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Using Records of Practice to Bridge from 
Teachers’ Mathematical Problem Solving to Classroom Practice1,2 

 

Davida D. Fischman3 and Iris M. Riggs 
California State University, San Bernardino 

 
 

Abstract: It is often the case that high quality mathematics education professional development 
involves enhancing both teachers’ content knowledge and their pedagogical skills, specifically for 
teaching mathematics. However, when teachers are immersed in their own learning of 
mathematics, they are often unaware of the facilitators’ instructional decisions and moves that 
influence their own learning outcomes, as well as how these might apply to their future 
teaching.  Thus, while the teachers can appreciate their new understanding of content, they may 
not have added significantly to their understanding of the instructor’s pedagogical moves that 
facilitated their growth.  As a result, teachers may leave even high quality professional 
development without assurance that they will be able to adjust their teaching in ways that support 
their own students’ meaningful learning of mathematics. In this work we describe one way in 
which professional development can both enhance teachers’ subject matter knowledge and help to 
transform these new understandings into pedagogical content knowledge; the mathematics content 
sessions provide the platform for reflection on pedagogy. To facilitate this reflection, a “record of 
practice” is created by facilitators, and thereafter utilized for participants and facilitators to identify 
and analyze critical moments in the mathematics content session. This paper offers two specific 
examples of records of practice and how they were used, as well as teachers’ reactions and insights. 
It also discusses various formats of records of practice, the logistics of developing them, and ends 
with the potential benefits of using records of practice in professional development for teachers. 

Keywords: Mathematical problem solving; Mathematical knowledge for teaching; teacher 
practice; pedagogical content knowledge 
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Introduction 

A large group of teachers had just finished a 2-hour problem-solving session facilitated by the 

mathematician as part of a professional development program. The mathematics educator began 

facilitating a reflection on the session by asking the participants: What was your instructor doing 

while you were working on the problem? The teachers’ initial response: “Nothing…” After a bit 

of laughter and some reflective silence, some teachers tentatively began offering up other thoughts: 

“She asked what (an aspect of my work) meant”; “she encouraged me to continue developing my 

calculation”; “she suggested that I consider additional approaches”; etc. 

It makes sense that greater content knowledge should correlate positively with better 

instruction; after all, one cannot teach what one does not know. On the other hand the relationship 

between the two is not entirely obvious, and quite a bit of work has been done to identify, define, 

and study “mathematical knowledge for teaching “ (MKT) (Hill, Rowan, Ball, 2005) and its 

relationship to instruction. If increased MKT automatically led to improved instruction, one might 

depict the relationship as follows: 

Figure 1. Direct relationship between MKT and instruction 

However, as the dialogue in the first paragraph illustrates, when teachers are immersed in 

their own learning of mathematics, they are often unaware of the facilitators’ instructional 

decisions and moves that influence their own learning outcomes, as well as how these might apply 

to their future teaching. These issues are part of what Lewis (2007) calls the “invisible work of 

teaching”. Many aspects of the work of teaching are actually visible to the eye but escape notice 

nonetheless. Even when veteran teachers experience a professional learning session, the 

facilitators’ specific teaching actions are often difficult for them to recognize or understand their 

Increased MKT 
Improved 
instruction 
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effects.  Thus, while the teachers can appreciate their new understanding of content, they may not 

have added significantly to their understanding of the instructor’s pedagogical moves that 

facilitated their growth.  As a result, teachers may leave even high quality professional 

development without assurance that they will be able to adjust their teaching in ways that support 

their own students’ meaningful learning of mathematics. This attention to teachers’ content 

understanding and how this knowledge might or might not impact their pedagogy has not typically 

been a focus of research (Schifter, 1998; Garet, Porter, Desimone, Birman, & Yoon (2001).  

Schifter (1998) suggested that there is a need to investigate the kinds of understanding that teachers 

need in order to enact new teaching practices and how those understandings connect to their 

pedagogy.  As he states, “Ultimately, students benefit when teachers connect their mathematical 

understandings with appropriate pedagogical moves (Schifter, 1998). Thus, the diagram in Fig. 1 

tells only part of the story; we modify it to include pedagogy: 

However, Figure 2 seems to imply that “Increased MKT” and “Enhanced pedagogical 

moves” are independent of each other and are each learned separately from the other. We contend 

that enhanced pedagogy is not independent of content, but both supports content and builds on it; 

growth in pedagogy is a mediating factor between increased MKT and improved instruction. This 

philosophy is depicted in Figure 3: 

Increased MKT 

Enhanced 
pedagogical moves 

Improved instruction 

Figure 2. MKT and pedagogy improving instruction independently 
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Figure 2. Enhanced pedagogy supporting increased content in improving instruction 

Clearly the goal of increased content understanding for mathematics teachers is a valuable 

aim of mathematics teachers’ professional development. What we are proposing in this work is 

one way in which professional development can both enhance teachers’ subject matter knowledge 

and help to transform these new understandings into pedagogical content knowledge, “the ways of 

representing and formulating the subject that make it comprehensible to others” (Schulman, 1986; 

Ball, Thames, & Phelps, 2008). It is our premise that it is possible--and in fact preferable--for 

mathematics teachers’ professional development to support increased teacher content 

understanding as well as enhanced ability in pedagogical skills for conceptual learning and 

development of mathematical practices, with the mathematics sessions providing the platform for 

reflection and pedagogical growth.  Engaging teachers in problem-based lessons can serve as the 

basis for both types of learning if a purposeful focus on both content and pedagogy is integrated. 

As Schifter (1998) stated,  “...as participants explore mathematics content, the mathematics lessons 

themselves provide grist for reflection.” Problem-based lessons provide in addition to deep content 

learning, particularly rich material for reflection, as they actively support also development of the 

“habits of mind of a mathematical thinker and problem-solver” (Conference Board of the 

Mathematical Sciences (2012). 

In providing professional development experiences, we aim to design and implement a 

flow from teachers engaging in problem-solving and content development to pedagogical 

development that begins with a reflection on “what did I need as a learner?”, continuing to “What 

Increased 
MKT 

Enhanced 
pedagogical moves 

Improved 
instruction 
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did my facilitator(s) do to support my learning?”, and finally to a discussion of “What does this 

mean for me as a teacher?” 

