

 
Avg RMSE 0.39937 0.42170 0.40638 0.43010 0.41815 0.40787 

 
Rank RMSE 1 5 2 6 4 3 

  Avg Rank 1.5 4.5 1.5 6 4.5 3 

Apr Avg MAE 0.00008 0.00334 0.00043 0.00225 0.00018 0.00081 

 
Rank MAE 1 6 3 5 2 4 

 
Avg RMSE 0.44329 0.47027 0.46551 0.47225 0.46845 0.47135 

 
Rank RMSE 1 4 2 6 3 5 

  Avg Rank 1 5 2.5 5.5 2.5 4.5 

May Avg MAE 0.00196 0.00371 0.00123 0.00691 0.00668 0.00217 

 
Rank MAE 2 4 1 6 5 3 

 
Avg RMSE 0.48344 0.51455 0.49287 0.51266 0.50468 0.47320 

 
Rank RMSE 2 6 3 5 4 1 

  Avg Rank 2 5 2 5.5 4.5 2 

Jun Avg MAE 0.00183 0.00537 0.00230 0.00745 0.01159 0.00109 

 
Rank MAE 2 4 3 5 6 1 

 
Avg RMSE 0.50608 0.53074 0.51031 0.56195 0.53320 0.49332 

 
Rank RMSE 2 4 3 6 5 1 

  Avg Rank 2 4 3 5.5 5.5 1 

Jul Avg MAE 0.00098 0.00287 0.00106 0.00426 0.00490 0.00168 

 
Rank MAE 1 4 2 5 6 3 

 
Avg RMSE 0.40736 0.42687 0.41788 0.43714 0.43079 0.43835 

 
Rank RMSE 1 3 2 5 4 6 

  Avg Rank 1 3.5 2 5 5 4.5 
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Table D.6. (Continued) Hawai‘i cross validation statistics: compare all years (OK) with 

the 30-year test for 5 methods. 

 
 

 30-Year Cross Validation Results 
88-Year 

Final Results 

    OK OCK_EL OCK_RF KED_EL KED_RF OK 

Aug Avg MAE 0.00139 0.00084 0.00090 0.00399 0.00298 0.00039 

 
Rank MAE 4 2 3 6 5 1 

 
Avg RMSE 0.49975 0.52879 0.51654 0.54317 0.53090 0.49041 

 
Rank RMSE 2 4 3 6 5 1 

  Avg Rank 3 3 3 6 5 1 

Sep Avg MAE 0.00042 0.00025 0.00333 0.00068 0.00442 0.00053 

 
Rank MAE 2 1 5 4 6 3 

 
Avg RMSE 0.38538 0.40840 0.40350 0.40767 0.40606 0.45776 

 
Rank RMSE 1 5 2 4 3 6 

  Avg Rank 1.5 3 3.5 4 4.5 4.5 

Oct Avg MAE 0.00119 0.00207 0.00075 0.00069 0.00820 0.00017 

 
Rank MAE 4 5 3 2 6 1 

 
Avg RMSE 0.46418 0.48034 0.48579 0.48670 0.48061 0.48002 

 
Rank RMSE 1 3 5 6 4 2 

  Avg Rank 2.5 4 4 4 5 1.5 

Nov Avg MAE 0.00056 0.00386 0.00337 0.00449 0.00490 0.00038 

 
Rank MAE 2 4 3 5 6 1 

 
Avg RMSE 0.40306 0.42122 0.42164 0.42517 0.41714 0.41819 

 
Rank RMSE 1 4 5 6 2 3 

  Avg Rank 1.5 4 4 5.5 4 2 

Dec Avg MAE 0.00038 0.00478 0.00222 0.00567 0.00132 0.00079 

 
Rank MAE 1 5 4 6 3 2 

 
Avg RMSE 0.44360 0.47322 0.45140 0.48519 0.46318 0.42661 

 
Rank RMSE 2 5 3 6 4 1 

  Avg Rank 1.5 5 3.5 6 3.5 1.5 

 

Note: OK is ordinary kriging, OCK_EL is ordinary cokriging with elevation, OCK_RF is 

ordinary cokriging with mean rainfall, KED_EL is kriging with external drift with elevation, and 

KED_RF is kriging with external drift with mean rainfall.  MAE is mean absolute error; RMSE is 

root mean square error.  Units for MAE and RMSE are the same as the relative anomalies: 

dimensionless (inches per inch). 
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