In order to engage in meaningful reflection, teachers need an opportunity to identify and 

analyze critical points in the design and implementation of the  session from the perspective of an 

instructor. In this paper we describe one way to create a “record of (PD) practice” (Ball, Ben-

Peretz, & Cohen, 2014), and suggest ways to use this record for teacher reflection with the goal of 

growth in both mathematical knowledge for teaching and in pedagogy for teaching mathematics. 

The project’s use of scripting and photos of participant work completed in summer 2013 

developed in response to participants’ feedback and our own need to reflect on the sessions; 

subsequently we noted the Ball, Ben-Peretz, & Cohen (2014) paper which has an in-depth analysis 

of records of practice as a means to “support public discourse about education” and to “make 

possible special opportunities for engagement with practice, and, in particular, for the construction 

of collective professional knowledge.” The research described in that article focuses primarily on 

records of practice of K-12 instruction, but we note that the records used in our PD share many of 

the same characteristics: the combination of a script of the session and photos of participants’ work 

provides a record of practice that is structured, highly detailed, concrete and specific, not guided 

by theory, and of necessity, incomplete. This record of practice provided a helpful resource for 

participants’ reflection on pedagogy and how it might apply in their classrooms. 

Project Context 

The sessions described below took place in the context of a 5-year NSF-funded 

professional development project involving a total of 116 teachers of grades 4-8. The teachers 

participated in a 2-week summer institute, academic year monthly seminars, monthly self-

facilitated learning communities, and 10 days of lesson study annually. The summer institutes were 

originally designed to focus primarily on developing mathematical knowledge for teaching (MKT) 

through inquiry and problem-solving, with the academic year activities meant to focus on a more 

even balance of content and pedagogy.  
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Participant feedback and our own observations prompted us to modify the plan in order to 

incorporate more discussion of pedagogy in the summer institutes. We wanted to do so in a way 

that was tightly linked to the mathematical content of the session, and in a way that supported 

participants in analyzing the effects of facilitators’ pedagogical decisions on participants’ own 

learning. 

The process we utilized for this purpose was as follows: 

1. Participants engage in problem-solving around carefully selected content (as originally 

planned); the facilitator is a mathematician or a mathematics educator; 

2. A mathematics educator scripts the session, and a third facilitator takes pictures of 

participants’ mathematical work as it happens; 

3. After the problem-solving session, the mathematics educator reviews and analyzes the 

session in order to select critical decision points in the design and implementation of 

the session (this step varied based on the goals of the analysis); 

4. On the following day, the mathematics educator conducts a debrief and analysis activity 

with the participants, designed to help them analyze the session’s work from the 

perspective of the facilitator. To do so, she utilizes a script of the session with images 

of participants’ work. 

The results were fascinating: participants and facilitators alike found the debrief/analysis 

activity to be very useful: for teachers, it helped them understand more about how to implement a 

problem-solving lesson in their own classrooms; for facilitators it helped them understand 

participants’ perceptions of the session and how they might improve on their facilitation. 

As a lovely side-benefit, the activity served to broaden and deepen the collaboration 

between mathematicians and mathematics educators, to help them understand one another’s views, 

and to serve as a springboard for further collaboration. 

Below is a description and analysis of two such pairs of problem-solving session and 

debrief/analysis session. We used the following notation: T for teachers (the participants in the 

professional development), M for Mathematician (facilitator of the problem-solving session), E 
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for Educator (facilitator of the reflection session). The quotes of participants’ and facilitators’ 

discussions are taken from the video of the sessions, and their transcripts. 

Content and Pedagogy: Painted cubes problem 

Description of the problem and motivation 

A well-known problem is the “painted cube” problem: Suppose you have a cube 

constructed of centimeter-cubes, with dimensions 4 × 4 × 4, and you dunk this cube in a pail of 

paint. When you remove the cube from the paint, how many of the centimeter-cubes will have 

paint on at least one side?  

This kind of problem is frequently used as a springboard for a problem-solving session 

with important mathematical content, including topics such as algebraic expressions with and 

without variables and equivalence of such expressions. We wanted to utilize the problem and its 

generalization to an 𝑛𝑛 × 𝑛𝑛 × 𝑛𝑛 cube in this way, but also for two additional goals: 

• To develop a transition to abstract thinking, and 

• Subsequently to the problem-solving session, to facilitate teachers’ analysis of pedagogy 

of the lesson, to consider when such pedagogy might be appropriate, and to support 

teachers’ ability to utilize this sort of pedagogy. 

Approach to the instruction 

In previous sessions, we had encouraged teachers to use a variety of manipulatives to 

represent the problems, to develop an understanding of the problems, and to experiment with 

possible solutions. Scaffolding included: 

• Providing many types of manipulatives to help solve problems by representing the problem 

and solving it through working with the concrete objects such as cubes, chips, dice, tape, 

and construction paper. 

• Asking teachers to first solve problems for small numbers that can be represented by the 

manipulatives available, and then for larger numbers that are not easily represented by the 

manipulatives available, as a step toward abstraction 
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• Asking teachers to make drawings of their concrete representations, as an aid to 

visualization and a step toward thinking abstractly about the problem. 

In this session, we wanted to help teachers to deepen their abstract thinking skills by 

developing the ability to imagine the concrete representations in their minds, and to utilize these 

representations to think about solutions. In order to do so, we did not provide any concrete objects, 

though teachers were still free to use colored pencils and paper. To extend their thinking more 

abstractly, after considering the problem for a 4 × 4 × 4 cube, teachers were asked to solve the 

same problem for an 𝑛𝑛 × 𝑛𝑛 × 𝑛𝑛 cube. We note that the teachers had used physical cubes for other 

problems in previous years, and the removal of this tool was only temporary to support further 

development. Ultimately, we expect teachers and students to use any tools at their disposal to solve 

problems. 

Implementation: The problem-solving session 

The session consisted of three parts: a warm-up 

activity, the first problem which involved a 4 × 4 × 4 

cube, and its generalization to a 𝑛𝑛 × 𝑛𝑛 × 𝑛𝑛 cube. 

Warm-up activity. 

The warm-up to this session asked teachers to 

view images of a 3 × 3 × 3  and a 4 × 4 × 4 cube and 

to consider what was the same and what was different 

between the two. No manipulatives were provided. The intent here was to develop some abstract 

thinking, to make connections between a 2-dimensional image and the 3-dimensional object it 

represented, and to  encourage a variety of approaches to thinking about the cubes, thus 

establishing a starting point for participants to think about the main problem of the session from a 

variety of perspectives. 

First problem. 

M: “For the following problem, put your pencils/pens down. Respond without writing, 

without talking, and without counting one by one, consider the following problem. 

Figure 3. Image projected for warm-up activity 
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You have a 4 × 4 × 4 cube made up of unit cubes, and you dunk it in a pail of paint. 

When you take it out, how many unit cubes have paint on them? 

INDIVIDUALLY: Write down your answer and your reasoning.” 

Subsequent to working individually on the problem, M asked the participants to share, 

compare, and contrast their strategies in their small groups, and then facilitated a whole-group 

discussion sharing and comparing strategies. 

While the participants were working on their solutions and sharing solutions, one of the 

facilitators took pictures of their work, and another, the Mathematics Educator, scripted the 

conversations. Below are some excerpts of the whole-group discussions that took place after the 

table discussions, along with images of teacher work. 

One teacher realized her improved ability to imagine concrete representations in her mind, 

working from the outer layer of cubes to the inner sections: 

T: (See Figure 5.) I usually can’t work without the object in front of me. This time, 

I looked at the picture of the cube and imagined it in my mind. That was a big leap for me.  

I think I was able to do it this time.  The top and the bottom have 16 squares in it.  Then I 

went to the sides.  On the sides, what hasn’t been touched by paint were 8 that hadn’t been 

touched by paint.  On the other sides, there 

were 4 that weren’t touched by paint.  This is 

what they did, but I did it in my head…What 

was left, were 8 in the middle…The other sides, 

4 and 4. 

 

 

 

Another teacher decomposed the image differently, visualizing cross-sections: 

T-(See Figure XX.)Red represents the paint.  We can think of the 4 stacks of cubes. 

M-Tell me what you’re counting. 

Figure 4. Participant work: abstraction. 
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T-There’s a total of 64.  Looking at the sides.  This particular cube is painted. 

(Colors in all visible parts of cube.)  This cube is painted…Here are the cubes that are not 

painted. (See Figure XX.) 

M- Look at that. They both got to the same point…The last student peeled the layers 

off like an onion.  This one took cross sections… 

T-We know the whole top and bottom layers are already counted because they’re 

painted…Looking at the second row, this row is counted…Just the 4 cubes in the center 

are not. 

A third decomposition was demonstrated by another teacher, in which a misunderstanding 

was depicted and explored through discussion: 

T-(See Figure 7.) We were way off. We misread the question.  We saw it as how 

many full cubes rather than faces… 

M-Bring what you did.  Let’s see… You only painted faces of the cubes, not entire 

cubes… 

T-We figured out on this first piece here (top layer), 

each corner has 3 faces that are painted (blue).  There were 

32 on this top…96 faces divided by 4 which gave us 24. 

M-You have all the ingredients to answer the 

problem. How would you do it now? 

T-Why did they divide by 4? 

T-They have…Each cube has 4 faces. 

Figure 5. Participant work: layers. 

Figure 6. Participant work: corners 
and sides 
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M-Oh, there is the explanation…Should be 6 faces. 

(M writes whole group’s calculation of the actual problem  

from this group’s picture. ) 

Generalized problem and wrap-up discussion. 

Following the decomposition and discussions of the 4 × 4 × 4  cube, the facilitator posed 

the same problem for an 𝑛𝑛 × 𝑛𝑛 × 𝑛𝑛 cube. We utilized the general problem both to highlight aspects 

of the problem-solving process and to discuss mathematical concepts and practices that appeared 

during the work. 

After some small-group discussion about the 𝑛𝑛 × 𝑛𝑛 × 𝑛𝑛 cube, the group as a whole raised 

and discussed questions arising from the attempt to generalize. Some examples of these questions: 

• What does it mean to “generalize” a formula or other mathematical result? What 

aspects of the problem stay constant, and what aspects change under the generalization 

attempted here? 

• How can we represent a general 𝑛𝑛 × 𝑛𝑛 × 𝑛𝑛 cube visually? 

• What (if any) is the relationship between size and shape? 

• How might changes in size and shape influence the results? 

Eventually, the group developed two expressions for the number of cubes with paint on at 

least one side: 

𝑛𝑛3 − (𝑛𝑛 − 2)3 

2𝑛𝑛2  +  2(𝑛𝑛 − 2)  ×  𝑛𝑛 +  2(𝑛𝑛 − 2) (𝑛𝑛 − 2) 

These in turn contributed more food for thought to our ongoing reflection on the meaning 

of equivalence, particularly in the context of algebraic or arithmetic expressions.  
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The session was then wrapped up in whole group 

discussion, highlighting mathematical concepts and 

practices: 

Visualization and imagination: teachers were asked 

to solve the problem with no concrete objects, but were 

expected to make the transition from a verbal description to 

a visual image in their own ways. As a result, we saw a wide 

variety of approaches to the problem, as described above. 

Some of the teachers commented on this explicitly, for 

example: 

T-: I had a hard time visualizing this, so I drew a diagram.   

Equivalence (of arithmetic and algebraic 

expressions): Throughout the discussions of the 4 × 4 × 4 

cube, M had been collecting teachers’ calculations on the 

board (see Figure 9). She referred to the list and 

subsequently to the algebraic expressions the group had 

developed, and asked the teachers to reflect on 

connections. Ultimately the group concluded that all the 

arithmetic expressions were equivalent to one another, and 

the two algebraic expressions were equivalent to each 

other.  

Scaffolding: Scaffolding for problem-solving is a tricky balance between providing 

sufficient support so that students will persevere, but not so much support that a problem becomes 

an mere exercise. The group discussed how our structuring of the work (for example building up 

from a simpler problem, collecting, sharing and analyzing the structure of and relationship between 

multiple solutions) supported their thinking about the general problem and allowed them the 

Figure 7. Participant work: diagram/net 

Figure 8. Data for equivalence discussion. 
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opportunity to solve a problem that otherwise most would likely not have been able (or willing) to 

attempt. 

Pedagogy: The Analysis and Reflection Session 

Preparation 

Our focus on pedagogy took place the following day. In preparing to utilize the painted 

cube lesson as the foundation for reflection, we reviewed the teachers’ written work and also a 

finalized version of the script of the session, which included images of work shared by various 

teachers and the facilitator during the session. Our review of this record of practice helped us, as 

instructors, to identify critical moments from the lesson that could prompt teachers’ reflection on 

the lesson’s pedagogy and its relation to their own learning.  In their analysis of the critical 

moments, teachers were encouraged to use their own notes from their own problem-solving work 

and from the whole-group discussion during  the painted cube session, thus utilizing a second type 

of record of practice for reflection. 

Two critical instructional moments from the session were selected by the mathematics 

educator (E) as prompts for teachers’ consideration: 

1. The instructional planning decision to have teachers work on the problem without the 

use of concrete objects in this lesson. 

2. Teachers’ own recognition that they were misunderstanding the problem. 

Each of these topics was presented with specific discussion prompts that included quotes 

from the script.  Each topic, in turn, was presented for consideration and discussion facilitated by 

the educator, who also invited comments from the mathematician. 

Session Analyzing Pedagogical Connections to the Content (Problem-Solving) Session 

Critical Moment 1. 

The first critical moment was projected with quotes from the script and question prompts 

to allow for teachers to consider why manipulatives were not allowed in this lesson: 

M (in presenting the problem): “We purposely did not provide you with cubes.   

Keep in mind that this is on purpose.”  
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● How did this approach help or hinder your learning? 

● Why do you think “M” made this instructional decision? 

As described above, the teachers were accustomed to having access to concrete materials 

in our professional development sessions, and many valued them as a learning tool.  We wanted 

to use the omission of materials as a means to promote participants’ ability to think abstractly and 

then  to generalize in the last phase of the lesson, and to help them consider prior experiences as 

they imagined the cubes in this problem. In this part of the follow-up reflection session, we wanted 

teachers to reflect on this instructional decision, its purpose, and to consider a variety of options 

for planning and implementing any particular mathematics lesson.  Through reflection on their 

own learning in this session, we hoped that they would recognize how our learning purposes had 

guided our instructional decisions, and consequently how they might use learning goals as a driver 

of both pedagogy and content in their own teaching 

After teachers had discussed their reactions to these questions within their small groups, 

the educator asked them to share their thinking.   

E: “...Here, she didn’t let you use manipulatives. Why would she make that 

decision?  It would’ve been a lot easier just to count it…” 

T: “It makes it harder to generalize after that.” 

T: “...Yeah, because you just come up with the solution...She forced us to think 

about, why is this? If you count...” 

T: “I would’ve just come up with a solution...I wouldn’t have even had to think 

about the “why,”...it might be that M really wanted us to think about the “why” to force us 

to visualize, to have an understanding and then take it to another level, which is all this 

generalization wonderfulness, but for us to feel what the students might feel when they 

need to express and see the patterns and see some connection to explain the “why.” It’s not 

just about getting an answer. I think it’s more than that. It’s about understanding how to 

get the answer.” 
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T: “I actually think there’s even more to it than that...Algebra is more abstract, so 

if you do it for yourself, each person has to come up with their own representation... but I 

think it’s great, too, that each person can go ahead, and [consider] how could they represent 

it. We saw different kinds of representation in drawings...a little bit of their own individual 

thinking process, but I do think that you really have to figure it out. You may have to do it 

more than one way if it’s an abstract pinnacle piece... seek to the algebraic thinking.” 

T: “...one of our themes this week is relationships, so putting it all together 

abstractly, you were trying to get us to make relationships. When you were saying, “Take 

the bookends off,” I needed to hold that in my mind, right? Instead of individually counting, 

so I needed, and am forced to pay attention.” 

M: “Right, so the relationship between the size of the bookends, the size of the 

longer ends, the size of the shorter ends, we have a lot of relationships going on here, which 

is also what makes it hard. You have a lot of things to keep in your mind to put all of this 

together, and sometimes I go right for the pencil... Even when we think about writing an 

essay or a report or a letter, some people, it all goes on in their minds, and then they put it 

down and it’s perfect. I can’t do that. I write it, then I rewrite it, and then I rewrite it, so I 

rewrite it. I do my math that way, too, but I think that’s a drawback because I sometimes 

have to force myself just to think about things, put them in places that—think about them 

differently. It helps you get into a different way of thinking that can help stretch your 

mind.”    

This discussion sequence demonstrates that teachers were able to extrapolate from the 

record and then to articulate many of our intended purposes for not allowing them to use 

manipulatives in this lesson.  Teachers saw that using blocks to solve the 4x4x4 problem might 

indeed lead to a solution of that specific problem, but might not necessarily lead to sufficient 

understanding of the “why” in order to be able to solve for other sizes of cubes, or the general 

nxnxn problem. They understood that constructing their own visualization required an 

understanding of that “why” and was a means to more abstract thinking, and to recognizing 
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relationships and their connections to generalizations--a goal they recognized we’d been 

addressing in prior sessions.  

Responses in teachers’ written reflections on the session indicate that these insights into 

their own learning connected to teachers’ plans for their own students. Some sample responses to 

the prompt “How will you use this in your teaching?” were: 

• Attempt to allow students to develop the ability to think abstractly. Have some days 

where they use manipulatives and some days when they don't. 

• I learned that sometimes providing concrete models can hinder critical thinking. For 

example, if we provided cubes for the 4X4X4 problem, we might just count the cubes 

rather than come up with the many ways of finding the answer. I need to start thinking 

what I want my kids to get out of the lesson and choose my tools to support it rather 

than start with manipulatives and wrap my lesson around them. 

• Allow time for students to work out problems, and discussion is vital. 

Critical Moment 2. 

We projected the following critical moment prompt to encourage  teachers’ recognition 

that some of them had misunderstood the question in the cube problem, as evidenced by a teacher’s 

statement from the script. We were hoping that this part of the discussion might lead to teachers’ 

consideration of ways that they might try to prevent some misunderstandings (and possibly elicit 

misconceptions), check for understanding, and respond to misunderstandings in ways that increase 

understanding. Teachers were encouraged to access their notes from their work during the 

problem-solving session as a record of practice regarding the wording of the problem, their entry 

into the problem and their understanding of the problem question. 

T: “We were way off.  We misread the question.  We saw it as how many full cubes 

rather than faces…” 

• What happened here? 

• How did M turn misunderstanding into a learning opportunity for the small 

group?  For the entire group? 
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T: (After discussing at tables and referencing notes) “...we think of a cube as one 

unit with different faces; top, bottom, and sides, so until, I think, people began to draw and 

to think about the complete situation, too—it’s situational. You’re linking these, so is the 

entire cube what I’m thinking of as one? No, so I think it’s just trying to get you to break 

it down and think about it.” 

E: “Why didn’t M realize that you were misunderstanding as she was walking 

around?”...“She couldn’t capture that from what she was seeing you draw or write. She 

was trying to see that everybody was with her. Then we come up to the point where people 

are sharing, and people were answering a different question, right?...Don’t you want 

everyone to know the question before they start to work on it?” 

T: “Yes, we do.” 

The teachers and the mathematician discussed various aspects of what may play a role in a 

teacher not realizing that someone has misunderstood a problem’s question.  For example, having 

a large number of students in class makes it difficult for the teacher to assess each student and 

group. They also discussed a teacher’s responsibility in assuring that students understand the 

question versus students’ responsibility in asking for clarification when they don’t understand.  

Teachers related this to their own efforts in lesson study (Lewis, Catherine & Tsuchida, Ineko., 

1999) to design questions that had little ambiguity and could be understood by all their students, 

only to find that some students still did not understand.  They noted that (similarly to themselves) 

sometimes these students were not aware that they were misunderstanding the question, and, 

consequently, did not seek clarification. They seemed to agree, that although they felt a 

responsibility to check for understanding and assure that all students were spending their time on 

the correct question, sometimes, despite their best efforts, some students still move through a 

lesson without adequate understanding of the question.   

The educator then transitioned the discussion to prompt consideration of how to create 

learning opportunities in response to students’ misunderstandings.   
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E: “Then that second question, how did she turn misunderstanding into a learning 

opportunity, not only for the group, but for all of you? She didn’t just say, “Oh, well, you 

all misunderstood the question. You did the wrong thing,” and then move on to other people 

who were with her. How did she use this as an opportunity?” 

T: “She took it, ‘Okay, skip one word to interpret it that way. Let’s see if your 

solution works.’” 

E: “How did that make the people feel who had to deal with this?” 

T: “We were happy to do it.” 

E: “I was trying to put myself in their place, and I thought, ‘Wow, she’s validating 

the work we did, even though we weren’t on what she wanted us to do. We spent all this 

time, and then she took it a step further, where not only did she let them talk about how 

they were interpreting the problem, but then trying to solve (sic) it in light of a new [correct] 

understanding of the question.’ Right? She brought them all on track. What’s the value of 

that?” 

T: “She didn’t make you feel stupid. If she would’ve said, ‘Oh, well, that’s not the 

right way. Here, this is what you’re supposed to do…’” 

T: “Those students, the next time, I don’t think they would’ve had the courage to 

say, and you have to engage your students.” 

T: “I think that it would promote a community where students feel comfortable...In 

perceiving the question that way, she validated back when they did that math chart, as well. 

I think that’s a way to encourage some people that you rarely hear from...I think I would 

use this method. I think it would make you a little more comfortable sharing your work.” 

T: “To add on to that, I think it’s really important to acknowledge, I mean for 

everyone, in your thinking, you’re not all wrong or all right. There’s parts of it that are 

right and parts of it that—it’s not that they’re wrong. You just are off a little bit. In critical 

thinking, what you have to do is take it apart, and what part do I have that’s okay that can 
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stay as is, and what part do I need to rethink again? I think especially our students are so 

black and white. I’m all wrong. I’m all right.” 

T: “That’s a huge lesson for everyone, for our kids, especially, to learn. For 

example, what parts do I have that are okay? Cuz T had many parts that were okay.” 

M: “That is something that we’ve discussed before, which is that—remember 

sometimes in seminars we’ve shown you a video and I’ve asked, “What understanding did 

the students have?” Not what did they get wrong, but what did they understand? You want 

to look for those understandings, so that you can build on them. You want to look for 

what’s right, instead of [just] pointing out what’s wrong.”  

“Then the other aspect that I was thinking of—I think T was speaking, and T, I 

think—was our quote from two days ago on ideas, and why I thought that was so important. 

Ideas are fragile. We want to nurture ideas, and that comes from validating thinking, 

validating correctness.” 

T: “When we started moving to these [types of problems], and I knew they were 

gonna require reading, I knew that that was kind of what we were talking about earlier, 

about that they’re so used to...just right or wrong, so they’re not going to talk...I started 

doing, thinking, “How am I gonna change that?...” ...Instead of saying right or wrong, I 

just started taking those things purposely, and then, afterwards, say, (sic) “Thank you for 

the opportunity to learn.” I would thank them, and all of a sudden, “She’s thanking me for 

doing something wrong?” All of a sudden, the whole dynamics in the classroom started to 

change, and they were willing to just take a risk and say it. For a while there were a lot of 

mistakes they were making, but, eventually, the mistakes dwindled down because the 

thinking was altered, so I’d thank them for it.” 

T: “...It’s just today that I thought back to when we started [this project] in 2010, 

and...you gave us that YouTube video we watched. The Japanese students, they were 

talking, and one didn’t know, and they were helping each other. It was okay cuz it was 

community, and it’s such a different way than we taught our kids to learn, and that’s what 
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was happening. It was okay for those students to be wrong. They would say, “Oh, no-no-

no,” and they would show each other where they made a mistake or make a suggestion, 

and it was normal. The kids were not afraid…” 

This dialogue suggests that teachers recognized many benefits in M’s use of some teachers’ 

version of the problem as a basis for discussion.  As learners, they felt encouraged and validated 

by her recognition of their attempt. They weren’t embarrassed by their error but instead seemed to 

be pleased to have their thinking and their work shared with others. It appears that the interaction 

helped them reconsider what some believed is the common practice of calling on students to share, 

only when they have the right answer, or, at the very least, are on the right track.  They recognized 

M’s instructional move as one that was new to them, and one that they might pursue with their 

own students in the future.  Foundationally, they saw its value in helping them to create a safe and 

encouraging learning environment for their own students’ problem-solving work. 

This segment of the pedagogical lesson seems especially strong in that teachers engaged in 

rich discussion related to students’ misunderstandings of a problem’s questions, including: 

• Prevention of many misunderstandings through careful wording of problems and their 

questions, 

• The importance of checking for student understanding while proceeding through a 

lesson,  

• A teacher’s responsibility for checking on students’ understanding versus students’ 

responsibility for letting the teacher know when they don’t understand, 

• The value of using student misunderstandings as an opportunity for learning,  

• Ways to use student thinking to help them be part of a mathematical community, 

acknowledging that this involves also risk-taking and incomplete thinking, and 

• Reflection on teachers’ current practice for selection of students to share their thinking, 

and the role that correct and incorrect student answers play in selection and sequencing 

of students who share. 
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Teachers’ written reflections on the session provide support that these discussions might 

lead to change in classroom practice: 

• Making mistakes is ok. Let students make mistakes. Develop a safe environment where 

it is ok to make mistakes. 

• Persistence, but knowing it's ok to be wrong...I think the power of persistence has been 

my overall aha this week...This is what I will take back to class. 

• I saw M work real hard to clear up all our misconceptions. She didn't just move on 

because of time. Now I'm determined to take more time with my students no matter if 

there is a Benchmark test that covers more standards than I've been able to cover. 

Clearly, this discussion resulted in a greater appreciation of many pedagogical moves, 

including questioning, formative assessment, and responses to student misunderstandings.  As 

instructors, we also gained additional insight into the teachers’ content understanding.  Even within 

this rich discussion, some teachers did not seem to grasp that the question they pursued was not a 

misinterpretation of the problem, but a mistaken understanding of the problem’s language, hence 

of the question.  Thus, out of this “pedagogical” session, we recognized that content 

misunderstandings still existed that we would need to address in future sessions. This provides 

further evidence of the ever-present dance between content and pedagogy. 

A Second Example: The Spanish Flu Problem 

In the analysis session described above, the facilitator selected the critical moments upon 

which to focus the discussion. However, the script could also be provided to teachers in its entirety, 

with the goal of the teachers identifying critical moments. Below is a brief example of such a use 

of the script. 

The purpose of this problem-solving session was to introduce the topics of mathematical 

modeling and making sense of graphs describing change. Teachers were provided a mathematical 

modeling problem which was introduced with a bit of role play: The facilitator introduced “our 

cousin from Italy”, who had a problem which she posed to the class:  



 
 
 Fischman & Riggs p.277 

 

My brother got the flu and gave it to two other people…After 24 hours, two more people 

got sick!  Now it’s on its way to Rome, where I live…I don’t want to be sick!  I don’t want 

a shot!  One person gets sick, and then 2 more people get sick…It lasts for 24 hours, then 

they are cured again…How long must I stay in my house to try to not get sick?  What if I 

have to leave my house—how many people around me are going to be sick?  If people 

around me are getting shots, how many people need to get shots? 

Teachers then were given time to discuss what they would need to know in order to answer 

the “cousin’s” questions, and to ask clarifying questions. They asked questions such as: how long 

is a person contagious, how many people are infected by any sick person, and so on. Based on 

these discussions, but without actual data, teachers sketched preliminary models of how they think 

the flu might spread. Eventually the group decided on the following assumptions in order to create 

a model: 

• On day 0, only one person is infectious. That person infects two others during the next 

24 hours. 

• Once infected, a person will be infectious for 24 hours.  

• During a 24-hour period, an infected person may infect up to two other people. 

• Once recovered, a person who has been infected will no longer be susceptible to the 

flu. 
 

At that point the facilitator provided a brief historical background regarding the world-

wide devastation wreaked by the Spanish flu during World War 1. She then modeled how to collect 

data on the spread of the flu, and led a re-enactment based on the assumptions the group had agreed 

upon. The enactment led to additional questions that were discussed, for example: once someone 

had been infected and recovered, were they still part of the population? Answer: Yes, therefore the 

probability of being infected is reduced. 
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Once the data collection was completed, it was graphed and analyzed based on the 

following questions: 

1. What is the greatest number of students who might have been in the nurse’s room in 

one day? 

2. When was the flu spreading the fastest? 

3. When and why did it start to slow down again? 

4. Did everyone get sick?  About what percent of our population didn’t get sick?  That’s 

something that we can actually use to make a prediction for a larger population… 

The resulting graphs are provided in Figure 9: 

 

Figure 9. Spanish Flu epidemic graphs 

The sigmoid graphs were unfamiliar to the teachers, which led to a discussion of some of 

its properties. The facilitator noted that although the function rules that describe sigmoid functions 

are algebraically complicated, the process of collecting, graphing, and interpreting data is 

accessible to students who are just beginning to explore functions. Sigmoid models are sufficiently 

complex to allow for multiple levels of problem-solving opportunities. 
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This type of lesson is even more free-flowing than a “regular” problem-solving session, 

and was fairly challenging to script. The goal of the script was to capture the major lesson 

components as well as much of the general discussion, in sufficient detail so that teachers could 

implement a similar lesson in their classrooms. 

Pedagogy: The Analysis and Reflection Session 

On the following day, the teachers received the script and were prompted to review the 

section in which they’d discussed their problem attempts with the facilitator.  They were to 

consider which aspects of the discussion were helpful to their own learning and which aspects 

might be beneficial for their work with their own students. Pedagogical topics generated by the 

teachers as a result of their review included the following: 

● Selection and preparation of problems for problem-based lessons 

○ How can mathematics problems be adapted to be more suited to a teacher’s 

students? 

○ What might be the benefits (and drawbacks) to students of dealing with differently 

scaled graphs within the same lesson? 

○ How does a problem’s wording potentially impact student understanding, 

especially with regard to English learners? 

● Learning goals and outcomes within problem-based lessons 

○ How can we select problems that will forward our learning goals? 

○ At what stage of a lesson is it appropriate to introduce learning goals and expected 

outcomes to students? Oftentimes, school expectations require teachers to post 

and/or state learning goals at the start of their lessons - is this always appropriate? 

○ How can we connect measurable outcomes to a lesson’s learning goals, and what 

is the potential for learning goals to evolve throughout a lesson? 

● Addressing student misconceptions 
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○ Should teachers be planning to elicit predicted student misconceptions? 

● Timing of teacher input 

○ When might it be beneficial to introduce academic vocabulary after students have 

defined it in their own words, versus frontloading vocabulary? 

○ What are the implications of a teacher questioning students versus telling them? 

● Time constraints 

○ How important is it to provide ample time for discussion so that students can engage 

in reflection for deep learning? 

○ What compromises do we - or don’t we - make in relation to having limited time? 

“What is the point of doing a problem-based lesson that we don’t really finish?” 

What does it mean to “finish” a problem-based lesson? 

This session analysis and debrief took approximately an hour and resulted in strong 

teacher-made connections between their own content learning, the instructional moves of the 

facilitators, and what teachers projected as their future practice.  The rich discussion connected to 

our teachers’ common beliefs and practices that we were interested in impacting over time.  For 

example, at the start of our project, many of the participating teachers’ current practice included 

avoiding calling on students if they had incomplete or incorrect answers to a problem.  This was 

most likely based upon a belief that students in general would be confused by wrong answers, or 

even worse, they might learn another student’s “wrong” approach.  Rather than eliciting common 

misconceptions or incomplete ways of thinking about a problem, the teachers would attempt to 

avoid such discussions, a practice that more comfortably aligned with their direct instruction and 

modeling of procedures.  As teachers often stated, “In our first year, I would’ve said you had to 

model first.  You had to show them how to do it.”   

The teachers’ analyses of the script resulted in their consideration of the facilitator’s plan 

for eliciting a common misconception as evidenced by some teachers’ comments: 

• What you said is very interesting...you planned for misconceptions, you planned whether 

we noticed it or didn’t notice it, you planned it both ways.  
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• That’s exactly what happens in our classrooms, too...we’re just chugging along and all of 

a sudden a student brings up something and, boy, we have to be quick on our feet to think 

it’s a misconception, whatever you wanna call it and you didn’t plan for it and now I have 

to shift gears here really fast. That’s the hard part.  

• That’s where the questioning comes in.  

Teachers noted that if we plan lessons with potential student confusions in mind, then we 

can prepare ways in which we might respond when they arise, including probing questions that 

can help students recognize how their approach might or might not address the problem’s 

questions. 

Overall, formative and summative assessment surveys of the teachers provide evidence 

that the pedagogical analysis sessions utilizing session scripts were fruitful in teachers recognizing 

how learning goals drive a teacher’s instructional choices; for example 

● As we moved through the week, the big picture came into focus. I enjoyed the sessions...as 

a debriefing and "teacher talk" concept so that I could understand why certain choices 

were made with the lessons [with which] we were presented.  Again, thank you. 

● The breakdown of M's lesson was extremely useful in trying to improve the development of 

my own lessons. 
Some Thoughts Regarding Script Formats 

Depending on the primary purpose, and potential ancillary purposes, the script-taking 

might be conducted in different formats. Excerpts from some sample scripts that we have used are 

shown below. These are provided verbatim, and the labels are a bit different from the remainder 

of the paper: “Teacher” or “T” in the script is the “mathematician” or “M” above, and “Student” 

or “S” is a “participating teacher” or “T” above. The scripts were all created by the educator (“E” 

above). 

(Three) columns, with or without images 
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This format is geared toward helping teachers understand and plan for some of the 

complexities of teaching, with multiple aspects of instruction and learning to be considered 

simultaneously. The selection of the column headers can vary, depending on the specific purposes 

for the professional development. 

This format is also helpful in supporting teachers’ thinking about lesson planning. In 

particular, formative assessment is frequently not targeted as a major component of planning, and 

we wanted the participating teachers to both see it in action, and consider how they might plan for 

formative assessment in their own teaching. 

The excerpt below is from a session not described in this paper. 

Lesson Steps Teacher Support of Student 
Learning 

Formative Assessment 

8:54 T presents problem and 
tells students to pursue it.                                                                                                                                                                                                                                                                       

  
  
  
  
  
  
  
  
  
  
  
  
  
  
 
 
 

 
 

Show video to introduce problem 
(prior to showing text of problem) 

  
While monitoring students trying to 
solve the problem: 

  
 

T-What else did he eat besides the ½? 
You can work through it and 

see what happens and then adjust. 
(Figure) 

  
 

Student shows totals for each cat.  Did 
you check it?  Show me how you 
checked it…I’m asking how you 
checked, not how you solved it.  Start 
from the beginning and kind of follow 
the story to follow your work. (Figure) 

  
Naming the strategies being tried may 

  
  
  

While monitoring 
students trying to solve 
the problem: 

  
The teacher assesses to 
identify types of 
approaches being used 
by the students. 

  
 
 
The teacher checks to 
see if students are 
confused related to the 
“remainder” of each 
cat’s snack.  
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9:02  What ways are you 
approaching this problem? 

  
You are going in an 

algebraic direction?  And 
some of you are trying 
diagrams…none of which is 
very easy with this 
problem…Ok, yes, some of 
you are working backwards.  
Yes, and some of you are 
trying to make whole 
numbers…What is the issue 
here…What is that 1/3 a third 
of?  What is that ½ a half of?  
What does the one refer to? 

be helpful to some students.  It may 
bring back to mind strategies that 
they’d used in the past.  This may 
prompt further efforts. 

  
The teacher is also stating that 

some approaches are difficult with 
this problem. 

  
  
  
  
  
Additional interactions with 

individual students: …  

 
The teacher checks her 
observations of types of 
approaches being used 
by asking students to 
call out their 
approaches. 

 

Another option might be to record the session in a 2-column format, one for teacher actions 

and the other for student actions. During the reflection stage, participating teachers might be 

prompted to identify moments of formative assessment (or other important aspects of the 

teaching), and expand the table to highlight those.  

Linear text, with or without images 

A linear format, as shown below, is easier to record, since the classroom discussion 

generally takes place linearly. It is also easier for some teachers to interpret, as it simplifies the 

reading.  

 

T: Now let’s take these visuals, the numbers and see if we can generalize.  Let’s look at 
the 16.  What would that look like if we’re looking at and n x n x n? 
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S:  2x∙ 𝑛𝑛2… 
 
T: Now what about the red, those bars? ... Where did 

this 2 come from? ... Is that part of the shape or the size? ... I 
hear some say size or shape…If we had a 6x6x6, how many 
would we have in there? ... So in relation to the size of the 
cube, how many are in there? ... If we had size 3, how many 
in there?  

 
S: 1.   
T: If we had 4, how many?   
S: 2.   
T-If we had 5, how many?   
S: 3.  So it’s (n-2).  
S: Would you explain why it’s n-2? 
T: Imagine in your head if you had a 3x3x3… Take off the ends…If you had a 4x4x4… 

 

Images: The images of “student” work were found to be very helpful in understanding the 

flow of the lesson. If possible, we recommend including such images in the script to facilitate the 

recall of the lesson discussion, and reflection on facilitator and participant actions. 

Focus of Script: In this project we took the approach of scripting the full content of the 

session verbatim. However, depending on the purpose, one might focus the script on actions 

pertaining to particular aspects of instruction, such as equitable access, classroom climate, 

questioning strategies, student engagement, and so on. 

Varying formats: We believe it is useful to vary the scripting formats, as that would allow 

for different levels of complexity in the reading, as well as different uses of the script. 

Discussion  

The work of teaching is complex, and involves a myriad of decisions regarding both 

content and pedagogy. In order to provide professional development that will significantly  

improve instruction, we must address each of these areas, both independently of each other, and 

in relation to each other. What we offer in this paper is a way to support teachers’ noticing of and 
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reflection on the purpose and value of the instructional decisions made by the facilitator(s) through 

scripting (and photographing) the events of a professional development session, and then using the 

resulting records of instruction to facilitate accurate recall of events and reflection on many aspects 

of teaching. 

The scripts, as we used them, share many of the characteristics described by Ball et.al. 

(2014). Some important traits of these scripts: 

● Each script has a predetermined structure. 

● The scripts are highly detailed, concrete, and specific. 

● The scripts describe actions as they happened, and are not in themselves interpretive or 

judgmental. 

● Although the Educator who scripted the session included as much of the session actions as 

possible, the record is necessarily incomplete. For example, not all student work was 

photographed, and not all images were included in the scripts handed to the participants; 

not all of the discussion was recorded because not all was heard or events moved too fast. 

● The scripts afforded a view of both challenges and successes, without prejudging the value 

of any particular action. 

We now consider a number of questions related to the process of scripting and using the 

scripts for reflection. 

How should the script be created, and by whom? While a transcript of videoed instruction 

can serve as a record of practice, we found that a script developed during the instructional session 

itself has several advantages for the purpose of facilitating pedagogical sessions. First, such a script 

can typically be produced more quickly than a transcript, thus, allowing for script-based reflection 

to occur in close proximity to the learning experience. Second, in our scripting, unlike a more 

technical record, we focused on the actions of the instructor and teachers without inclusion of 

every detail and word spoken.  We thought of the script as a factual record of the session (what is 

seen and what is heard), with prompts, activities, and the instructor’s and teachers’ verbal 

exchanges.  It enables the facilitators’ and/or teachers’ analyses of the flow of the session and 
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pertinent interactions while stimulating teachers to reflect on their own learnings in relationship to 

the instructor’s teaching moves. We note that this kind of scripting involves an understanding of 

the content and pedagogy, and on-the-spot interpretation and analysis, so in order for the script to 

be valuable, it should be recorded by a mathematics teaching professional, such as (in our case) a 

mathematics educator with experience in mentoring teachers, who collaborates closely with the 

facilitator of the content-based session. 

How should the portions of script for reflection be chosen, and by whom? The reflective 

sections described above demonstrate how facilitators used scripts as a record of practice in two 

ways: (1) to focus teachers’ attention on pre-determined critical moments of the learning session, 

and (2) to support teachers in analyzing a full segment and themselves selecting the moments that 

were critical to their learning.   For the first method, the reflective session came a day or two after 

the problem-solving session, to give the pedagogy facilitator time to review and select the moments 

in collaboration with the mathematician. The second method may be employed fairly soon after 

the problem-solving session, as well as later on.   As our approach evolved, within the scripts we 

included photos of the teachers’ work samples adjacent to the related verbal interactions and 

believe this offers more potential to directly prompt teachers’ analysis of their own learning and 

its relationship to the facilitator’s instruction. 

What should be included in the script? We intentionally created scripts that were absent of 

judgement, focusing only on the facts: what was seen and what was heard.  Thus, our records of 

practice provided a means for teachers  to reflect on actualities of what occurred rather than on the 

facilitator/scripter’s  interpretation of the lesson. Our intention was to allow the teachers to do the 

work of interpreting what happened, to develop their own understandings, and to make connections 

to the facilitator’s teaching moves and their intended purposes.  

What are some side-benefits to teachers of having session scripts?  

● During the analysis session: Because the scripts described actions without 

interpretation, teachers were led to discuss what they felt or how they interpreted 

certain actions versus what actually took place. They were used to considering 
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objective actions (teacher moves, student work, etc) as evidence for interpretation in 

the lesson study post-lesson reflection and analyses, but this work of separating fact 

from interpretation in their own learning was a new experience.  As noted in the 

introduction, the teachers who participated in this project were generally unaware of 

the facilitator’s teaching moves when they were engaged as learners of mathematics.  

The “invisible work of teaching” (Lewis, 2007) needs to be revealed, and scripts can 

be artifacts that provide the evidence and prompt the reflection. As Ball, et al.(2014) 

discussed when citing Shulman (2002), "Close engagement with records of practice 

affords that possibility of disequilibrium through the surprise one may experience at 

phenomena not noticed before."  

● Outside of the “official” professional development: Teachers wished to retain the 

scripts so that they could review the process of solution, with its nuances and various 

methods of solution, as they considered their own teaching of particular problems in 

their classrooms.  The scripts supplemented the notes they had taken as learners with a 

more comprehensive verbal and visual record of the experience, including by teacher 

and student actions and words.  

How do the facilitators benefit from the scripts? Through this work, we found some far-

reaching unplanned side-benefits. 

● During the professional development: Where previously the mathematicians focused 

primarily on content (with some pedagogy), and the mathematics educators focused 

primarily on pedagogy (with some content), this approach helped us to collaborate 

much more closely on both, and consequently to do each better. 

● In curricular work as university faculty: The collaboration between mathematicians and 

mathematics educators did not end with the end of the project. The increased 

understanding of each other’s areas of expertise has led to increased sharing of 

resources and a deeper collaboration on university instruction and curriculum design.   
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● In personal/professional relationships: It is not often the case that mathematicians and 

mathematics educators have a deep appreciation of each other’s areas of expertise. The 

shared work to create and utilize the scripts in professional development has resulted 

in a far greater mutual appreciation, to the benefit of countless numbers of teachers and 

students.  

It is our hope that our work might provide support to others who are planning for projects 

that require collaborations across diverse colleges such as Natural Sciences and Education.  
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